人教版初一数学代数式求值练习题

合集下载

初一数学代数式求值

初一数学代数式求值

初一数学代数式求值题的详细解析:1. 题目:已知x = 1 ,求2x + 3 的值。

解析:把x = 1 代入式子,得到2×1 + 3 = 5 。

2. 题目:若y = -2 ,求3y²- 4 的值。

解析:将y = -2 代入,3×(-2)²- 4 = 8 。

3. 题目:当a = 5 时,求6a - 1 的值。

解析:把a = 5 代入,6×5 - 1 = 29 。

4. 题目:已知b = 4 ,求7b + 2 的值。

解析:因为b = 4 ,所以7×4 + 2 = 30 。

5. 题目:若c = 0 ,求8c - 5 的值。

解析:由于c = 0 ,所以8×0 - 5 = -5 。

6. 题目:当d = -3 时,求5d + 7 的值。

解析:把d = -3 代入,5×(-3) + 7 = -8 。

7. 题目:已知e = 2 ,求9e - 6 的值。

解析:将e = 2 代入,9×2 - 6 = 12 。

8. 题目:若f = -1 ,求10f + 8 的值。

解析:把f = -1 代入,10×(-1) + 8 = -2 。

9. 题目:当g = 3 时,求4g - 9 的值。

解析:把g = 3 代入,4×3 - 9 = 3 。

10. 题目:已知h = 5 ,求6h - 10 的值。

解析:因为h = 5 ,所以6×5 - 10 = 20 。

11. 题目:若i = 0 ,求7i - 3 的值。

解析:由于i = 0 ,所以7×0 - 3 = -3 。

12. 题目:当j = -2 时,求8j + 5 的值。

解析:把j = -2 代入,8×(-2) + 5 = -11 。

13. 题目:已知k = 1 ,求5k - 7 的值。

解析:将k = 1 代入,5×1 - 7 = -2 。

14. 题目:若l = -3 ,求6l + 4 的值。

七年级数学《代数式求值》专项练习

七年级数学《代数式求值》专项练习

七年级数学代数式求值一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1 B.1 C.﹣2 D.22.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣183.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣24.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,15.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.46.已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣37.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或308.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣99.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3 B.0 C.1 D.210.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0 B.﹣1 C.﹣3 D.311.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣712.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π= .14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为.15.若a﹣2b=3,则9﹣2a+4b的值为.16.已知3a﹣2b=2,则9a﹣6b= .17.若a2﹣3b=5,则6b﹣2a2+2015= .18.按照如图所示的操作步骤,若输入的值为3,则输出的值为.19.若a﹣2b=3,则2a﹣4b﹣5= .20.已知m2﹣m=6,则1﹣2m2+2m= .21.当x=1时,代数式x2+1= .22.若m+n=0,则2m+2n+1= .23.按如图所示的程序计算.若输入x的值为3,则输出的值为.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为.参考答案与试题解析一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1 B.1 C.﹣2 D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3 B.0 C.1 D.2【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0 B.﹣1 C.﹣3 D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π= 2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。

人教版七年级上册数学代数式求值(整体代入一)天天练

人教版七年级上册数学代数式求值(整体代入一)天天练

人教版七年级上册数学代数式求值(整体代入一)天天练学生做题前请先回答以下问题:问题1:整体代入的思考方向①求值困难,考虑整体代入;②化简代数式,对比确定要代入的整体;③整体代入后化简。

问题2:已知代数式2a²+3b=6,求代数式4a²+6b+8的值。

①根据2a²+3b=6无法求出a和b的具体值,考虑整体代入;②对比已知及所求,把4a²+6b+8作为整体;③整体代入后化简,最后结果为28.代数式求值(整体代入一)(人教版)一、单选题(共13道,每道7分)1.把(a+b)²看成一个整体,合并同类项的结果为() A。

a²+2ab+b²B。

a²-b²C。

2a²+2ab+2b²D。

a²+2b2.把(a-b)²看成一个整体,合并同类项的结果为() A。

a²+2ab+b²B。

a²-b²C。

2a²-2ab+2b²D。

a²-2b3.设a=2,b=3,把2a²-3b化简的结果为()A。

6B。

0C。

3D。

-64.设a=-2,b=1,把2a²+3b化简的结果为()A。

-7B。

11C。

-5D。

75.若a=1,b=2,则2a²+3b的值为() A。

0B。

4C。

6D。

26.已知2a²+3b=6,求a的值。

A。

-1B。

0C。

1D。

37.若2a²+3b=5,则4a²+6b+8的值为() A。

-1B。

1C。

-5D。

58.已知2a²+3b=4,则4a²+6b+8的值为()A。

1B。

5C。

9D。

109.若4a²+6b+8的值为5,则2a²+3b的值为() A。

1B。

9C。

11D。

2110.已知4a²+6b+8的值为6,则2a²+3b的值为() A。

初一数学代数式的值练习题精选

初一数学代数式的值练习题精选

初一数学代数式的值练习题精选1.化简代数式322(2x-1+x)-x-1,可以先将括号内的项合并得到322(3x-1)-x-1,再将常数项合并得到966x-325.2.代数式(a+b)2-(a-b)2可以展开得到4ab,代入a=-2、b=-3得到结果12.3.将2(x-y)2+3x-3y+1展开得到2x2-7xy+6y2+3x+1,代入x-y=3得到2y2+15.4.将x(2x-y+3z)展开得到2x3-xy+3xz的值,代入x=7、y=4、z=0得到126.5.将3a-a-a+1化简得到-a-1,代入a=-3得到结果2.6.将b-4ac代入a=2、b=-3、c=4得到-59.7.代数式(1/2-x-y)+5ab可以化简得到(5/2)-x-y+5ab,但没有给出具体的求值。

8.将3x-1+2y+3化简得到3x+2y+2,代入3x-2y得到-x+2.9.将2a+3a+1=6代入得到a=1,代入6a+9a+5得到35.10.将x=-2、y=-5代入得到-9/8,将x=2、y=5代入得到23/8.11.将x=2代入4x2-2xy+2y2得到20-4y+2y2,y的绝对值最小为0,代入得到20.12.将x+3=5-y化简得到y=2-x,代入a/b=b/a得到a=-1,b=-1,代入得到-5/2.13.将2x2+3x+5=6代入得到x=-1或x=5/2,代入6x2+9x-3得到33/2或-3/2.14.将2x-y=5化简得到y=2x-5,代入2y-4x+5得到-3x+5,没有给出具体的求值。

15.将x=11/2代入得到121/4.16.将a=4、b=12代入得到44.17.将x=1、y=-6代入得到(1)37,(2)49,(3)49.18.用代数式10a+(a+5)表示这个两位数,当a=3时得到35.19.用代数式100a+b表示这个四位数,没有给出具体的求值。

20.将x=1、y=-1代入得到-1/2.。

初中数学代数式化简求值练习题(含答案)

初中数学代数式化简求值练习题(含答案)

初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。

2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。

3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。

4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。

5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。

6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。

7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。

8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。

9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。

10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。

11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。

12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。

13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。

代数式求值经典题型1-(含详细答案)

代数式求值经典题型1-(含详细答案)

两边同时平方,x²-2xy+y²=5
将(1)、(2)代入上式,得
把-2xy 移到等号右边,
上式=( 5)² [( 5)² +4xy]
得,x²+y²=5 +2xy------(2)
第 4
【第 2 步】

(x²- y²)² - 10(x²+y²)
-10 (5 +2xy) =5(5+4xy)-10(5 +2xy) =25+20xy-50- 20xy

温馨提示 选B
本题有一定难度,请同学们自己先做一遍,实在 做不出来,再看答案。
.
. .
.
【思考】 因为 x+y 、x² +y²为已知数,所以,一 定要将代数式分解为含有 x+y 、x² +y²。
解 2x² +2x²y+2xy+xy²+y3
将 2x2 与 2xy 结合,2x2y、xy2、y3 结合,
. 把-6xy 移到括号里 .
=2(x2+xy+y2-3xy) =2(x2-2xy+y2)
答案: 8
.
.

11
已知 3x²-x-1 =0,

求代数式 6x3+7x²-5x-2018
.
. .
.
思考
已知 3x²-x-1 =0 故 3x²-x=1 ,
=2x+9x2-5x-2018 =9x2-3x-2018
1² 所求代数式=[a2-(2a)2]× a²
-3a² = a² = -3
答案: - 3
.
7y²

已知 x、y 是正数,且 x=2x+5y ,

初一数学七年级代数式的值练习题

初一数学七年级代数式的值练习题

初一数学七年级代数式的值练习题数学七年级代数式的值练习题一、判断题1、单独一个数如- 不是代数式( )2、s=r2是一个代数式( )3、当a是一个整数时 , 总有意义( )4、代数式的值不能大于15、x与y的平方和与x、y的和的平方的差为(x+y)2-(x2+y2)6、某工厂第一个月生产a件产品 ,第二个月增产x% ,两个月共生产a+ax%二、填空:1、设甲数为x ,乙数比甲数的3倍多2 ,那么乙数为2、设甲数为a ,乙数为b ,那么它们的倒数和为3、能被3和4整除的自然数可表示为4、a是一个两位数 ,b是一位数 ,如果把a放在b的左边 ,那么所在的三位数是5、一项工程甲独做需x天完成 ,乙独做需y天完成 ,甲先做2天 ,乙再参加做a天 ,这时完成的工程为6、一辆汽车从甲地出发 ,先以a千米/时速度走了m小时 ,又以b千米/时的速度走了n小时到达乙地 ,那么汽车由甲地到乙地的平均速度为千米/时7、一件商品 ,每件本钱a元 ,将本钱增加25%定出价格 ,后因仓库积压调作 ,按价格的92%出售 ,每件还能盈利8、有一列数:1,2,3,4,5,6,,当按顺序从第2个数数到第6个数时共数了个数;当按顺序从第m个数数到第n个数(nm)时共数了个数。

9、某项工程 ,甲单独做需a天完成 ,乙单独做需b天完成 ,那么(1)甲每天完成工程的(2)乙每天完成工程的(3)甲、乙合做4天完成工程的(4)甲做3天 ,乙做5天完成工程的(5)甲、乙合做天 ,才能完成全部工程。

三、选择题:1、以下代数式中符号代数式书写要求的有( )① ②abc2 ③ ④ ⑤2(a+b) ⑥ah2A、1个B、2个C、3个D、4个2、a、b两数的平方差除以a与b的差的平方的商用代数式表示为( )A、 B、 C、 D、3、矩形的周长为s ,假设它的长为a ,那么宽为( )A、s-aB、s-2aC、D、4、当a=8 ,b=4 ,代数式的值是( )A、62B、63C、126D、10225、假设代数式2y+3y+7的值为8 ,那么代数式4y2+6y-9的值是( )A、13B、-2C、17D、-76、假设a、b互为相反数 ,p、q互为倒数 ,m的绝对值为5 ,那么代数式的值是( )A、-6B、-5C、-4D、0四、求代数式的值1、当a=7 ,b=9求值①4a+b ② ③ ④2、当时求代数式(ab+c)(2ac-b)的值。

初一代数式求值练习题及答案

初一代数式求值练习题及答案

初一代数式求值练习题及答案11212:已知:x+=3,求代数式+x+6+的值 xxxa5b53:已知当x=7时,代数式ax+bx-8=8,求x=7时,x?x?8的值.21:已知:m=4:已知xyzx?2y?3z==,则代数式34xy?2yz?3yz5:已知a=3b,c=4a求代数式2a?9b?2c的值a?6b?c 2-6:已知a,b互为相反数,c,d互为倒数,x的绝对值等于1,求代数式a+b+xcdx的值7:设a+b+c=0,abc>0,求b?cc?aa?b++的值 bca1;9:5a-4a+a-9a-3a-4+4a,其中a=-10:5ab-2229212112ab+ab-ab-ab-5,其中a=1,b=-2;2412211:-,其中a=2,b=;112112212:x-2+3,其中x=-2,y=-;3293122213:-5abc-{2ab-[3abc-2]},其中a=-2,b=-1,c=3.14:证明多项式16+a-{8a-[a-9-3]}的值与字母a的取值无关.15:由于看错了符号,某学生把一个代数式减去x+6x -6误当成了加法计算,结果得到2x-2x+3,正确的结果应该是多少?16:当x?2,y?2211时,求代数式x2?xy?y2?1的值。

217:已知x是最大的负整数,y是绝对值最小的有理数,求代数式2x3?5x2y?3xy2?15y3的值。

11??18:已知x1??3??,求代数式x1999?x1998?x1997x?1的值。

6??19:已知32?2a?b?3?a?b?2a?b的值。

??5,求代数式a?ba?b2a?b20:当x?7时,代数式ax3?bx?5的值为7;当x??7时,代数式ax3?bx?5的值为多少?21:已知当x?5时,代数式ax2?bx?5的值是10,求x?5时,代数式ax2?bx?5的值。

2:若xyz??,且3x?2y?z?18,求z?5y?3z的值;4523:若代数式2y2?3y?7的值是2,那么代数式4y2?6y?9的值是24:已知y?2x,z?2y,x?2,则代数式x?y?z 的值为25:设m?m?1?0,则m3?2m2?1997?______;526:当x?7时,代数式ax?bx?8?8,求当x??7时,2a5bx?x?8的值222227:已知a??2,b?0.25,求代数式9ab?3ab?5?8ab?3ab?7?7ab的值。

初中数学《代数式求值》练习及答案

初中数学《代数式求值》练习及答案

初中《代数式求值》精选练习题及答案根据已知,求代数式的值:,求代数式(x+1)(x-1)的值;1、已知:x=3+2、已知2+1=x,求代数式1001-1000的值;3、已知m=349+356+364,求代数式m-12的值;4、已知2=21+2-1,求代数式2024+−2024的值;5、已知t≠0,且1-t=1,求代数式3+22+3003的值;6、已知92+30x+23=0,求代数式(3x+4)2+1(3x+4)2的值;7、已知2-13m=n,2-13n=m,求代数式2+2+1的值;8、已知2t+2=3,求代数式6-24的值;9、已知32+5m-11=0,求代数式(4m+7)(2m-5)+m(m+21)+3的值;10、已知x+3=2,求代数式42-〔6x-(5x-8)-2〕+3x-〔5x-2(2x-1)〕的值。

参考答案1、已知:x=3+,求代数式(x+1)(x-1)的值;解:已知x=3+=3+那么2=2=163----------①代数式(x+1)(x-1)=2-1将①代入=163-1=1332、已知2+1=x,求代数式1001-1000的值;解:已知2+1=x变换一下,得2-x=-1----------①再变换,得2=x-1------------②又3=2·x将②代入3=(x-1)·x=2-x将①代入故:3=-1------------③代数式1001-1000=999+2-999+1=999·2-999·x=999(2-x)将①代入=999·(-1)=-999=-(3)333将③代入=-(−1)333=-(-1)=13、已知m =349+356+364,求代数式m -12的值;解:m =349+356+364m=(37)2+3738+(38)2-------------------①将①等号两边同时取分母为1,得1等号右边分子分母同时乘以3837,得11=)3(33837=8−738−37=138−37等号两边同时取倒数1=38-37故:12=(37)2-23738+(38)2-----------②由①-②,得m -12=33738=337·2=6374、已知2=21+2-1,求代数式2024+−2024的值;解:已知2=21+2-1变换一下,得2+1=21+2等号两边同时平方,得4+22+1=2(1+2)4+22+1=2+22化简,得4=1代数式2024+−2024=4×506+4×(−506)=(a4)506+(a4)−506将4=1代入=1506+1−506=1+1=25、已知t≠0,且1-t=1,求代数式3+22+3003的值;解:已知t≠01-t=1等号两边同时乘以t,得1-2=t变换一下,得2=1-t---------------------①代数式3+22+3003=2·t+22+3003将①待入=(1-t)·t+2(1-t)+3003=t-2+2-2t+3003再将①待入=t-(1-t)+2-2t+3003=t-1+t+2-2t+3003=(t+t-2t)+(-1+2+3003)=30046、已知92+30x+23=0,求代数式(3x+4)2+1(3x+4)2的值;解:设3x+4=t则x=13(t-4)---------------①已知92+30x+23=0将①代入9−4)2+30×13(t−4)+23=0(t−4)2+10(t-4)+23=02-8t+16+10t-40+23=02+2t-1=0等号两边同时除以t,得t+2-1=0变化一下,得1-t=2等号两边同时平方,得12-2+2=4整理,得12+2=6因为3x+4=t故:(3x+4)2+1(3x+4)2=67、已知2-13m=n,2-13n=m,求代数式2+2+1的值;解:2-13m=n,2-13n=m则变换一下,得2=13m+n----------------①2=m+13n----------------②①-②,得2-2=12(m-n)(m+n)(m-n)=12(m-n)(m+n)(m-n)-12(m-n)=0(m-n)〔(m+n)-12〕=0则有:m-n=0,或(m+n)-12=0即:m=n或m+n=12(1)当m=n时已知2=13m+n2=13m+m=14m解得m=0,或m=14第一种情况:m=n=0代数式2+2+1将m=n=0代入=1=1第二种情况:m=n=14代数式2+2+1将m=n=0代入=142+142+1=393(2)当m+n=12时①+②,得2+2=14(m+n)=14×12代数式2+2+1=14×12+1=(13+1)(13−1)+1=132−1+1=138、已知2t+2=3,求代数式6-24的值;解:2t+2=3t=3−22所以:2=5−264----------------①①两边同时平方,得4=49−20616------------------------②代数式6-24=4(2-2)将①,②代入=49−206(-2)=−3×49+(−206)×(−26)+(606−986)64=93−386649、已知32+5m-11=0,求代数式(4m+7)(2m-5)+m(m+21)+3的值;解:32+5m-11=0变换一下,得32+5m=11------------①代数式(4m+7)(2m-5)+m(m+21)+3=82-20m+14m-35+2+21m+3=92+15m-32=3(32+5m)-32将①代入=3×11-32=110、已知x+3=2,求代数式42-〔6x-(5x-8)-2〕+3x-〔5x-2(2x-1)〕的值。

初一数学代数式求值试题

初一数学代数式求值试题

初一数学代数式求值试题1.当a=3,b=1时,代数式的值是()A.3B.C.2D.1【答案】B【解析】直接把a=3,b=1代入代数式,即可得到结果.当a=3,b=1时,,故选B.【考点】本题考查的是代数式求值点评:解答本题的关键是注意字母对应的数,同时熟练掌握有理数的混合运算的顺序.2.当x=7,y=3时,代数式的值是()A.B.C.D.【答案】A【解析】直接把x=7,y=3代入,即可得到结果.当x=7,y=3时,,故选A.【考点】本题考查的是代数式求值点评:解答本题的关键是注意字母对应的数,同时熟练掌握有理数的混合运算的顺序.3.关于代数式的值,说法不正确的是()A.当x≠2时,其值存在B.当x=时,其值为0C.当x=4时,其值为7D.当x=0时,其值为【答案】C【解析】根据分式的分母不能为0即可判断A,再把其他各项中的x的值代入计算即可判断. A.当,x≠2时,其值存在,本选项正确;B.当,x=时,其值为0,本选项正确;C.当x=4时,,故本选项错误;D.当x=0时,,本选项正确;故选C.【考点】本题考查的是代数式求值点评:解答本题的关键是注意字母对应的数,同时熟记分式的分母不能为0.4.若代数式的值为0,且x≠0,y≠0,则x、y满足()A.x+y=0B.x-y=0C.xy=0D.【答案】B【解析】根据分式的分子等于0,同时分母不等于0时,分式的值为0,即可得到结果.∵x≠0,y≠0,∴x-y=0时,代数式的值为0,故选B.【考点】本题考查的是代数式求值点评:解答本题的关键是熟练掌握分式的分子等于0,同时分母不等于0时,分式的值为0.5.在代数式中,x可以取的数是( )A.任何数B.不等于零的数C.不等于1的数D.既不等于零又不等于1的数【答案】C【解析】根据分式的分母不能为0即可得到结果.由题意得,,故选C.【考点】本题考查的是代数式有意义的条件点评:解答本题的关键是熟练掌握分母不为0时,代数式才有意义.6.判断:一个代数式,只可能有一个值()【答案】错【解析】当代数式中字母的取值不同时,代数式的值可能不同,可举例说明.如代数式,当时,,当时,,故本题错误.【考点】本题考查的是代数式求值点评:解答本题的关键是注意当代数式中字母的取值不同时,代数式的值可能不同,此类问题可举例说明.7.判断:当x=4时,代数式的值为0 ()【答案】错【解析】把x=4代入代数式,再结合分式的分母不能为0,即可判断.当x=4时,分母,代数式没有意义,故本题错误.【考点】本题考查的是代数式求值点评:解答本题的关键是注意字母对应的数,同时熟记分式的分母不能为0.8.判断:当2x+y=3时,代数式(2x+y)2-(2x+y)+1的值是7。

代数式求值(习题及答案)-学习文档

代数式求值(习题及答案)-学习文档

代数式求值(习题)例题示范例1:若23a b -=,则代数式2(2)422000b a a b --++的值是_______.思路分析观察已知,发现字母a ,b 的值无法确定,所以考虑整体代入.对比已知及所求,把2a -b 当作一个整体,对所求式子进行变形.原式=2(2)2(2)2000a b a b ---+最后整体代入,化简巩固练习1. 关于x 的代数式222(28)4(21)x x kx x x ⎡⎤+---+⎣⎦,当k 为何值时,代数式的值是常数?2. 若关于x 的代数式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值. 3. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是_______. 4. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________. 5. 若2x y =,则代数式45x y x y-+的值是___________. 6. 已知当5x =时,代数式25ax bx+-的值是10,则当5x =时,代数式25a x b x ++的值是____________.7. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.8. 若m 表示一个两位数, n 表示一个两位数,把m 放在n 的右边,则这个四位数可用代数式表示为_____________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为__________________.思考小结1. 已知3240x x --=,则代数式3361x x -++的值是_______.通过本讲的学习,小明的做法:①把含有字母的项“32x x -”作为整体,则324x x -=;②在所求的代数式中找整体,对比系数解决:小刚的做法:①把最高次项“3x ”作为整体,则324x x =+;②在所求的代数式中找整体,对比系数解决:小聪的做法:①把“324x x --”作为整体;②在所求的代数式中找整体,对比系数解决:对比小明、小刚、小聪的做法,我们发现无论把“32x x -”, “3x ”还是“324x x --”作为整体,代入,目标都是把所求的代数式降次,这种转化的思想是“高次降次”.【参考答案】巩固练习1.当k=6时,代数式的值为常数2.m=-1,原式=-m-3,当m=-1时,原式=-23.114.75.16.207.-178.100n+m9. 1 000c+100a+b思考小结-11。

初一数学代数式的值试题

初一数学代数式的值试题

初一数学代数式的值试题1.已知a+3b=2,则2a+6b+3的值是________.【答案】7【解析】本题考查了求代数式的值将a+3b=2整体代入代数式即可求出代数式2a+6b+3的值.当a+3b=2时,2a+6b+3=2(a+3b)+3=4+3=7.思路拓展:解答求代数式的值的问题,要学会替换,即将字母换成相应的数.2.当a=,b=2时,求下列代数式的值.(1)(a+b)2-(a-b)2;(2)a2+2ab+b2.【答案】(1)4 (2)【解析】本题考查了求代数式的值将a=,b=2直接代入这两个代数式即可求出代数式的值.当a=,b=2时:(1);(2)思路拓展:解答求代数式的值的问题,要学会替换,即将字母换成相应的数.3.已知代数式:①a2-2ab+b2;②(a-b)2.(1)当a=5,b=3时,分别求代数式①和②的值;(2)观察(1)中所求的两个代数式的值,探索代数式a2-2ab+b2和(a-b)2有何数量关系,并把探索的结果写出来;(3)利用你探索出的规律,求128.52-2×128.5×28.5+28.52的值.【答案】(1)4,4;(2)a2-2ab+b2=(a-b)2;(3)10000.【解析】本题考查了求代数式的值(1)把a=5,b=3时,分别代入代数式①和②的求值;(2)由(1)得到a2-2ab+b2=(a-b)2;(3)利用(2)得到的等式把所给的式子整理为差的完全的平方的形式.(1)当a=5,b=3时,a2-2ab+b2=52-2×5×3+32=25-30+9=4,(a-b)2=(5-3)2=4;(2)可以发现a2-2ab+b2=(a-b)2;(3)128.52-2×128.5×28.5+28.52=(128.5-28.5)2=1002=10000.思路拓展:解答求代数式的值的问题,要学会替换,即将字母换成相应的数.4.如图,试用字母a、b表示阴影部分的面积,并求出当a=12cm,b=4cm时阴影部分的面积.【答案】,【解析】本题考查了列代数式,并根据已知求代数式的值由图可知,阴影部分的面积=矩形面积-半圆的面积,即可列出代数式,再把a=12cm,b=4cm代入计算即可。

初中数学代数式求值专题训练及答案

初中数学代数式求值专题训练及答案

初中数学代数式求值专题训练及答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y 的值。

2、已知:2023(1+3x)=1,求代数式7+6x 的值。

3、已知a a =3243,求代数式2 +3 +4 的值。

4、若x 2+xy +y 2=2xy +y 2=3,求代数式(x+1)(y-2)+3的值。

5、已知(x+13)2=2023,求代数式(x -27)(x+53)的值。

6、已知x +2y=12,求代数式x 2-4y 2+48y 的值。

7、已知x 2-3x +1=0,求代数式x 2+1 2的值。

8、已知x 2-4x +1=0,求代数式x 4-56x +2024的值。

9、已知x+1 =3,y+1 =1,z+1 ==3,求代数式x yz 的值。

10、已知x 4+x 2+1=0,求代数式x 3+1的值。

11、已知x=1,求代数式(x+2)(2x+1)-x 2+6的值。

12、若x>y>0,x 2+y 2=5xy,求代数式2− 2 的值。

13、已知2x 2+10=(x+2)(x+3),求代数式3x+6的值。

14、已知x=8−215,求代数式x+1 的值。

15、已知x=2,求代数式7x 2+(2x+3)(x-2)+12的值。

参考答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y 的值解:因为2x+3y+z=1------①2x+y+3z=3-------②①+②,得4x+4y+4z=4即:x+y+z=1-----------③①-③,得x+2y=0故:代数式x+2y 的值是02、已知:2023(1+3x)=1,求代数式7+6x 的值。

因为,要使得2023(1+3x)=1成立,所以1+3x=0,即:x=-13所以:7+3x =7+6×(-13)=5故:代数式7+6x 的值是53、已知a a =3243,求代数式2+3 +4 的值。

解:a a =3243=34*81=(34)81=8181所以:a=812 +3 +4 =281+381+484=9+333+3=12+333故:代数式2 +3 +4 的值是12+3334、若x2+xy+y2=2xy+y2=3,求代数式(x+1)(y-2)+3的值。

人教版七年级上册代数式的求值练习题16

人教版七年级上册代数式的求值练习题16

人教版七年级上册代数式的求值练习题16一、选择题(共8小题;共40分)1. 当时,代数式的值是C.2. 当时,代数式的值为时这个式子的值等于A. C. D.3. 已知,,则的值等于B. C. D.4. 在数学活动课上,同学们利用如图的程序进行计算,发现无论取任何正整数,结果都会进入循环.下面选项一定不是该循环的是A. ,,B. ,,C. ,,D. ,,5. 按如图所示的运算程序,能使输出值为的是A. ,B. ,C. ,D. ,6. 按如图所示的程序计算,若,则的结果为A. B. C.7. 对于代数式,当分别取下列各组中两个数值时,所得代数式的值相等的是A. 与B. 与C. 与D. 与8. 一件衣服,商店的进价是元,若先加价,再降价,则商店A. 赚了元B. 赔了元C. 不赚不赔D. 赚了元二、填空题(共4小题;共20分)9. 当时,代数式的值等于.10. 若实数,满足,则代数式的值是.11. 对于这样的等式:若,则()当时,;().12. 对于正数,规定,例如:,,,,,利用以上规律计算:的值为.三、解答题(共4小题;共52分)13. 已知,,,求下列各式的值:(1).(2).14. 是一个很大的数,怎样求出它的个位数字呢?我们依次计算一下,,,观察其个位数字的变化,寻找其中的规律,从而用归纳的方法得出结论:,,,,,,,.(1)观察上述各式,你可以得出它们的个位数字出现的规律是 .(2)请你猜测:的个位数字为;的个位数字为.15. 如果用表示一个人的脚印长度,表示身高,那么与的关系满足.(1)某人的脚印长度为厘米,则他的身高约为多少厘米?(2)在某次案件中,抓获了两名可疑人员,一个身高为米,另一个身高为米,现场测量的脚印长度为厘米,请你帮助侦查一下,哪个可疑人员作案的可能性更大.16. 计算机在进行计算时,总是根据程序进行的,如图是一个计算程序.当输入的数据为时,请解答下面的问题:(1)填写如表:(2)输出的结果是多少?答案第一部分1. B2. A3. A 【解析】因为,,所以.4. D 【解析】如图的程序按照,,,,,,循环.5. D6. D 【解析】由题意知,,时,,时,,时,,时,,时,,时,;发现规律:每个结果为一个循环,,.7. C8. B第二部分9.10.【解析】又,变形为,,【解析】()因为,所以当时,,即.()因为,所以当时,,即.12.【解析】第三部分13. (1).(2).14. (1),,,(2);15. (1)当(厘米)时,(厘米).答:他的身高约为厘米.(2)当(厘米)时,(厘米),身高为米的比较接近,所以身高为米的人作案的可能性更大.16. (1);;;(2).。

人教版七年级上册代数式的求值练习题66

人教版七年级上册代数式的求值练习题66

人教版七年级上册代数式的求值练习题66一、选择题(共8小题;共40分)1. 已知,则代数式的值是A. B. C. D.2. 当时,代数式的值是C.3. 已知多项式的值是的值是C. D.4. 已知,且,则A. 或5. 当时,的值为的值为A. B. C. D.6. 图是一个数值运算程序,若输出的值为,则输入的值为A. C.7. 按如图所示的运算程序,能使输出的值为的是A. ,B. ,C. ,D. ,8. 代数式的值是,则的值是A. C. D.二、填空题(共4小题;共20分)9. 如果,那么.10. 若,则.11. 已知当时,的值为,则当时,的值为.12. 如图是一台数值转换机的运算程序,若输出的结果为,则输入的的值为.三、解答题(共4小题;共52分)13. 求下列代数式的值:(1),其中;(2),其中,.14. 有一根米长的绳子,第次截去一半,第次截去剩下的一半,第次截去剩下的一半,,按照如此截法,第几次后剩下的绳子长为米?15. 已知,,,,求下列各式的值:(1);(2).16. 已知.当时,这种给取一个特殊数的方法叫赋值法.请你巧用赋值法,尝试解答下列问题.(1)求当为多少时,可求出,为多少?(2)求的值;(3)求的值答案第一部分1. D 【解析】,,.2. B3. A 【解析】,,,.4. C 【解析】因为,所以,,因为,所以,,当时,,当时,.5. B【解析】根据题意,可先将代入到中,你能得到什么?根据上步,可得,进一步可得的值为,据此不难得到和的值;然后将它们的值代入到待求式中,计算即可解答本题.将代入中,可得,则,故,,则.故选B.6. D7. D 【解析】当,时,;当,时,;当,时,;当,时,.故选D.8. A 【解析】得:,第二部分9.10.11.【解析】将代入得.将代入得,,.12.第三部分13. (1)(2)14. 因为绳子长为米,所以第次截去一半后,剩下的绳子为米,第次截去剩下的一半后,剩下的绳子长为米,第次截去剩下的一半后,剩下的绳子长为米,而,,所以第次截去后,剩下的绳子长为米.15. (1),,,..(2).16. (1)令,则;(2)令,则;(3)令,则,联立()可得,解得.故的值为.。

七年级数学代数式求值过关训练-初中一年级数学试题练习、期中期末试卷-初中数学试卷

七年级数学代数式求值过关训练-初中一年级数学试题练习、期中期末试卷-初中数学试卷

七年级数学代数式求值过关训练-初中一年级数学试题练习、期中期末试卷、测验题、复习
资料-初中数学试卷-试卷下载
3.代数式求值
1.根据给出的x、y的值填表.
x
y
x2
2xy
y2
x2-2xy+y2
(x-y)2
1
-1
-2
-2
1
1
-3
2.观察给予x、y不同的值,你都能计算x2-2xy+y2与(x-y)2的值吗?______.
当x=0,y=1时,x2-2xy+y2与(x-y)2的值相同吗?__________.
当x=-1,y=-2时,x2-2xy+y2与(x-y)2的值相同吗?______.
是否当无论x、y是什么值,计算x2-2xy+y2与(x-y)2所得结果都相同吗?__________.
由此你能推出x2-2xy+y2=(x-y)2吗?__________.
总结:①给出代数式中字母的值,就能计算代数式的值,并且根据所给值的不同,求出的代数式的值也不同.②根据所给数值还可以发现一些规律.
测验评价等级:ABC,我对测验结果(满意、一般、不满意)参考答案
表格横着依次为:
1.0,0,1,1,1,1,4,4,1,1,,,,1,1,4,-4,1,9,9,1,-6,9,16,16
2.能
相同相同相同能
欢迎下载使用,分享让人快乐。

人教版七年级上册代数式的求值练习题13

人教版七年级上册代数式的求值练习题13

人教版七年级上册代数式的求值练习题13一、选择题(共8小题;共40分)1. 根据如图所示的计算程序,若输入的值,则输出的值为C. D.2. 已知,则代数式的值为A. B. D.3.A. B. C. D.4. 如果代数式的值为,那么的值等于A. B.5. 若,则的值为A. B. C. D.6. 若,满足等式,且,则式子的值为A. B. C. D.7. 按如图所示的运算程序,能使输出的结果为的是A. ,B. ,C. ,D. ,8. 下列说法正确的是A. 代数式的值与代数式中的字母无关B. 代数式的值是随着代数式中的字母的取值变化而变化的C. 代数式中的字母可以取任意的值D. 含有的代数式的值等于的值二、填空题(共4小题;共20分)9. 已知,,计算代数式.10. 按如图所示的程序流程计算,若开始输入的值为,则最后输出的结果是.11. 按照给定的计算程序,输入一个值,使得程序能够输出结果,这个值可以是,输出的结果为.12. 已知,则.三、解答题(共4小题;共52分)13. 当,时,求下列各代数式的值.(1);(2);(3).14. 如果,那么称为的布谷数,记为,如.(1)根据布谷数的定义填空:,.(2)布谷数有如下运算性质:若,为正数,则,.根据运算性质填空:(为正数).若,则,.(3)下表中与数对应的布谷数有两个是错误的,请指出错误的布谷数,说明你这样找的理由,并求出正确的答案(用含,的代数式表示).15. 根据如图所示的程序计算,若输入的值为,求输出的的值.16. 已知.(1)判断是否成立?请说明理由.(2)求的值(3)求的值.答案第一部分1. C 【解析】当,.2. A3. C 【解析】设,4. A 【解析】,,则,.5. B【解析】,,.6. C 【解析】,,,,,故选:C.7. C8. B第二部分9.10.11. ,(答案不唯一)【解析】当输入时,,,当时,,输出,故输出结果为:.(答案不唯一)【解析】由题意得,,解得,,所以,.第三部分13. (1)(2).(3).14. (1);【解析】,.(2);;【解析】..因为,,所以.,,所以.(3)和错误.理由如下:,,,,,从表中可以得到,此时,,均正确,所以和错误,,.15. 当时,,.所以输出的的值为.16. (1)将代入,,故不成立.(2),.(3),,.。

初一数学代数式的值练习试题二

初一数学代数式的值练习试题二

初一数学代数式的值练习试题二篇4:代数式的值的同步试题代数式的值的同步试题代数式的值的同步试题代数式的值同步训练试题(含答案)随堂检测1、当a=2,b=1,c=3时,的值是。

2、当a= , b= 时,代数式(a-b)2的值为。

3、如果代数式2a+5的值为5,则代数式a2+2的值为。

4、如果代数式3a2+2a-5的值为10,那么3a2+2a= 。

5、某电视机厂接到一批订货,每天生产m台,计划需a天完成任务,现在为了适应市场需求,要提前3天交货,用代数式表示实际每天应多生产多少台电视机。

并求当m=1000,a=28时,每天多生产的台数。

典例分析例:(1)a、b互为倒数,x、y互为相反数,且y0,则(a+b)(x+y)-ab- 的值为。

(2)若,求的值。

(3)如图:正方形的边长为 a。

①用代数式表示阴影的面积;②若 a=2cm 时,求阴影的面积(结果保留)。

解:(1)0(2) =3 5 +3=(3)① ;②当a=2时,上式=2- 。

答:阴影部分的面积为(2- )cm2。

评析:(1)解决本例的关键是:由a、b互为倒数得ab=1,由x、y互为相反数得x+y=0和(2)本例采用的是整体代入的数学思想;(3)本例主要是用规则图形的面积去解决不规则图形面积的求解问题。

课下作业●拓展提高1、填表x -4 -3 -2 -1 0 1 2 3 42x+52(x+5)(1)随着x值的逐渐增大,两个代数式的值怎样变化?(2)当代数式2x+5的值为25时,代数式2(x+5)的值是多少?2、已知代数式的值是8,那么代数式的值是( )A、37B、25C、32D、03、已知,代数式的值为( )A、6B、C、13D、4、小明在计算41+N时,误将+看成-,结果得12,则41+N= 。

5、已知:a+b=4,ab=1,求 2a+3ab+2b 的值。

6、当x=3时,代数式px3+qx+1的值为。

求:当x=-3时,代数式px3+qx+1的'值为多少?●体验中考1、(福建漳州中考题)若,则的值是_______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初一数学代数式求值练习题
一、选择题(共4小题)
1. 若,,则代数式的值为
B. C. D.
2. 按如图所示的运算程序,能使输出的值为的是
A. ,
B. ,
C. ,
D. ,
3. 根据以下程序,当输入时,输出结果为
C. D.
4. 某书每本定价元,若购书不超过本,按原价付款;若一次购书本以上,超过本部分
按八折付款.设一次购书数量为本,则付款金额为
A. 元
B. 元
C. 元
D. 元
二、填空题(共3小题)
5. 当时,代数式的值是.
6. 根据如图的程序,计算当输入时,输出的结果.
7. 用“”定义新运算:对于任意有理数,都有,例如,
那么.
三、解答题(共3小题)
8. “”代表一种新运算,已知,求的值.其中和满足

9. 为解决沙区拥堵问题,政府在三峡广场附近拟建一个地下长方形车库,图案设计如图所
示,已知长方形长为米,宽为米,在长方形内部修等宽为米的安全通道,四角修完全一样的正方形临时停车位,且正方形临时停车位的边长为米,若安全通道铺红色地胶,临时停车位铺黄色地胶,其余部分铺绿色地胶.
(1)请用含的代数式表示铺绿色地胶部分的面积,并将所得式子化简;
(2)如果铺红色地胶的费用为每平方米元,铺黄色地胶的费用为每平方米元,铺绿色地胶的费用为每平方米元,设铺地下车库地面的总费用为元,请用含的代数式表示,并将所得式子化简;
(3)在()的条件下,求当时,求铺地下车库地面的总费用.
10. 小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单
位:),解答下列问题:
(1)用含,的代数式表示地面总面积;
(2)已知客厅面积比卫生间面积多平方米,且地面总面积是卫生间面积的倍.若铺平方米地砖的平均费用为元,那么铺地砖的总费用为多少元?
答案
第一部分
1. B
2. A 【解析】A.当,时,,符合题意;
B.当,时,,不符合题意;
C.当,时,,不符合题意;
D.当,时,,不符合题意.
3. B 【解析】当时,;
当时,;

当输入时,输出结果为
4. C 【解析】设一次购书数量为本,则付款金额为:

第二部分
5.
6.
【解析】,

7.
【解析】因为,
所以.
第三部分
8. 由知,,则.
9. (1)
(2)
(3)当时,
10. (1).
(2)由题意得:

解得。

相关文档
最新文档