超高强度钢的结构与性能研究进展.
新型超高强度_高韧性马氏体沉淀硬化不锈钢的组织和力学性能初探
新型超高强度2高韧性马氏体沉淀硬化不锈钢的组织和力学性能初探李 志 支敏学 刘天琦 赵振业(北京航空材料研究院,北京100095)摘要:在分析现有宇航用高强度马氏体沉淀硬化不锈钢和高合金超高强度钢的基础上,研制出一种新型超高强度2高韧性马氏体沉淀硬化不锈钢,其抗拉强度σb ≥1800MPa ,δ5≥15%,K ⅠC ≥100MPam 1/2,力学性能满足了设计要求。
关键词:马氏体沉淀硬化不锈钢;超高强度2高韧性;力学性能中图分类号:TF764+.1;TG 142.71 文献标识码:A 文章编号:100525053(2000)0320001205 将高强度不锈钢发展至超高强度(σb ≥1800MPa ),同时具有良好的塑性和韧性(δ5≥15%,K IC ≥100MPam 1/2),在航空航天等国防尖端领域存在着广泛而迫切的应用需求前景,如飞机的一些重要结构件和火箭壳体的性能要求不断提高,对不锈钢的强度、韧性提出了更高的要求,但目前尚无具有超高强度2高韧性匹配的实用不锈钢种。
本文在分析几种宇航用高合金钢成分(主要是C 和Mo 元素)和强度、韧性的基础上,初步探索研制出一种新型超高强度2高韧性马氏体沉淀硬化不锈钢,并对其组织和力学性能进行了分析。
1 新型马氏体沉淀硬化不锈钢成分选择 表1是从文献[1,2]得到的几种典型钢种的成分和力学性能,用其对抗拉强度进行多元线性回归分析,得到下式: σb =3082(C %)+35.5(Ni %)+20(Co %)+27.5(Cr %)+108(Mo %)+501.4(1)可以看出,影响抗拉强度的主要因素是C 和Mo ,ΔC =0.10%可使强度提高300MPa ,而ΔMo =1%可使强度提高100MPa 。
用表1对断裂韧度进行多元线性回归分析,得到下式: K IC =-674.6(C %)+18.63(Ni %)-2.52(Co %)+4.35(Cr %)-4.3(Mo %)+88.85(2)可以看出,加入Co 使断裂韧度降低,这在AFC 277钢中已显示出来,而加入Ni 则有效改善 收稿日期:2000206204;修订日期:2000207206 作者简介:李 志(19642),男,博士后,从事宇航用超高强度2高韧性不锈钢的设计与开发。
超高强度钢
超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域。
随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。
这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。
超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1,400MPa、屈服强度大于1,200MPa 的钢称为超高强度钢。
超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。
超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。
因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。
超高强度钢的发展超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。
典型的低合金超高强度钢是AISI 4340 和D6AC;典型的二次硬化型中,合金超高强度钢是HY180 和AF1410,由于马氏体时效钢属高合金钢,在这里将不拟述及。
1.低合金超高强度钢低合金超高强度钢大多是AISI 4130、4140、4330 或4340的改进型钢种。
AISI 4340 是最早出现的低合金超高强度钢,它于1950年开始研究,并于1955年开始用于飞机起落架。
通过淬火和低温回火处理,AISI 4130、4140、4330 或4340钢的抗拉强度均可超过1,500MPa,而且缺口冲击韧性较高。
为了抑制低合金超高强度钢回火脆性,1952年美国国际镍公司开发了300M。
高强钢焊接工艺及接头组织与性能研究
高强钢焊接工艺及接头组织与性能研究摘要高强钢具有高强度、高韧性的优点,被广泛用在液压支架、汽车车壳上。
本文从焊接工艺、焊接接头组织、力学性能等特点对国内外高强钢焊接方面的研究成果进行了综述,得出高强钢焊接接头各个区域的组织与性能不同,在不同焊接规范下相同区域的金相组织基本相似,熔合区因组织不均匀为最薄弱环节,指出防止高强钢热影响区的脆性破坏以及提高钢的韧性是今后高强钢焊接研究的重点。
关键词:高强钢,焊接工艺,组织,力学性能Study on Welding Process and Microstructure and Propertyof High Strength SteelAbstractHigh strength steel with high strength, high toughness advantages, are widely used in hydraulic support, car shell. From aspects of welding process, joint microstructure and mechanical properties of high strength steel welding, the research results of the high strength steel welding at home and abroad were summarized. It indicates that the microstructure and mechanical properties of high strength steel weld joints are different in different regions, while the metallographic structures of the same region are basically similar under different welding parameters, the fusion zone is the weakest area due to the inhomogeneous microstructure. It is pointed out that to prevent the heat affected zone ( HAZ ) from brittle failure and to improve the toughness of the HAZ are the focus of future research on high strength steel welding.Key words:High strength steel, Welding process, organization, Mechanical properties目录摘要 (I)Abstract (II)前言 (1)1. 高强钢的发展状况 (2)1.1 高强钢的生产与发展 (2)1.2 高强钢的性能与分类 (2)1.3 高强钢的应用前景 (5)2. 高强钢焊接研究现状 (6)2.1 激光焊接 (6)2.2 气体保护焊 (7)2.3 电阻点焊 (7)3. 高强钢焊接工艺 (8)4. 高强钢焊接接头组织与性能研究 (9)4.1 焊接接头组织分析 (9)4.2 焊接接头力学性能分析 (10)5. 结语 (10)参考文献 (11)前言高强钢作为21世纪新一代钢铁材料,具有高强度和良好的塑韧性等力学性能,为现代制造业开启了新的发展空间。
超高强度结构钢的历史及发展
能(如加工性,焊接性等)也随之恶化,
发展最早的一类,它的生产成本低廉,生
因此碳含量一般不超过O.50%。
产工艺比较简单、、用量大,主要用于航空
低合金超高强度钢通常在低温回火 航天领域高强度结构件。它的用量至今仍
状态下使用,因此改善回火马氏体的韧性 占超高强度钢总产量的大部分,本文也主
和塑性,对降低缺口敏感性有着重要的意 要概述低合金超高强度钢的发展状况。
14
体的专用钢种。如美国新型地空导弹“爱 钢,由于镍的加入,提高了钢的强度、塑
国者”,小型导弹“红眼睛”,大中型导弹 性和韧性,也提高了钢的淬透性。由此改
“民兵”、“潘兴”、“北极星”,“大力神”
良和派生出了一系列钢种,如:30x r C
等。美国航天飞机的中3.7米助推器也采HMA、30X2r cH2BM、30X2H2C
0 80
.
008
.
.
O 35
O 30
2 30
2 80
I 00
O 90
.
O 08
.
0.23-0
汽车高强度钢材技术的发展
1概述在汽车轻量化的推动下,汽车中转而采用铝合金、镁合金和塑料的零部件越来越多。
随着轻质材料在汽车上应用比例的逐年增加,钢铁材料在汽车材料中的主导地位受到了威胁。
为应对来自轻质材料的挑战,钢铁企业将开发的重点放在了高强度钢上。
如今,高强度钢已成为颇具竞争力的汽车新材料,图1和图2为各类高强度钢在不同的承载条件下的减重潜力.其比较对象为USlSTAMP 04软钢板。
同时.高强度钢在抗碰撞性能、耐蚀性能和成本方面较其他材料仍具有较大的优势,尤其是用于车身结构件与覆盖件、悬架件、车轮等零部件。
本文是根据最近公开发表的文献资料编写的,旨在反映国外汽车高强度钢材料技术的最新进展及未来发展动向,供国内有关行业和部门参考。
文中所述的高强度钢包括高强度钢(屈服强度大于210 MPa),超高强度钢(屈服强度大于550 MPa)和先进高强度钢(AHSS)。
2主要技术进展超轻车身(ULSAB)、超轻覆盖件(ULSAC)、超轻悬架系统(ULSAS)和新概念超轻车身(ULSAB-AVC)等项目的成功实施,验证了高强度钢在减轻汽车自重和改善车辆性能中的有效性。
为了将这些项目所取得的技术成果转化为现实的生产力,近期的高强度钢技术研究,主要集中在支撑技术(Enabling Technologies)上。
2.1若干高强度钢的开发当前正处于新一代高强度钢开发的前夜。
从冶金学的角度看,近几年高强度钢材料的开发,大多只是对原有钢种牌号的补充或性能改善,厚度进一步减薄,材料本身并未取得突破性进展。
开发的难点是要针对不同的零件,力求在产品的强度、塑性和成本之间取得平衡。
SFGHITEN、NANOHITEN、ERW和HISTORY是日本JFE公司最近开发出的几种高强度钢。
其中SFGHITEN为含Nb系列高强度IF钢板,主要应用对象是汽车车身外板,研究用钢的化学成分见表1。
SFGHITEN利用析出的Nb(C,N)微粒和细化晶粒得到强化,其独特之处在于晶界附近存在所谓“无沉淀区”,它降低了材料的屈服强度。
高强度汽车大梁钢800L组织和性能研究
超高强度钢
(2)夹杂物形态控制。控制夹杂物形态能有效地改善超高强度钢的断裂韧性。为了提高断裂韧性首先要对硫 和磷要有严格的限制,采用冶炼工艺要最大限度地降低钢中硫和磷含量。
发展历史
早在20世纪40年代中期,由于航空和航天技术发展的需要,为了减轻飞行器自重,提高飞行速度,要求结构 材料必须具有更高的比强度。为此,美国人在AISI4130和4340钢的基础上,改变热处理工艺,采用淬火加低温回 火,获得回火马氏体组织,使钢的抗拉强度提高到1600MPa以上。用于制造飞机结构件,对减轻飞行器自重取得 了明显成效。20世纪50年代以后,在提高钢的强度和改善钢的韧性方面不断取得新进展,相继研制成功300M, D6AC和H-11等超高强度钢。1960年美国国际镍公司研制出马氏体时效钢,并逐步形成18Ni马氏体时效钢系列,屈 服强度分别为1400MPa、1700MPa、2100MPa和2400MPa,其断裂韧性达到较高的水平。20世纪70年代以后,超高 强度钢的发展主要是提高韧性。在9NiCo系列之后,美国在Hy180钢的基础上,又研制成功AF1410二次硬化超高强 度钢,该钢采用低碳马氏体和析出合金碳化物弥散强化效应,不仅强度高,韧性高,而且具有很高的抗应力腐蚀 能力。已用于制造飞机起落架和平尾轴等重要结构部件,受到航空和航天部门的重视和青睐。进入20世纪90年代 以来,为了适应航空工业的需要,在AF1410钢的基础上,美国研制成功AerMet100,钢的抗拉强度为1965MPa, 断裂韧性达到120MN·m抗应力腐蚀性能好。用于制造飞机起落架,将大大提高飞行安全可靠性,延长飞机使用寿 命。
1900MPa级超高强度不锈钢的研制_刘振宝
表 1 50 kg 真空感应炉熔炼八种试验钢化学成分( 质量分数/ %) Tab. 1 Chemical composion of eight different test steel( mass/ %)
Si
0. 040 0. 054 0. 037 0. 046 0. 041 0. 033 1. 26 1. 48
表 3 3 000 kg 真空感应炉 + 真空自耗炉冶炼的 < 200 mm 棒材的化学成分( 质量分数/ %)
of the optimizated steel( mass/ %)
炉号 C Mn Si Ni Cr Mo Al Ti Co Fe 031 # 0. 02~ ≤ ≤ 4. 0~ 11. 0~ 5. 0~ ≤ 0. 4~ 14. 0~ 余
Mn
0. 028 0. 028 0. 022 0. 022 0. 027 0. 027 0. 041 0. 044
S
0. 004 0. 004 0. 003 0. 004 0. 005 0. 007 0. 008 0. 010
P
< 0. 005 < 0. 005 < 0. 005 < 0. 005 < 0. 005 < 0. 005 < 0. 005 < 0. 005
p roperties of t his kind of steel make it suitable to be used as critical component s wit h high st rengt h and toughness and sea water corro sio n2resistantce. It also reveals broad applicatio n p ro spect s in aero space , aviation and ot her fields.
汽车用高强度高塑性TWIP钢的开发研究.
探索与思考汽车用高强度高塑性TVVIP车H的开发研究■河北理工大学冶金与能源学院张贵杰宋卓霞摘要:轻量化是汽车“减重节能”的需要,采用高强度钢板不但可以实现汽车的轻量化。
同时还能提高汽车的被动安全性。
因此高强度钢板在汽车上的使用日益增多。
TWIP钢是最近几年国外正在进行研究的高强度、高塑性钢,由于其优良的强度和塑性的组合而得到研究者的重视。
本文简要介绍了近年来国内外高强度钢板的发展和应用情况。
关键词:汽车用钢;高强度;TWIP钢一.汽车用钢的国内外研究现状分析近年来.世界汽车工业面临着能源、环境和安全三大严峻问题。
减轻汽车自重,降低能耗,噪音,减少废气排放,成为各大汽车生产厂家提高竞争力的关键。
在汽车轻量化的潮流中.虽然铝、镁和塑料等材料的使用比率正在逐渐增加,但以高强度钢材料为代表的钢材,因其所具有的优异特性.经济性,可再循环利用等特点.仍然是汽车用钢的主要材料,据粗略统计,生产一辆汽车的原材料中,钢材所占的比例约为72%-88%。
面对其他竞争材料的上升态势.1994年在国际钢铁协会的倡议下,包括我国在内的全世界18个国家的35个钢铁公司联手成立了超轻钢车体计划(ULSAB:ultraIightsteelaUtObody).以寻求开发用于汽车车身的钢铁材料以及能提高钢材性能的可能性。
ULSAB研究项目的目标是向世界表明,钢材在减轻车重.降低成本和提高安全性等方面仍是最合适的材料。
其抗拉强度为200-300MPa,有良好的成形性,生产成本低。
采用超高强度薄钢板,是解决汽车车身自重大.噪音大.油耗高、回收利用率低、成本高等难题的有效途径之一。
由于在超轻钢车体计划中主要采用的钢种是高强度钢和超高强度钢.所以先进高强度钢(AHSS:AdvaneedHighStrength二.汽车用钢的发展汽车用钢的发展是随着汽车工业和冶金技术的发展而发展的,汽车用钢中的板材(包括热轧钢板、冷轧钢板和镀层板)是生产汽车的最主要原材料。
超高强度钢的发展及展望
超高强度钢的发展及展望摘要:超高强度钢是一种在常规合金结构钢基础上发展而成的超高强度高韧性合金钢。
其在航空等相关行业中的应用较为广泛,基于此,文章首先对超高强度钢的分类以及相关应用进行了分析,接着对其发展前景进行介绍,希望能够提供相关借鉴。
关键词:超高强度钢;发展;前景引言近年来,我国的军工、冶金、矿山、航空航天以及航海等相关的行业随着科学技术的进步得到了迅速的发展,这也就意味着将会有越来越多的目光集中在超高强度钢的研制以及应用中。
在常温状态下,超高强度钢的拉伸强度高于1470MPa,屈服强度则大于1380MPa。
在我国的航空起落架、精密齿轮以及高端轴承钢中对其的应用较为广泛,可以作为高端产品的理想选择。
超高强度钢的性能和很多因素都有着较大的关系,其中主要包括了化学成分、内部组织、负载以及外部环境等,这也就意味着未来超高强度钢的主要研究和发展方向要朝着低成本以及绿色环保的方向发展。
1.超高强度钢发展和应用目前我国超强钢主要可以从合金成分的总量和冶金特性来进行分类。
按照合金元素的总量,可以分为低、中高三种,其中,总合金含量在5.0wt%~10.0wt%之间,低合金超高强度钢低于5.0wt%,超过10.0wt%的是高合金超高强度钢,中间是中高合金超高强度钢。
按照其冶金特性,可以将其划分为低合金超高强度钢、二次硬化超高强度钢以及超高强度马氏体时效钢。
下面将根据第二类来说明。
1.1低合金超高强度钢的发展及应用情况低合金超高强钢是一种低合金马氏体结构钢,其合金元素含量低于5.0wt%,其主要原因是马氏体中的碳含量。
1950年,美国首先研制出AISI4340超高强钢,它的主要用途是用于飞机的升降平台。
采用 Mo、 Ni、 Cr、 Si、 Vi等主要合金元素,经淬火-低温回火处理后,其屈服强度超过1300 MPa。
该产品的碳含量应控制在0.30wt%~0.50wt%之间,以获得高强度、高塑性、高韧性和焊接性能。
浅谈高强度钢材在工程结构中的应用研究进展
浅谈高强度钢材在工程结构中的应用研究进展浅谈高强度钢材在工程结构中的应用研究进展高强度结构钢(简称高强钢)是指采用微合金化及热机械轧制技术生产出的具有高强度(屈服强度大于等于 460,MPa)、良好延性、韧性以及加工性能的结构钢材[1].区别于普通强度钢材,由于高强度钢材的屈服平台长度较短、屈强比较高而无法达到抗震规范的要求,其变形能力的验证更加重要。
随着高强钢在工程结构领域的逐渐推广应用,有必要对高强度钢材钢结构的承载力、延性和抗震性能进行系统的研究。
本文旨在总结高强度钢材在工程结构中的应用现状与研究进展,进而说明相应需要深入研究的问题。
1 高强钢的应用状况及限制因素高强钢在发达国家已得到初步推广,取得了良好的效果,其中应用最多的领域是桥梁工程。
德国的1Viaduct Bridge 中均采用了 S460 高强度钢材(屈服强度为 460,MPa 的钢材,简称 S460 高强钢)。
为减小桥墩尺寸,满足外观要求,德国的 Nesenbachtalbruke 桥中受压构件采用了 S690 高强钢;为有效降低自重,便于战时快速运输与安装,瑞典的 48 号军用快速桥采用了 S1100 超高强钢。
高强钢的应用不仅减小了钢板的厚度进而减轻结构自重,同时也减小了焊缝的尺寸从而减少焊接工作量、提高焊缝质量。
因此,在一定程度上缩短了施工工期,同时延长了桥梁的使用寿命。
高强钢已经在一些建筑结构中成功运用。
这些工程大多采用了460~690,MPa 等级钢材,个别工程还使用了 780,MPa 等级钢材。
如日本横滨LandmarkTower 大厦,其工字形截面柱采用 600,MPa 钢材;德国柏林的 Sony Centre 大楼的屋顶桁架采用 S460 和S690 钢材;澳大利亚悉尼的 Star City 在地下室柱子和其内部 Lyric 剧院的 2 个桁架结构中采用 650,MPa和690,MPa 等级的钢材;悉尼的 Latitude 大厦在转换层中采用 690,MPa 高强度钢板;美国休斯顿 ReliantStadium 体育馆的屋顶桁架结构采用 450,MPa 高强度钢材。
超高强度钢的结构与性能研究进展
• • • • •
马氏体时效钢的发展趋向为: (1) 生产超纯净马氏体时效钢, 改进马氏体时效钢组织结构的均匀性; ( 2) 进一步研究晶粒超细化工艺; ( 3) 无钴超高强度马氏体时效钢开发及强韧化机理研究; ( 4) 高度弥散金属间化合物的形貌、组分、结构以及残留奥氏体的 数量、形貌、分布状态对马氏体时效钢性能的影响; • ( 5) 稀土元素在马氏体时效钢中作用机理研究。
• 高Co-Ni高强度钢从最初的提高碳来增加强度(HP9-4-X系列),到降 碳增钴提高强度和韧性(AF1410),到现在发展的G99, Aermet100,0.2AF1410又回到了以提高碳提高强度,碳含量现在为 0.2%-0.26%,基体由韧性良好的板条状马氏体转变为韧性较差的片状 马氏体,碳含量达到了极限,现在追求的是Cr+Mo和碳的最佳配比, 最希望同时出现碳化物和金属间化合物。第二个方向是通过调整钢的 成分控制逆转变奥氏体的稳定性。利用奥氏体的相变韧化提高钢的韧 性在TRIP 钢和部分奥氏体不锈钢中获得了很大成功。
• 1946年carnagic Illinors公司,第一个发现stainless w不锈钢。 • 1948年,armco steel公司开发了17-4PH和17-7PH,1965年开发了155PH,1968年通过降低cr含量,增加Ni含量研发强度更高的PH13-8Mo 马氏体沉淀硬化不锈钢。 • Martin等人于1997和2003年获得custom465和custom475的专利。 • 近年来,出现了强度超过1900MPa的超高强钢Ferriums53和F863钢
超高强度马氏体时效钢的发展
• 18Ni,20Ni和25Ni,以18Ni系制造最为容易且应用最为广泛 • 20世纪60年代初由国际镍公司(INCO)首先开发出来的。1961~ 1962年间该公司Decker 等人发现,在Fe-Ni马氏体合金中同时加 入Co、Mo可使马氏体时效硬化效果大大提高,并通过调整Co、Mo、 Ti含量得18Ni系马氏体时效钢。 • 到了70年代,日本因开发浓缩铀离心机,对马氏体时效钢进行了 系统、深入的研究。 • 进入80年代以来,作为战略元素Co的资源短缺、价格不断上涨, 无钴马氏体时效钢的研制始于美国,国际镍公司(INCO) 与钨钒 高速工具钢公司(Vasco) 合作, 开发了T-250无钴马氏体时效钢。 • 在20世纪60年代后期又开发了马氏体时效不高韧性、低脆性转变温度 的9%Ni型低温钢的基础上发展起来的。在9%Ni钢中添加钻是为了提高 钢的Ms(马氏体转变)温度,减少钢中的残余奥氏体,同时,钻在镍 钢中起固溶强化作用,还通过加钻来获得钢的自回火特性,从而使这 类钢具有优良的焊接性能。碳在这类钢中起强化作用。钢中还含有少 量铬和钼,以便在回火时产生弥散强化效应。主要牌号有HP9-4-25, HP9-4-30,HP9-4-45以及改型的AF1410(0.16%C-10%Ni-14%Co-1%Mo2%Cr-0.05%V)等。这类钢综合力学性能高。抗应力腐蚀性好,具有 良好的工艺性能和焊接性能,广泛用于航空、航天和潜艇亮体等产品 上。
适用于冷冲压成形的超高强钢性能分析~
适用于冷冲压成形的超高强钢性能分析~车身用钢的发展趋势随着汽车市场对节能、环保、安全、舒适等要求的提高,汽车车身轻量化成为当今汽车技术发展的重要发展方向。
由于高强钢和超高强钢在减轻车身重量的同时,还能提高汽车车身的结构强度及能量吸收能力,因此高强钢和超高强钢在汽车上的应用越来越广泛。
截至目前为止,高强钢和超高强钢仍然是最经济、最有效的轻量化途径之一。
典型的超高强钢应用零件有前、后门左/右防撞杆(梁),前、后保险杠,A柱加强板,B柱加强板,C柱加强板,下边板,地板中通道及车顶加强梁等各种结构件。
高强钢有不同的定义分类方法。
⑴按屈服强度分类:将屈服强度在210~550MPa范围内的钢定义为高强钢(HSS,High Strength Steel),屈服强度在550MPa以上的钢定义为超高强钢(UHSS,Ultra High Strength Steel);⑵按抗拉强度分类:抗拉强度在340~780MPa范围内的钢定义为高强钢(HSS),抗拉强度在780MPa以上的钢定义为超高强钢(UHSS);⑶按照强化机理分类:分为传统高强钢和先进高强钢板,先进高强钢(AHSS,Advanced High Strength Steel)是指通过适当的热处理工艺控制钢的显微组织以得到高强度、高塑性;⑷按其发展历程分类:第一代、第二代和第三代先进高强钢,如图1所示。
图1 高强钢的发展和划分除了钢铁材料之外,铝合金、镁合金、工程塑料、碳纤维及其他轻质材料也加大了在汽车车身上应用研究的力度。
曾有人对2030年时车身的轻量化方案做了预测,不同的轻量化方案下对应着不同的车身用材结构,如图2所示。
不管是哪一种方案,现行车身上用量较大的软钢(抗拉强度340MPa以下)和高强钢(抗拉强度780MPa以下),都将大幅度减少,而超高强钢(抗拉强度在780MPa及以上)的用量将大幅度增加。
图2 2030年时不同轻量化目标下的车身用材结构预测超高强钢冷冲压成形面临的挑战在超高强钢产品开发上,国内外钢厂都进行了大量的工作,日本新日铁、JFE、神户制钢、韩国浦项和瑞典SSAB等钢铁公司已开发出各自的超高强钢产品并在汽车行业得到应用。
高强度钢材的发展与应用
9I ndustry development行业发展高强度钢材的发展与应用王朝玉1,2(1.陕西省土地工程建设集团延安分公司,陕西 西安 710075;2.西安理工大学,陕西 西安 710048)摘 要:随着经济社会的不断发展,我国建筑工业中对钢结构的应用也在日趋成熟。
近年来,高强度钢材更是以其高强度、高韧性、能在减轻结构自身重量的同时能够满足结构的高强度需求、在同等级荷载下可有效降低其设计截面等一系列优点被更多的结构设计人员所青睐,在此基础上,高强钢组合结构的工程应用问题也逐渐为人们所重视。
关键词:高强钢结构;工程应用中图分类号:TM753 文献标识码:A 文章编号:11-5004(2020)19-0009-2收稿日期:2020-10作者简介:王朝玉,男,生于1994年,陕西西安人,研究生,研究方向:钢结构。
随着人们对高强度钢材材性和加工技术研究的日益成熟,我国钢材产量的逐年提高,社会工业化信息化进程的逐步深入,人们对高强度钢材的应用范围也越来越广。
现阶段,人们选用高强度钢材主要基于两方面考虑:首先是高强度钢材能有效减轻结构自重,同样的荷载需求用较轻的结构材料就可以满足,这就使得高强钢在承重要求较高的结构形式上有很大的应用前景。
其次是高强度钢材可有效降低截面尺寸,可以在确保结构安全稳定的同时实现空间利用的最优化。
一系列的优势更增加了人们对高强钢结构的应用[1-3]。
1 高强钢结构的研究现状1.1 高强钢的研究现状高强度钢材作为一种尚处于深化研究阶段的结构构件,目前对其的研究主要分为材性研究和力学性能研究。
材料性能方面,人们通过对高强钢中所包含元素的分析发现,传统高强度钢材主要由铁、碳等元素组成,当在高强度钢材中添加其他金属元素时,可有效地提升高强度钢材的强度、抗断裂性、耐腐蚀性、环境温度耐受性(高温、低温)等性质。
在生产方式上,钢结构与传统的砖、瓦、混凝土不同,生产过程中产生的有害气体较少,回收再利用方面也比传统材料便捷许多。
钢管超高强混凝土制备与性能研究
引言钢管混凝土是具有强度高、塑性好、施工方便、节省混凝土等优势的组合结构材料,是超高强混凝土在高层建筑、大跨度桥梁中应用最有效和经济的结构形式,尤其是在西部山区桥梁有广阔的应用前景。
然而,目前我国桥梁工程中钢管混凝土的核心混凝土强度不高,主要集中在C40~C60,设计规范也限于核心混凝土≤C80的钢管混凝土,因材料强度有限,用于高墩、大跨桥梁时,仍会出现钢管混凝土结构构件截面较大、安装风险高、混凝土用量多且灌注难度大等问题。
采用超高强混凝土(≥C100)填充钢管,形成钢管超高强混凝土是解决这一问题的有效措施之一[1-3]。
对于钢管超高强混凝土的核心混凝土,有研究采用活性粉末混凝土(RPC)或超高性能混凝土(UHPC),但由于无粗骨料,其收缩、徐变问题突出[4-5],另外,RPC、UHPC对集料要求高,主要采用石英砂或优质天然砂,且需蒸压养护,制备困难且成本高,在山区桥梁中应用具有很大的局限性。
可见,利用普通砂石集料、常规方法制备钢管超高强混凝土的核心混凝土显得尤为重要。
因此,本文采用常规材料、设备与方法,通过系统试验研究,探讨水胶比、胶凝材料用量及组成、钢纤维体积掺量等配合比参数对超高强混凝土的工作性能、力学性能和体积稳定性的影响规律,提出钢管超高强混凝土制备及配合比参数要求,为其工程推广应用提供技术支撑。
1、材料与方法1.1 试验材料水泥:采用峨胜P·O 52.5水泥,其技术指标见表1;粉煤灰微珠:需水量比94%,烧失量0.9%,其技术指标见表2;硅灰:SiO2含量93%,需水量比122%,28d活性指数105%,其技术指标见表3;膨胀剂:主要成分为氧化钙、氧化镁和硫铝酸盐,水中7d限制膨胀率0.063%,空气中21d限制膨胀率0.035%;粗集料:玄武岩碎石,由5~10mm与10~16mm粒级组成的连续级配骨料;细集料:岩石破碎机制砂,石粉含量3.3%,堆积密度1717kg/m3,细度模数3.0;纤维:镀铜短细直钢纤维,长度13mm,直径0.2mm,长径比65,抗拉强度3000MPa;外加剂:聚羧酸减水剂,固含量50%,减水率55%;水:自来水。
超高强度钢
超高强度钢超高强度钢超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。
20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600~1900MPa。
50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M、D6AC和H一11钢等。
60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa。
法国研制的35NCDl6钢,抗拉强度大于1850MPa,而断裂韧度和抗应力腐蚀性能都有明显的改进。
80年代初,美国研制成功AFl410二次硬化型超高强度钢,在抗拉强度为1860MPa时,钢的断裂韧度达到160 MPa·m以上,AFl410钢是目前航空和航天工业部门正在推广应用的一种新材料。
中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa。
70年代初,结合中国资源条件,研制成功32Si2Mn2MoVA和40CrMnSiMoVA(GC一4)钢。
1980年以来,从国外引进新技术,采用真空冶炼新工艺,先后研制成功45CrNiMoVA (D6AC)、 34Si2MnCrMoVA金元素总量约在5%左右,Cr、Ni和Mn在钢中的主要作用是提高钢的淬透性,以保证较大的零件在适当的冷却条件下获得马氏体组织,Mo、W 和v的主要作用是提高钢的抗回火能力和细化晶粒等。
几种典型钢种的化学成分如表2·12.1。
该类钢通过淬火处理,在Ms点温度以下发生无扩散相变,形成马氏体组织。
采用适宜的温度进行回火处理,析出ε—碳化物,改善钢的韧性,获得强度和韧性的最佳配合。
提高回火温度(250—450℃回火)时,板条马氏体的ε—碳化物发生转变和残留奥氏体分解形成Fe3C渗碳体,钢的韧性明显下降,此现象称为回火马氏体脆性。
产生此种回火脆性的原因主要是由于钢中的硫、磷等杂质元素在奥氏体晶界偏聚和渗碳体沿晶界分布,降低了晶界结合强度。
超高强度300M钢电子束深缝焊接力学性能及破坏机理研究
超高强度300M钢电子束深缝焊接力学性能及破坏机理研究刘星;刘斌;卢智先;赵桐【摘要】超高强度300M钢具有优异的力学性能,广泛应用于飞机起落架.通过静力拉伸、三点弯曲及动态Charpy冲击试验,揭示300M钢电子束深缝焊接的力学性能及破坏机理;对试验后的典型试样进行断口宏观与微观分析,并采用场发射扫描电镜(SEM)对断口形貌进行观察、分析.结果表明:母材与焊接件都出现明显的拉伸塑性段,二者的刚度和强度相差不大,但是焊接件的断裂应变较母材小,焊接件焊缝的韧性略低于母材;焊接件弯曲强度与母材相当,但是破坏时的弯曲变形较母材也有所下降,焊接件的延性较差;在冲击试验中焊接件吸收能量与断裂韧性均低于母材,冲击韧度降低.【期刊名称】《航空工程进展》【年(卷),期】2018(009)004【总页数】9页(P603-610,622)【关键词】超高强度300M钢;深焊缝;电子束焊接;拉伸强度;弯曲强度;冲击韧度【作者】刘星;刘斌;卢智先;赵桐【作者单位】西安航空学院飞行器学院,西安 710077;西北工业大学航空学院,西安710072;西北工业大学航空学院,西安 710072;北京航空制造工程研究所高能束流加工技术重点实验室,北京 100024【正文语种】中文【中图分类】TG404;TG4070 引言300M合金钢(40CrNi2Si2MoVA)[1]是在4340钢基础上改进得到的超高强度钢[2]。
该材料采用精细的热处理工艺,然后在500 K进行低温回火制备得到,抗拉强度和弹性模量分别为2 000 MPa 和205 GPa,具有较高的强度、韧性、塑性和疲劳性能。
由于300M钢优异的力学性能,在航空航天中广泛用作较大尺寸结构材料,例如飞机起落架材料、超高强度螺栓、耳片和火箭发动机壳体[3-4]。
目前300M钢材料制成的较大尺寸的结构件(例如飞机起落架),都是在锻造毛坯上进行数控加工,其缺点为较浪费材料、利用率低,以及毛坯锻造纤维流线部分切断,深孔加工难度大、需要大型的锻压设备使得成本较高。
超高强度结构钢AF1410热处理工艺对力学性能的影响
超高强度结构钢AF1410热处理工艺对力学性能的影响摘要:研究了热处理工艺对超高强度结构钢AF1410力学性能的影响。
结果表明材料的淬火温度、回火温度和回火时间都会影响材料的力学性能,当热处理工艺为盐浴炉860℃×10min,油冷(20~80℃)→低温箱-70℃×100 min,空冷→空气炉510℃×(240~300) min,空冷时,可以满足设计要求的力学指标。
1.简介超高强度结构钢AF1410是一种低碳高合金钢,不仅具有高的硬度和强度、而且具有较高断裂韧度的新型航空材料,是一种可能用于损伤容限设计的超高强度钢[1]。
本文通过热处理工艺试验对该钢种的力学性能进行了研究,以获得该钢种良好的力学性能,满足设计的使用要求。
2.试验过程试验材料为AF1410钢棒材,试验材料尺寸如图1所示,材料的化学成分符合AMS 6533C 美国航空航天材料规范要求,其化学主要成分如表1所示。
材料的主要热处理过程为盐浴炉淬火→冷处理→空气炉回火,其中冷处理可以加速残余奥氏体转换,减少材料淬火应力,提高材料基体硬度。
图1 AF1410材料试验尺寸表1 AF1410材料化学成分1.淬火温度对材料力学性能的影响本节热处理工艺及力学性能如表3和图2所示,通过改变淬火温度研究力学性能,根据力学性能试验结果,860℃和880℃淬火力学性能结果接近,但淬火温度提升至900℃时,材料的力学性能轻微降低,抗拉强度从1660MPa降低至1635MPa,屈服强度从1550MPa降低至1500MPa。
这是因为由于随着淬火温度的提高,奥氏体晶粒尺寸增大,冷却后转变的板条状马氏体组织的尺寸也会相应增大[2,3],随着板条状马氏体组织的尺寸增大,其力学性能中的HRC、σb和σ0.2会相应降低。
表3 淬火温度变化工艺及力学性能图2 淬火温度变化后材料力学性能3.2回火时间对材料力学性能的影响本节热处理工艺及力学性能如表4和图3所示,通过改变回火时间研究力学性能,根据力学性能试验结果,回火温度一定时,降低回火时间,材料的硬度、σb和σ0.2有显著提升,当回火工艺为510℃×240 min,空冷时,抗拉强度为1847MPa,屈服强度为1658MPa。
超高强度钢研究进展及其在军事上的应用
超高强度钢研究进展及其在军事上的应用随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。
这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。
超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1400MPa、屈服强度大于1200MPa的钢称为超高强度钢。
超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。
超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。
因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。
超高强度钢的发展超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。
目前,典型的低合金超高强度钢是AISI4340和D6AC;典型的二次硬化型中,合金超高强度钢是HY180和AF1410,由于马氏体时效钢属高合金钢,在这里将不拟述及。
1低合金超高强度钢低合金超高强度钢大多是AISI4130、4140、4330或4340的改进型钢种。
AISI4340是最早出现的低合金超高强度钢,它于1950年开始研究,并于1955年开始用于飞机起落架。
通过淬火和低温回火处理,AISI4130、4140、4330或4340钢的抗拉强度均可超过1500MPa,而且缺口冲击韧性较高。
为了抑制低合金超高强度钢回火脆性,1952年美国国际镍公司开发了300M。
该钢通过添加了1%~2%的硅来提高回火温度(260~315℃),并可抑制马氏体回火脆性。