模拟量及PID PPT课件

合集下载

PID控制及其仿真 62页PPT文档

PID控制及其仿真 62页PPT文档

1.3.2 连续系统的数字PID控制仿真
本方法可实现D/A及A/D的功能,符合数字 实时控制的真实情况,计算机及DSP的实时 PID控制都属于这种情况。
采用MATLAB语句形式进行仿真。被控对象 为一个电机模型传递函数: G(s) 1 Js2 Bs 式中,J=0.0067,B=0.10
1.2 连续系统的基本PID仿真
1.2.1 基本的PID控制 1.2.2 线性时变系统的PID控制
1.2 连续系统的基本PID仿真
以二阶线性传递函数为被控对象,进行模拟 PID控制。在信号发生器中选择正弦信号,仿真 时取Kp=60,Ki=1ID的算法: u (k) u (k) u (k 1 )
u ( k ) k p ( e ( k ) e ( k 1 ) ) k i e ( k ) k d ( e ( k ) 2 e ( k 1 ) e ( k 2 ) )
1.3.4 增量式PID控制算法及仿真
式中,Ki=Kp/Ti,Kd=KpTd,T为采样周期,K 为采样序号,k=1,2,……,e (k-1)和e (k) 分别为第(k-1)和第k时刻所得的偏差信号。
1.3.1 位置式PID控制算法
位置式PID控制系统
1.3.1 位置式PID控制算法
根据位置式PID控制算法得 到其程序框图。
在仿真过程中,可根据实 际情况,对控制器的输出 进行限幅:[-10,10]。
1.3.2 连续系统的数字PID控制仿真
Simulink仿真程序图
1.3.2 连续系统的数字PID控制仿真
PID正弦跟踪结果
1.3.3 离散系统的数字PID控制仿真
仿真实例 设被控制对象为:
G(s)

模块七PLC模拟量及PID控制课件

模块七PLC模拟量及PID控制课件
包括电压、电流、温度、压力等多种类型。
模拟量信号特点
连续变化,取值范围广泛,易受干扰影响。
PLC模拟量模块介绍
模拟量输入模块
将模拟量信号转换为数字信号,便于 PLC处理。
模拟量输出模块
将PLC输出的数字信号转换为模拟量 信号,控制外部设备。
模拟量输入电路原理与实践
电路原理
通过电阻、电容等元件对模拟量信号进行滤波、放大等处理 ,以保证信号的稳定性和精度。
要点三
衰减曲线法
先将比例度设置为一个较大值,然后 逐步减小比例度,同时加大积分时间 常数,使系统响应出现衰减振荡;此 时的比例度和积分时间常数即为合适 的PID参数;最后加入微分调节,提 高系统响应速度。
03
PLC实现PID控制策略
PLC内置PID功能介绍与设置
PID算法原理
介绍比例、积分、微分三环节的作用及调节规律, 以及PID控制参数的整定方法。
实时监控数据显示和报警功能实现
实时监控数据显示
通过触摸屏界面实时显示PLC采集到的模拟量数据,如温度、压力 、流量等,方便用户随时掌握设备运行状态。
数据曲线绘制
根据实时数据绘制相应的曲线图,可以更加直观地了解设备运行趋 势和历史数据变化情况。
报警功能实现
设定报警阈值,当实时数据超过或低于阈值时,触摸屏界面上显示 报警信息,并触发声光报警装置,提醒用户及时处理。
PID控制故障
PID调节失效,导致系统失控。原因可能包括参 数设置不当、传感器故障等。
故障排查方法和步骤总结
01
观察故障现象
通过查看PLC指示灯、监控画面等 信息,了解故障的具体表现。
03
制定排查方案
针对可能的原因,制定详细的排 查方案,包括检查电源、通信线

pid控制PPT课件

pid控制PPT课件

k
Kpe(k)Ki e(j)Kde(k)e(k1) j0
式中,u(k)为第k次采样时刻的控制器的输出值; e (k-1)和e (k)分别为第(k-1)次和第k次采样时刻的偏差值。
只要采样周期T足够小,数字PID控制与模拟PID控制就会十分
精确的接近。
ppt精选版
12
1.2.2 增量式PID控制算法
e(k )
0 e(k )
e(k) e0 e(k) e0
式中,e(k)为位置跟踪偏差,e0是一个可调参数,其 具体数值可根据实际控制对象由实验确定。若e0值 太小,会使控制动作过于频繁,达不到稳定被控对象
的目的;若e0太大,则系统将产生较大的滞后。
ppt精选版
35
1.2.9 带死区的PID控制算法
1.1 PID控制原理
闭环控制系统原理框图
图中所示为控制系统的一般形式。被控量y(t)的检测值c(t)与给定值r(t) 进行比较,形成偏差值e(t),控制器以e(t)为输入,按一定的控制规律 形成控制量u(t),通过u(t)对被控对象进行控制,最终使得被控量y(t)运 行在与给定值r(t) 对应的某个非电量值上。
ppt精选版
1
1.1 PID控制原理
模拟PID控制系统原理框图
ppt精选版
2
ppt精选版
3
1.1 PID控制原理
PID控制器各环节的作用如下:
(1)比例环节的数学式表示是:
Kp e(t)
在模拟PID控制器中,比例环节的作用是对偏差量e(t)瞬间 作出反应, 产生相应的控制量u(t),使减少偏差e(t)向减小的 方向变化。控制作用的强弱取决于比例系数Kp, Kp越大, 控制作用越强,则过渡过程越快,控制过程的静态偏差ess 也就越小,但是Kp越大,也越容易产生振荡,增加系统的超 调量,系统的稳定性会变差。

最新模拟量及PID

最新模拟量及PID
对于其它类型的模拟量输入/输出模块,根据模块的不同 特性,其具体设置会各有特点,但其基本方法是一样的。
● 2.模拟量模块的测量信号类型及测量范围设定
(2)配有量程卡的模拟量模块的测量信号类型和测量范围 的设定配有量程卡的模拟量模块,其量程卡在供货时已插 入模块一侧,如果需要更改量程,必须重新调整量程卡, 以更改测量信号的类型和测量范围。 量程卡可以设定为“A”、“B”、“C”、“D”四个位置, 各种测量信号类型和测量范围的设定在模拟量模块上有相 应的标记指示,可以根据需要进行设定和调整。 调整量程卡的步骤为: ①用锣丝刀将量程卡从模拟量模块中松开; ②将量程卡按测量要求和范围正确定位,然后插入模拟量 模块中。
●表4-8
电流测量范围为0-20mA和4-20mA的模拟值表示
●表4-9
标准Pt x100 RTD温度传感器的模拟值表示如表4-9所示以CPU313C模 块为例,模拟量精度为12位,由表4-6可知,十六位数 中最后三位 为0,因此分辨率为08H。再由表4-9可知,对应的温度分辨率为0.8℃。 对于其它模拟量输入信号的模拟值信号以及模拟量输出信号的表示, 参阅相关技术文档。
● 3.模拟值的表示
模拟值用二进制补码表示,宽度为16位,符号总在最高位。 模拟量模块的精度最高为15位,如果少于15位,则模拟值 左移调整,然后才保存到模块中。未用的低位填入“0”, 如表4-6所示,表中标有“x”的位为“0”或“1”。
●表4-6 模拟值的精度表示
模拟值的精度表示
●表4-7
电压测量范围±10 V - ±1V的模拟值表示
● 4.2.6 工程数值换算功能FC105的应用
FC105的数值换算公式为:
OUT=((FLOAT
)IN

PLC_模拟量控制 ppt课件

PLC_模拟量控制 ppt课件

4mA{(20-4)/4000} ±1%(全范围4~20mA)
PLC_模拟量控制
功能模块连接编号示意图
PLC_模拟量控制
BFM编号 #0 #1
#2~16#
#17
b15~b8 保留
b7~b4
b3
b2 b1
b0
输入数据的当前值(低8位数据)
保留
输入数据当前值(高端4位数据)
保留
模拟
保留
到数 字转 换开
PLC_模拟量控制
PLC_模拟量控制
PLC_模拟量控制
当模拟范围为0~10V,而使用的数 字范围为0~4000时,数字值为40等 于100mV的模拟输入( 40×10V/4000数字点)。
PLC_模拟量控制
PLC_模拟量控制
电热水炉控制的输入有3个,其中2个数字 量,1个模拟量,而输出为2个。I/O分配 是,X0:为高位液位开关,X1:为低位 液位开关;Y0:为进水电磁阀,Y1:为 加热电阻;温度信号接入FX2N-2AD特殊 模块。
PLC_模拟量控制
PLC_模拟量控制
项目 绝缘承受电压 模拟电路电源
隔离方式
模拟量输入范围
分辨率 集成精度 处理时间
电压输入
电流输入
500V AC 1min(在所有的端子和外壳之间)
24V DC±10% 50mA(来自于主电源的内部电源供应)
在模拟电路和数字电路之间用光电耦合器进行隔离,主单元 的电源用DC/DC转换器隔离,各输入端子间不隔离
PLC_模拟量控制
FX2N-2DA型的模拟量输出模块用于将12位的 数值转换成2点模拟量输出(电压输出和电 流输出)。FX2N-2DA可连接到FX0N、FX2N和 FX2NC系列PLC中。两个模拟输出通道可接受 0~10VDC、0~5VDC或4~20mA输出。使用FROM 和TO指令与PLC进行数据传输。

S7-200SMART-PID-PPT

S7-200SMART-PID-PPT

第四步:设定回路过程变量
A:指定回路过程变量 (PV) 如何标定。可以从以下选项中选择: 单极性:即输入的信号为正,如0-10V或0-20mA等 B: 过程变量: 4-20MA对应的PLC内部的转换值 5530-27648
回路设定值: 一般是模拟量转化的工程量的最小值 和最大值 本例子为016MPA
第七步:定义向导所生成的PID初使化子程序和中断程序名及手/自动模式
向导已经为初使化子程序和中断子程序定义了缺省名,你也可以修改成自己起的名字。 A 指定PID初使化子程序的名字。 B 指定PID中断子程序的名字 C此处可以选择添加PID 手动控制模式。在PID手动控制模式下,回路输出由手动输出设定控制,此 时需0%-100%而不是直接去改变输出 值,
第六步:设定回路报警选项
向导提供了三个输出来反映过程值(PV)的低值报警、高值报警及过程值模拟量模块错误状态。当报警条件满足 时,输出置位为1。这些功能在选中了相应的选择框之后起作用。 A 使能低值报警并设定过程值(PV)报警的低值,此值为过程值的百分数,缺省值为0.10,即报警的低值为过程 值的10%。此值最低可设为0.01,即满量程的1% B 使能高值报警并设定过程值(PV)报警的高值,此值为过程值的百分数,缺省值为0.90,即报警的高值为过程 值的90%。此值最高可设为1.00,即满量程的100% C 使能过程值(PV)模拟量模块错误报警并设定模块于CPU连接时所处的模块位置。“EM0”就是第一个扩展模 块的位置
PID控制举例和详解
• 假定一个PID控制系统的控制对象是压力,反馈元件的测量范围为0 16MPa,输出是一个模拟量输出控制阀门的开度。模拟量输入的反馈 器件的信号经过变换,以4- 20mA电流信号的形式输入到模拟量输入 模块中,模拟量到PLC程序里对应5530-27648,据此,我们可以按下 表设置给定、反馈的范围。

模拟量及PIPPT课件

模拟量及PIPPT课件
3
● 4.1.1 温度传感器与选型
• 温度采集和压力、流量等一样,是一种工业控制 中最普及的应用,它可以直接测量各种生产过程 中液体、蒸汽、气体介质和固体表面的温度。常 用的有热电阻、热电偶两种方式,此外还有非接 触型的红外测温等产品,一个典型的应用例子是 钢铁厂中的红外测温设备。这里我们主要介绍热 电阻和热电偶。
7
● 2.热电阻
热电阻大都由纯金属材料制成,目前应用最多的 是铂和铜。此外,现在已开始采用甸、镍、锰和铑 等材料制造热电阻。 根据使用场合的不同,热电阻也有铠装式热电阻、 装配式热电阻、隔爆式热电阻等种类,与热电偶类 似。 铂电阻的工作原理是,在温度作用下,铂热电阻 丝的电阻值随温度变化而变化,且电阻与温度的关 系即分度特性符合IEC标准。分度号Pt100的含义为 在0℃时的名义电阻值为100Ω,目前使用的一般都 是这种铂热电阻。此外还有Pt10、Pt200、Pt500和 Pt1000等铂热电阻,Cu50、Cu100的铜热电阻等。
11
●1.模拟量模块的主要特性
表4-2、4-3列出了模拟量输入模块SM331的主要特性,更详细的特性说 明请参阅相关技术文档。
12
●1.表4-3
表4-3 模拟量输入模块SM331的主要特性
13
●1.表4-4
表4-4 模拟量输出模块SM332的主要特性
14
●1.表4-5
表4-5 模拟量输出/输出混合模块SM334的主要特性
6
● 2.热电阻
热电阻是中低温区最常用的一种温度测量元件。 热电阻是基于金属导体的电阻值随温度的增加而增 加这一特性来进行温度测量的。当电阻值变化时, 二次仪表便显示出电阻值所对应的温度值。它的主 要特点是测量精度高,性能稳定。其中铂热电阻的 测量精度是最高的。 铂热电阻根据使用场合的不同与使用温度的不同, 有云母、陶瓷、簿膜等元件。作为测温元件,它具 有良好的传感输出特性,通常和显示仪、记录仪、 调节仪以及其它智能模块或仪表配套使用,为它们 提供精确的输入值。若做成一体化温度变送器,可 输出4-20mA标准电流信号或0-10V标准电压信号, 使用起来更为方便。

PID讲解理论ppt课件

PID讲解理论ppt课件

个小电机带一台水泵进行压力闭环控制,一般只用PI控制。P=1-10,
I=0.1-1,D=0,这些要在现场调试时进行修正的。
6
图1 过程过渡质量指示图
上图是过程过渡质量指示图,也是干扰作用影响下的过渡过程, 用过渡过程衡量系统质量时,常用的指标有:
衰减比:前后两个峰值的比,如图1中的B:B’
余差: 就是过渡过程终了时的残余偏差,如图1中的C
微分(D)调节作用:微分作用反映系统偏差信号的 变化率,具有预见性,能预见偏差变化的趋势,因此能产 生超前的控制作用,在偏差还没有形成之前,已被微分调 节作用消除。因此,可以改善系统的动态性能。在微分时 间选择合适情况下,可以减少超调,减少调节时间。此外, 微分反应的是变化率,而当输入没有变化时,微分作用输 出为零。微分作用不能单独使用。
I是解决动作响应的速度快慢的,可消除系统稳态误差,I变大时 响应速度变慢,反之则快;
D是消除静态误差的,提高系统动态特性,(减少超调量和反应
时பைடு நூலகம்),一般D设置都比较小,而且对系统影响比较小。
3
PID控制器参数的工程整定,各种调节系统中P.I.D参数经 验数据以下可参照:
温度TIC:P=20~60%,I=180~600s,D=3-180s; 压力PIC: P=30~70%,I=24~180s; 液位LIC: P=20~80%,I=60~300s; 流量FIC: P=40~100%,I=6~60s。
经验法简单可靠,但需要有一定现场运行经验,整 定时易带有主观片面性。当采用PID调节器时,有多个整 定参数,反复试凑的次数增多,不易得到最佳整定参数。
5
下面以PID调节器为例,具体说明经验法的整定步骤:
A. 让调节器参数积分系数I=0,实际微分系数D=0,控制系统投入

第16讲_PID指令与模拟量控制

第16讲_PID指令与模拟量控制

/R 32000.0, AC0
//使累加器中的数值标准化
+R 0, AC0
//加偏移量0
MOVR AC0, VD100
//将标准化数值写入PID回路参数表中
四、PID回路输出转换为成比例的整数
程序执行后,PID回路输出0.0~1.0之间的标准化实数数值,必须
被转换成16位成比例整数数值,才能驱动模拟输出。
典型的PID算法包括三项:比例项、积分项和微分项。即: 输出=比例项+积分项+微分项 计算
比例项Kc×(SPn-PVn) 积分项Kc×(Ts/Ti)×(SPn-PVn)+Mx 微分项Kc×(Td/Ts)×(PVn-1-PVn)
二、PID控制回路选项
常用的控制回路有PI、PID。 (1)如果不需要积分回路(即在PID计算中无“I”),则应将积分 时间Ti设为无限大。由于积分项Mx的初始值,虽然没有积分运算,积 分项的数值也可能不为零。 (2)如果不需要微分运算(即在PID计算中无“D”),则应将微分 时间Td设定为0.0。
1. PIC指令编程
PID指令来编程
2.指令向导编程 先指令向导生成,再编写程序。
控制方法: 对恒温箱进行恒温控制,要对温度值进行PID调节。PID运算的结 果去控制接通电加热器或制冷风扇,但由于电加热器或制冷风扇只能为 ON或OFF,不能接受模拟量调节,故采用“占空比”的调节方法。 温度传感器检测到的温度值送入PLC后,若经PID指令运算得到 一个0~1的实数,把该实数按比例换算成一个0~100的整数,把该整 数作为一个范围为0~10s的时间t。设计一个周期为10s的脉冲,脉冲宽 度为t,把该脉冲加给电加热器或风扇,即可控制温度。
PID回路输出成比例实数数值=(PID回路输出标准化实数值-偏移量)×取值范围
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档