人教版七年级数学上册第三单元一元一次方程-3.2解一元一次方程(一)教案(5)

合集下载

人教版七年级数学上册:3.1.1《一元一次方程》教学设计

人教版七年级数学上册:3.1.1《一元一次方程》教学设计

人教版七年级数学上册:3.1.1《一元一次方程》教学设计一. 教材分析《一元一次方程》是人教版七年级数学上册第三章第一节的内容,主要是让学生掌握一元一次方程的概念、解法及其应用。

本节课的内容是初中的基础内容,对于学生以后学习其他数学知识有着重要的铺垫作用。

二. 学情分析学生在进入七年级之前,已经学习了代数的基本概念,如整数、有理数等,对代数有一定的认识。

但他们对一元一次方程的概念和解法可能还没有完全理解,因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握一元一次方程。

三. 教学目标1.让学生了解一元一次方程的概念,理解一元一次方程的意义。

2.让学生掌握一元一次方程的解法,并能运用一元一次方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重难点:一元一次方程的概念及其应用。

2.难点:一元一次方程的解法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过问题引导学生思考,通过案例让学生理解一元一次方程的应用,通过小组合作学习,让学生互相讨论,共同解决问题。

六. 教学准备1.准备相关的教学案例和问题。

2.准备PPT,展示一元一次方程的相关知识。

3.准备黑板,用于板书一元一次方程的解法。

七. 教学过程1.导入(5分钟)通过一个实际问题,如“小明买了一本书,定价为x元,打了8折后,他支付了8元。

请问这本书的原价是多少?”引导学生思考,引入一元一次方程的概念。

2.呈现(10分钟)通过PPT,展示一元一次方程的定义、解法和应用。

让学生了解一元一次方程的基本知识。

3.操练(10分钟)让学生解决一些简单的一元一次方程问题,如“2x + 1 = 7”等。

引导学生运用一元一次方程的解法,求解未知数的值。

4.巩固(10分钟)让学生解决一些实际问题,如“一个水果摊贩卖出x个苹果,每个苹果的价格为2元,如果他总共收入了20元,那么他卖出了多少个苹果?”让学生将所学的一元一次方程应用到实际问题中。

人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案

人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
2.学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
3.通过实例分析,让学生理解合并同类项解一元一次方程的原理,并能熟练运用此方法解决实际问题。
4.掌握一元一次方程的标准化形式,即ax+b=0(a≠0)。
本节课将结合教材内容,以实用性为导向,旨在让学生掌握合并同类项解一元一次方程的方法,并能够灵活运用。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
一、教学内容
本节课依据人教版七年级数学上册第三章《一元一次方程》中的3.2.1节“解一元一次方程-合并同类项解一元一次方程”进行设计。教学内容主要包括以下几部分:
1.掌握合并同类项法则,能够将含有一元一次方程的式子中的同类项进行合并。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力,使其能够运用合并同类项法则对一元一次方程进行合理变形,从而解决问题。
2.培养学生的数学运算能力,提高解题速度和准确性,熟练掌握移项、合并同类项等基本操作。
3.培养学生的分析问题和解决问题的能力,通过实际问题的引入和解决,让学生体会数学知识在实际生活中的应用。
4.培养学生的团队合作意识,通过小组讨论和交流,提高学生的沟通能力,增强合作解决问题的能力。
5.培养学生的创新意识,鼓励学生在解题过程中尝试不同的方法和思路,提高思维的灵活性。
三、教学难点与重点
1.教学重点
-理解并掌握合并同类项法则,能够将一元一次方程中的同类项进行有效合并。
-学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母和相同指数的项进行相加或相减。它是解一元一次方程的重要步骤,可以帮助我们简化方程,便于求解。

人教版七年级数学上册(教案)_3.2利用去分母解一元一次方程

人教版七年级数学上册(教案)_3.2利用去分母解一元一次方程
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版七年级数学上册(教案)_3.2利用去分母解一元一次方程
一、教学内容
本节课选自人教版七年级数学上册第3章《一元一次方程》的3.2节,主要教学内容包括:利用去分母解一元一次方程。具体涉及以下方面:
1.掌握含有一个未知数的一元一次方程的分母特点;
2.学会利用去分母的方法,将含分母的一元一次方程转化为整式方程;
3.重点难点解析:在讲授过程中,我会特别强调如何找最小公倍数和如何保持等式两边等价这两个重点。对于难点部分,我会通过具体例题和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过实际分配物品来演示方程的解法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了利用去分母解一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.培养学生模型思想,将实际问题抽象为一元一次方程,通过解方程解决实际问题,提高学生运用数学模型分析现实问题的能力;

人教版七年级上册3.2解一元一次方程(一)-———-合并同类项与移项教案设计

人教版七年级上册3.2解一元一次方程(一)-———-合并同类项与移项教案设计
(1)设这个班有x名学生,每人分3本,共分出____本,加上剩余的20本,这批书共_______本.
(2)每人分4本,需要___本,减去缺的25本,这批书共________本.
(3)这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
(1)思考:方程3x+20=4x-25的两边都含有x的项(3x与4x)和不含字母的常数项(20与-25),怎样才能使它向x=a(常数)的形式转化呢?
五、达标拓展
1.课本91页,练习
2.习题3.2第3、7、9题.
课后反思:




1.重点:1.找相等关系列一元一次方程;
2.用移项、合并同类项等解一元一次方程.
2.难点:找相等关系列方程,正确地移项解一元一次方程.学法 Nhomakorabea教具
学具
导 学 过 程
二次备课
一 、导入明标
二、学法指导
1.解下列方程:
(1)x+3x-2x=4 (2)3x-4x=-25-20
2.阅读课本89页上的问题2,分析:
年级: 七年级 科目:数学
课题
3.2解一元一次方程(一)
——— 合并同类项与移项(2)
课型
新课
课时
序号
总课时
序号
主备人
审核人
授课人
备课时间




1.找相等关系列一元一次方程;
2.用移项解一元一次方程;
3.体会解方程中的化归思想,会移项、合并解ax+b=cx+d型方程,进一步认识如何用方程解决实际问题。
(2)利用等式的性质1,
得 3x-4x=-25-20

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。

今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。

初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。

在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。

这为过渡到本节的学习起着铺垫作用。

合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。

因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。

其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。

教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

第三章《一元一次方程》教学设计(人教版初中数学七年级上册)

第三章《一元一次方程》教学设计(人教版初中数学七年级上册)

新人教版七年级上学期数学第三章一元一次方程教学内容本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析和解决实际问题。

分析实际问题中的数量关系并用一元一次方程表示是始终贯穿这些内容的主线,而且始终渗透着“数学建模”和“化归”的思想方法。

通过丰富实例,从算式到方程建立一元一次方程,展开方程是刻划现实生活的有效数学模型;通过观察、归纳引出不等式的两条性质,为进一步讨论较复杂的一元一次方程的解法准备理论依据;从实际问题出发,运用等式的性质解方程,归纳“移项”、“合并”、“去括号”等法则,逐步展现求解方程的一般步骤;运用方程解决实际问题,通过探究活动,加强数学建模思想,提高学生分析问题和解决问题的能力。

本教案对列方程解决实际问题的内容作了较集中的归类讨论。

教学目标〔知识与技能〕1、理解一元一次方程及有关概念和等式的基本性质;2、熟练掌握一元一次方程的解法(数字系数)并学会运用一元一次方程解决简单的实际问题。

〔过程与方法〕经历解一元一次方程和列一元一次方程解决实际问题的过程,明确解一元一次方程和列一元一次方程的基本步骤,初步树立数学建模思想和体会化归思想的运用。

〔情感、态度与价值观〕在解决实际问题中,体会数学的应用价值,激发学习数学的欲望,提高分析问题和解决问题的能力。

重点难点一元一次方程的解法和运用是重点,列一元一次方程解决实际问题是难点。

课时分配3.1 从算式到方程…………………………………………2课时3.2 解一元一次方程的讨论(一)…………………………3课时3.3 解一元一次方程的讨论(一)…………………………4课时3.4 实际问题与一元一次方程…………………………3课时本章小结………………………………………… 2课时3.1.1一元一次方程[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。

新人教版七年级数学上册3.2.1《解一元一次方程》教学设计1

新人教版七年级数学上册3.2.1《解一元一次方程》教学设计1

新人教版七年级数学上册3.2.1《解一元一次方程》教学设计1一. 教材分析新人教版七年级数学上册3.2.1《解一元一次方程》是学生在掌握了有理数的运算、方程与方程式的概念等基础知识后,进一步学习解一元一次方程的知识点。

本节内容通过具体实例让学生了解一元一次方程的定义,学会运用移项、合并同类项的方法解一元一次方程,从而培养学生解决实际问题的能力。

二. 学情分析七年级的学生已具备一定的数学基础,对有理数的运算、方程与方程式的概念有一定的了解。

但学生在解方程方面可能还存在一定的困难,因此,在教学过程中,教师需要耐心引导,让学生逐步掌握解一元一次方程的方法。

三. 教学目标1.知识与技能:让学生掌握一元一次方程的定义,学会解一元一次方程的基本方法。

2.过程与方法:通过观察、分析、归纳等方法,引导学生发现解一元一次方程的规律。

3.情感态度与价值观:培养学生积极参与数学学习的兴趣,提高学生解决实际问题的能力。

四. 教学重难点1.重点:一元一次方程的定义,解一元一次方程的基本方法。

2.难点:解一元一次方程过程中,如何正确移项、合并同类项。

五. 教学方法1.情境教学法:通过生活实例引入一元一次方程,让学生感受数学与生活的紧密联系。

2.引导发现法:教师引导学生观察、分析、归纳解一元一次方程的规律。

3.实践操作法:让学生在动手实践中,掌握解一元一次方程的方法。

六. 教学准备1.教学课件:制作课件,展示一元一次方程的定义、解法及实例。

2.练习题:准备适量的一元一次方程练习题,用于巩固所学知识。

3.教学黑板:准备黑板,用于板书解题过程。

七. 教学过程1.导入(5分钟)利用生活实例引入一元一次方程,激发学生的学习兴趣。

例如,假设小明有苹果和香蕉两种水果,苹果的数量是香蕉的两倍,如果小明有12个香蕉,那么他有多少个苹果?2.呈现(10分钟)讲解一元一次方程的定义,展示一元一次方程的一般形式:ax + b = 0(a、b是常数,且a≠0)。

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。

本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。

教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。

二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。

但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。

三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。

2.能够运用移项法解一元一次方程。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。

2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。

六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。

2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。

示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。

3.操练(10分钟)教师给出一些练习题,让学生独立完成。

教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。

4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。

教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。

5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。

解一元一次方程的教案

解一元一次方程的教案

解一元一次方程的教案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--解一元一次方程的教案解一元一次方程的教案范文教学内容:人教版七年级上册一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

情感态度和价值观:让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

情感态度和价值观:让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:根据具体问题中的相等关系,列出方程。

教学准备:多媒体教室,配套课件。

教学过程:设计理念:数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。

课程标准的建议要求教师不再是“教教材”而是“用教材”。

本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念师:同学们,老师学会了一个魔术,情你们配合表演。

请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,25师:同学们想学会这个魔术吗?生:想!师:通过这节课的学习,同学们一定能学会!【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。

人教版数学七年级初一上册 3.2解一元一次方程(一)——合并同类项与移项 第1课时 名师教学教案 教

人教版数学七年级初一上册 3.2解一元一次方程(一)——合并同类项与移项 第1课时 名师教学教案 教

二、合作探究學习新知
(一)解一元一次方程
1、例1 解下列方程
(1)分析3个方程特点。

(2)运用合并同类项的知识解以上方程。

(3)小结解方程的步骤。

2、想一想:上面解方程中“合并同类项”起了什么作用?
合并同类项起到了“化简”的作用,即把含有未知数的项合并,从而把方程转化为ax=b,使其更接近x=a的形式(其中a,b是常数) 。

3、巩固练习:
解下列方程
(指名板演,其余學生独立完成,集体订正答案。


4、思考:
约公元820年,中亚细亚数學家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。

这本书的拉丁译本为《对消与还原》。

“对消”是什么意思呢?
(二)运用方程解决实际问题
1.例题
某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个學校购买了多少台计算机?
(1)读题,分析已知条件、求什么。

(2)根据分析,找等量关系,设合适的未知数。

(3)根据等量关系,列方程。

(4)解方程、答。

(5)小结解题过程。

(6)除了上述的解法外,还有别的解题思路吗?
(间接设法:。

人教版七年级数学上册教案:第3章 一元一次方程 解一元一次方程(一)——合并同类项与移项(2课时)

人教版七年级数学上册教案:第3章 一元一次方程  解一元一次方程(一)——合并同类项与移项(2课时)

3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项一、基本目标【知识与技能】1.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.2.学会探索实际问题中的数量关系,正确地求解一元一次方程.【过程与方法】经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力.【情感态度与价值观】初步体会一元一次方程的应用价值,感受数学文化.培养学生乐于思考,不怕困难的精神.二、重难点目标【教学重点】会解“ax+bx=c”类型的一元一次方程.【教学难点】分析实际问题中的数量关系,会列方程并能正确求解.环节1自学提纲,生成问题【5 min阅读】阅读教材P86~P87的内容,完成下面练习.【3 min反馈】1.教材第87页“思考”:通过合并同类项可以化简方程,把方程化为ax=b(a、b为常数且a≠0)的形式,从而求出方程的解.2.合并同类项的法则:同类项的系数相加,字母连同它的指数不变.3.解形如ax+bx=c的一元一次方程先合并,再将系数化为1.4.列方程步骤:(1)设未知数;(2)找相等关系;(3)列方程.环节2合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)3x -20x =-34;(2)y 3+y 4=1-112. 【互动探索】(引发学生思考)利用合并同类项的方法求解.【解答】(1)合并同类项,得-17x =-34.系数化为1,得x =2.(2)合并同类项,得7y 12=1112. 系数化为1,得y =117. 【互动总结】(学生总结,老师点评)用合并同类项法解一元一次方程的步骤:(1)合并同类项,即把方程中含有未知数的项合并,常数项合并,把方程化为ax =b (a ≠0)的形式;(2)系数化为1,即根据等式的性质2,将形如ax =b (a ≠0)的方程两边都除以一次项系数,化成x =b a(a ≠0)的形式,即得方程的解为x =b a.系数化为1时注意:(1)利用等式的性质2,方程的两边同时除以未知项的系数,把系数化为1;(2)不要颠倒分子、分母的位置.【例2】有一列数,按一定规律排列成1,-3,9,-27,81,-243,….其中某三个相邻数的和是-1701,这三个数各是多少?【解答】见教材第87页例2活动2 巩固练习(学生独学)1.下列各式的变形错误的是( C )A .由7x -6x =1,得x =1B .由3x -4x =10,得-x =10C .由x -2x +4x =15,得x =15D .由-7y +y =6,得-6y =62.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( A )A .2B .-2 C.27 D .-272.一个两位数,个位上的数字是十位上数字的3倍,两个数字的和是12,这个两位数是39.3.顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?解:设到怀集的旅游人数为x人,则到德庆旅游的人数为(2x-1)人.根据题意,得x+2x-1=200.解得x=67.则2x-1=133.即到怀集和德庆旅游的人数分别是67人,133人.活动3拓展延伸(学生对学)【例3】有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数字之和为342.(1)小彬拿到哪3张卡片?(2)小彬能否拿到相邻的3张卡片,使得这3张卡片上的数的和为86?如果能拿到,请求出这3张卡片上的数各是多少;如果不能拿到,请说明理由.【互动探索】(1)根据题意可以求得相邻的三个数;(2)先判断这三个数字的和能否是86,然后说明理由即可.【解答】(1)设小彬拿到相邻的3张卡片上的数分别为x-6,x,x+6,则有x-6+x+x+6=342.解得x=114.所以x-6=108,x+6=120.即小彬拿到相邻的3张卡片上的数分别为108,114,120.(2)假设能拿到和为86的3张卡片,设这3张卡片上的数分别为y-6,y,y+6,则有y-6+y+y+6=86.解得y≈28.67,显然不符合题意,说明上述假设不成立.故小彬不能拿到相邻的3张卡片,使得这3张卡片上的数的和为86.【互动总结】(学生总结,老师点评)解答本题的关键是由后一张卡片上的数比前一张卡片上的数大6的特点,可设中间的一张卡片分别为x,那么另外两张卡片为x-6和x+6.然后根据每一问中的具体等量关系列出方程即可.环节3课堂小结,当堂达标(学生总结,老师点评)1.合并同类项法则:把同类项的系数相加,字母的指数不变.利用合并同类项法则可使方程转化为ax=b的形式.2.利用一元一次方程解应用题,当问题中有多个未知数时,可设其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程求解.请完成本课对应训练!第2课时移项一、基本目标【知识与技能】1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项的方法,学会解“ax+b=cx+d”类型的一元一次方程.【过程与方法】通过解形如ax+b=cx+d的方程,使学生感受化归的思想方法.【情感态度与价值观】1.培养学生积极思考,勇于探索的精神.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值.二、重难点目标【教学重点】会解“ax+b=cx+d”类型的一元一次方程.【教学难点】分析实际问题中的相等关系,列出方程.环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P90的内容,完成下面练习.【3 min反馈】1.教材第88页思考:先移项,将方程变为3x-4x=-25-20的形式;再合并同类项,得-x=-45;最后将系数化为1,得x=45.2.把等式一边的某项变号后移到另一边,叫做移项.3.移项的根据是等式的性质1.4.教材第89页思考:通过移项,可以把含有未知数的项与常数项分别移到等号的两边,通过合并同类项,使方程化为ax=b(a、b为常数且a≠0)的形式,再化系数为1,即可求出方程的解.5.解方程20-3x=5时,移项后正确的是(B)A.-3x=5+20B.20-5=3xC.3x=5-20D.-3x=-5-20环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)x -2018=82-5x ;(2)-2x +3.5=3x -8.【互动探索】(引发学生思考)解简单的一元一次方程的步骤有哪些?移项的关键是什么?【解答】(1)移项,得x +5x =82+2018.合并同类项,得6x =2100.系数化为1,得x =350.(2)移项,得-2x -3x =-8-3.5.合并同类项,得-5x =-11.5.系数化为1,得x =2.3.【互动总结】(学生总结,老师点评)移项是解方程的关键步骤,移项时,一般把含有未知数的项移到等号左边,常数项移到等号右边,注意移项时一定要变号.【例2】某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新、旧工艺的废水排量之比在2∶5,两种工艺的废水排量各是多少?【解答】见教材第90页例4【教师点拨】列方程解决应用题的关键是找出题中的等量关系.本题的等量关系:旧工艺废水排量-200 t =新工艺废水排量+100 t.活动2 巩固练习(学生独学)1.解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)5=5-3x ;(4)x -2x =1-23x ;(5)x -3x -1.2=4.8-5x .解:(1)x =52. (2)x =1.(3)x =0.(4)x =-3.(5)x =2.2.把若干块糖果分给若干个小朋友,若每人分3块,则多12块;若每人分5块,则少10块.则一共有多少个小朋友?多少块糖?解:设一共有x 个小朋友.根据题意,得5x -10=3x +12.移项,得5x -3x =12+10.合并同类项,得2x =22.系数化为1,得x =11.所以共有糖5x -10=45(块).即一共有11个小朋友,糖45块.3.一个三位数,十位上的数字比个位上的数字多1,且是百位上的数字的4倍,百位上的数字与个位上的数字之和比十位上的数字大1,求这个三位数.解:设十位上的数字为x .根据题意,得x -1+x 4=x +1. 移项,得x +x 4-x =1+1. 合并同类项,得x 4=2. 系数化为1,得x =8.所以个位上的数字为x -1=8-1=7,百位上的数字是x 4=84=2,则这个三位数是287. 活动3 拓展延伸(学生对学)【例3】某中学组织七年级的同学去游玩,原计划租用45座客车(不包括司机)若干辆,但有15人没有座位,如果租用同样数量的60座客车(不包括司机),则多出一辆且其余客车恰好坐满.则七年级有多少人?原计划租用45座客车多少辆?【互动探索】本题中的等量关系为:45×45座客车辆数+15=学生总数,60×(45座客车辆数-1)=学生总数,据此可列方程组求出45座客车辆数,进而可求出七年级的学生人数.【解答】解:设原计划租用45座客车x辆,则七年级有(45x+15)人.根据题意,得45x+15=60x-60.移项,得45x-60x=-60-15.合并同类项,得-15x=-75.系数化为1,得x=5.当x=5时,45x+15=45×5+15=240.即七年级有240人,原计划租用45座客车5辆.【互动总结】(学生总结,老师点评)列方程解应用题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验(不在解题过程中体现)→写出答案.环节3课堂小结,当堂达标(学生总结,老师点评)1.移项:移项是解方程的重要变形,一般把含有未知数的各项移到同一边(通常移到左边),而把常数项移到另一边(通常移到右边),不管是从左边到右边,还是从右边到左边,注意移项要变号.2.题目中含有比的应用题在设未知数时,一般根据比去设,如果题目告诉的比是a∶b,一般设为ax、bx两部分,如果比是a∶b∶c,一般设为ax、bx、cx三部分,然后找出题目中的等量关系列出方程,并解答.请完成本课对应训练!。

人教版七年级数学上册教案:第3章 一元一次方程 实际问题与一元一次方程(2课时)

人教版七年级数学上册教案:第3章 一元一次方程  实际问题与一元一次方程(2课时)

3.4实际问题与一元一次方程第1课时实际问题与一元一次方程(1)一、基本目标【知识与技能】1.进一步熟悉一元一次方程的解法.2.会用一元一次方程解决配套问题和工程问题.【过程与方法】通过列方程解决实际问题,让学生逐步建立方程思想.【情感态度与价值观】让学生在活动中获得成功的体验,培养学生的探索精神,树立学好数学的信心.二、重难点目标【教学重点】将实际问题抽象为数学问题,列方程解应用题.【教学难点】配套问题和工程问题中的等量关系.环节1自学提纲,生成问题【5 min阅读】阅读教材P100~P101的内容,完成下面练习.【3 min反馈】1.配套问题:若m件A产品与n件B产品配套,其等量关系是“A产品的数量×n=B 产品的数量×m”.2.教材第100页“问题”:设应安排x名工人生产螺母,(22-x)名工人生产螺钉.根据螺母数量与螺钉数量的2倍,列出方程2000x=2×1200(22-x).去括号,得2000x=52 800-2400x.移项、合并同类项,得4400x=52 800.系数化为1,得x=12.则生产螺钉的人数为22-12=10.即应安排10名工人生产螺钉,12名工人生产螺母.3.工程问题:常用的数量关系是:工作总量=工作效率×工作时间,各部分的工作量总和等于1.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【互动探索】(引发学生思考)可设生产圆形铁片的工人为x人,则生产长方形铁片的工人为(42-x)人,根据“两张圆形铁片与一张长方形铁片可配套成一个密封圆桶”可列出关于x 的方程,求解即可.【解答】设生产圆形铁片的工人为x人,则生产长方形铁片的工人为(42-x)人.根据题意,得120x=2×80(42-x).解得x=24则42-x=18.即生产圆形铁片的工人为24人,生产长方形铁片的工人为18人时,才能使生产的铁片恰好配套.【互动总结】(学生总结,老师点评)本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.【例2】某地为了打造风光带,将一段长为360 m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道.【互动探索】(引发学生思考)设甲队整治了x天,则乙队整治了(20-x)天.由两个工程队一共整治了360 m建立方程,求出其解即可.【解答】设甲工程队整治了x天,则乙工程队整治了(20-x)天.由题意,得24x+16(20-x)=360.解得x=5.则乙队整治了20-5=15(天).所以甲队整治的河道长为24×5=120(m);乙队整治的河道长为16×15=240(m).即甲、乙两个工程队分别整治了120 m,240 m.【互动总结】(学生总结,老师点评)本题是一道工程问题,考查了列一元一次方程解实际问题的运用.活动2巩固练习(学生独学)1.一项工程,甲单独做40天完成,乙单独做50天完成,甲先单独做4天,然后两人合做,x 天完成这项工程,则可列的方程是( D )A.x 40+x 40+50=1B.440+x 40×50=1C.440+x50=1 D.440+x 40+x50=1 2.服装厂要生产一批某种型号的学生服装,已知3 m 长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,仓库内存有这样的布料600 m,应分别用多少布料做上衣,多少布料做裤子才能恰好配套?解:设做上衣的布料用x m,则做裤子的布料用(600-x ) m .由题意知 x3×2=600-x 3×3. 解得x =360,600-x =240. 即用360 m 做上衣,240 m 做裤子.3.一本稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成,现在由两人合打7小时,余下部分由乙完成,还需多少小时?解:设还需x 小时,由题意,得 112×7+⎝⎛⎭⎫112-120x =1.解得x =12.5. 即还需12.5小时.活动3 拓展延伸(学生对学)【例3】整理一批图书,由1人做160小时完成,先由一些人做4小时,再增加5人做6小时,完成这项工作的34,则先安排了多少人做4小时?(假设这些人的工作效率都相同)【互动探索】首先设先安排了x 人整理图书,根据题意,得等量关系:先安排的人4小时的工作量+增加5人后6小时的工作量=34,根据等量关系列出方程,再解即可.【解答】设先安排x 人做4小时.根据题意,得 4x 160+6(x +5)160=34. 去分母、去括号,得 4x +6x +30=120.移项、合并同类项,得10x =90. 系数化为1,得x =9.即先安排了9人做4小时.【互动总结】(学生总结,老师点评)此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出各部分的工作量,再根据“先做4小时完成的工作量+增加5人后6小时完成的工作量=工作总量×34”列出方程.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元一次方程的应用⎩⎪⎨⎪⎧题型→配套问题→方法→相等关系题型→工程问题→方法请完成本课对应训练!第2课时 实际问题与一元一次方程(2)一、基本目标 【知识与技能】1.理解商品销售中所涉及的进价、原价、售价、利润、打折数、利润率这些基本量的关系.2.会解决球赛中的积分问题及电话计费问题.3.会根据实际问题中的数量关系列方程解决问题,掌握用方程解决一些生活中的实际问题的技巧.【过程与方法】通过列方程解决实际问题,让学生逐步建立方程思想. 【情感态度与价值观】让学生在问题情境中感受到数学与生活的密切联系,提高对数学的兴趣. 二、重难点目标 【教学重点】掌握用方程解决盈亏问题、比赛积分问题、电话计费问题. 【教学难点】根据问题背景,建立适当的数学模型.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P102~P105的内容,完成下面练习. 【3 min 反馈】 1.销售问题.(1)销售中盈亏问题中基本的量:①成本价:有时也称进价,是商家进货时的价格;②标价:商家在出售时,标注的价格;③售价:消费者购买时真正花的钱数;④商品利润=商品售价-商品成本价;⑤利润率:商品出售后利润与成本的比值.(2)销售问题中的几个等量关系:①售价=进价×(1+利润率);②利润与售价、进价的关系:利润=售价-进价;③利润率与利润、进价的关系:利润率=利润进价×100%=售价-进价进价×100%;④标价、实际售价与打折数的关系:实际售价=标价×打折数;⑤实际售价与进价、利润之间的关系:利润=实际售价-进价=标价×打折数-进价.2.比赛积分问题.比赛总场数=胜场总数+平场总数+负场总数;比赛总积分=胜场积分+平场积分+负场积分。

3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2  解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。

人教版数学七年级上册3.2.1《解一元一次方程》教学设计

人教版数学七年级上册3.2.1《解一元一次方程》教学设计

人教版数学七年级上册3.2.1《解一元一次方程》教学设计一. 教材分析《解一元一次方程》是人民教育出版社七年级上册数学教材第三章第二节的内容。

本节课主要让学生掌握一元一次方程的解法,理解等价变换的思想,培养学生解决实际问题的能力。

教材通过引入实际问题,引导学生学习一元一次方程的解法,进而解决实际问题。

二. 学情分析七年级的学生已经掌握了整数、分数、有理数的基本知识,具备了一定的逻辑思维能力。

但是,对于一元一次方程的概念、解法及其应用可能还比较陌生。

因此,在教学过程中,教师需要关注学生的认知基础,引导学生逐步理解一元一次方程的解法,并能够运用到实际问题中。

三. 教学目标1.知识与技能:使学生掌握一元一次方程的解法,理解等价变换的思想。

2.过程与方法:培养学生解决实际问题的能力,提高学生运用数学知识分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极向上的学习态度。

四. 教学重难点1.重点:一元一次方程的解法。

2.难点:理解等价变换的思想,运用一元一次方程解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、讨论交流,从而掌握一元一次方程的解法。

六. 教学准备1.教学课件:制作课件,展示一元一次方程的解法及实际应用。

2.教学素材:准备一些实际问题,作为学生练习的题目。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用一个实际问题,引入一元一次方程的概念,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示一元一次方程的解法,引导学生观察、思考,总结解一元一次方程的步骤。

3.操练(10分钟)让学生独立完成一些简单的一元一次方程,巩固所学知识。

4.巩固(10分钟)通过一些具有挑战性的问题,检验学生对一元一次方程解法的掌握程度,引导学生深入理解等价变换的思想。

5.拓展(10分钟)让学生运用所学知识解决一些实际问题,培养学生的应用能力。

人教版七年级数学上册第三单元一元一次方程-3.4实际问题与一元一次方程教案(5)

人教版七年级数学上册第三单元一元一次方程-3.4实际问题与一元一次方程教案(5)

3.4.3 球赛积分表问题(探究3)教学内容课本第106页至第107页内容.教学目标1.知识与技能掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力.2.过程与方法通过探索球赛积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.3.情感态度与价值观鼓励学生自主探究,合作交流,养成自觉反思的良好习惯.重、难点与关键1.重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,•还会进行推理判断.2.难点:把实际问题转化为数学问题.3.关键:从积分表中,找出等量关系.教具准备投影仪.教学过程一、引入新课教师操作投影仪,展示课本第106页中“某次篮球联赛积分榜”.学生观察积分榜,并思考下列问题:(1)用式子表示总积分与胜、负场数之间的数量关系;(2)某队的胜场总积分能等于它的负场总积分吗?在学生充分思考、合作交流后,教师引导学生分析.要解决问题(1)必须求出胜一场积几分,负一场积几分,•你能从积分榜中得到负一场积几分吗?你选择其中哪一行最能说明负一场积几分?通过观察积分榜,从最下面一行数据可以发现,负一场积1分,•那么胜一场积几分呢?学生可能会用算术方法,从积分榜中任意一行(除最后一行外),例如,从第一行244110-⨯=2,即胜一场积2分. 你会用方程解吗?设胜一场积x 分,从表中其他任何一行可以列方程,求出x 的值,例如从第三行得方程.9x+5×1=23解方程,得x=2用表中其他行可以验证,得出结论,负一场积1分,胜一场积2分.(1)如果一个队胜m场,则负(14-m)场,胜场积分2m,负场积分为14-m,总积分为2m+(14-m)=m+14.(2)问题(2),学生可能通过计算积分榜中各队的胜场总积分和负场总积分,说明某队的胜场总积分不能等于它的负场总积分.你能用方程,说明上述结论吗?如果设一个队胜了x场,则负了(14-x)场,•如果这个队的胜场总积分等于负场总积分,那么列方程为2x=14-x由此,得 x=14 3想一想,x表示什么量?它可以是分数吗?由此你能得出什么结论?这里x表示一个队所胜的场数,它是一个整数,所以x=143不符合实际意义.•由此可以判定没有哪个队的胜场总积分等于负场总积分.这个问题说明:利用方程不仅能求出具体数值,而且还可以进行推理判断,是否存在某种数量关系.另外,上面问题还说明,用方程解决实际问题时,不仅要注意方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.拓展延伸如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?我们可以从积分榜中积分不相同的两行数据列方程求得胜、负一场各得几分,例如,从第一、三行.设胜一场积x分,则前进队胜场积分为10x,负场积分为(24-10x)分,•他负了4场,所以负一场积分为24104x-,同理从第三行得到负一场积分为2395x-,从而列方程为24104x-=2395x-去分母,得5(24-10x)=4(23-9x)去括号,得120-50x=92-36x移项,得-50x+36x=92-120合并同类项,得-14x=-28x=2当x=2时,24104x-=241024+⨯=1仍然可得出结论:负一场积1分,胜一场积2分.二、巩固练习有一些分别标有5,10,15,20,25,…的卡片,后一张卡片上的数比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且这些卡片上的数字之和为240.(1)小明拿到了哪3张卡片?(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是63吗?解:(1)设中间一个数为x,则前面一个数为x-5,后面一个数为x+5,根据这三个数之和为240,列方程(x-5)+x+(x+5)=240,解方程得x=80.所以小明拿到卡片上的数分别是75,80,85.(2)设中间一个数为x,则(x-5)+x+(x+5)=63,解方程得x=21.•因为卡片上的数都是5的倍数,所以x=21不符合题意,也就是说,卡片上的数之和是63的3张卡片不存在,所以不能拿到这样的3张卡片.三、课堂小结通过本节课的探究活动,使我们更加明白利用一元一次方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义,同时,还可以利用方程对一些问题进行推理判断.四、作业布置1.课本第108页习题3.4第8、9题.2.选用课时作业设计.第三课时作业设计解答题:1.某城市按以下规定收取每月煤气费;用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费,已知某用户10•月份的煤气费平均每立方米0.88元,求该用户10月份应交的煤气费是多少元?2.某工程甲、乙合作6天完成,甲一人做需要5天完成,问乙一人做需几天完成?•这是小明给小华出的一道题,可小华说:“这道题有错,不能做”.你说呢?3.甲每天制造零件3个,乙每天制造零件4个,甲已做4个零件,乙已知10个零件,•问几天以后,两人所做的零件个数相等?4.观察每个月的日历,一个竖列上相邻的3个数之间有什么关系?(1)如果设其中的一个数为x,那么其他两个数怎样表示?(2)根据你所设的未知数x,列出方程,求出这3天分别是几号?(3)如果小颖说出的和是60,小明能求出这3天分别是几号吗?为什么?(4)如果小颖说出的和是21,小明能求出这3天分别是几号吗?为什么?答案:1.66元,设该用户10月份用煤气超过标准x立方米,则60×0.8+1.2x=0.88(60+x),x=15,0.88(60+15)=66.2.设乙独做x天能完成,则(1165)x=1,x=-30(天),•不符合实际,无解.3.设x天以后两人所做的件数相等,则3x+6=4x+10,x=-4,不符合题意,•无解.4.(1)略(2)x-7,x+7(3)(x-7)+x+(x+7)=60,x=20,这三天分别为13号,20号,27号(4)略.。

初中七年级上册数学解一元一次方程教案优质(优秀5篇)

初中七年级上册数学解一元一次方程教案优质(优秀5篇)

初中七年级上册数学解一元一次方程教案优质(优秀5篇)元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。

2.使学生掌握含有字母系数的一元一次方程的解法。

3.使学生会进行简单的公式变形。

4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。

5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。

教学重点:(1)含有字母系数的一元一次方程的解法。

(2)公式变形。

教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。

(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。

教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。

(2)移项——未知项移到等号一边常数项移到等号另一边。

注意:移项要变号。

(3)合并同类项——提未知数。

(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。

(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。

引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。

)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。

(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。

3.2解一元一次方程合并同类项(教案)-人教版七年级数学上册

3.2解一元一次方程合并同类项(教案)-人教版七年级数学上册
具体内容包括:
-一元பைடு நூலகம்次方程的定义与一般形式;
-合并同类项的法则及步骤;
-举例说明如何将一元一次方程中的同类项合并;
-练习:解一元一次方程,强化合并同类项的操作。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.增强逻辑推理能力:通过学习合并同类项的法则,使学生能够理解和掌握解一元一次方程的基本原理,提高逻辑推理能力。
(2)合并同类项法则:使学生掌握合并同类项的方法,即系数相加减,字母及其指数不变。
举例:4x+3x=7x;-2y+5y=3y等。
(3)解一元一次方程:运用合并同类项的方法,将方程简化,进而求解。
举例:3x+5=0,合并同类项后得3x=-5,再求解得x=-5/3。
2.教学难点
(1)理解一元一次方程的概念:学生容易混淆一元一次方程与一元二次方程或其他类型方程的概念,需要通过实例强调一元一次方程的特点。
五、教学反思
在今天的教学过程中,我发现学生们对一元一次方程的概念和合并同类项的法则掌握得还算不错。通过引入日常生活中的例子,他们能够更好地理解这些抽象的数学概念。不过,我也注意到几个需要改进的地方。
首先,我发现有些学生在合并同类项时,还是会忽略系数的正负号。这说明在讲解这一部分时,我需要更加细致,让学生通过更多的练习来巩固这一概念。也许可以设计一些有趣的小游戏,比如“找同类项”的比赛,以提高他们的兴趣和注意力。
此外,实践活动虽然很受欢迎,但时间上感觉有些紧张。我需要更好地控制时间,确保每个环节都能充分进行。也许可以将实践活动提前准备,或者简化一些步骤,以便让学生有足够的时间去体验和思考。
最后,我觉得在总结回顾环节,可以更多地让学生来主导。我可以请几位学生来总结今天的学习内容,这样既能检查他们的理解程度,也能锻炼他们的表达和总结能力。

人教版七年级数学上册:3.2解一元一次方程移项优秀教学案例

人教版七年级数学上册:3.2解一元一次方程移项优秀教学案例
5.教学策略的灵活运用:教师在本节课中,巧妙地运用了情景创设、问题导向、小组合作和反思与评价等多种教学策略。这些策略的灵活运用,不仅有助于提高学生的学习效果,还可以培养他们的综合素质,使他们在解决实际问题时,能够运用所学知识进行分析和解决。
3.小组合作:本节课充分体现了小组合作的教学方式。教师组织学生进行小组讨论,让他们在合作中思考、交流,共同解决问题。通过小组合作,学生不仅可以互相学习、互相帮助,还可以培养良好的团队协作精神和沟通能力。
4.反思与评价:教师设计了课后作业,让学生在课后进行自主练习,对自己在学习过程中的优点和不足进行反思。同时,学生之间可以互相评价,共同发现对方的优点和不足。这种教学方式有助于培养学生的自我评价能力和团队协作精神。
3.教师可以对学生的总结进行点评和指导,帮助他们进一步完善自己的理解和认识。
(五)作业小结
1.教师可以布置一些与移项相关的作业,让学生在课后进行自主练习,巩固所学知识。
2.教师可以要求学生在作业中运用移项法则解决实际问题,提高他们的实践操作能力。
3.教师可以对学生的作业进行批改和评价,了解他们在解决问题时的思维过程,及时给予指导和鼓励。通过作业小结,帮助学生巩固所学知识,提高他们的解题能力。
1.培养学生热爱数学、勇于探索的精神,让他们在学习过程中感受到数学的乐趣,增强他们对数学学科的兴趣。
2.培养学生克服困难的意志,使他们面对复杂的方程问题时,能够保持积极的心态,勇于挑战和解决问题。
3.培养学生具有良好的学习习惯,使他们能够按时完成学习任务,不断提高自己的学习效率。
4.培养学生具备团队协作精神,使他们能够在与他人合作的过程中,共同进步,共同提高。
5.培养学生关注社会、关注生活,使他们能够将所学知识与实际生活相结合,提高他们的综合素质。

人教版数学七年级上册教案-3.1.1一元一次方程

人教版数学七年级上册教案-3.1.1一元一次方程
1.培养学生的逻辑推理能力:通过一元一次方程的学习,使学生掌握方程的基本性质和运算规律,提高逻辑推理能力。
2.发展学生的数学建模素养:引导学生运用一元一次方程解决实际问题,培养数学建模能力,体会数学与现实生活的联系。
3.增强学生的数据分析素养:在解决实际问题的过程中,培养学生对数据进行分析、处理的能力,提高数据敏感度。
人教版数学七年级上册教案-3.1.1一元一次方程
一、教学内容
本节课为人教版数学七年级上册第三章第一节第一部分,主题为“一元一次方程”。教学内容主要包括以下方面:
1.认识一元一次方程:使学生理解一元一次方程的概念,掌握方程的三个要素(未知数、常数、运算符)。
2.方程的解法:介绍解一元一次方程的常用方法,包括移项法、消元法等。
-举例:解释3x + 5 = 14是一元一次方程,强调方程中的未知数x、常数3、5、14以及运算符+、=。
-解方程方法:讲解移项法、消元法等解一元一次方程的基本方法,强调步骤的顺序和每一步的算理。
-举例:以3x + 5 = 14为例,演示如何通过移项将未知数x单独留在一边,以及如何通过消元得到x的值。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-实际应用:培养学生将实际问题转化为方程的能力,理解方程在解决实际问题时的重要性。
-举例:给出年龄问题、行程问题等,指导学生如何将问题描述转化为方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2解一元一次方程教案
1.知识与技能
理解移项法,并知道移项法的依据,会用移项法则解方程.
2.过程与方法
经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实
际问题的关键是建立相等关系.
3.情感态度与价值观
鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.
重、难点与关键
1.重点:运用方程解决实际问题,会用移项法则解方程.
2.难点:对立相等关系.
3.关键:理解“移项法则”的依据,以及寻找问题中的等量关系.
教具准备
投影仪.
教学过程一、复习提问
1.运用方程解决实际问题的步骤是什么?
2.解方程:+ =10.
二、新授
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?
分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系.
1.每人分3本,那么共分出多少本?(3x本)
2.共分出3x本和剩余的20本,可知道什么?
答:这批书共有(3x+20)本.
根据第二种分法,分析已知量与未知量之间的关系.
3.每人分4本,那么需要分出多少本?(4x本)
4.需要分出4x本和还缺少25本那么这批书共有多少本?
答:这批书共有(4x-25)本.
这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?
这批书的总数是一个定值(不变量)表示它的两个式子应相等.
根据这一相等关系,列方程:
3x+20=4x-25
本题还可以画示意图,帮助我们分析:
从示意图中容易得到这批书的总数与分出书、剩下书的关系是:
这批书的总数=3x+30
这批书的总数与需要分出的书的数量、还缺少书的数量关系是:
这批书的总数=4x-25
根据两种分法,这批书的总数是相等的.
所以,列方程3x+20=4x-25.
注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”.
思考:方程3x+20=4x-25的两边都含有x的项(3x与4x),?也都含有不含字母的常数项(20与-25)怎。

相关文档
最新文档