概率与统计问题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题突破六高考中的概率与统计问题

题型一离散型随机变量的期望与方差

例1 某品牌汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示.已知分9期付款的频率为0.2.4S店经销一辆该品牌的汽车,顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为1.5万元;分12期或15期付款,其利润为2万元.用η表示经销一辆汽车的利润.

付款方式分3期分6期分9期分12期分15期

频数4020 a 10b

(1)求上表中的a,b值;

(2)若以频率作为概率,求事件A“购买该品牌汽车的3位顾客中,至多有1位采用分9期付款”的概率P(A);

(3)求η的分布列及期望E(η).

解(1)由

a

100=0.2,得a=20.

又40+20+a+10+b=100,所以b=10.

(2)记分期付款的期数为ξ,ξ的可能取值是3,6,9,12,15. 依题意,得

P(ξ=3)=40

100=0.4,P(ξ=6)=20

100=0.2,P(ξ=9)=0.2,

P(ξ=12)=10

100=0.1,P(ξ=15)=10

100=0.1.

则“购买该品牌汽车的3位顾客中,至多有1位分9期付款”的概率为P(A)=0.83+C13×0.2×(1-0.2)2=0.896.

(3)由题意,可知ξ只能取3,6,9,12,15.

而ξ=3时,η=1;ξ=6时,η=1.5;ξ=9时,η=1.5;ξ=12时,η=2;ξ=15时,η=2.

所以η的可能取值为1,1.5,2,且P(η=1)=P(ξ=3)=0.4,P(η=1.5)=P(ξ=6)+P(ξ=9)=0.4,P(η=2)=P(ξ=12)+P(ξ=15)=0.1+0.1=0.2.

故η的分布列为

η1 1.5 2

P 0.40.40.2

所以η的期望E(η)=1×0.4+

思维升华离散型随机变量的期望和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;

二是定性,对于特殊类型的期望和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率的对应. 跟踪训练1 某项大型赛事,需要从高校选拔青年志愿者,某大学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X ,求X 的分布列及期望.

解 因为8名学生会干部中有5名男生,3名女生,所以X 的分布列服从参数N =8,M =3,n =3的超几何分布.

X 的所有可能取值为0,1,2,3,其中P (X =i )=C i 3C 3-

i

5

C 38(i =0,1,2,3),

则P (X =0)=C 03C 35C 38=528,P (X =1)=C 13C 25C 38=15

28,

P (X =2)=C 23C 15C 38=1556,P (X =3)=C 33C 05

C 38=156

.

所以X 的分布列为

X 0 1 2 3 P

5

28

1528

1556

156

所以X 的期望为E (X )=0×

528+1×1528+2×1556+3×156=6356=98

. 题型二 概率与统计的综合应用

例2 (2016·全国Ⅰ)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (1)求X 的分布列;

(2)若要求P (X ≤n )≥0.5,确定n 的最小值;

(3)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?

解 (1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11

的概率分别为0.2,0.4,0.2,0.2,X的可能取值为16,17,18,19,20,21,22,从而

P(X=16)=0.2×0.2=0.04;

P(X=17)=2×0.2×0.4=0.16;

P(X=18)=2×0.2×0.2+0.4×0.4=0.24;

P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;

P(X=20)=2×0.2×0.4+0.2×0.2=0.2;

P(X=21)=2×0.2×0.2=0.08;

P(X=22)=0.2×0.2=0.04;

所以X的分布列为

X 16171819202122

P 0.040.160.240.240.20.080.04

(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.

(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).

当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040(元).

当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080(元).

可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.

思维升华概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.

跟踪训练2 经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获得利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将T表示为X的函数;

(2)根据直方图估计利润T不少于57 000元的概率;

(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=

相关文档
最新文档