对注塑成型工艺参数优化的一般框架(翻译)
注塑模具工艺立体光照成型毕业论文中英文对照资料外文翻译文献
注塑模具工艺中英文对照资料外文翻译文献附录2Integrated simulation of the injection molding process withstereolithography moldsAbstract Functional parts are needed for design verification testing, field trials, customer evaluation, and production planning. By eliminating multiple steps, the creation of the injection mold directly by a rapid prototyping (RP) process holds the best promise of reducing the time and cost needed to mold low-volume quantities of parts. The potential of this integration of injection molding with RP has been demonstrated many times. What is missing is the fundamental understanding of how the modifications to the mold material and RP manufacturing process impact both the mold design and the injection molding process. In addition, numerical simulation techniques have now become helpful tools of mold designers and process engineers for traditional injection molding. But all current simulation packages for conventional injection molding are no longer applicable to this new type of injection molds, mainly because the property of the mold material changes greatly. In this paper, an integrated approach to accomplish a numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. Comparisons with experimental results are employed for verification, which show that the present scheme is well suited to handle RP fabricated stereolithography (SL) molds.Keywords Injection molding Numerical simulation Rapid prototyping1 IntroductionIn injection molding, the polymer melt at high temperature is injected into the mold under high pressure [1]. Thus, the mold material needs to have thermal and mechanical properties capable of withstanding the temperatures and pressures of the molding cycle. The focus of many studies has been to create theinjection mold directly by a rapid prototyping (RP) process. By eliminating multiple steps, this method of tooling holds the best promise of reducing the time and cost needed to createlow-volume quantities of parts in a production material. The potential of integrating injection molding with RP technologies has been demonstrated many times. The properties of RP molds are very different from those of traditional metal molds. The key differences are the properties of thermal conductivity and elastic modulus (rigidity). For example, the polymers used in RP-fabricated stereolithography (SL) molds have a thermal conductivity that is less than one thousandth that of an aluminum tool. In using RP technologies to create molds, the entire mold design and injection-molding process parameters need to be modified and optimized from traditional methodologies due to the completely different tool material. However, there is still not a fundamental understanding of h ow the modifications to the mold tooling method and material impact both the mold design and the injection molding process parameters. One cannot obtain reasonable results by simply changing a few material properties in current models. Also, using traditional approaches when making actual parts may be generating sub-optimal results. So there is a dire need to study the interaction between the rapid tooling (RT) process and material and injection molding, so as to establish the mold design criteria and techniques for an RT-oriented injection molding process.In addition, computer simulation is an effective approach for predicting the quality of molded parts. Commercially available simulation packages of the traditional injection molding process have now become routine tools of the mold designer and process engineer [2]. Unfortunately, current simulation programs for conventional injection molding are no longer applicable to RP molds, because of the dramatically dissimilar tool material. For instance, in using the existing simulation software with aluminum and SL molds and comparing with experimental results, though the simulation values of part distortion are reasonable for the aluminum mold, results are unacceptable, with the error exceeding 50%. The distortion during injection molding is due to shrinkage and warpage of the plastic part, as well as the mold. For ordinarily molds, the main factor is the shrinkage and warpage of the plastic part, which is modeled accurately in current simulations. But for RP molds, the distortion of the mold has potentially more influence, which have been neglected in current models. For instance, [3] used a simple three-step simulation process to consider the mold distortion, which had too much deviation.In this paper, based on the above analysis, a new simulation system for RP molds is developed. The proposed system focuses on predicting part distortion, which is dominating defect in RP-molded parts. The developed simulation can be applied as an evaluation tool for RP mold design and process opti mization. Our simulation system is verified by an experimental example.Although many materials are available for use in RP technologies, we concentrate on usingstereolithography (SL), the original RP technology, to create polymer molds. The SL process uses photopolymer and laser energy to build a part layer by layer. Using SL takes advantage of both the commercial dominance of SL in the RP industry and the subsequent expertise base that has been developed for creating accurate, high-quality parts. Until recently, SL was primarily used to create physical models for visual inspection and form-fit studies with very limited func-tional applications. However, the newer generation stereolithographic photopolymers have improved dimensional, mechanical and thermal properties making it possible to use them for actual functional molds.2 Integrated simulation of the molding process2.1 MethodologyIn order to simulate the use of an SL mold in the injection molding process, an iterative method is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1T he part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2Simulate the mold-filling process of the melt into a pho topolymer mold, which will output the resulting temperature and pressure profiles.3Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distor tions of the molded part.In above simulation flow, there are three basic simulation mod ules.2. 2 Filling simulation of the melt2.2.1 Mathematical modelingIn order to simulate the use of an SL mold in the injection molding process, an iterativemethod is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1. The part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2. Simulate the mold-filling process of the melt into a photopolymer mold, which will output the resulting temperature and pressure profiles.3. Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4. If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5. The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distortions of the molded part.In above simulation flow, there are three basic simulation modules.2.2 Filling simulation of the melt2.2.1 Mathematical modelingComputer simulation techniques have had success in predicting filling behavior in extremely complicated geometries. However, most of the current numerical implementation is based on a hybrid finite-element/finite-difference solution with the middleplane model. The application process of simulation packages based on this model is illustrated in Fig. 2-1. However, unlike the surface/solid model in mold-design CAD systems, the so-called middle-plane (as shown in Fig. 2-1b) is an imaginary arbitrary planar geometry at the middle of the cavity in the gap-wise direction, which should bring about great inconvenience in applications. For example, surface models are commonly used in current RP systems (generally STL file format), so secondary modeling is unavoidable when using simulation packages because the models in the RP and simulation systems are different. Considering these defects, the surface model of the cavity is introduced as datum planes in the simulation, instead of the middle-plane.According to the previous investigations [4–6], fillinggoverning equations for the flow and temperature field can be written as:where x, y are the planar coordinates in the middle-plane, and z is the gap-wise coordinate; u, v,w are the velocity components in the x, y, z directions; u, v are the average whole-gap thicknesses; and η, ρ,CP (T), K(T) represent viscosity, density, specific heat and thermal conductivity of polymer melt, respectively.Fig.2-1 a–d. Schematic procedure of the simulation with middle-plane model. a The 3-D surface model b The middle-plane model c The meshed middle-plane model d The display of the simulation result In addition, boundary conditions in the gap-wise direction can be defined as:where TW is the constant wall temperature (shown in Fig. 2a).Combining Eqs. 1–4 with Eqs. 5–6, it follows that the distributions of the u, v, T, P at z coordinates should be symmetrical, with the mirror axis being z = 0, and consequently the u, v averaged in half-gap thickness is equal to that averaged in wholegap thickness. Based on this characteristic, we can divide the whole cavity into two equal parts in the gap-wise direction, as described by Part I and Part II in Fig. 2b. At the same time, triangular finite elements are generated in the surface(s) of the cavity (at z = 0 in Fig. 2b), instead of the middle-plane (at z = 0 in Fig. 2a). Accordingly, finite-difference increments in the gapwise direction are employed only in the inside of the surface(s) (wall to middle/center-line), which, in Fig. 2b, means from z = 0 to z = b. This is single-sided instead of two-sided with respect to the middle-plane (i.e. from the middle-line to two walls). In addition, the coordinate system is changed from Fig. 2a to Fig. 2b to alter the finite-element/finite-difference scheme, as shown in Fig. 2b. With the above adjustment, governing equations are still Eqs. 1–4. However, the original boundary conditions inthe gapwise direction are rewritten as:Meanwhile, additional boundary conditions must be employed at z = b in order to keep the flows at the juncture of the two parts at the same section coordinate [7]:where subscripts I, II represent the parameters of Part I and Part II, respectively, and Cm-I and Cm-II indicate the moving free melt-fronts of the surfaces of the divided two parts in the filling stage.It should be noted that, unlike conditions Eqs. 7 and 8, ensuring conditions Eqs. 9 and 10 are upheld in numerical implementations becomes more difficult due to the following reasons:1. The surfaces at the same section have been meshed respectively, which leads to a distinctive pattern of finite elements at the same section. Thus, an interpolation operation should be employed for u, v, T, P during the comparison between the two parts at the juncture.2. Because the two parts have respective flow fields with respect to the nodes at point A and point C (as shown in Fig. 2b) at the same section, it is possible to have either both filled or one filled (and one empty). These two cases should be handled separately, averaging the operation for the former, whereas assigning operation for the latter.3. It follows that a small difference between the melt-fronts is permissible. That allowance can be implemented by time allowance control or preferable location allowance control of the melt-front nodes.4. The boundaries of the flow field expand by each melt-front advancement, so it is necessary to check the condition Eq. 10 after each change in the melt-front.5. In view of above-mentioned analysis, the physical parameters at the nodes of the same section should be compared and adjusted, so the information describing finite elements of the same section should be prepared before simulation, that is, the matching operation among the elements should be preformed.Fig. 2a,b. Illustrative of boundary conditions in the gap-wise direction a of the middle-plane model b of thesurface model2.2.2 Numerical implementationPressure field. In modeling viscosity η, which is a function of shear rate, temperature and pressure of melt, the shear-thinning behavior can be well represented by a cross-type model such as:where n corresponds to the power-law index, and τ∗ characterizes the shear stress level of the transition region between the Newtonian and power-law asymptotic limits. In terms of an Arrhenius-type temperature sensitivity and exponential pressure dependence, η0(T, P) can be represented with reasonable accuracy as follows:Equations 11 and 12 constitute a five-constant (n, τ∗, B, Tb, β) representation for viscosity. The shear rate for viscosity calculation is obtained by:Based on the above, we can infer the following filling pressure equation from the governing Eqs. 1–4:where S is calculated by S = b0/(b−z)2η d z. Applying the Galerkin method, the pressure finite-element equation is deduced as:where l_ traverses all elements, including node N, and where I and j represent the local node number in element l_ corresponding to the node number N and N_ in the whole, respectively. The D(l_) ij is calculated as follows:where A(l_) represents triangular finite elements, and L(l_) i is the pressure trial function in finite elements.Temperature field. To determine the temperature profile across the gap, each triangular finite element at the surface is further divided into NZ layers for the finite-difference grid.The left item of the energy equation (Eq. 4) can be expressed as:where TN, j,t represents the temperature of the j layer of node N at time t.The heat conduction item is calculated by:where l traverses all elements, including node N, and i and j represent the local node number in element l corresponding to the node number N and N_ in the whole, respectively.The heat convection item is calculated by:For viscous heat, it follows that:Substituting Eqs. 17–20 into the energy equation (Eq. 4), the temperature equation becomes:2.3 Structural analysis of the moldThe purpose of structural analysis is to predict the deformation occurring in the photopolymer mold due to the thermal and mechanical loads of the filling process. This model is based on a three-dimensional thermoelastic boundary element method (BEM). The BEM is ideally suited for this application because only the deformation of the mold surfaces is of interest. Moreover, the BEM has an advantage over other techniques in that computing effort is not wasted on calculating deformation within the mold.The stresses resulting from the process loads are well within the elastic range of the mold material. Therefore, the mold deformation model is based on a thermoelastic formulation. The thermal and mechanical properties of the mold are assumed to be isotropic and temperature independent.Although the process is cyclic, time-averaged values of temperature and heat flux are used for calculating the mold deformation. Typically, transient temperature variations within a mold have been restricted to regions local to the cavity surface and the nozzle tip [8]. The transients decay sharply with distance from the cavity surface and generally little variation is observed beyond distances as small as 2.5 mm. This suggests that the contribution from the transients to the deformation at the mold block interface is small, and therefore it is reasonable to neglect the transient effects. The steady state temperature field satisfies Laplace’s equation 2T = 0 and the time-averaged boundary conditions. The boundary conditions on the mold surfaces are described in detail by Tang et al. [9]. As for the mechanical boundary conditions, the cavity surface is subjected to the melt pressure, the surfaces of the mold connected to the worktable are fixed in space, and other external surfaces are assumed to be stress free.The derivation of the thermoelastic boundary integral formulation is well known [10]. It is given by:where uk, pk and T are the displacement, traction and temperature,α, ν represent the thermal expansion coefficient and Poisson’s ratio of the material, and r = |y−x|. clk(x) is the surfacecoefficient which depends on the local geometry at x, the orientation of the coordinate frame and Poisson’s ratio for the domain [11]. The fundamental displacement ˜ulk at a point y in the xk direction, in a three-dimensional infinite isotropic elastic domain, results from a unit load concentrated at a point x acting in the xl direction and is of the form:where δlk is the Kronecker delta function and μ is the shear modulus of the mold material.The fundamental traction ˜plk , measured at the point y on a surface with unit normal n, is:Discretizing the surface of the mold into a total of N elements transforms Eq. 22 to:where Γn refers to the n th surface element on the domain.Substituting the appropriate linear shape functions into Eq. 25, the linear boundary element formulation for the mold deformation model is obtained. The equation is applied at each node on the discretized mold surface, thus giving a system of 3N linear equations, where N is the total number of nodes. Each node has eight associated quantities: three components of displacement, three components of traction, a temperature and a heat flux. The steady state thermal model supplies temperature and flux values as known quantities for each node, and of the remaining six quantities, three must be specified. Moreover, the displacement values specified at a certain number of nodes must eliminate the possibility of a rigid-body motion or rigid-body rotation to ensure a non-singular system of equations. The resulting system of equations is assembled into a integrated matrix, which is solved with an iterative solver.2.4 Shrinkage and warpage simulation of the molded partInternal stresses in injection-molded components are the principal cause of shrinkage and warpage. These residual stresses are mainly frozen-in thermal stresses due to inhomogeneous cooling, when surface layers stiffen sooner than the core region, as in free quenching. Based onthe assumption of the linear thermo-elastic and linear thermo-viscoelastic compressible behavior of the polymeric materials, shrinkage and warpage are obtained implicitly using displacement formulations, and the governing equations can be solved numerically using a finite element method.With the basic assumptions of injection molding [12], the components of stress and strain are given by:The deviatoric components of stress and strain, respectively, are given byUsing a similar approach developed by Lee and Rogers [13] for predicting the residual stresses in the tempering of glass, an integral form of the viscoelastic constitutive relationships is used, and the in-plane stresses can be related to the strains by the following equation:Where G1 is the relaxation shear modulus of the material. The dilatational stresses can be related to the strain as follows:Where K is the relaxation bulk modulus of the material, and the definition of α and Θ is:If α(t) = α0, applying Eq. 27 to Eq. 29 results in:Similarly, applying Eq. 31 to Eq. 28 and eliminating strain εxx(z, t) results in:Employing a Laplace transform to Eq. 32, the auxiliary modulus R(ξ) is given by:Using the above constitutive equation (Eq. 33) and simplified forms of the stresses and strains in the mold, the formulation of the residual stress of the injection molded part during the cooling stage is obtain by:Equation 34 can be solved through the application of trapezoidal quadrature. Due to the rapid initial change in the material time, a quasi-numerical procedure is employed for evaluating the integral item. The auxiliary modulus is evaluated numerically by the trapezoidal rule.For warpage analysis, nodal displacements and curvatures for shell elements are expressed as:where [k] is the element stiffness matrix, [Be] is the derivative operator matrix, {d} is the displacements, and {re} is the element load vector which can be evaluated by:The use of a full three-dimensional FEM analysis can achieve accurate warpage results, however, it is cumbersome when the shape of the part is very complicated. In this paper, a twodimensional FEM method, based on shell theory, was used because most injection-molded parts have a sheet-like geometry in which the thickness is much smaller than the other dimensions of the part. Therefore, the part can be regarded as an assembly of flat elements to predict warpage. Each three-node shell element is a combination of a constant strain triangular element (CST) and a discrete Kirchhoff triangular element (DKT), as shown in Fig. 3. Thus, the warpage can be separated into plane-stretching deformation of the CST and plate-bending deformation of the DKT, and correspondingly, the element stiffness matrix to describe warpage can also be divided into the stretching-stiffness matrix and bending-stiffness matrix.Fig. 3a–c. Deformation decomposition of shell element in the local coordinate system. a In-plane stretchingelement b Plate-bending element c Shell element3 Experimental validationTo assess the usefulness of the proposed model and developed program, verification is important. The distortions obtained from the simulation model are compared to the ones from SL injection molding experiments whose data is presented in the literature [8]. A common injection molded part with the dimensions of 36×36×6 mm is considered in the experiment, as shown in Fig. 4. The thickness dimensions of the thin walls and rib are both 1.5 mm; and polypropylene was used as the injection material. The injection machine was a production level ARGURY Hydronica 320-210-750 with the following process parameters: a melt temperature of 250 ◦C; an ambient temperature of 30 ◦C; an injection pressure of 13.79 MPa; an injection time of 3 s; and a cooling time of 48 s. The SL material used, Dupont SOMOSTM 6110 resin, has the ability to resist temperatures of up to 300 ◦C temperatures. As mentioned above, thermal conductivity of the mold is a major factor that differentiates between an SL and a traditional mold. Poor heat transfer in the mold would produce a non-uniform temperature distribution, thus causing warpage that distorts the completed parts. For an SL mold, a longer cycle time would be expected. The method of using a thin shell SL mold backed with a higher thermal conductivity metal (aluminum) was selected to increase thermal conductivity of the SL mold.Fig. 4. Experimental cavity modelFig. 5. A comparison of the distortion variation in the X direction for different thermal conductivity; where “Experimental”, “present”, “three-step”, and “conventional” mean the results of the experimental, the presented simulation, the three-step simulation process and the conventional injection molding simulation, respectively.Fig. 6. Comparison of the distortion variation in the Y direction for different thermal conductivitiesFig. 7. Comparison of the distortion variation in the Z direction for different thermal conductivitiesFig. 8. Comparison of the twist variation for different thermal conductivities For this part, distortion includes the displacements in three directions and the twist (the difference in angle between two initially parallel edges). The validation results are shown in Fig.5 to Fig. 8. These figures also include the distortion values predicted by conventional injection molding simulation and the three-step model reported in [3].4 ConclusionsIn this paper, an integrated model to accomplish the numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. For verification, an experiment is also carried out with an RPfabricated SL mold.It is seen that a conventional simulation using current injection molding software breaks down for a photopolymer mold. It is assumed that this is due to the distortion in the mold caused by the temperature and load conditions of injection. The three-step approach also has much deviation. The developed model gives results closer to experimental.Improvement in thermal conductivity of the photopolymer significantly increases part quality. Since the effect of temperature seems to be more dominant than that of pressure (load), an improvement in the thermal conductivity of the photopolymer can improve the part quality significantly.Rapid Prototyping (RP) is a technology makes it possible to manufacture prototypes quickly and inexpensively, regardless of their comp lexity. Rapid Tooling (RT) is the next step in RP’s steady progress and much work is being done to obtain more accurate tools to define the parameters of the process. Existing simulation tools can not provide the researcher with a useful means of studying relative changes. An integrated model, such as the one presented in this paper, is necessary to obtain accurate predictions of the actual quality of final parts. In the future, we expect to see this work expanded to develop simulations program for injection into RP molds manufactured by other RT processes.References1. Wang KK (1980) System approach to injection molding process. Polym-Plast Technol Eng 14(1):75–93.2. Shelesh-Nezhad K, Siores E (1997) Intelligent system for plastic injection molding process design. J Mater Process Technol 63(1–3):458–462.3. Aluru R, Keefe M, Advani S (2001) Simulation of injection molding into rapid-prototyped molds. Rapid Prototyping J 7(1):42–51.4. Shen SF (1984) Simulation of polymeric flows in the injection molding process. Int J Numer Methods Fluids 4(2):171–184.5. Agassant JF, Alles H, Philipon S, Vincent M (1988) Experimental and theoretical study of the injection molding of thermoplastic materials. Polym Eng Sci 28(7):460–468.6. Chiang HH, Hieber CA, Wang KK (1991) A unified simulation of the filling and post-filling stages in injection molding. Part I: formulation. Polym Eng Sci 31(2):116–124.7. Zhou H, Li D (2001) A numerical simulation of the filling stage in injection molding based on a surface model. Adv Polym Technol 20(2):125–131.8. Himasekhar K, Lottey J, Wang KK (1992) CAE of mold cooling in injection molding using a three-dimensional numerical simulation. J EngInd Trans ASME 114(2):213–221.9. Tang LQ, Pochiraju K, Chassapis C, Manoochehri S (1998) Computeraided optimization approach for the design of injection mold cooling systems. J Mech Des, Trans ASME 120(2):165–174.10. Rizzo FJ, Shippy DJ (1977) An advanced boundary integral equation method for three-dimensional thermoelasticity. Int J Numer Methods Eng 11:1753–1768.11. Hartmann F (1980) Computing the C-matrix in non-smooth boundary points. In: New developments in boundary element methods, CML Publications, Southampton, pp 367–379.12. Chen X, Lama YC, Li DQ (2000) Analysis of thermal residual stress in plastic injection molding. J Mater Process Technol 101(1):275–280.13. Lee EH, Rogers TG (1960) Solution of viscoelastic stress analysis problems using measured creep or relaxation function. J Appl Mech 30(1):127–134.14. Li Y (1997) Studies in direct tooling using stereolithography. Dissertation, University of Delaware, Newark, DE..。
(精编)模具注塑术语中英文对照
(精编)模具注塑术语中英文对照(精编)模具注塑术语中英文对照根据国家标准,以下为部分塑料模具成形术语的标准翻译。
动模MovableMouldMovingHalf定模座板FixedClampPlateTopClampingPlateTopPlate动模座板MovingClampPlateBottomClampingPlateBottomPlate上模座板UpperClampingPlate下模座板LowerClampingPlate凹模固定板Cavity-retainerPlate 型芯固定板MouldCore-retainerPlate凸模固定板Punch-retainerPlate模套DieBodyDieSleeveDieBlank支承板BackingPlateSupportPlate垫块SpacerParallel支架EjectorHousingMouldBaseLeg模头DieHead模具分类8InjectionMold注塑模PlasticRubberMould塑胶模RubberMolding橡胶成形HotChamberDieCasting热室压铸SandMoldCasting砂模铸造ExtrusionMold挤出模Multi-CavityMold多模穴模具PalletizingDie叠层模PlasterMold石膏模ThreePlatesMold三板模PlainDie简易模PierceDie冲孔模FormingDie成型模ProgressiveDie连续模GangDies复合模ShearingDie剪边模CavityDie型腔模RivetingDie铆合模CompressionMolding压缩成型FlashMold溢流式模具ExtrusionMold挤压式模具SplitMold分割式模具MouldCavity型腔母模MoldCore模芯公模LargeDieMold大型模具PreciseDieMold 精密模具ComplexDieMold复杂模具FoamingMould发泡模具MetalDie金属模具PlasticMold塑料模具ToolStampingDiePunchDie冲压模具ExtrusionDie挤压模具GraphiteDie石墨模具流道浇口部分RunnerSystem浇道系统SprueColdMaterialTrap浇道冷料井SpruePuller拉杆RunnerDesign流道设计MainRunner主流道SecondaryRunner 次流道MouldGateDesign浇口设计SubmarineGate潜伏浇口TunnelGate隧道式浇口PinpointGate点浇口FanGate扇形浇口SideGate侧浇口EdgeGate侧缘浇口TabGate 搭接浇口FilmGate薄膜浇口FlashGate闸门浇口SlitGate缝隙浇口DishGate盘形浇口DiaphragmGate隔膜浇口RingGate环形浇口Runnerless无浇道Sprueless无射料管方式LongNozzle延长喷嘴方式Sprue浇口,溶渣Insulated/HotRunner热浇道RunnerPlat 浇道模块ValveGate阀门浇口SlagWell冷料井ColdSlag冷料渣SprueGate射料浇口Nozzle 射嘴SprueLockPin料头钩销(拉料杆)注塑缺陷Flash飞边Warpage翘曲AirTrap积风Blush发赤FlowLine流痕Splay银纹ShortShot 短射SinkMark缩痕Streak条纹Void缩孔WeldLine熔接线GasMark烧焦ColdSlug冷斑Delamination起皮Burr毛刺FlawScratch刮伤Gloss光泽Glazing光滑SurfaceCheck表面裂痕Hesitation迟滞注塑工艺MoldingConditions成型条件Drying烘干BarrelTemperature 料筒温度MeltTemperature熔化温度MoldTemperature模具温度InjectionPressure注塑压力BackPressure背压InjectionSpeed注塑速度ScrewSpeed螺杆转速TensileStrength抗拉强度T ensileElongation延伸率FlexuralModulus弯曲模FlexuralStrength抗弯强度Shrinkage收缩率RegrindUsage次料使用Moulding模塑机械设备Lathe车床Planer刨床Miller/MillingMachine铣床Grinder磨床Driller钻床LinearCutting线切割ElectricalSparkle电火花Welder电焊机PunchingMachine冲床Robot机械手CommonEquipment 常用设备EDMElectronDischargeMachining放电加工3DCoordinateMeasurement三次元量床BoringMachine搪孔机ContouringMachine轮廓锯床CopyGrindingMachine仿形磨床CylindricalGrindingMachine外圆磨床DieSpottingMachine合模机EngravingMachine 雕刻机EngravingE.D.M雕模放置加工机FormGrindingMachine成形磨床GraphiteMachine石墨加工机HorizontalBoringMachine卧式搪孔机HorizontalMachineCenter卧式加工制造中心InternalCylindricalMachine内圆磨床模具零件TopPlate上托板(顶板)T opBlock上垫脚PunchSet上模座PunchPad上垫板PunchHolder上夹板StripperPad脱料背板UpStripper上脱料板MaleDie公模(凸模)FeatureDie公母模FemaleDie母模(凹模)UpperMoldPlate上模板LowerMoldPlate 下模板DiePad下垫板DieHolder下夹板DieSet下模座BottomBlock下垫脚BottomPlate下托板(底板)StrippingPlate内外打(脱料板)OuterStripper外脱料板InnerStripper内脱料板LowerStripper下脱料板InnerGuidingPost 内导柱InnerHexagonScrew内六角螺钉DowelPin固定销MouldCoilSpring模具弹簧LifterPin 顶料销IsoheightSleeve等高套筒Pin销LifterGuidePin浮升导料销GuidePin导正销WireSpring圆线弹簧OuterGuidingPost外导柱StopScrew止付螺丝LocatedPin定位销OuterBush外导套Punch冲头Insert入块(嵌入件)DeburringPunch压毛边冲子GroovePunch压线冲子StampedPunch字模冲子RoundPunch圆冲子SpecialShapePunch 异形冲子BendingBlock折刀Roller滚轴BafflePlate挡块LocatedBlock定位块SupportingBlockforLocation定位支承块AirCushionPlate气垫板Air-CushionEject-rod 气垫顶杆TrimmingPunch切边冲子StiffeningRibPunchStinger加强筋冲子RibbonPunch压筋冲子Reel-stretchPunch卷圆压平冲子GuidePlate定位板SlidingBlock滑块SlidingDowelBlock滑块固定块ActivePlate活动板LowerSlidingPlate 下滑块板UpperHolderBlock上压块UpperMidPlate上中间板SpringBox弹簧箱Spring-BoxEject-rod弹簧箱顶杆Spring-BoxEjec模具技术用语各种常用模具成形方式AccurateDieCasting精密压铸PowderForming粉末成形CalendaringMolding压延成形PowderMetalForging粉末锻造ColdChamberDieCasting冷式压铸PrecisionForging 精密锻造ColdForging冷锻PressForgingstampforging冲锻CompactingMolding粉末压出成形RockingDieForging摇动锻造CompoundMolding复合成形RotaryForging回转锻造CompressionMolding压缩成形RotationalMolding离心成形DipMold浸渍成形RubberMolding橡胶成形EncapsulationMolding注入成形SandMoldCasting砂模铸造ExtrusionMolding挤出成形ShellCasting壳模铸造FoamForming 发泡成形SinterForging烧结锻造ForgingRoll轧锻SixSidesForging 六面锻造GravityCasting重力铸造SlushMolding凝塑成形HollowBlowMolding中空(吹出)成形SqueezeCasting高压铸造HotChamberDieCasting热室压铸Swaging挤锻HotForging 热锻TransferMolding转送成形InjectionMolding射出成形WarmForging温锻InvestmentCasting精密铸造MatchedDieMethod对模成形法LaminatingMethod被覆淋膜成形LowPressureCasting低压铸造LostWaxCasting脱蜡铸造MatchedMouldThermalForming对模热成形模CloseMold合模Demould脱模脱模剂MouldUnloading开模ToolChangeRetoolingDieChanging换模MouldClamping锁模各式模具分类用语BismuthMold铋铸模LandedPlungerMold有肩柱塞式模具BurnishingDie挤光模LandedPositiveMold有肩全压式模具ButtonDie镶入式圆形凹模LoadingShoeMold料套式模具Center-GatedMold中心浇口式模具LooseDetailMold活零件模具ChillMold冷硬用铸模LooseMold活动式模具ColdHobbing冷挤压制模法LouveringDie百叶窗冲切模CompositeDies复合模具ManifoldDie分歧管模具CounterPunch反凸模ModularMold组合模具DoubleStackMold双层模具Multi-CavityMold多模穴模具ElectroformedMold电铸成形模Multi-GateMold复式浇口模具ExpanderDie扩径模OffsetColdBendingDie双折冷弯模具ExtrusionDie挤出模PalletizingDie叠层模FamilyMold反套制品模具PlasterMold石膏模BlankThroughDies漏件式落料模PorousMold通气性模具DuplicatedCavityPlate复板模PositiveMold全压式模具FantailDie扇尾形模具PressureDie压紧模FishtailDie鱼尾形模具ProfileDie轮廓模FlashMold溢料式模具ProgressiveDie顺序模GypsumMold石膏铸模PortableMold手提式模具Hot-RunnerMold热流道模具PrototypeMold雏形试验模具原型模具IngotMold钢锭模PunchingDie落料模LancingDie切口模切缝模Raising(Embossing)压花起伏成形Re-entrantMold倒角式模具SectionalDie拼合模RunlessInjectionMold无流道冷料模具SectionalDie对合模具SegmentMold组合模Semi-PositiveMold半全压式模具Shaper 定型模套SingleCavityMold单腔模具SolidForgingDie整体锻模SplitForgingDie拼合锻模SplitMold双并式模具SpruelessMold无注道残料模具SqueezingDie挤压模StretchFormDie拉伸成形模SweepingMold 平刮铸模SwingDie振动模具ThreePlatesMold三片式模具TrimmingDie切边模UnitMold单元式模具UniversalMold 通用模具UnscrewingMold退扣式模具YokeTypeDie轭型模t-Plate弹簧箱顶板BushingBlockLinerBushing衬套CoverPlate盖板GuidePad导料块模具厂常用之标准零配件AirVentValve通气阀AnchorPin锚梢AngularPin角梢Baffle调节阻板AngularPin倾斜梢BafflePlate折流档板BallButton球塞套BallPlunger定位球塞BallSlider球塞滑块BinderPlate压板BlankHolder防皱压板BlankingDie落料冲头Bolster上下模板Bottomboard浇注底板Bolster垫板BottomPlate下固定板Bracket托架BumperBlock 缓冲块Buster堵口CastingLadle浇注包Castinglug铸耳Cavity模穴(模仁)CavityRetainerPlate模穴托板CenterPin中心梢ClampingBlock 锁定块CoilSpring螺旋弹簧ColdPunchedNut冷冲螺母CoolingSpiral螺旋冷却栓Core心型CorePin心型梢Cotter开口梢Cross十字接头CushionPin缓冲梢DiaphragmGate盘形浇口DieApproach模头料道DieBed型底DieBlock块形模体DieBody铸模座DieBush合模衬套DieButton冲模母模DieClamper夹模器DieFastener模具固定用零DieHolder母模固定板DieLip模唇DiePlate冲模板DieSet冲压模座DirectGate直接浇口DogChuck爪牙夹头Dowel定位梢DowelHole导套孔DowelPin合模梢Dozzle辅助浇口DowelPin定位梢Draft拔模锥度DrawBead张力调整杆DriveBearing传动轴承EjectionPad顶出衬垫Ejector脱模器EjectorGuidePin顶出导梢EjectorLeaderBush顶出导梢衬套EjectorPad顶出垫EjectorPin 顶出梢EjectorPlate顶出板EjectorRod顶出杆EjectorSleeve顶出衬套EjectorValve顶出阀EyeBolt环首螺栓FillingCore填充型芯椿入蕊FilmGate薄膜形浇口FingerPin指形梢FinishMachinedPlate 角形模板FinishMachinedRoundPlate圆形模板FixedBolsterPlate固定侧模板FlangedPin带凸缘针FlashGate毛边形浇口Flask上箱FloatingPunch浮动冲头Gate浇口GateLand浇口面Gib凹形拉紧楔GooseNeck鹅颈管GuideBushing引导衬套GuidePin导梢GuidePost 引导柱GuidePlate导板GuideRail导轨HeadPunch顶头冲孔HeadlessPunch直柄冲头HeavilyT aperedSolid整体模蕊盒HoseNippler管接头ImpactDamper缓冲器InjectionRam压射柱InlayBush嵌入衬套InnerPlunger内柱塞InnerPunch内冲头Insert 嵌件InsertPin嵌件梢KingPin转向梢KingPinBush主梢衬套KnockoutBar脱模杵Land 合模平坦面LandArea合模面LeaderBush导梢衬套LiftingPin起模顶针起模杆Lining内衬LocatingCenterPunch定位中心冲头LocatingPilotPin定位导梢LocatingRing定位环LockBlock压块LockingBlock定位块LockingPlate定位板LooseBush活动衬套MakingDie打印冲子ManifoldBlock歧管档块MasterPlate靠模样板MatchPlate分型板MoldBase塑胶模座MoldClamp铸模紧固夹MoldPlaten模用板MovingBolster换模保持装置MovingBolsterPlate可动侧模板OnePieceCasting整体铸件ParallelBlock平行垫块PartingLine 分模线PartingLockSet合模定位器PassGuide穴型导板PeenedHeadPunch镶入式冲头锤击强化冲头钻杆凸模PilotPin定位销导向销子PinGate针尖浇口Plate衬板PreExtrusionPunch顶挤冲头Punch冲头Puncher推杆PusherPin衬套梢Rack机架RappingRod起模杆Re-entrantMold凹入模RetainerPin嵌件梢RetainerPlate托料板ReturnPin回位梢RidingStripper浮动脱模器RingGate环型浇口Roller滚筒Runner流道RunnerEjectorSet流道顶出器RunnerLockPin流道拉梢ScrewPlug头塞SetScrew固定螺丝Shedder脱模装置Shim分隔片Shoe模座之上下模板Shoot流道ShoulderBolt肩部螺丝Skeleton骨架SlagRiser冒渣口Slide(SlideCore)滑块SlipJoint滑配接头SpacerBlock间隔块SpacerRing间隔环Spider模蕊支架Spindle主轴Sprue注道SprueBushing注道衬套SprueBushingGuide注道导套SprueLockBushing注道定位衬套SpruePuller注道拉料浇道推出杆注道残料顶销SpewLine合模线SquareKey方键SquareNut方螺帽SquareThread方螺纹LimitStopCollar限位套StopPin止动梢StopRing止动环Stopper定位停止梢StraightPin圆柱销StripperBolt脱料螺栓StripperBushing脱模衬套StripperPlate剥料板StrokeEndBlock行程止梢SubmarineGate潜入式浇口SupportPillar支撑支柱顶出支柱SupportPin支撑梢SupportingPlate托板SweepT emplate造模刮板TabGate辅助浇口TaperKey推拔键TaperPin拔锥梢锥形梢TeemingPouring浇注ThreeStartScrew 三条螺纹ThrustPin推力销TieBar拉杵TunnelGate隧道形浇口Vent通气孔WortlePlate拉丝模板模具常用之工作机械3DCoordinateMeasurement三次元量床BoringMachine搪孔机CNCMillingMachineCNC铣床ContouringMachine轮廓锯床CopyGrindingMachine仿形磨床CopyLathe仿形车床CopyMillingMachine仿形铣床CopyShapingMachine仿形刨床CylindricalGrindingMachine外圆磨床DieSpottingMachine合模机DrillingMachine钻孔机EngravingMachine雕刻机EngravingE.D.M 雕模放置加工机FormGrindingMachine成形磨床GraphiteMachine 石墨加工机HorizontalBoringMachine卧式搪孔机HorizontalMachineCenter卧式加工制造中心InternalCylindricalMachine内圆磨床JigBoringMachine冶具搪孔机JigGrindingMachine冶具磨床LapMachine研磨机MachineCenter加工制造中心MultiModelMiller靠磨铣床NCDrillingMachineNC钻床NCGrindingMachineNC磨床NCLatheNC车床NCProgrammingSystemNC程式制作系统Planer 龙门刨床ProfileGrindingMachine投影磨床ProjectionGrinder投影磨床RadialDrillingMachine旋臂钻床Shaper牛头刨床SurfaceGrinder平面磨床TryMachine试模机TurretLathe转塔车床UniversalToolGrindingMachine万能工具磨床VerticalMachineCenter立式加工制造中心WireE.D.M线割放电加工机入水Gate进入位GateLocation水口形式GateType大水口EdgeGate细水口Pin-pointGate水口大小GateSize转水口SwitchingRunnerGate唧嘴口径SprueDiameter流道MoldRunner热流道HotRunnerHotManifold温度控制器温控器ThermostatThermoregulatorsT emperatureController 热嘴冷流道HotSprueColdRunner 唧嘴直流DirectSprueGate圆形流道RoundFullHalfRunner流道电脑分析MoldFlowAnalysis流道平衡RunnerBalance热嘴HotSprue热流道板HotManifold发热管CartridgeHeater探针Thermocouples插头ConnectorPlug插座ConnectorSocket密封封料Seal运水WaterLine喉塞LinePlugThroatT aps喉管Tube塑胶管PlasticTube快速接头JiffyQuickConnectorQuickDisconnectCoupling 模具零件MoldComponents三板模3-PlateMold二板模2-PlateMold边钉导边LeaderPinGuidePin边司导套BushingGuideBushing中托司ShoulderGuideBushing中托边GuidePin顶针板EjectorRetainnerPlate托板SupportPlate螺丝Screw管钉DowelPin开模槽PlyBarScot内模管位CoreCavityinter-Lock顶针EjectorPin司筒EjectorSleeve司筒针EjectorPin推板EjectPlatePushPlateStripperPlate缩呵MovableCoreReturnCorePuller 扣机(尼龙拉勾)NylonLatchLock 斜顶Lifter模胚(架)MoldBase上内模CavityInsert下内模CoreInsert行位(滑块)Slide镶件Insert压座Wedge耐磨板油板WedgeWearPlate压条Plate撑头SupportPillar唧嘴SprueBushing挡板StopPlate定位圈LocatingRing锁扣Latch扣机PartingLockSet推杆PushBar栓打螺丝S.H.S.B顶板EjectorPlate活动臂LeverArm分流锥SprueSpreader分流板SpreaderPlate水口司Bush垃圾钉StopPin隔片Buffle弹弓柱SpringRod弹弓DieSpring中托司EjectorGuideBush中托边EjectorGuidePin镶针Pin销子DowelPin波子弹弓Ballcatch喉塞PipePlug锁模块LockPlate斜顶AnglefromPin斜顶杆AngleEjectorRod尼龙拉勾PartingLocks活动臂LeverArm复位键提前回杆EarlyReturnBar气阀Valves斜导边AnglePin术语Terms承压平面平衡PartingSurfaceSupportBalance模排气PartingLineVenting回针碰料位ReturnPinandCavityInterference 顶针碰运水WaterLineInterfereswithEjectorPin 料位出上下模PartfromCavith (Core)Side不准用镶件DoNotUse(CoreCavity)Insert 用铍铜做镶件UseBerylliumCopperInsert初步模图设计PreliminaryMoldDesign正式模图设计FinalMoldDesign弹弓压缩量SpringCompressedlength稳定性好GoodStabilityStable强度不够InsufficientRigidity均匀冷却EvenCooling扣模Sticking热膨胀ThermalExpansion公差Tolerance铜公(电极)CopperElectrode AirVentValve通气阀AnchorPin锚梢AngularPin角梢Baffle调节阻板AngularPin倾斜梢BafflePlate折流挡板BallButton球塞套BallPlunger定位球塞BallSlider球塞滑块BinderPlate压板BlankHolder防皱压板BlankingDie落料冲头Bolster上下模板BottomBoard浇注底板Bolster垫板BottomPlate 下固定板Bracket托架BumperBlock缓冲块Buster堵口CastingLadle浇注包CastingLug铸耳Cavity模腔模穴(模仁)CavityRetainerPlate模穴托板CenterPin中心梢ClampingBlock锁定块CoilSpring螺旋弹簧ColdPunchedNut冷冲螺母CoolingSpiral螺旋冷却栓。
注塑模具设计外文翻译
毕业设计(论文)外文资料翻译及原文(2012届)题目电话机三维造型与注塑模具设计指导教师院系工学院班级学号姓名二〇一一年十二月六日【译文一】塑料注塑模具并行设计Assist.Prof.Dr. A. Y AYLA /Prof.Dr. Paş a YAYLA摘要塑料制品制造业近年迅速成长。
其中最受欢迎的制作过程是注塑塑料零件。
注塑模具的设计对产品质量和效率的产品加工非常重要。
模具公司想保持竞争优势,就必须缩短模具设计和制造的周期。
模具是工业的一个重要支持行业,在产品开发过程中作为一个重要产品设计师和制造商之间的联系。
产品开发经历了从传统的串行开发设计制造到有组织的并行设计和制造过程中,被认为是在非常早期的阶段的设计。
并行工程的概念(CE)不再是新的,但它仍然是适用于当今的相关环境。
团队合作精神、管理参与、总体设计过程和整合IT工具仍然是并行工程的本质。
CE过程的应用设计的注射过程包括同时考虑塑件设计、模具设计和注塑成型机的选择、生产调度和成本中尽快设计阶段。
介绍了注射模具的基本结构设计。
在该系统的基础上,模具设计公司分析注塑模具设计过程。
该注射模设计系统包括模具设计过程及模具知识管理。
最后的原则概述了塑料注射模并行工程过程并对其原理应用到设计。
关键词:塑料注射模设计、并行工程、计算机辅助工程、成型条件、塑料注塑、流动模拟1、简介注塑模具总是昂贵的,不幸的是没有模具就不可能生产模具制品。
每一个模具制造商都有他/她自己的方法来设计模具,有许多不同的设计与建造模具。
当然最关键的参数之一,要考虑到模具设计阶段是大量的计算、注射的方法,浇注的的方法、研究注射成型机容量和特点。
模具的成本、模具的质量和制件质量是分不开的在针对今天的计算机辅助充型模拟软件包能准确地预测任何部分充填模式环境中。
这允许快速模拟实习,帮助找到模具的最佳位置。
工程师可以在电脑上执行成型试验前完成零件设计。
工程师可以预测过程系统设计和加工窗口,并能获得信息累积所带来的影响,如部分过程变量影响性能、成本、外观等。
注塑成型的模具设计外文翻译
Figure 1. Organization of the IKEM Project2 Intelligent Mold Design ToolThe mold design tool in its basic form is a Visual Basic application taking input from a text file that contains information about the part and a User Input form. The text file contains information about the part geometry parsed from a Pro/E information file. The input is used to estimate the dimensions of mold and various other features.2.1 Literature ReviewDesign of molds is another stage of the injection molding process where the experience of an engineer largely helps automate the process and increase its efficiency. The issue that needs attention is the time that goes into designing the molds. Often, design engineers refer to tables and standard handbooks while designing a mold, which consumes lot of time. Also, a great deal of time goes into modeling components of the mold in standard CAD software. Differentresearchers have dealt with the issue of reducing the time it takes to design the mold in different ways. Koelsch and James have employed group technology techniques to reduce the mold design time. A unique coding system that groups a class of injection molded parts, and the tooling required ininjection molding is developed which is general and can be applied to other product lines.A software system to implement the coding system has also been developed. Attempts were also directed towards the automation of the mold design process by capturing experience and knowledge of engineers in the field. The development of a concurrent mold design system is one such approach that attempts to develop a systematic methodology for injection mold design processes in a concurrent engineering environment. The objective of their research was to develop a mold development process that facilitates concurrent engineering-based practice, andFigure 2. Organization of the Mold Design Module.While most of the input, like the number of cavities, cavity image dimensions, cycle time are based on the client specifications, other input like the plasticizing capacity, shots per minute etc., can be obtained from the machine specifications. The output of the application contains mold dimensions and other information, which clearly helps in selecting the standard mold base from catalogs. Apart from the input and output, the Figure 2 also shows the various modules that produce the final output.2.5 Framing rulesAt this stage, the expert’s knowledge is represented in the form of multiple If-Then statements. The rules may be representations of both qualitative and quantitative knowledge. By qualitative knowledge, we mean deterministic information about a problem that can be solved computationally. By qualitative we mean information that is not deterministic, but merely followed as a rule based on previous cases where the rule has worked. A typical rule is illustrated below:If Material = “Acetal” AndRunner Length <= 3 AndRunner Length > 0 ThenRunner Diameter =0.062End IfWhen framing the rules it is important that we represent the information in a compact way while avoiding redundancy, incompleteness and inconsistency. Decision tables help take care of all the above concerns by checking for redundancy and comprehensive expression of the problem statement. As an example, in the process of selecting an appropriate mold base, the size of mold base depends on the number of cavities and inserts. To ensure that all possible combinations of。
单浇口优化注塑模外文文献翻译、中英文翻译、注射塑料模具类外文翻译
附录单浇口优化注塑模摘要:本文论述了一种单浇口位置优化注塑模具的方法。
客观的浇口优化,尽量减少注塑制品翘曲变形,因为翘曲是一个关键质量问题,对大多数注塑件,这绝大部分受浇口位置影响。
专题翘曲的定义是用比例最大位移对特征表面预计长度的表面特征来描述零件翘曲。
优化相结合,数值模拟技术,以找到最佳的浇口位置,其中,模拟退火算法就是用来寻找最佳的浇口位置。
最后,其中一个例子是讨论有关文件,并可以得出结论认为,所提出的方法是有效的。
关键词:注塑模,浇口位置和结构优化,功能翘曲导言塑料注塑成型,是一种广泛使用的,复杂的,对大型品种的塑料制品,尤其是那些高产量要求,精密复杂形状的有高效率的技术制作。
质量注塑件是一个有功能性,部分几何,模具结构和工艺条件的塑胶材料。
最重要的一部分,注塑模,基本上是以下三组组成:腔,浇口和浇道,和冷却系统。
Lam和Seow ( 2000),Jin和Lain( 2002)达到平衡腔不同壁厚的一部分。
平衡充填过程内部腔给出了一个均匀分布的压力和温度,可大幅度减少该部的翘曲。
但腔平衡只是其中一个影响零件质量的重要因素。
尤其是零件有其功能要求,其厚度通常不应该多种多样。
从这个角度谈了注塑模具设计,浇口是由其尺寸和位置,和浇道系统的规模和布局表征的。
浇口尺寸和浇道布局通常定为常量。
相对地,浇口位置和浇道的大小是比较有弹性的,能够多样的影响零件质量。
因此,他们往往优化设计参数。
Lee和Kim(1996年)为多种注射溶洞优化了浇道和浇口的大小来平衡浇道系统。
浇道维持平衡可以理解为有相同腔的多腔模具的不同入口压力,在每一个腔每一个熔体流道底部有不同的情体积和几何形状。
该方法已显示压力在整个多腔模具成型周期中的单腔里均匀分布。
Zhai等(2005年)发布两个浇口位置优化,它的一个成型腔是由一个在压力梯度的基础上的高效率的搜索方法( PGSS),为由不同尺寸的浇道多浇口零件定位,熔接线向理想的地点(翟等, 2006 )。
注塑成型调校的主要参数
注塑成型调校的主要参数注塑加工上讲的调机是指根据某一具体模具、原材料不断的调整注塑机的各种参数及其它辅助参数,直到生产出合格的塑胶件的一系列调校方案,称为调机。
注塑机的主要参数有如下一些:1 综合参数1.1 容模尺寸:宽×高×厚1.2 最大射胶量:即为注塑机所能射出的最大胶量,重量一般用克(g )或安士(oz)表示(1oz=28.4g),由于各种胶料比重不同,一般都是以PS(比重约为1)来作参照的,啤作其它胶料时进行换算,所啤胶件的啤总重(包括水口)必须小于(或等于)最大射胶量的80%,同时不能小于最大射胶量的15%,否则会影响注塑效益。
1.3 锁模力:即是模具合模后所能受的最大分开力,一般啤机均有一个额定的锁模力,调得太大易使机器或模具产生变形。
锁模力的大小与啤件投影面积大致成正比例关系,粗略计算方法如下:锁模力(吨)=型腔的投影面积(cm 2 )×材料压力系数÷额定锁模力的90%2 温度参数注塑加工中涉及到温度限制有以下几方面:- 烘料干燥温度- 炮筒温度- 模具温度2.1 烘料干燥温度啤作时需要将原料中的水份含量干燥到一定百分比以下称之为焗料,因为原料水分含量过高会引起汽花、剥层、脱皮、发脆等缺陷。
2.2 炮筒温度螺杆从进料口到螺杆头可分为输送段、压缩段、计量段、每段对应的炮筒温度一般是由低到高分布;另:炮嘴温度通常略高于计量末端之温度,而加长射嘴则稍高于计量末端之温度。
2.3 模具温度模具温度指模腔表面温度,根据模具型腔各部分的形状不同,一般是难走胶的部位,模温要求高一点,前模温度略高于后模温度,当各部位设定温度后,要求其温度波动小,所以往往要使用模具恒温机,冷水机等辅助设备来调节模温。
3 位置参数3.1 低压锁模位置:低压锁模位置要在高压位置前30 mm左右,压力一般设定为0,(以刚好够力将前后模贴合为宜)时间不要超过1秒,要求当模具有杂物时能在设定时间内自动反弹开模。
MOLDFLOW模流分析
珠海优特电力科技股份有限公司
引子
我们遇到了哪些问题?
2
引子
短
射
3
引子
飞
边
4
引子
银条纹
5
引子
流 痕
6
引子
应力痕
7
引子
冲击纹
8
引子
缩 水
9
引子
熔接痕
10
引子
发 脆
11
引子
翘 曲
12
引子
如何改变传统的依靠经验的 “试错”的设计模式?
避 预知
13
目录
例如:改变保压压力,分析保压压力对成型的影响
过保压
23
保压不足
MOLDFLOW简介 功能6
冷却分析
分析冷却水路的冷却效果,冷却不均 会导致产品翘曲变形。冷却水路进出 口水温应在2℃~3 ℃为佳。
24
目录
1 2 1 3
MOLDFLOW简介 MOLDFLOW分析流程介绍 产品缺陷判定及优化对策
25
STEP2-新建工程
STEP 8-创建浇注系统和冷却系统 浇注系统
网格的划分和处 理
STEP 8-创建浇注系统和冷却系统
网格的划分和处 理
直接浇口
点浇口
侧浇口
潜伏浇口
扇形浇口
牛角浇口
STEP 8-创建浇注系统和冷却系统 冷却系统
52
STEP 8-创建浇注系统和冷却系统
OUT IN
OUT IN
IN
OUT
IN OUT
平均纵横比
33
STEP5-检查模型网格
匹配率信息 匹配率是指模型上下表面网格对 齐重合的程度。 此项是仅仅针对Fusion网格。 这也是评价网格质量的重要数据, 一般要求≥85%
注塑参数优化-科学注塑法
Process Start-Up (Optimizing Fill, Packing and Other Parameters)The following procedure works well for any velocity-controlled injection molding machine. The following conditions, although generally applicable, are not necessarily optimum for a specific application.1. Set pack and hold timers to zero.2. Set pack and hold pressures to zero.3. Set injection pressure to the maximum setting.4. Set transfer position to 6 to 7 mm (0.25 to 0.30").5. Set injection time long enough to reach transfer position.6. Set injection speed to achieve a fill time of 0.5 to 1.5 seconds.7. Set shot size to achieve a short shot.8. Increase shot size until part is 95% full.9. Note the injection pressure required to maintain 95% fill of the part.10. Set injection pressure to 21 to 28 bar (300 to 400 psi) above the injection pressure determined in the previous step; this insures a velocity-controlled filling.11. Set pack-hold pressure to 50% of the injection pressure setting.12. Set pack-hold time to 2 to 3 seconds to ensure that the remaining 5% of the part is filled and that there is enough additional material to compensate for shrinkage.13. Fine-tune the pack-hold time by running a series of test molding cycles. Weigh each part after each test cycle. Continue to increase the pack-hold time as required until the part weight does not increase. This ensures that gate freeze-off has occurred and that parts have a repeatable, correct weight.14. Set overall injection forward timer for 3 to 5 times more than boost time.15. Take additional shot to verify that forward travel of screw has stopped and a cushion of 3.18 to 6.35 mm (0.125 to 0.250") remains.16. Add cooling time depending on part thickness.17. Use of mold release is not recommended under any circumstances.。
注塑成型工艺参数的设置及其调整方法
注塑成型工艺参数的设置及其调整方法注塑成型工艺参数的设置及其调整方法一、注塑注塑成型工艺流程成型工艺流程成型工艺流程可以简单的表示如下可以简单的表示如下可以简单的表示如下::上一周期——闭模——填充——保压——回胶——冷却——开模——脱模——下一周期在填充保压降段,模腔压力随时间推移而上升,填充满型腔之后压力将保持在一个相对静态的状态,以补充由于收缩而产生的胶量不足,另外此压力可以防止由于注射的降低而产生的胶体倒流现象,这就是保压阶段,保压完了之后模腔压力逐渐下降,并随时间推移理论上可以降到零,但实际并不为零,所以脱模之后制品内部内存内应力,因而有的产品需经过后处理,清除残存应力。
所谓应力,就是来傅高子链或者链段自由运动的力,即弯曲变形,应力开裂、缩孔等。
二、注塑注塑成型成型成型的主要参数的主要参数1、料筒温度注塑胶料温度,熔体温度对熔体的流动性能起主要作用,由于塑胶没有具体的熔点,所谓熔点是一个熔融状态下的温度段,塑胶分子链的结构与组成不同,因而对其流动性的影响也不同,刚性分子链受温度影响较明显,如PC 、PPS 等,而柔性分子链如:PA 、PP 、PE 等流动性通过改变温度并不明显,所以应根据不同的材料来调校合理的注塑温度。
2、注射速度注射速度是熔体在炮筒内(亦为螺杆的推进速度)的速度(MM/S )注射速度决定产品外观、尺寸、收缩性,流动状况分布等,一般为先慢——快——后慢,即先用一个较的速度是熔体更过主流道,分流道,进浇口,以达到平衡射胶的目的,然后快速充模方式填充满整个模腔,再以较慢速度补充收缩和逆流引起的胶料不足现象,直到浇口冻结,这样可以克服烧焦,气纹,缩水等品质不良产生。
3、注射压力注射压力是熔体克服前进所需的阻力,直接影响产品的尺寸,重量和变形等,不同的塑胶产品所需注塑压力不同,对于象PA 、PP 等材料,增加压力会使其流动性显著改善,注射压力大小决定产品的密度,即外观光泽性。
4、模具温度模具温度,有些塑胶料由于结晶化温度高,结晶速度慢,需要较高模温,有些由于控制尺寸和变形,或者脱模的需要,要较高的温度或较低温度,如PC 一般要求60度以上,而PPS 为了达到较好的外观和改善流动性,模温有时需要160度以上,因而模具温度对改善产品的外观、变形、尺寸,胶模方面有不可抵估的作用。
注塑行业术语中英文对照表
96 型芯
Core
97 支架
injection housing
98 推块
ejector pad
通用翻译
单位体积的质量 有多种原因引起的变形现象,如收缩翘曲,配向翘曲等 产品在内应力或外力的作用下产生的尺寸变化以及形状变化 熔体的某一部份发生停止流动或极缓慢流动的现象 发生在垂直于熔体流动方向上的收缩 热力的作用下,塑料可以发生变形的温度 保压后制品在模具内部成型完毕脱离模具的现象 方便成型制品脱离模具而设计的角度 成型制品不容易脱离模具的现象 残留在制品内部因各种原因产生的应力 很多小分子连接而成的具有较大质量的长分子连 熔体在模具内冷却状态之一的数学表示方法 成型后制品拿出的过程 毛坯加工或留有大量余量的待加工品 配合CPU工作的马达 完成一个组件或产品经过的步骤 以塑料为原料生产的制品 通过注射方式成型的模具 倾斜于分型面、随模具的开闭产生相对运动的圆柱零件 斜向镶块或滑动的镶块 组合方式之一 使镶件或拼块定位并紧固在一起的框套形结构零件 成型模具内表面突起的组件 使动模能固定在压机或注塑机上的L型垫块 在腔内起部分成型作用,并在开模时把塑件从型腔内推出的零件
英文术语
quality tolerance defective product label identifying sheet list Seiri Seiton Seiso Seiketsu Shitsuke Safe deficient purchase scratch dents bolt thermoplastic injection molding contorl plat pro-face safety door injection seat screw chamber heater nozzle
外文翻译译文
齐齐哈尔大学毕业设计(论文)外文翻译译文题目一种注塑工艺设计计算系统学院机电工程学院专业班级机械074班学生姓名郝壮壮指导教师陈集一种注塑工艺设计计算系统结合黑板的专家系统和基于案例的推理方法邝志强和G. F. Smitht制造工程学系,香港理工大学,香港高级技术中心,华威大学,英国注塑成型工艺设计涉及注塑机,模具设计,生产调度,成本估算,与注射模具参数的确定选择。
专家系统方法已被用于计算在过去数年的注塑成型过程的解决方案。
但是,这种方法被发现的确定由于注射模具参数设置的成型参数对知识的脆弱性无能。
此外,对工艺设计缺乏适当的组织架构,现有专家系统异构知识源。
在这个文件中,一个黑板的专家系统和基于案例的推理方法结合引入消除现有专家系统方法来处理的设计缺陷,从一个进程的设计计算系统的注塑成型名为CSPD,已经研制成功。
CSPD首次导出了包括注塑机和模具基地的选择,工装成本流程的解决方案,处理成本估算,与生产调度的基础上黑板的专家系统方法。
它是随后的注射成型的基于案例的推理方法和以前得到部分解决方案的参数的确定的保证。
关键词:黑板结构;基于案例推理专家系统;成型工艺的注射模设计1.介绍注塑成型工艺设计主要涉及注塑机,模具设计,成本估算,生产调度和注射成型工艺参数的确定选择。
传统上,这些活动是由一批经验丰富的人员,包括模具设计师,一次成型工程师,造价工程师和生产工程师,以连续的方式,由零件的设计团队完成。
可能由于在设计过程阶段的信息缺乏,导致了一部分频繁的重新设计。
如今,在设计阶段取得的过程设计解决方案减少了产品开发时间,缩短将产品推向市场的时间。
在人工智能(AI)技术进步,推动了工艺设计计算系统的开发。
流行的人工智能专家系统正在开发过程中采用多种研究工作设计.计算系统技术利用工艺设计专家系统方法,里斯和骑士在早期选择的处理顺序专家系统[1]产品设计阶段,示范如何将专家系统方法可以用来制造工艺选择上的设计和生产参数的设定,为达到成本效益的制造和加工费用估计确定的流程的基础上进行决策[2]。
专业英语注塑成型专业词汇
专业英语注塑成型专业词汇专业英语---注塑成型专业词汇Injection machine 啤机Shot size(weight)实际射胶量injection volume 理论射胶量min moldheight 最小容模厚度Max mold height 最大容模厚度Tie bar clearance 拉杆间距Die platesize 模板尺寸Ejector stroke 顶出行程barrel 炮筒,机筒clamp force 锁模力non-return valve 止回阀shear 剪切opening 开模行程Injection pressure 射胶压力back pressure 背压nozzle size 射咀尺寸Cycle time 循环周期down time 停机时间hopper 料筒Mold release 脱模剂lubrication 润滑work horse 主力,主要设备Reserve pressure/packing pressure保压mold trial 试模shot (一)啤Decompress 减压oven 烤炉,烘灶shrinkage rate 收缩率Residence time滞留时间injection speed 注射速度booster time 增压时间Compression ratio 压缩比mold close time 合模时间Resin 胶料Plastification 塑化,增塑viscosity 粘性,粘度contamination 污染,杂物Thermoplastic 热塑性塑料thermosetting plastics 热固性塑料Booster time增压时间feed 喂料,填充purge 净化Flame retardant 阻燃degradation 降解,软化regrind 再粉碎Water absorption 吸水reinforce 增强,加固specific gravity比重Elongation 延伸率density 密度melting point 熔点Polystyrene 聚苯乙烯(PS)Styrene 苯乙烯Acrylonitrile 丙烯腈Polypropylene 聚丙烯(PP)Polyethylene 聚乙烯glass fiber 玻纤Condensation 凝固,浓缩crystalline resin 结晶形塑料Mold materials 模具General-purpose steel 多用途钢tool steel 模具钢Free-cutting steel 高速切削钢case hardening steel 表面硬化钢Pre-hardened steel 预硬钢ball androller bearing steel 滚珠轴承钢Nonferrous steel 非铁合金high speed steel 高速钢cast iron 铸铁Steel specification 钢材规格steel certification 钢材合格证明书Stainless steel 不锈钢nickel 镍chrome 铬aluminum 铝Copper 铜brass 黄铜bronze 青铜titanium 钛Processing 钢材的加工方法Harding / quench 淬火nitride 氮化temper 回火anneal 退火Roll轧制abrasive 研磨,磨损的finish 精加工,抛光(polish)Case-hardening 表面硬化milling machine 铣(锣)床Lathe车床drill 钻床wire cut 线割NC(numerical control ) 数控材料EDM (Electrical discharge machine) 电火花加工Cut steel 开料Precisionground 精密研磨heat treatment 热处理tap 丝锥,攻牙Texture 蚀纹weld 焊接forge 锻压deformation 变形Spraying 喷涂die-cast 压铸Properties 性能Resistance 电阻,抵抗能力abrasion / wear磨损erode / corrode 腐蚀Toughness 韧性yield strength 屈服强度tensile strength 拉伸强度Fatigue strength 疲劳强度break 断裂stress 应力hardness 硬度Humidity / moisture 潮湿,湿气roughness粗糙度parameter 参数Thermal conductivity 导热系数manufacture 制造,加工drawback 缺点Ductility 延展性grain 晶粒property 性能,财产brittleness 脆性GD&T (Geometric Dimensions and Tolerance )形位尺寸公差Flexural strength 挠曲强度impact 冲击conductivity 传导性,导电性Optical 光学的transparent透明的insulation 绝缘Mechanical 机械的processability 可加工性能timeyield 蠕变Physical物理的flow rate 流动速率compressive strength 压缩强度Adhesive 粘附的,胶合durability 耐用性Mold design 模具设计Tooling specification 模具规格mould flow 流动模拟sprue nozzle 唧咀孔Clearance 避空,间隙undercut 倒扣flush 插入,埋入legend 图例Groove 凹槽latch 插销class 类型,种类plan 平面图Orifice 孔,口column 柱位boss 凸台standard 标准,规格Rib 骨位tapered interlock 锥形管位块Bubbler 炮隆Bolt 螺钉,销顶identification mark 铭牌P/L strip 锁模片Overflow well / cold-slug well 冷料井Vent 排气pocket 槽Gatelocation 入水点full line 实线broken line 虚线Retainer 固定,支撑operator 操作者(啤工)receptacle插座Lifting hole 吊令孔insulation plate 隔热板cavity number 型腔号Bolster 支撑,垫子vent channel 排气槽leak / filter 渗漏Leak test 试运水stamp / engrave 雕刻,印记(打字唛)Clamp slot 码模槽support button / pin 垃圾钉cut steel 开料Lodge 安装,放置inlay 镶嵌,插入cam / lifter 斜顶Stripper推方lifting bar 吊模方sprue 唧咀tolerance 公差Counter bore 沉孔slant 倾斜,斜面conical 圆锥的,圆锥形的Bolt 螺栓manifold 热流道板prototype tooling 原型试验Gusset 角撑reverse mold 倒装模constrain / restrict约束,限制Counter lock 反锁thermocouple 热电偶moldmaker 模具制造商Asset / property number 资产编号tool product destination 模具生产地点Accelerating ejection 加速顶出hydraulic 液压的pneumatic 气动的Trapezoid 梯形的semi-round 半圆形format 格式baffle 隔水片Electrode 电极,铜公spare part 配件gall 磨伤,插伤Cable 电缆,电线plating / coating (电)镀bonding / joint 接头Wall transition 壁厚过渡Product problem 产品问题Troubleshoot 故障处理reduce(add) plastic 减(加)胶Burr/flash披峰Burn mark 烧焦ejector mark 顶针印,顶白black specs 黑点,黑斑Discoloration 混色,污点gloss 光泽jetting/worming 走水纹Sink mark 缩水void / bubble 气泡,夹气distortion 变形Warpage 翘曲short molding / non-fill缺胶,未走齐Weld line / knit line夹水线discarded as useless 报废Split line 夹线stick in sprue bushing / cavity /core 粘唧咀/前模/后模Break / crack 顶裂brittleness 脆性,易脆Others 其他Invoice 发票,清单vendor(er) 卖方vendee 买方guideline 方针,指导Intricate 复杂的confidential 机密的,不可外泄的proprietary 私有的Authorize 批准,授权recipient 接收者issue ①发布,提供;②问题Approve 确认,赞成requirement 需要,必需物const 常数,常量Regarding 关于,涉及opposite 相反的,对面的latitude 纬度,纵向的Version 版本definition 注释,解说transversal 横向的,截线Profile 轮廓,剖面eliminate / cancel 取消allow / permit 允许,许可Respective 各自的,分别的individual 单独的decrease 减少increase 增加Preliminary 初步的approximately 大约,近似estimate / valuate估计,预算Adjust 调整,校准application 应用,申请maintain 维持Accurate / precise 精确的smooth 光滑,顺畅的device 装置,设备Convenient 方便的deadline 截至日期available 有用的,有空的Shift 轮班,换班critical 关键的,临界的exceptional 异常的,优异的Exceed 超过layout 布局,方案loss 损失,消耗install 安装,安置R otation 旋转item 条款,项目quotation 报价stabilize 稳定Quality 质量quantity 数量couple 连接,接合configuration 构造,外形Illustrate 图解说明simulation 模拟,仿真recommend 推荐使用。
塑胶模具成形术语的标准翻译
以下為部分塑膠模具成形術語的標準翻譯。
動模Movable Mould Moving Half定模座板Fixed Clamp Plate Top Clamping Plate Top Plate動模座板Moving Clamp Plate Bottom Clamping Plate Bottom Plate上模座板Upper Clamping Plate下模座板Lower Clamping Plate凹模固定板Cavity-retainer Plate型芯固定板Mould Core-retainer Plate击模固定板Punch-retainer Plate模套Die Body Die Sleeve Die Blank支承板Backing Plate Support Plate墊塊Spacer Parallel支架Ejector Housing Mould Base Leg模頭Die Head根據國家標準,以下為部分壓鑄模具術語的標準翻譯。
壓力鑄造模具Die-Casting Die壓鑄模零部件定模Fixed Die Cover Die定模座板Fixed Clamping Plate定模套板Bolster Fixed Die動模Moving Die Ejector Die動模座板Moving Clamping Plate直流道Sprue橫流道Runner內澆口Gate模具分類Injection Mold 注塑模Plastic Rubber Mould 塑膠模Rubber Molding 橡膠成形Hot Chamber Die Casting 熱室壓鑄Sand Mold Casting 砂模鑄造Extrusion Mold 擠出模Multi-Cavity Mold 多模穴模具Palletizing Die 疊層模Plaster Mold 石膏模Three Plates Mold 三板模模具零件Mold Components三板模3-Plate Mold二板模2-Plate Mold邊釘導邊Leader Pin Guide Pin邊司導套Bushing Guide Bushing中托司Shoulder Guide Bushing中托邊Guide Pin頂針板Ejector Retainner Plate托板Support Plate螺絲Screw管釘Dowel Pin開模槽Ply Bar Scot內模管位Core Cavity inter-Lock頂針Ejector Pin司筒Ejector Sleeve司筒針Ejector Pin推板Eject Plate Push Plate Stripper Plate 縮呵Movable Core Return Core Puller 扣機(尼龍拉勾)Nylon Latch Lock斜頂Lifter模胚(架)Mold Base上內模Cavity Insert下內模Core Insert行位(滑塊)Slide鑲件Insert壓座Wedge耐磨板油板Wedge Wear Plate壓條Plate撐頭Support Pillar唧嘴Sprue Bushing擋板Stop Plate定位圈Locating Ring鎖扣Latch扣機Parting Lock Set推杆Push Bar栓打螺絲S.H.S.B頂板Ejector Plate活動臂Lever Arm分流錐Sprue Spreader分流板Spreader Plate水口司BushPlain Die 簡易模Pierce Die 沖孔模Forming Die 成型模Progressive Die 連續模Gang Dies 複合模Shearing Die 剪邊模Cavity Die 型腔模Riveting Die 鉚合模Compression Molding 壓縮成型Flash Mold 溢流式模具Extrusion Mold 擠壓式模具Split Mold 分割式模具Mould Cavity 型腔母模Mold Core 模芯公模Large Die Mold 大型模具Precise Die Mold 精密模具Complex Die Mold 複雜模具Foaming Mould 發泡模具Metal Die 金屬模具Plastic Mold 塑膠模具Press Tool Stamping Die Punch Die 衝壓模具Extrusion Die 擠壓模具Graphite Die 石墨模具Runner System 澆道系統Sprue Cold Material Trap 澆道冷料井Sprue Puller 拉杆Runner Design 流道設計Main Runner 主流道Secondary Runner 次流道Mould Gate Design 澆口設計Submarine Gate 潛伏澆口Tunnel Gate 隧道式澆口Pinpoint Gate 點澆口Fan Gate 扇形澆口Side Gate 側澆口Edge Gate 側緣澆口Tab Gate 搭接澆口Film Gate 薄膜澆口Flash Gate 閘門澆口垃圾釘Stop Pin隔片Buffle彈弓柱Spring Rod彈弓Die Spring中托司Ejector Guide Bush中托邊Ejector Guide Pin鑲針Pin銷子Dowel Pin波子彈弓Ball catch喉塞Pipe Plug鎖模組Lock Plate斜頂Angle from Pin斜頂杆Angle Ejector Rod尼龍拉勾Parting Locks活動臂Lever Arm復位鍵提前回杆Early Return Bar氣閥Valves斜導邊Angle Pin術語Terms承壓平面平衡Parting Surface Support Balance模排氣Parting Line Venting回針碰料位Return Pin and Cavity Interference頂針碰運水Water Line Interferes with Ejector Pin 料位出上下模Part from Cavith (Core)Side 不准用鑲件Do Not Use (Core Cavity)Insert 用鈹銅做鑲件Use Beryllium Copper Insert初步模圖設計Preliminary Mold Design正式模圖設計Final Mold Design彈弓壓縮量Spring Compressed length穩定性好Good Stability Stable強度不夠Insufficient Rigidity均勻冷卻Even Cooling扣模Sticking熱膨脹Thermal Expansion公差Tolerance銅公(電極)Copper ElectrodeAir Vent Valve 通氣閥Anchor Pin 錨梢Angular Pin 角梢Baffle 調節阻板Angular Pin 傾斜梢Baffle Plate 折流擋板Ball Button 球塞套Slit Gate 縫隙澆口Dish Gate 盤形澆口Diaphragm Gate 隔膜澆口Ring Gate 環形澆口Runnerless 無澆道Sprueless 無射料管方式Long Nozzle 延長噴嘴方式Sprue 澆口,溶渣Insulated Runner ,Hot Runner 熱澆道Runner Plat 澆道模組Valve Gate閥門澆口Slag Well 冷料井Cold Slag 冷料渣Sprue Gate 射料澆口,直澆口Nozzle 射嘴Sprue Lock Pin 料頭鉤銷(拉料杆)注塑缺陷Flash 毛邊Warpage 翹曲Air Trap 積風Blush 發赤Flow Line 流痕Splay 銀紋Short Shot 短射Sink Mark 縮痕Streak 條紋Void 縮孔Weld Line 熔接線Gas Mark 燒焦Cold Slug 冷斑Delamination 起皮Burr 毛刺Flaw Scratch 刮傷Gloss 光澤Glazing 光滑Surface Check 表面裂痕Hesitation 遲滯注塑工藝Ball Plunger 定位球塞Ball Slider 球塞滑塊Binder Plate 壓板Blank Holder 防皺壓板Blanking Die 落料沖頭Bolster 上下範本Bottom Board 澆注底板Bolster 墊板Bottom Plate 下固定板Bracket 托架Bumper Block 緩衝塊Buster 堵口Casting Ladle 澆注包Casting Lug 鑄耳Cavity 模腔模穴(模仁)Cavity Retainer Plate 模穴托板Center Pin 中心梢Clamping Block 鎖定塊Coil Spring 螺旋彈簧Cold Punched Nut 冷沖螺母Cooling Spiral 螺旋冷卻栓Core 心型Core Pin 心型梢Cotter 開口梢Cross 十字接頭Cushion Pin 緩衝梢Diaphragm Gate 盤形澆口Die Approach 模頭料道Die Bed 型底Die Block 塊形模體Die Body 模體Die Body 鑄模座Die Bush 合模襯套Die Button 沖模母模Die Clamper 夾模器Die Fastener 模具固定用零件Die Holder 母模固定板Die Lip 模唇Die Plate 沖範本Die Set 衝壓模座Direct Gate 直接澆口Dog Chuck 爪牙夾頭Dowel 定位梢Molding Conditions 成型條件Drying 烘乾Barrel Temperature 料筒溫度Melt Temperature 熔化溫度Mold Temperature 模具溫度Injection Pressure 注塑壓力Back Pressure 背壓Injection Speed 注塑速度Screw Speed 螺杆轉速Tensile Strength 抗拉強度Tensile Elongation 延伸率Flexural Modulus 彎曲模數Flexural Strength 抗彎強度Shrinkage 收縮率Regrind Usage 次料使用Moulding 模塑機械設備Lathe 車床Planer 刨床Miller Milling Machine 銑床Grinder 磨床Driller 鑽床Linear Cutting 線切割Electrical Sparkle 電火花Welder 電焊機Punching Machine 衝床Robot 機械手Common Equipment 常用設備EDM Electron Discharge Machining 放電加工3D Coordinate Measurement 三次元量床Boring Machine 搪孔機Contouring Machine 輪廓鋸床Copy Grinding Machine 仿形磨床Cylindrical Grinding Machine 外圓磨床Die Spotting Machine 合模機Engraving Machine 雕刻機Engraving E.D.M 雕模放置加工機Form Grinding Machine 成形磨床Graphite Machine 石墨加工機Horizontal Boring Machine 臥式搪孔機Horizontal Machine Center 臥式加工製造中心Dowel Hole 導套孔Dowel Pin 合模梢Dozzle 輔助澆口Dowel Pin 定位梢Draft 拔模錐度Draw Bead 張力調整杆Drive Bearing 傳動軸承Ejection Pad 頂出襯墊Ejector 脫模器Ejector Guide Pin 頂出導梢Ejector Leader Bush 頂出導梢襯套Ejector Pad 頂出墊Ejector Pin 頂出梢Ejector Plate 頂出板Ejector Rod 頂出杆Ejector Sleeve 頂出襯套Ejector Valve 頂出閥Eye Bolt 環首螺栓Filling Core 填充型芯椿入蕊Film Gate 薄膜形澆口Finger Pin 指形梢Finish Machined Plate 角形範本Finish Machined Round Plate 圓形範本Fixed Bolster Plate 固定側範本Flanged Pin 帶击緣針Flash Gate 毛邊形澆口Flask 上箱Floating Punch 浮動沖頭Gate 澆口Gate Land 澆口面Gib 凹形拉緊楔Goose Neck 鵝頸管Guide Bushing 引導襯套Guide Pin 導梢Guide Post 引導柱Guide Plate 導板Guide Rail 導軌Head Punch 頂頭沖孔Headless Punch 直柄沖頭Heavily Tapered Solid 整體模蕊盒Hose Joint Pipe Coupler 管接頭Impact Damper 緩衝器Injection Ram 壓射柱塞Internal Cylindrical Machine 內圓磨床模具零件Top Plate 上托板(頂板)Top Block 上墊腳Punch Set 上模座Punch Pad 上墊板Punch Holder 上夾板Stripper Pad 脫料背板Up Stripper 上脫料板Male Die 公模(击模)Feature Die 公母模Female Die 母模(凹模)Upper Mold Plate 上範本Lower Mold Plate 下範本Die Pad 下墊板Die Holder 下夾板Die Set 下模座Bottom Block 下墊腳Bottom Plate下托板(底板)Stripping Plate 內外打(脫料板)Outer Stripper 外脫料板Inner Stripper 內脫料板Lower Stripper 下脫料板Inner Guiding Post 內導柱Inner Hexagon Screw 內六角螺釘Dowel Pin 固定銷Mould Coil Spring 模具彈簧Lifter Pin 頂料銷Isoheight Sleeve 等高套筒Pin 銷Lifter Guide Pin 浮升導料銷Guide Pin 導正銷Wire Spring 圓線彈簧Outer Guiding Post 外導柱Stop Screw 止付螺絲Located Pin 定位銷Outer Bush 外導套Punch 沖頭Insert 入塊(嵌入件)Deburring Punch 壓毛邊衝子Groove Punch 壓線衝子Inlay Bush 嵌入襯套Inner Plunger 內柱塞Inner Punch 內沖頭Inserts 嵌件Insert Pin 嵌件梢King Pin 轉向梢King Pin Bush 主梢襯套Knockout Bar 脫模杵Land 合模平坦面Land Area 合模面Leader Bush 導梢襯套Lifting Pin 起模頂針Lining 內襯Locating Center Punch 定位中心沖頭Locating Pilot Pin 定位導梢Locating Ring 定位環Lock Block 壓塊Locking Block 定位塊Locking Plate 定位板Loose Bush 活動襯套Making Die 列印衝子Manifold Block 歧管檔塊Master Plate 靠模樣板Match Plate 分型板Mold Base 塑膠模座Mold Clamp 鑄模緊固夾Mold Platen 模用板Moving Bolster 換模保持裝置Moving Bolster Plate 可動側範本One Piece Casting 整體鑄件Parallel Block 平行墊塊Parting Line 分模線Parting Lock Set 合模定位器Pass Guide 穴型導板Peened Head Punch 鑲入式沖頭鑽杆击模Pilot Pin 定位銷導向銷子Pin Gate 針尖澆口Plate 襯板Pre Extrusion Punch 頂擠沖頭Punch 沖頭Puncher 推杆Pusher Pin 襯套梢Rack 機架Stamped Punch 字模衝子Round Punch 圓衝子Special Shape Punch 異形衝子Bending Block 折刀Roller 滾軸Baffle Plate 擋塊Located Block 定位塊Supporting Block for Location 定位支承塊Air Cushion Plate 氣墊板Air-Cushion Eject-rod 氣墊頂杆Trimming Punch 切邊衝子Stiffening Rib Punch Stinger 加強筋衝子Ribbon Punch 壓筋衝子Reel-stretch Punch 卷圓壓平衝子Guide Plate 定位板Sliding Block 滑塊Sliding Dowel Block 滑塊固定塊Active Plate 活動板Lower Sliding Plate 下滑塊板Upper Holder Block 上壓塊Upper Mid Plate 上中間板Spring Box 彈簧箱Spring-Box Eject-rod 彈簧箱頂杆Spring-Box Eject-Plate 彈簧箱頂板Bushing Block Liner Bushing 襯套Cover Plate 蓋板Guide Pad 導料塊模具技術用語各種常用模具成形方式Accurate Die Casting 精密壓鑄Powder Forming 粉末成形Calendaring Molding 壓延成形Powder Metal Forging 粉末鍛造Cold Chamber Die Casting 冷式壓鑄Precision Forging 精密鍛造Cold Forging 冷鍛Press Forging 沖鍛Compacting Molding 粉末壓出成形Rocking Die Forging 搖動鍛造Compound Molding 複合成形Rotary Forging 回轉鍛造Rapping Rod 起模杆Re-entrant Mold 凹入模Retainer Pin 嵌件梢Retainer Plate 托料板Return Pin 回位梢Riding Stripper 浮動脫模器Ring Gate 環型澆口Roller 滾筒Runner 流道Runner Ejector Set 流道頂出器Runner Lock Pin 流道拉梢Screw Plug 頭塞Set Screw 固定螺絲Shedder 脫模裝置Shim 分隔片Shoe 模座之上下範本Shoot 流道Shoulder Bolt 肩部螺絲Skeleton Frameworks 骨架Slag Riser 冒渣口Slide(Slide Core)滑塊Slip Joint 滑配接頭Spacer Block 間隔塊Spacer Ring 間隔環Spider 模蕊支架Spindle 主軸Sprue 注道Sprue Bushing 注道襯套Sprue Bushing Guide 注道導套Sprue Lock Bushing 注道定位襯套Sprue Puller 注道殘料頂銷澆道推出杆Sprue Line 合模線Square Key 方鍵Square Nut 方螺帽Square Thread 方螺紋Stop Collar 限位套Stop Pin 止動梢Stop Ring 止動環Stopper 定位停止梢Straight Pin 圓柱銷Stripper Bolt 脫料螺栓Stripper Bushing 脫模襯套Stripper Plate 剝料板Compression Molding 壓縮成形Rotational Molding 離心成形Dip Mold 浸漬成形Rubber Molding 橡膠成形Encapsulation Molding 注入成形Sand Mold Casting 砂模鑄造Extrusion Molding 擠出成形Shell Casting 殼模鑄造Foam Forming 發泡成形Sinter Forging 燒結鍛造Forging Roll 軋鍛Six Sides Forging 六面鍛造Gravity Casting 重力鑄造Slush Molding 凝塑成形Hollow Blow Molding 中空(吹出)成形Squeeze Casting 高壓鑄造Hot Chamber Die Casting 熱室壓鑄Swaging 擠鍛Hot Forging 熱鍛Transfer Molding 轉送成形Injection Molding 射出成形Warm Forging 溫鍛Investment Casting 精密鑄造Matched Die Method 對模成形法Laminating Method 被覆淋膜成形Low Pressure Casting 低壓鑄造Lost Wax Casting 脫蠟鑄造Matched Mould Thermal Forming 對模熱成形模Close Mold 合模Demould 脫模Mould Unloading 開模Eject 頂出Tool Change Retooling Die Changing 換模Mould Clamping 鎖模各式模具分類用語Bismuth Mold 鉍鑄模Landed Plunger Mold 有肩柱塞式模具Burnishing Die 擠光模Landed Positive Mold 有肩全壓式模具Button Die 鑲入式圓形凹模Loading Shoe Mold 料套式模具Stroke End Block 行程止梢Submarine Gate 潛入式澆口Support Pillar 支撐支柱頂出支柱Support Pin 支撐梢Supporting Plate 托板Sweep Template 造模刮板Tab Gate 輔助澆口Taper Key 推拔鍵Taper Pin 拔錐梢錐形梢Teeming 澆注Three Start Screw 三條螺紋Thrust Pin 推力銷Tie Bar 拉杵Tunnel Gate 隧道形澆口Vent 通氣孔Wortle Plate 拉絲範本Pierce 沖孔Forming 成型(抽击沖击)Draw Hole 抽孔Bending 折彎Trim 切邊Emboss 击點Dome 击圓Semi-Shearing 半剪Stamp Mark 沖記號Deburr or Coin 壓毛邊Punch Riveting 衝壓鉚合Side Stretch 側衝壓平Reel Stretch 卷圓壓平Groove 壓線Blanking 下料Stamp Letter 沖字(料號)Shearing 剪斷Tick-Mark Nearside 正面壓印Tick-Mark Farside 反面壓印Extension Drawing 展開圖procedure Drawing 工程圖Die Structure Drawing 模具結構圖Material 材質Material Thickness 料片厚度Factor 係數Upward 向上Downward 向下Center-Gated Mold 中心澆口式模具Loose Detail Mold 活零件模具Chill Mold 冷硬用鑄模Loose Mold 活動式模具Cold Hobbing 冷擠壓制模法Louvering Die 百葉窗沖切模Composite Dies 複合模具Manifold Die 分歧管模具Counter Punch 反击模Modular Mold 組合模具Double Stack Mold 雙層模具Multi-Cavity Mold 多模穴模具Electroformed Mold 電鑄成形模Multi-Gate Mold 複式澆口模具Expander Die 擴徑模Offset Cold Bending Die 雙折冷彎模具Extrusion Die 擠出模Palletizing Die 疊層模Family Mold 反套製品模具Plaster Mold 石膏模Blank Through Dies 漏件式落料模Porous Mold 通氣性模具Duplicated Cavity Plate 複板模Positive Mold 全壓式模具Fantail Die 扇尾形模具Pressure Die 壓緊模Fishtail Die 魚尾形模具Profile Die 輪廓模Flash Mold 溢料式模具Progressive Die 順序模Gypsum Mold 石膏鑄模Portable Mold 手提式模具Hot-Runner Mold 熱流道模具Prototype Mold 雛形試驗模具原型模具Ingot Mold 鋼錠模Punching Die 落料模Lancing Die 切口模切縫模Raising(Embossing)壓花起伏成形Re-entrant Mold 倒角式模具Sectional Die 拼合模Runless Injection Mold 無流道冷料模具Sectional Die 對合模具Segment Mold 組合模Press Specification 衝床規格Die Height Range 適用模高Die Height 閉模高度Burr 毛邊Gap 間隙Weight 重量Total Weight 總重量Punch Weight 上模重量Compression Molding 壓縮成型Flash Mold 溢流式模具Extrusion Mold 擠壓式模具Split Mold 分割式模具Cavity 型腔母模Mold Core 模芯公模Taper 錐拔Leather Cloak 仿皮革Shiver 飾紋Flow Mark 流痕Welding Mark 溶合痕Post Screw Insert 螺紋套筒埋值Self Tapping Screw 自攻螺絲Striper Plate 脫料板Piston 活塞Cylinder 汽缸套Chip 細碎物Handle Mold 掌上型模具Encapsulation Molding 低壓封裝成型Two Plate 兩極式(模具)Well Type 蓄料井Insulated Runner 絕緣澆道方式Hot Runner 熱澆道Runner Plat 澆道模組Valve Gate 閥門澆口Band Heater 環帶狀的電熱器Spindle 閥針Spear Head 刨尖頭Slag Well 冷料井Cold Slag 冷料渣Air Vent 排氣道Welding Line 熔合痕Eject Pin 頂出針Knock Pin 頂出銷Return Pin 回位銷反頂針Semi-Positive Mold 半全壓式模具Shaper 定型模套Single Cavity Mold 單腔模具Solid Forging Die 整體鍛模Split Forging Die 拼合鍛模Split Mold 雙並式模具Sprueless Mold 無注道殘料模具Squeezing Die 擠壓模Stretch Form Die 拉伸成形模Sweeping Mold 平刮鑄模Swing Die 振動模具Three Plates Mold 三片式模具Trimming Die 切邊模Unit Mold 單元式模具Universal Mold 通用模具Unscrewing Mold 退扣式模具Yoke Type Die 軛型模模具廠常用之標準零配件Air Vent Valve 通氣閥Anchor Pin 錨梢Angular Pin 角梢Baffle 調節阻板Angular Pin 傾斜梢Baffle Plate 折流檔板Ball Button 球塞套Ball Plunger 定位球塞Ball Slider 球塞滑塊Binder Plate 壓板Blank Holder 防皺壓板Blanking Die 落料沖頭Bolster 上下範本Bottom board 澆注底板Bolster 墊板Bottom Plate 下固定板Bracket 托架Bumper Block 緩衝塊Buster 堵口Casting Ladle 澆注包Casting lug 鑄耳Cavity 模穴(模仁)Cavity Retainer Plate 模穴托板Sleeve 套筒Stripper Plate 脫料板Insert Core 放置入子Runner Stripper Plate 澆道脫料板Guide Pin 導銷Eject Rod (Bar)(成型機)頂業捧Subzero 深冷處理Three Plate 三極式模具Runner System 澆道系統Stress Crack 應力電裂Orientation 定向Sprue Gate 射料澆口,直澆口Nozzle 射嘴Sprue Lock Pin 料頭鉤銷(拉料杆)Slag Well 冷料井Side Gate 側澆口Edge Gate 側緣澆口Tab Gate 搭接澆口Film Gate 薄膜澆口Flash Gate 閘門澆口Slit Gate 縫隙澆口Fan Gate 扇形澆口Dish Gate 因盤形澆口Diaphragm Gate 隔膜澆口Ring Gate 環形澆口Submarine Gate 潛入式澆口Tunnel Gate 隧道式澆口Pin Gate 針點澆口Runnerless 無澆道Sprueless 無射料管方式Long Nozzle 延長噴嘴方式Sprue 澆口溶渣Landed Plunger Mold 有肩柱塞式模具Burnishing Die 擠光模Landed Positive Mold 有肩全壓式模具Button Die 鑲入式圓形凹模Loading Shoe Mold 料套式模具Center-Gated Mold 中心澆口式模具Loose Detail Mold 活零件模具Chill Mold 冷硬用鑄模Loose Mold 活動式模具Cold Hobbing 冷擠壓制模Louvering Die 百葉窗沖切模Center Pin 中心梢Clamping Block 鎖定塊Coil Spring 螺旋彈簧Cold Punched Nut 冷沖螺母Cooling Spiral 螺旋冷卻栓Core 心型Core Pin 心型梢Cotter 開口梢Cross 十字接頭Cushion Pin 緩衝梢Diaphragm Gate 盤形澆口Die Approach 模頭料道Die Bed 型底Die Block 塊形模體Die Body 鑄模座Die Bush 合模襯套Die Button 沖模母模Die Clamper 夾模器Die Fastener 模具固定用零件Die Holder 母模固定板Die Lip 模唇Die Plate 沖範本Die Set 衝壓模座Direct Gate 直接澆口Dog Chuck 爪牙夾頭Dowel 定位梢Dowel Hole 導套孔Dowel Pin 合模梢Dozzle 輔助澆口Dowel Pin 定位梢Draft 拔模錐度Draw Bead 張力調整杆Drive Bearing 傳動軸承Ejection Pad 頂出襯墊Ejector 脫模器Ejector Guide Pin 頂出導梢Ejector Leader Bush 頂出導梢襯套Ejector Pad 頂出墊Ejector Pin 頂出梢Ejector Plate 頂出板Ejector Rod 頂出杆Ejector Sleeve 頂出襯套Ejector Valve 頂出閥Composite Dies 複合模具Manifold Die 分歧管模具Counter Punch 反击模Modular Mold 組合式模具Double Stack Mold 雙層模具Multi-Cavity Mold 多模穴模具Electroformed Mold 電鑄成形模Multi-Gate Mold 複式澆口模具Expander Die 擴徑模Offset Bending Die 雙折冷彎模具偏移彎曲模Extrusion Die 擠出模Palletizing Die 疊層模Family Mold 反套製品模具Plaster Mold 石膏模Blank Through Dies 漏件式落料模Porous Mold 通氣性模具Duplicated Cavity Plate 複板模Positive Mold 全壓式模具Fantail Die 扇尾形模具Pressure Die 壓緊模Fishtail Die 魚尾形模具Profile Die 輪廓模Flash Mold 溢料式模具Progressive Die 順序模Gypsum Mold 石膏鑄模Portable Mold 手提式模具Hot-Runner Mold 熱流道模具Prototype Mold 雛形試驗模具Ingot Mold 鋼錠模Punching Die 落料模Lancing Die 切口模Raising(Embossing)壓花起伏成形Re-entrant Mold 倒角式模具Sectional Die 拼合模Runnerless Injection Mold 無流道冷料模具Sectional Die 對合模具Segment Mold 組合模Semi-Positive Mold 半全壓式模具Shaper 定型模套Single Cavity Mold 單腔模具Solid Forging Die 整體鍛模Split Forging Die 拼合鍛模Split Mold 雙並式模具Eye Bolt 環首螺栓Filling Core 填充型芯椿入蕊Film Gate 薄膜形澆口Finger Pin 指形梢Finish Machined Plate 角形範本Finish Machined Round Plate 圓形範本Fixed Bolster Plate 固定側範本Flanged Pin 帶击緣針Flash Gate 毛邊形澆口Flask 上箱Floating Punch 浮動沖頭Gate 澆口Gate Land 澆口面Gib 凹形拉緊楔Goose Neck 鵝頸管Guide Bushing 引導襯套Guide Pin 導梢Guide Post 引導柱Guide Plate 導板Guide Rail 導軌Head Punch 頂頭沖孔Headless Punch 直柄沖頭Heavily Tapered Solid 整體模蕊盒Hose Nippler 管接頭Impact Damper 緩衝器Injection Ram 壓射柱塞Inlay Bush 嵌入襯套Inner Plunger 內柱塞Inner Punch 內沖頭Insert 嵌件Insert Pin 嵌件梢King Pin 轉向梢King Pin Bush 主梢襯套Knockout Bar 脫模杵Land 合模平坦面Land Area 合模面Leader Bush 導梢襯套Lifting Pin 起模頂針起模杆Lining 內襯Locating Center Punch 定位中心沖頭Locating Pilot Pin 定位導梢Locating Ring 定位環Lock Block 壓塊Sprueless Mold 無注道殘料模具Squeezing Die 擠壓模Stretch Form Die 拉伸成形模Sweeping Mold 平刮鑄模Swing Die 振動模具Three Plates Mold 三片式模具Trimming Die 切邊模Unit Mold 單元式模具Universal Mold 通用模具Unscrewing Mold 退扣式模具Yoke Type Die 軛型模Accurate Die Casting 精密壓鑄Powder Forming 粉末成形Calendaring Molding 壓延成形Powder Metal Forging 粉末鍛造Cold Chamber Die Casting 冷式壓鑄Precision Forging 精密鍛造Cold Forging 冷鍛Press Forging 沖鍛Compacting Molding 粉末壓出成形Rocking Die Forging 搖動鍛造Compound Molding 複合成形Rotary Forging 回轉鍛造Compression Molding 壓縮成形Rotational Molding 離心成形Dip Mold 浸漬成形Rubber Molding 橡膠成形Encapsulation Molding 注入成形Sand Mold Casting 砂模鑄造Extrusion Molding 擠出成形Shell Casting 殼模鑄造Foam Forming 發泡成形Sinter Forging 燒結鍛造Forging Roll 軋鍛Six Sides Forging 六面鍛造Gravity Casting 重力鑄造Slush Molding 凝塑成形Hollow(Blow)Molding 中空(吹出)成形Squeeze Casting 高壓鑄造Hot Chamber Die Casting 熱室壓鑄Swaging 擠鍛Hot Forging 熱鍛Transfer Molding 轉送成形Locking Block 定位塊Locking Plate 定位板Loose Bush 活動襯套Making Die 列印衝子Manifold Block 歧管檔塊Master Plate 靠模樣板Match Plate 分型板Mold Base 塑膠模座Mold Clamp 鑄模緊固夾Mold Platen 模用板Moving Bolster 換模保持裝置Moving Bolster Plate 可動側範本One Piece Casting 整體鑄件Parallel Block 平行墊塊Parting Line 分模線Parting Lock Set 合模定位器Pass Guide 穴型導板Peened Head Punch 鑲入式沖頭錘擊強化沖頭鑽杆击模Pilot Pin 定位銷導向銷子Pin Gate 針尖澆口Plate 襯板Pre Extrusion Punch 頂擠沖頭Punch 沖頭Puncher 推杆Pusher Pin 襯套梢Rack 機架Rapping Rod 起模杆Re-entrant Mold 凹入模Retainer Pin 嵌件梢Retainer Plate 托料板Return Pin 回位梢Riding Stripper 浮動脫模器Ring Gate 環型澆口Roller 滾筒Runner 流道Runner Ejector Set 流道頂出器Runner Lock Pin 流道拉梢Screw Plug 頭塞Set Screw 固定螺絲Shedder 脫模裝置Shim 分隔片Shoe 模座之上下範本Shoot 流道Injection Molding 射出成形Warm Forging 溫鍛Investment Casting 精密鑄造Matched Die Method 對模成形法Laminating Method 被覆淋膜成形Low Pressure Casting 低壓鑄造Lost Wax Casting 脫蠟鑄造Matched Mould Thermal Forming 對模熱成形模Barreling 滾光加工Belling 壓击加工Bending 彎曲加工Blanking 下料加工Bulging 撐壓加工Burring 沖緣加工Cam Die Bending 击輪彎曲加工Caulking 壓合加工Coining 壓印加工Compressing 壓縮加工Compression Bending 押彎曲加工Crowning 击面加工Curl Bending 卷邊彎曲加工Curling 捲曲加工Cutting 切削加工Dinking 切斷蕊骨Double Shearing 疊板裁斷Drawing 引伸加工Drawing with Ironing 抽引光滑加工Embossing 浮花壓制加工Extrusion 擠制加工Filing 銼削加工Fine Blanking 精密下料加工Finish Blanking 光制下料加工Finishing 精整加工Flanging 击緣加工Folding 折邊彎曲加工Folding 折疊加工Forming 成形加工Impact Extrusion 衝擊擠壓加工Indenting 壓痕加工Ironing 引縮加工Knurling 滾花Lock Seaming 固定接合Louvering 百葉窗板加工Shoulder Bolt 肩部螺絲Skeleton 骨架Slag Riser 冒渣口Slide(Slide Core)滑塊Slip Joint 滑配接頭Spacer Block 間隔塊Spacer Ring 間隔環Spider 模蕊支架Spindle 主軸Sprue 注道Sprue Bushing 注道襯套Sprue Bushing Guide 注道導套Sprue Lock Bushing 注道定位襯套Sprue Puller 注道拉料澆道推出杆注道殘料頂銷Spew Line 合模線Square Key 方鍵Square Nut 方螺帽Square Thread 方螺紋Limit Stop Collar 限位套Stop Pin 止動梢Stop Ring 止動環Stopper 定位停止梢Straight Pin 圓柱銷Stripper Bolt 脫料螺栓Stripper Bushing 脫模襯套Stripper Plate 剝料板Stroke End Block 行程止梢Submarine Gate 潛入式澆口Support Pillar 支撐支柱頂出支柱Support Pin 支撐梢Supporting Plate 托板Sweep Template 造模刮板Tab Gate 輔助澆口Taper Key 推拔鍵Taper Pin 拔錐梢錐形梢Teeming Pouring 澆注Three Start Screw 三條螺紋Thrust Pin 推力銷Tie Bar 拉杵Tunnel Gate 隧道形澆口Vent 通氣孔Wortle Plate 拉絲範本MarKing 刻印加工Necking 頸縮加工Notching 沖口加工Parting 分斷加工Piercing 沖孔加工Progressive Bending 連續彎曲加工Progressive Blanking 連續下料加工Progressive Drawing 連續引伸加工Progressive Forming 連續成形加工Reaming 鉸孔加工Restriking 二次精沖加工矯形鍛壓Riveting 鉚接加工Roll Bending 滾筒彎曲加工Roll Finishing 滾壓加工Rolling 壓延加工Roughing 粗加工Scrapless Machining 無廢料加工Seaming 折彎重疊加工Shaving 缺口修整加工Shearing 切斷加工Sizing 精壓加工矯正加工Slitting 割縫加工Spinning 卷邊旋接Staking 鉚固Stamping 鍛壓加工Swaging 擠鍛壓加工Trimming 整緣加工Upsetting 鍛粗加工頂鍛鐓粗Wiring 抽線加工Aberration 色差Atomization 霧化Bank Mark 料壟跡印Bite 咬入Blacking Hole 塗料孔(鑄疵)Blacking Scab 塗料疤Blister 起泡Blooming 起霜Blow Hole 破孔Blushing 泛白Body Wrinkle 側壁皺紋Breaking-in 冒口帶肉Bubble 膜泡Burn Mark 糊斑模具常用之工作機械3D Coordinate Measurement 三次元量床Boring Machine 搪孔機CNC Milling Machine CNC銑床Contouring Machine 輪廓鋸床Copy Grinding Machine 仿形磨床Copy Lathe 仿形車床Copy Milling Machine 仿形銑床Copy Shaping Machine 仿形刨床Cylindrical Grinding Machine 外圓磨床Die Spotting Machine 合模機Drilling Machine 鑽孔機Engraving Machine 雕刻機Engraving E.D.M 雕模放置加工機Form Grinding Machine 成形磨床Graphite Machine 石墨加工機Horizontal Boring Machine 臥式搪孔機Horizontal Machine Center 臥式加工製造中心Internal Cylindrical Machine 內圓磨床Jig Boring Machine 冶具搪孔機Jig Grinding Machine 冶具磨床Lap Machine 研磨機Machine Center 加工製造中心Multi Model Miller 靠磨銑床NC Drilling Machine NC鑽床NC Grinding Machine NC磨床NC Lathe NC車床NC Programming System NC程式製作系統Planer 龍門刨床Profile Grinding Machine 投影磨床Projection Grinder 投影磨床Radial Drilling Machine 旋臂鑽床Shaper 牛頭刨床Surface Grinder 平面磨床Try Machine 試模機Turret Lathe 轉塔車床Universal Tool Grinding Machine 萬能工具磨床Vertical Machine Center 立式加工製造中心Wire E.D.M 線割放電加工機入水Gate進入位Gate Location Flash Burr 毛邊Camber Warpage 翹曲Cell 氣泡Center Buckle 表面中部波皺Check 細裂痕Checking 龜裂Chipping 修整表面缺陷Clamp-off 鑄件凹痕Collapse 塌陷Color Mottle 色斑Corrosion 腐蝕Crackle 裂痕裂紋Crazing 碎裂Crazing 龜裂Distortion Deformation 變形Edge 切邊碎片Edge Crack 裂邊Fading 退色Filler Speak 填充料斑Fissure 裂紋Flange Wrinkle 击緣起皺Flaw 刮傷Flow Mark 流痕Galling 毛邊Glazing 光滑Gloss 光澤Grease Pits 汙斑Grinding Defect 磨痕Haircrack 發裂Haze 霧度Incrustation 水銹Indentation 壓痕Internal Porosity 內部氣孔Mismatch 偏模Mottle 斑點Necking 縮頸Nick 割痕Orange peel 橘皮狀表面缺陷Overflow 溢流Peeling 剝離Pit 坑Pitting Corrosion 點狀腐蝕Plate Mark 範本印痕水口形式Gate Type大水口Edge Gate細水口Pin-point Gate水口大小Gate size轉水口Switching Runner Gate唧嘴口徑Sprue Diameter流道Mold Runner熱流道Hot Runner Hot Manifold熱嘴冷流道Hot Sprue Cold Runner唧嘴直流Direct Sprue Gate圓形流道Round Full Half Runner流道電腦分析Mold Flow Analysis流道平衡Runner Balance熱嘴Hot Sprue熱流道板Hot Manifold發熱管Cartridge Heater探針Thermocouples插頭Connector Plug插座Connector Socket密封封料Seal運水Water Line喉塞Line Plug Throat Taps喉管Tube塑膠管Plastic Tube快速接頭Jiffy Quick Connector Quick Disconnect Coupling Pock 麻點Pock Mark 痘斑Resin Streak 樹脂流紋Resin Wear 樹脂脫落Riding 凹陷Sagging 松垂Saponification 皂化Scar 疤痕Scrap 廢料Scrap Jam 廢料阻塞Scratch 刮傷劃痕Scuffing 深沖表面劃傷Seam 裂痕Shock Line 模口擠痕Short Shot 充填不足Shrinkage Pool 凹孔Sink Mark 凹痕Skin Inclusion 表皮折疊Straightening 矯直Streak 條狀痕Surface Check 表面裂痕Surface Roughening 橘皮狀表皮皺折Surging 波動Sweat Out 冒汗Torsion Distortion 扭曲Warpage 翹曲Waviness 波痕Webbing 熔塌Weld Mark 焊痕Whitening 白化Wrinkle 皺紋Gas Aassisted Technology 氣輔。
楔形的零件注射成型和注射压缩成型的优化译文
帕加蒙出版社《国际传热与传质通讯》 2003年 30卷 2期【页码】p.215-224,由美国爱思维尔科技有限公司出版于2003年。
前页版权为0735-1933所有。
wedge-shaped parts for injection molding and injection compression molding楔形的零件注射成型和注射压缩成型的优化chang-hwa大叶大学机械与自动化工程系吴政宪和苏毅力,台湾摘要:导光管是黑光系统的液晶显示模块中一个重要组成部分。
在这项研究中,无论是注射成型还是注射压缩成型,可用于导光管的生产。
工艺参数之间的关系,产品收缩调查(the relationship between the process parameters and the product shrinkage isinvestigated)。
我们所研究的工艺参数包括在IM和ICM零部件质量的注射速率,熔体和模具温度(melt and mold temperatures),包装压力,包装时间和冷却时间。
对ICM的加工来说,模具的打开行程也在这项研究中包括。
在研究导光管收缩时,对数值模拟和实验(numerical simulations and experiments)都进行了工艺条件的研究。
研究发现:对IM和ICM的加工来说,最佳设置相应的加工参数都是一样的。
结果也表明了在ICM的楔形部件中随之而来会有更大的收缩率。
前言液晶显示设备的市场份额(market share of LCD in display devices)正在日益增长。
尤其是许多液晶制造商通过自己的努力制造出不仅仅更薄和更广泛而且高质量【1】的面板液晶显示模块。
液晶显示器具有高亮度、薄厚度和低功耗的特点,使它已成为便携式显示设备的主要组成部份。
为了有一个更好的TFT彩色液晶显示性能,更大的可视角度背光系统也是需要的。
导光管要求有准确的尺寸,良好的表面质量和光学行为。
《新职业英语》机电英语”Unit1-4课文翻译
《新职业英语》“机电英语”Unit1-4课文翻译第1单元reading A:蓝天模具——创造辉煌蓝天模具公司是中国最著名的挤压式模具生产厂家之一。
我们拥有TA 模具公司和TC 模具公司两家分公司、四个级别的模具和上百种产品组。
TA 模具公司建于1993 年,占地面积达30英亩,位于久负盛名的“模具之乡”和“塑料王国”之称的城市——浙江省宁波市。
2007 年,为了扩大企业进军世界市场,我们又新建一个TC 模具公司。
作为经验丰富的专业的模具生产商,我们已创立了一套独特而完整的挤压式集成系统模具制造理论。
我们在模具设计、热塑精密缓动控制、PVC 低发泡技术、WPC 原料配方、挤压成型操作技术等方面都处于领先地位。
我们研发的众多模具产品被广泛地用于建筑材料业、装饰业、包装等行业,包括日常生活用品。
我们致力于在各个领域创造辉煌。
为了达成这样的目标,我们与客户紧密合作,共同努力,以最具有竞争力的价格、最优的品质满足客户要求。
能够为客户提供专家支持与建议,并为客户选择或开发符合自身要求的高效的模具产品提供解决方案,我们感到很自豪。
我们的技术团队能够为您业务的各个阶段提供服务,并为客户提供现场操作培训,以使客户能够更有效地使用产品。
除此之外,我们不满足于现状,从未停止过前进的脚步,不断追求提高产品服务与质量。
由于我们有丰富的经验、先进的设备和高效的生产体系,我们的产品已出口40 多个国家和地区,包括欧洲、美洲、东南亚和中亚等。
我们将尽力为全球的客户提供中国最好的挤压式模具和全方位的技术支持。
我们愿和您携手共创灿烂美好的明天!第1单元reading B:建立商务关系建立商务关系是开发贸易关系的第一步。
由于业务增长和开拓在很大程度上有赖于业务关系的建立,因此,适当得体的贸易信函是至关重要的。
欲与对方通过信函建立业务联系时,一定要告诉对方你是如何得知对方信息以及你们的主要业务领域,然后陈述目的和需求,最后表达你们想与对方在未来建立合作的诚挚愿望。
注塑成型优化方法(有出处)--中英文翻译
A technical note on the characterization of electroformed nickelshells for their application to injection molds ——Universidad de Las Palmas de Gran Canaria, Departamento de Ingenieria Mecanica,SpainAbstractThe techniques of rapid prototyping and rapid tooling have been widely developed during the last years. In this article, electroforming as a procedure to make cores for plastics injection molds is analysed. Shells are obtained from models manufactured through rapid prototyping using the FDM system. The main objective is to analyze the mechanical features of electroformed nickel shells, studying different aspects related to their metallographic structure, hardness, internal stresses and possible failures, by relating these features to the parameters of production of the shells with an electroforming equipment. Finally a core was tested in an injection mold.Keywords: Electroplating; Electroforming; Microstructure; NickelArticle Outline1. Introduction2. Manufacturing process of an injection mold3. Obtaining an electroformed shell: the equipment4. Obtained hardness5. Metallographic structure6. Internal stresses7. Test of the injection mold8. ConclusionsReferences1. IntroductionOne of the most important challenges with which modern industry comes across is to offer the consumer better products with outstanding variety and time variability (new designs). For this reason, modern industry must be more and more competitive and it has to produce with acceptable costs. There is no doubt that combining the time variable and the quality variable is not easy because they frequently condition one another; the technological advances in the productive systems are going to permit that combination to be more efficient and feasible in a way that, for example, if it is observed the evolution of the systems and techniques of plastics injection, we arrive at the conclusion that, in fact, it takes less and less time to put a new product on the market and with higher levels of quality. The manufacturing technology of rapid tooling is, in this field, one of those technologicaladvances that makes possible the improvements in the processes of designing and manufacturing injected parts. Rapid tooling techniques are basically composed of a collection of procedures that are going to allow us to obtain a mold of plastic parts, in small or medium series, in a short period of time and with acceptable accuracy levels. Their application is not only included in the field of making plastic injected pieces [1], [2] and [3], however, it is true that it is where they have developed more and where they find the highest output.This paper is included within a wider research line where it attempts to study, define, analyze, test and propose, at an industrial level, the possibility of creating cores for injection molds starting from obtaining electroformed nickel shells, taking as an initial model a prototype made in a FDM rapid prototyping equipment.It also would have to say beforehand that the electroforming technique is not something new because its applications in the industry are countless [3], but this research work has tried to investigate to what extent and under which parameters the use of this technique in the production of rapid molds is technically feasible. All made in an accurate and systematized way of use and proposing a working method.2. Manufacturing process of an injection moldThe core is formed by a thin nickel shell that is obtained through the electroforming process, and that is filled with an epoxic resin with metallic charge during the integration in the core plate [4] This mold (Fig. 1) permits the direct manufacturing by injection of a type a multiple use specimen, as they are defined by the UNE-EN ISO 3167 standard. The purpose of this specimen is to determine the mechanical properties of a collection of materials representative industry, injected in these tools and its coMParison with the properties obtained by conventional tools.The stages to obtain a core [4], according to the methodology researched in this work, are the following:(a) Design in CAD system of the desired object.(b) Model manufacturing in a rapid prototyping equipment (FDM system). The material used will be an ABS plastic.(c) Manufacturing of a nickel electroformed shell starting from the previous model that has been coated with a conductive paint beforehand (it must have electrical conductivity).(d) Removal of the shell from the model.(e) Production of the core by filling the back of the shell with epoxy resin resistant to high temperatures and with the refrigerating ducts made with copper tubes.The injection mold had two cavities, one of them was the electroformed core and the other was directly machined in the moving platen. Thus, it was obtained, with the same tool and in the same process conditions, to inject simultaneously two specimens in cavities manufactured with different technologies.3. Obtaining an electroformed shell: the equipmentElectrodeposition [5] and [6] is an electrochemical process in which a chemical change has its origin within an electrolyte when passing an electric current through it. The electrolytic bath is formed by metal salts with two submerged electrodes, an anode (nickel) and a cathode (model), through which it is made to pass an intensity coming from a DC current. When the current flows through the circuit, the metal ions present in the solution are transformed into atoms that are settled on the cathode creating a more or less uniform deposit layer.The plating bath used in this work is formed by nickel sulfamate [7] and [8] at a concentration of 400 ml/l, nickel chloride (10 g/l), boric acid (50 g/l), Allbrite SLA (30 cc/l) and Allbrite 703 (2 cc/l). The selection of this composition is mainly due to the type of application we intend, that is to say, injection molds, even when the injection is made with fibreglass. Nickel sulfamate allows us to obtain an acceptable level of internal stresses in the shell (the tests gave results, for different process conditions, not superior to 50 MPa and for optimum conditions around 2 MPa). Nevertheless, such level of internal pressure is also a consequence of using as an additive Allbrite SLA, which is a stress reducer constituted by derivatives of toluenesulfonamide and by formaldehyde in aqueous solution. Such additive also favours the increase of the resistance of the shell when permitting a smaller grain. Allbrite 703 is an aqueous solution of biodegradable surface-acting agents that has been utilized to reduce the risk of pitting. Nickel chloride, in spite of being harmful for the internal stresses, is added to enhance the conductivity of the solution and to favour the uniformity in the metallic distribution in the cathode. The boric acid acts as a pH buffer.The equipment used to manufacture the nickel shells tested has been as follows:• Polypropylene tank: 600 mm × 400 mm × 500 mm in size.• Three teflon resistors, each one with 800 W.• Mechanical stirring system of the cathode.• System for recirculation and filtration of the bath formed by a pump and a polypropylene filter.• Charging rectifier. Maximum intensity in continuous 50 A and continuous current voltage between 0 and 16 V.• Titanium basket with nickel anodes (Inco S-Rounds Electrolytic Nickel) with a purity of 99%.• Gases aspiration system.Once the bath has been defined, the operative parameters that have been altered for testing different conditions of the process have been the current density (between 1 and 22 A/dm2), the temperature (between 35 and 55 °C) and the pH, partially modifying the bath composition.4. Obtained hardnessOne of the most interesting conclusions obtained during the tests has been that the level of hardness of the different electroformed shells has remained at rather high and stable values. In Fig. 2, it can be observed the way in which for current density values between2.5 and 22 A/dm2, the hardness values range from 540 and 580 HV, at pH 4 ± 0.2 and witha temperature of 45 °C. If the pH of the bath is reduced at 3.5 and the temperature is 55 °C those values are above 520 HV and below 560 HV. This feature makes the tested bath different from other conventional ones composed by nickel sulfamate, allowing to operate with a wider range of values; nevertheless, such operativity will be limited depending on other factors, such as internal stress because its variability may condition the work at certain values of pH, current density or temperature. On the other hand, the hardness of a conventional sulfamate bath is between 200–250 HV, much lower than the one obtained in the tests. It is necessary to take into account that, for an injection mold, the hardness is acceptable starting from 300 HV. Among the most usual materials for injection molds it is possible to find steel for improvement (290 HV), steel for integral hardening (520–595 HV), casehardened steel (760–800 HV), etc., in such a way that it can be observed that the hardness levels of the nickel shells would be within the medium–high range of the materials for injection molds. The objection to the low ductility of the shell is compensated in such a way with the epoxy resin filling that would follow it because this is the one responsible for holding inwardly the pressure charges of the processes of plastics injection; this is the reason why it is necessary for the shell to have a thickness as homogeneous as possible (above a minimum value) and with absence of important failures such as pitting.5. Metallographic structureIn order to analyze the metallographic structure, the values of current density and temperature were mainly modified. The samples were analyzed in frontal section and in transversal section (perpendicular to the deposition). For achieving a convenient preparation, they were conveniently encapsulated in resin, polished and etched in different stages with a mixture of acetic acid and nitric acid. The etches are carried out at intervals of 15, 25, 40 and 50 s, after being polished again, in order to be observed afterwards in a metallographic microscope Olympus PME3-ADL 3.3×/10×.Before going on to comment the photographs shown in this article, it is necessary to say that the models used to manufacture the shells were made in a FDM rapid prototyping machine where the molten plastic material (ABS), that later solidifies, is settled layer by layer. In each layer, the extruder die leaves a thread approximately 0.15 mm in diameter which is compacted horizontal and vertically with the thread settled inmediately after. Thus, in the surface it can be observed thin lines that indicate the roads followed by the head of the machine. These lines are going to act as a reference to indicate the reproducibility level of the nickel settled. The reproducibility of the model is going to be a fundamental element to evaluate a basic aspect of injection molds: the surface texture.The tested series are indicated in Table.Table 1.Tested seriesSeries pH Temperature (°C) Current density (A/dm2)1 4.2 ± 0.2 55 2.222 3.9 ± 0.2 45 5.563 4.0 ± 0.2 45 10.004 4.0 ± 0.2 45 22.22Fig. 3 illustrates the surface of a sample of the series after the first etch. It shows the roads originated by the FDM machine, that is to say that there is a good reproducibility. It cannot be still noticed the rounded grain structure. In Fig. 4, series 2, after a second etch, it can be observed a line of the road in a way less clear than in the previous case. In Fig. 5, series 3 and 2° etch it begins to appear the rounded grain structure although it is very difficult to check the roads at this time. Besides, the most darkened areas indicate the presence of pitting by inadequate conditions of process and bath composition.This behavior indicates that, working at a low current density and a high temperature, shells with a good reproducibility of the model and with a small grain size are obtained, that is, adequate for the required application.If the analysis is carried out in a plane transversal to the deposition, it can be tested in all the samples and for all the conditions that the growth structure of the deposit is laminar (Fig. 6), what is very satisfactory to obtain a high mechanical resistance although at the expense of a low ductibility. This quality is due, above all, to the presence of the additives used because a nickel sulfamate bath without additives normally creates a fibrous andnon-laminar structure [9]. The modification until a nearly null value of the wetting agent gave as a result that the laminar structure was maintained in any case, that matter demonstrated that the determinant for such structure was the stress reducer (Allbrite SLA). On the other hand, it was also tested that the laminar structure varies according to the thickness of the layer in terms of the current density.6. Internal stressesOne of the main characteristic that a shell should have for its application like an insert is to have a low level of internal stresses. Different tests at different bath temperatures and current densities were done and a measure system rested on cathode flexural tensiometer method was used. A steel testing control was used with a side fixed and the other free (160 mm length, 12.7 mm width and thickness 0.3 mm). Because the metallic deposition is only in one side the testing control has a mechanical strain (tensile or compressive stress) that allows to calculate the internal stresses. Stoney model [10] was applied and was supposed that nickel substratum thickness is enough small (3 μm) to influence, in an elastic point of view, to the strained steel part. In all the tested cases the most value of internal stress was under 50 MPa for extreme conditions and 2 MPa for optimal conditions, an acceptable value for the required application. The conclusion is that the electrolitic bath allows to work at different conditions and parameters without a significant variation of internal stresses.7. Test of the injection moldTests have been carried out with various representative thermoplastic materials such as PP, PA, HDPE and PC, and it has been analysed the properties of the injected parts such as dimensions, weight, resistance, rigidity and ductility. Mechanical properties were tested by tensile destructive tests and analysis by photoelasticity. About 500 injections were carried out on this core, remaining under conditions of withstanding many more.In general terms, important differences were not noticed between the behavior of the specimens obtained in the core and the ones from the machined cavity, for the set of the analysed materials. However in the analysis by photoelasticiy (Fig. 7) it was noticed a different tensional state between both types of specimens, basically due to differences in the heat transference and rigidity of the respective mold cavities. This difference explains the ductility variations more outstanding in the partially crystalline materials such as HDPE and PA 6.For the case of HDPE in all the analysed tested tubes it was noticed a lower ductility in the specimens obtained in the nickel core, quantified about 30%. In the case of PA 6 this value was around 50%.8. ConclusionsAfter consecutive tests and in different conditions it has been checked that the nickel sulfamate bath, with the utilized additives has allowed to obtain nickel shells with some mechanical properties acceptable for the required application, injection molds, that is to say, good reproducibility, high level of hardness and good mechanical resistance in terms of theresultant laminar structure. The mechanical deficiencies of the nickel shell will be partially replaced by the epoxy resin that finishes shaping the core for the injection mold, allowingto inject medium series of plastic parts with acceptable quality levels.References[1] A.E.W. Rennie, C.E. Bocking and G.R. Bennet, Electroforming of rapid prototyping mandrels for electro discharge machining electrodes, J. Mater. Process. Technol. 110 (2001), pp. 186–196. [2] P.K.D.V. Yarlagadda, I.P. Ilyas and P. Chrstodoulou, Development of rapid tooling for sheet metal drawing using nickel electroforming and stereo lithography processes, J. Mater. Process. Technol. 111 (2001), pp. 286–294.[3] J. Hart, A. Watson, Electroforming: A largely unrecognised but expanding vital industry, Interfinish 96, 14 World Congress, Birmingham, UK, 1996.[4] M. Monzón et al., Aplicación del electroconformado en la fabricación rápida de moldes de inyección, Revista de Plásticos Modernos. 84 (2002), p. 557.[5] L.F. Hamilton et al., Cálculos de Química Analítica, McGraw Hill (1989).[6] E. Julve, Electrodeposición de metales, 2000 (E.J.S.).[7] A. Watson, Nickel Sulphamate Solutions, Nickel Development Institute (1989).[8] A. Watson, Additions to Sulphamate Nickel Solutions, Nickel Development Institute (1989).[9] J. Dini, Electrodeposition Materials Science of Coating and Substrates, Noyes Publications (1993).[10] J.W. Judy, Magnetic microactuators with polysilicon flexures, Masters Report, Department of EECS, University of California, Berkeley, 1994. (cap′. 3).外文资料译文注塑成型优化方法tuncayerzurumlua和巴布尔ozcelik厂房及制造工程,伊利诺斯工学院41400、科贾埃利,土耳其摘要快速成型技术及快速模具发达国家已广泛在过去几年. 在这篇文章中,作为一种程序,使电芯塑料注射模具分析. 贝壳制成模型,通过快速成型得到利用差分系统. 主要目的是分析力学特征镍炮弹、学习方面的不同金相组织,硬度,内部讲,可能失败由这些特色的有关参数以生产贝壳电设备. 终于引爆了一个核心注塑模具.文章概要1. 引言2. 注塑模具制造过程中的3. 壳牌获取电:设备4. 获得硬度5. 金相组织6. 测试的注塑模具7. 结论参考资料1、引言其中最重要的是现代工业遇到的挑战是提供更好的产品与消费者,优秀品种和时间变异(新设计). 因此,现代工业必须有更多的竞争性和生产成本与接受. 毫无疑问,结合时间变量,质量并不容易,因为他们经常变状态互相; 科技进步生产许可证制度,将可更有效和可行的组合在方式,例如,如果是演化的观测系统和注塑技术、我们得出的结论是,事实上需少时间把新产品的市场和较高素质. 快速模具制造技术,在这一领域, 其中的技术进步,使得有可能改善设计和制造过程注入部分. 快速模具制造技术基本上是由程序集将允许我们获取塑料模具零件,小型系列在短短的时间里,以可接受的精度水平. 其应用领域不仅包括制作塑胶件注[1],[2],[3]但是, 的确,这是他们研制并在那里找到更多的最高产量本文包括在科研第一线,广泛试图研究确定,分析测试和建议在产业层次,形成核心的可能性注塑模具从获取镍炮弹、同时,作为一个初步的原型取得了差分模型快速成型设备它也将不得不说,事前并没有任何新电铸技术的应用,因为它业内人士无数、但这种试图调查研究工作,并在多大程度上使用这一技术参数,其中在生产技术上的快速模具. 所有在准确、制度化的方式方法的运用,并提出了工作.2、注塑模具制造过程中的核心是由镍壳薄,透过电进程这是一个充满金属环氧树脂主管期间一体化这一核心板块[4] 模具(图1)制造许可证直接注射A型多用标本、他们确定的甲状旁腺恩的SO3167标准. 目的是要确定这个试样力学性能的材料收集代表工业在注入这些工具及其性能相比常规手段获得该阶段取得核心根据这一方法研制工作,有以下几方面:(一)在设计CAD系统预期目标(二)在快速原型制造设备模型(差分系统). 该材料将ABS塑料(三)生产镍电壳牌从以往的模式已经涂了导电涂料事前(必须有导电).(四)清理壳牌从模型(五)生产核心填写背面与壳牌环氧树脂抗高温随着铜管与冷冻槽有两个空洞的注塑模具、他们一个是电加工的核心,一是直接在移动压板. 因此,它获得了与同一工具及同一工艺条件、同时注入两种不同制成标本蛀牙技术.3、壳牌获取电设备电镀[5]和[6]是一个电化学过程中的化学变化,当它起源于一电解质悠悠电流通过. 该电镀[5]和[6]是一个电化学过程中的化学变化,当它起源于一电解质悠悠电流通过. 该电解槽是由金属盐两个电极淹没,一个阳极(镍)、阴极(示范) 它是通过把烈度来自直流. 当电流流经电路目前在金属离子的溶液转化为原子,是定居于创造一个更加阴极存款少或制服层镀液采用这项工作是由镍、磺酸[7][8]集中在400 毫升/公升,氯化镍(10微克/公升)、硼酸(50微克/公升),allbrite习得(30完工/公升),703allbrite(2完工/公升). 选择这种组合主要原因是我们打算申请类别,即注塑模具,即使注射了玻璃纤维. 磺酸镍让我们获得可以接受的程度,在内部讲壳牌(作了测试结果不同工艺条件,不高于50兆帕的最佳条件和2兆帕左右). 不过,这种程度的内部压力也是作为添加剂使用后果allbrite习得、这是由衍生-T强调消脂、甲醛水溶液. 这种添加剂也赞成增加阻力较小壳当允许粮食. 703allbrite是降解水溶液表面代理商代理已经利用以减少蚀. 氯化镍,尽管危害性的内部讲加上增强导电溶液并赞成在金属均匀分布在阴极. 硼酸pH值的作为缓冲该设备用于制造镍炮弹已测试如下:● 聚丙烯坦克:600毫米×400毫米×500毫米的尺寸● 三聚四氟乙烯电阻器,每一个有800● 特约阴极机械搅拌系统● 再循环和过滤系统组成的水泵、浴聚丙烯过滤● 充电整流器. 最高强度和持续不断的电流电压0至16伏● 镍钛篮阳极(镍矿公司的S轮电解镍)具有纯度99%● 气体吸入系统一旦已确定浴、手术已更改参数测试不同条件的过程一直电流密度(之间 1、22℃),温度(35至55℃)和pH值,改变镀液组成部分4、获得硬度一个非常有趣的测试期间已获得结论,对不同程度的硬度电炮弹一直保持在相当高的稳定价值观. 在无花果. 2,可以观察到哪种方式电流密度值为2.5和22℃之间, 硬度值从高压540、580、在pH0.2和4+摄氏45℃如果是浴的pH值为3.5,气温下降55℃以上这些价值观高压520以下560高压. 这一特点使得测试洗澡不同于其他传统业务组成磺酸镍、允许经营范围更广的价值观念; 然而,这种有限性的将取决于其他因素, 例如内应力,因为其工作状况可能在某些变性的pH值、电流密度和温度. 在另一方面,传统的硬度介于200-250高压磺酸浴、远比取得的一个考验. 既要考虑到,对注塑模具、硬度接受高压300起. 其中最常见的材料就可以找到注塑模具钢改善(高压290) 积分硬化钢(高压520-595),casehardened钢(高压760-800)等这样可以观察到的硬度水平都将炮弹镍中高幅度的注塑模具材料. 反对低延性是有偿壳牌这样的环氧树脂填充它表示,将依负责,因为这是一个内心压力控股收费进程注塑; 这也是为什么必须要由有壳厚度为尽可能均匀(以上最低值),。
注塑模具毕业设计外文翻译--立体光照成型的注塑模具工艺的综合模拟
附录2Integrated simulation of the injection molding process withstereolithography moldsAbstract Functional parts are needed for design verification testing, field trials, customer evaluation, and production planning. By eliminating multiple steps, the creation of the injection mold directly by a rapid prototyping (RP) process holds the best promise of reducing the time and cost needed to mold low-volume quantities of parts. The potential of this integration of injection molding with RP has been demonstrated many times. What is missing is the fundamental understanding of how the modifications to the mold material and RP manufacturing process impact both the mold design and the injection molding process. In addition, numerical simulation techniques have now become helpful tools of mold designers and process engineers for traditional injection molding. But all current simulation packages for conventional injection molding are no longer applicable to this new type of injection molds, mainly because the property of the mold material changes greatly. In this paper, an integrated approach to accomplish a numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. Comparisons with experimental results are employed for verification, which show that the present scheme is well suited to handle RP fabricated stereolithography (SL) molds.Keywords Injection molding Numerical simulation Rapid prototyping1 IntroductionIn injection molding, the polymer melt at high temperature is injected into the mold under high pressure [1]. Thus, the mold material needs to have thermal and mechanical properties capable of withstanding the temperatures and pressures of the molding cycle. The focus of many studies has been to create theinjection mold directly by a rapid prototyping (RP) process. By eliminating multiple steps, this method of tooling holds the best promise of reducing the time and cost needed to create low-volume quantities of parts in a production material. The potential of integrating injection molding with RP technologies has been demonstrated many times. The properties of RP molds are very different from those of traditional metal molds. The key differences are the properties of thermal conductivity and elastic modulus (rigidity). For example, the polymers used in RP-fabricated stereolithography (SL) molds have a thermal conductivity that is less than onethousandth that of an aluminum tool. In using RP technologies to create molds, the entire mold design and injection-molding process parameters need to be modified and optimized from traditional methodologies due to the completely different tool material. However, there is still not a fundamen tal understanding of how the modifications t o the mold tooling method and material impact both the mold design and the injection molding process parameters. One cannot obtain reasonable results by simply changing a few material properties in current models. Also, using traditional approaches when making actual parts may be generating sub-optimal results. So there is a dire need to study the interaction between the rapid tooling (RT) process and material and injection molding, so as to establish the mold design criteria and techniques for an RT-oriented injection molding process.In addition, computer simulation is an effective approach for predicting the quality of molded parts. Commercially available simulation packages of the traditional injection molding process have now become routine tools of the mold designer and process engineer [2]. Unfortunately, current simulation programs for conventional injection molding are no longer applicable to RP molds, because of the dramatically dissimilar tool material. For instance, in using the existing simulation software with aluminum and SL molds and comparing with experimental results, though the simulation values of part distortion are reasonable for the aluminum mold, results are unacceptable, with the error exceeding 50%. The distortion during injection molding is due to shrinkage and warpage of the plastic part, as well as the mold. For ordinarily molds, the main factor is the shrinkage and warpage of the plastic part, which is modeled accurately in current simulations. But for RP molds, the distortion of the mold has potentially more influence, which have been neglected in current models. For instance, [3] used a simple three-step simulation process to consider the mold distortion, which had too much deviation.In this paper, based on the above analysis, a new simulation system for RP molds is developed. The proposed system focuses on predicting part distortion, which is dominating defect in RP-molded parts. The developed simulation can be applied as an evaluation tool for RP mold design and process optimization. Our simula tion system is verified by an experimental example.Although many materials are available for use in RP technologies, we concentrate on using stereolithography (SL), the original RP technology, to create polymer molds. The SL process uses photopolymer and laser energy to build a part layer by layer. Using SL takes advantage of both the commercial dominance of SL in the RP industry and the subsequent expertise base that has been developed for creating accurate, high-quality parts. Until recently, SL was primarily used to create physical models for visual inspection and form-fit studies with very limited func-tional applications. However, the newer generation stereolithographic photopolymers have improved dimensional, mechanical and thermal properties making it possible to use them for actual functional molds.2 Integrated simulation of the molding process2.1 MethodologyIn order to simulate the use of an SL mold in the injection molding process, an iterative method is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1The part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2Simulate the mold-filling process of the melt into a pho topolymer mold, which will output the resulting temperature and pressure profiles.3Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distor tions of the molded part.In above simulation flow, there are three basic simulation mod ules.2. 2 Filling simulation of the melt2.2.1 Mathematical modelingIn order to simulate the use of an SL mold in the injection molding process, an iterative method is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1. The part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2. Simulate the mold-filling process of the melt into a photopolymer mold, which will output the resulting temperature and pressure profiles.3. Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4. If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5. The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distortions of the molded part.In above simulation flow, there are three basic simulation modules.2.2 Filling simulation of the melt2.2.1 Mathematical modelingComputer simulation techniques have had success in predicting filling behavior in extremely complicated geometries. However, most of the current numerical implementation is based on a hybrid finite-element/finite-difference solution with the middleplane model. The application process of simulation packages based on this model is illustrated in Fig. 2-1. However, unlike the surface/solid model in mold-design CAD systems, the so-called middle-plane (as shown in Fig. 2-1b) is an imaginary arbitrary planar geometry at the middle of the cavity in the gap-wise direction, which should bring about great inconvenience in applications. For example, surface models are commonly used in current RP systems (generally STL file format), so secondary modeling is unavoidable when using simulation packages because the models in the RP and simulation systems are different. Considering these defects, the surface model of the cavity is introduced as datum planes in the simulation, instead of the middle-plane.According to the previous investigations [4–6], fillinggoverning equations for the flow and temperature field can be written as:where x, y are the planar coordinates in the middle-plane, and z is the gap-wise coordinate; u, v,w are the velocity components in the x, y, z directions; u, v are the average whole-gap thicknesses; and η, ρ,CP (T), K(T) represent viscosity, density, specific heat and thermal conductivity of polymer melt, respectively.Fig.2-1 a–d. Schematic procedure of the simulation with middle-plane model. a The 3-D surface model b The middle-plane model c The meshed middle-plane model d The display of the simulation result In addition, boundary conditions in the gap-wise direction can be defined as:where TW is the constant wall temperature (shown in Fig. 2a).Combining Eqs. 1–4 with Eqs. 5–6, it follows that the distributions of the u, v, T, P at z coordinates should be symmetrical, with the mirror axis being z = 0, and consequently the u, v averaged in half-gap thickness is equal to that averaged in wholegap thickness. Based on this characteristic, we can divide the whole cavity into two equal parts in the gap-wise direction, as described by Part I and Part II in Fig. 2b. At the same time, triangular finite elements are generated in the surface(s) of the cavity (at z = 0 in Fig. 2b), instead of the middle-plane (at z = 0 in Fig. 2a). Accordingly, finite-difference increments in the gapwise direction are employed only in the inside of the surface(s) (wall to middle/center-line), which, in Fig. 2b, means from z = 0 to z = b. This is single-sided instead of two-sided with respect to the middle-plane (i.e. from the middle-line to two walls). In addition, the coordinate system is changed from Fig. 2a to Fig. 2b to alter the finite-element/finite-difference scheme, as shown in Fig. 2b. With the above adjustment, governing equations are still Eqs. 1–4. However, the original boundary conditions inthe gapwise direction are rewritten as:Meanwhile, additional boundary conditions must be employed at z = b in order to keep the flows at the juncture of the two parts at the same section coordinate [7]:where subscripts I, II represent the parameters of Part I and Part II, respectively, and Cm-I and Cm-II indicate the moving free melt-fronts of the surfaces of the divided two parts in the filling stage.It should be noted that, unlike conditions Eqs. 7 and 8, ensuring conditions Eqs. 9 and 10 are upheld in numerical implementations becomes more difficult due to the following reasons:1. The surfaces at the same section have been meshed respectively, which leads to a distinctive pattern of finite elements at the same section. Thus, an interpolation operation should be employed for u, v, T, P during the comparison between the two parts at the juncture.2. Because the two parts have respective flow fields with respect to the nodes at point A and point C (as shown in Fig. 2b) at the same section, it is possible to have either both filled or one filled (and one empty). These two cases should be handled separately, averaging the operation for the former, whereas assigning operation for the latter.3. It follows that a small difference between the melt-fronts is permissible. That allowance can be implemented by time allowance control or preferable location allowance control of the melt-front nodes.4. The boundaries of the flow field expand by each melt-front advancement, so it is necessary to check the condition Eq. 10 after each change in the melt-front.5. In view of above-mentioned analysis, the physical parameters at the nodes of the same section should be compared and adjusted, so the information describing finite elements of the same section should be prepared before simulation, that is, the matching operation among the elements should be preformed.Fig. 2a,b. Illustrative of boundary conditions in the gap-wise direction a of the middle-plane model b of thesurface model2.2.2 Numerical implementationPressure field. In modeling viscosity η, which is a function of shear rate, temperature and pressure of melt, the shear-thinning behavior can be well represented by a cross-type model such as:where n corresponds to the power-law index, and τ∗ characterizes the shear stress level of the transition region between the Newtonian and power-law asymptotic limits. In terms of an Arrhenius-type temperature sensitivity and exponential pressure dependence, η0(T, P) can be represented with reasonable accuracy as follows:Equations 11 and 12 constitute a five-constant (n, τ∗, B, Tb, β) representation for viscosity. The shear rate for viscosity calculation is obtained by:Based on the above, we can infer the following filling pressure equation from the governing Eqs. 1–4:where S is calculated by S = b0/(b−z)2η d z. Applying the Galerkin method, the pressure finite-element equation is deduced as:where l_ traverses all elements, including node N, and where I and j represent the local node number in element l_ corresponding to the node number N and N_ in the whole, respectively. The D(l_) ij is calculated as follows:where A(l_) represents triangular finite elements, and L(l_) i is the pressure trial function in finite elements.Temperature field. To determine the temperature profile across the gap, each triangular finite element at the surface is further divided into NZ layers for the finite-difference grid.The left item of the energy equation (Eq. 4) can be expressed as:where TN, j,t represents the temperature of the j layer of node N at time t.The heat conduction item is calculated by:where l traverses all elements, including node N, and i and j represent the local node number in element l corresponding to the node number N and N_ in the whole, respectively.The heat convection item is calculated by:For viscous heat, it follows that:Substituting Eqs. 17–20 into the energy equation (Eq. 4), the temperature equation becomes:2.3 Structural analysis of the moldThe purpose of structural analysis is to predict the deformation occurring in the photopolymer mold due to the thermal and mechanical loads of the filling process. This model is based on a three-dimensional thermoelastic boundary element method (BEM). The BEM is ideally suited for this application because only the deformation of the mold surfaces is of interest. Moreover, the BEM has an advantage over other techniques in that computing effort is not wasted on calculating deformation within the mold.The stresses resulting from the process loads are well within the elastic range of the mold material. Therefore, the mold deformation model is based on a thermoelastic formulation. The thermal and mechanical properties of the mold are assumed to be isotropic and temperature independent.Although the process is cyclic, time-averaged values of temperature and heat flux are used for calculating the mold deformation. Typically, transient temperature variations within a mold have been restricted to regions local to the cavity surface and the nozzle tip [8]. The transients decay sharply with distance from the cavity surface and generally little variation is observed beyond distances as small as 2.5 mm. This suggests that the contribution from the transients to the deformation at the mold block interface is small, and therefore it is reasonable to neglect the transient effects. The steady state temperature field satisfies Laplace’s equation 2T = 0 and the time-averaged boundary conditions. The boundary conditions on the mold surfaces are described in detail by Tang et al. [9]. As for the mechanical boundary conditions, the cavity surface is subjected to the melt pressure, the surfaces of the mold connected to the worktable are fixed in space, and other external surfaces are assumed to be stress free.The derivation of the thermoelastic boundary integral formulation is well known [10]. It is given by:where uk, pk and T are the displacement, traction and temperature,α, ν represent the thermal expansion coefficient and Poisson’s ratio of the material, and r = |y−x|. clk(x) is the surfacecoefficient which depends on the local geometry at x, the orientation of the coordinate frame and Poisson’s ratio for the domain [11]. The fundamental displacement ˜ulk at a point y in the xk direction, in a three-dimensional infinite isotropic elastic domain, results from a unit load concentrated at a point x acting in the xl direction and is of the form:where δlk is the Kronecker delta function and μ is the shear modulus of the mold material.The fundamental traction ˜plk , measured at the point y on a surface with unit normal n, is:Discretizing the surface of the mold into a total of N elements transforms Eq. 22 to:where Γn refers to the n th surface element on the domain.Substituting the appropriate linear shape functions into Eq. 25, the linear boundary element formulation for the mold deformation model is obtained. The equation is applied at each node on the discretized mold surface, thus giving a system of 3N linear equations, where N is the total number of nodes. Each node has eight associated quantities: three components of displacement, three components of traction, a temperature and a heat flux. The steady state thermal model supplies temperature and flux values as known quantities for each node, and of the remaining six quantities, three must be specified. Moreover, the displacement values specified at a certain number of nodes must eliminate the possibility of a rigid-body motion or rigid-body rotation to ensure a non-singular system of equations. The resulting system of equations is assembled into a integrated matrix, which is solved with an iterative solver.2.4 Shrinkage and warpage simulation of the molded partInternal stresses in injection-molded components are the principal cause of shrinkage and warpage. These residual stresses are mainly frozen-in thermal stresses due to inhomogeneous cooling, when surface layers stiffen sooner than the core region, as in free quenching. Based onthe assumption of the linear thermo-elastic and linear thermo-viscoelastic compressible behavior of the polymeric materials, shrinkage and warpage are obtained implicitly using displacement formulations, and the governing equations can be solved numerically using a finite element method.With the basic assumptions of injection molding [12], the components of stress and strain are given by:The deviatoric components of stress and strain, respectively, are given byUsing a similar approach developed by Lee and Rogers [13] for predicting the residual stresses in the tempering of glass, an integral form of the viscoelastic constitutive relationships is used, and the in-plane stresses can be related to the strains by the following equation:Where G1 is the relaxation shear modulus of the material. The dilatational stresses can be related to the strain as follows:Where K is the relaxation bulk modulus of the material, and the definition of α and Θ is: If α(t) = α0, applying Eq. 27 to Eq. 29 results in:Similarly, applying Eq. 31 to Eq. 28 and eliminating strain εxx(z, t) results in:Employing a Laplace transform to Eq. 32, the auxiliary modulus R(ξ) is given by:Using the above constitutive equation (Eq. 33) and simplified forms of the stresses and strains in the mold, the formulation of the residual stress of the injection molded part during the cooling stage is obtain by:Equation 34 can be solved through the application of trapezoidal quadrature. Due to the rapid initial change in the material time, a quasi-numerical procedure is employed for evaluating the integral item. The auxiliary modulus is evaluated numerically by the trapezoidal rule.For warpage analysis, nodal displacements and curvatures for shell elements are expressed as:where [k] is the element stiffness matrix, [Be] is the derivative operator matrix, {d} is the displacements, and {re} is the element load vector which can be evaluated by:The use of a full three-dimensional FEM analysis can achieve accurate warpage results, however, it is cumbersome when the shape of the part is very complicated. In this paper, a twodimensional FEM method, based on shell theory, was used because most injection-molded parts have a sheet-like geometry in which the thickness is much smaller than the other dimensions of the part. Therefore, the part can be regarded as an assembly of flat elements to predict warpage. Each three-node shell element is a combination of a constant strain triangular element (CST) and a discrete Kirchhoff triangular element (DKT), as shown in Fig. 3. Thus, the warpage can be separated into plane-stretching deformation of the CST and plate-bending deformation of the DKT, and correspondingly, the element stiffness matrix to describe warpage can also be divided into the stretching-stiffness matrix and bending-stiffness matrix.Fig. 3a–c. Deformation decomposition of shell element in the local coordinate system. a In-plane stretchingelement b Plate-bending element c Shell element3 Experimental validationTo assess the usefulness of the proposed model and developed program, verification is important. The distortions obtained from the simulation model are compared to the ones from SL injection molding experiments whose data is presented in the literature [8]. A common injection molded part with the dimensions of 36×36×6 mm is considered in the experiment, as shown in Fig. 4. The thickness dimensions of the thin walls and rib are both 1.5 mm; and polypropylene was used as the injection material. The injection machine was a production level ARGURY Hydronica 320-210-750 with the following process parameters: a melt temperature of 250 ◦C; an ambient temperature of 30 ◦C; an injection pressure of 13.79 MPa; an injection time of 3 s; and a cooling time of 48 s. The SL material used, Dupont SOMOSTM 6110 resin, has the ability to resist temperatures of up to 300 ◦C temperatures. As mentioned above, thermal conductivity of the mold is a major factor that differentiates between an SL and a traditional mold. Poor heat transfer in the mold would produce a non-uniform temperature distribution, thus causing warpage that distorts the completed parts. For an SL mold, a longer cycle time would be expected. The method of using a thin shell SL mold backed with a higher thermal conductivity metal (aluminum) was selected to increase thermal conductivity of the SL mold.Fig. 4. Experimental cavity modelFig. 5. A comparison of the distortion variation in the X direction for different thermal conductivity; where “Experimental”, “present”, “three-step”, and “conventional” mean the results of the experimental, the presented simulation, the three-step simulation process and the conventional injection molding simulation, respectively.Fig. 6. Comparison of the distortion variation in the Y direction for different thermal conductivitiesFig. 7. Comparison of the distortion variation in the Z direction for different thermal conductivitiesFig. 8. Comparison of the twist variation for different thermal conductivities For this part, distortion includes the displacements in three directions and the twist (the difference in angle between two initially parallel edges). The validation results are shown in Fig.5 to Fig. 8. These figures also include the distortion values predicted by conventional injection molding simulation and the three-step model reported in [3].4 ConclusionsIn this paper, an integrated model to accomplish the numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. For verification, an experiment is also carried out with an RPfabricated SL mold.It is seen that a conventional simulation using current injection molding software breaks down for a photopolymer mold. It is assumed that this is due to the distortion in the mold caused by the temperature and load conditions of injection. The three-step approach also has much deviation. The developed model gives results closer to experimental.Improvement in thermal conductivity of the photopolymer significantly increases part quality. Since the effect of temperature seems to be more dominant than that of pressure (load), an improvement in the thermal conductivity of the photopolymer can improve the part quality significantly.Rapid Prototyping (RP) is a technology makes it possible to manufacture prototypes quickly and inexpensively, regardless of their complexity. Rapid Tooling (RT) is the next step in RP’s steady progress and much work is being done to obtain more accurate tools to define the parameters of the process. Existing simulation tools can not provide the researcher with a useful means of studying relative changes. An integrated model, such as the one presented in this paper, is necessary to obtain accurate predictions of the actual quality of final parts. In the future, we expect to see this work expanded to develop simulations program for injection into RP molds manufactured by other RT processes.References1. Wang KK (1980) System approach to injection molding process. Polym-Plast Technol Eng 14(1):75–93.2. Shelesh-Nezhad K, Siores E (1997) Intelligent system for plastic injection molding process design. J Mater Process Technol 63(1–3):458–462.3. Aluru R, Keefe M, Advani S (2001) Simulation of injection molding into rapid-prototyped molds. Rapid Prototyping J 7(1):42–51.4. Shen SF (1984) Simulation of polymeric flows in the injection molding process. Int J Numer Methods Fluids 4(2):171–184.5. Agassant JF, Alles H, Philipon S, Vincent M (1988) Experimental and theoretical study of the injection molding of thermoplastic materials. Polym Eng Sci 28(7):460–468.6. Chiang HH, Hieber CA, Wang KK (1991) A unified simulation of the filling and post-filling stages in injection molding. Part I: formulation. Polym Eng Sci 31(2):116–124.7. Zhou H, Li D (2001) A numerical simulation of the filling stage in injection molding based on a surface model. Adv Polym Technol 20(2):125–131.8. Himasekhar K, Lottey J, Wang KK (1992) CAE of mold cooling in injection molding using a three-dimensional numerical simulation. J EngInd Trans ASME 114(2):213–221.9. Tang LQ, Pochiraju K, Chassapis C, Manoochehri S (1998) Computeraided optimization approach for the design of injection mold cooling systems. J Mech Des, Trans ASME 120(2):165–174.10. Rizzo FJ, Shippy DJ (1977) An advanced boundary integral equation method for three-dimensional thermoelasticity. Int J Numer Methods Eng 11:1753–1768.11. Hartmann F (1980) Computing the C-matrix in non-smooth boundary points. In: New developments in boundary element methods, CML Publications, Southampton, pp 367–379.12. Chen X, Lama YC, Li DQ (2000) Analysis of thermal residual stress in plastic injection molding. J Mater Process Technol 101(1):275–280.13. Lee EH, Rogers TG (1960) Solution of viscoelastic stress analysis problems using measured creep or relaxation function. J Appl Mech 30(1):127–134.14. Li Y (1997) Studies in direct tooling using stereolithography. Dissertation, University of Delaware, Newark, DE..。
中英文翻译模板-注射成型技术以及住塑优化经典资料
Injection mold design and the new-type injekt by shaping technologeThe plastic injection mold is in the present all plastics mold,uses the broadest mold, can take shape the complex high accuracy,plastic product. Under only is sketchily introduces.The design plastic injection mold first must have the certain,understanding to the plastic, the plastic principal constituent is a polymer. Like we often said the ABS plastic then is the propylene nitrile, the pyprolylene, the styrene three kind of monomers uses the emulsion, the main body or aerosol gathers the legitimate production,enable it to have three kind of monomers the high performance and may the compression molding, injects under the certain temperature and the pressure to the mold cavity, has the flow distortion, the obtaining cavity shape, after guarantees presses cooling to go against becomes the plastic product. The polymer member assumes the chain shape structure generally, the linear molecule chain and a chain molecule thought is the thermoplastic, may heat up the cooling processing repeatedly, but passes through heats up many members to occur hands over the association response, including forms netted the build molecular structure plastic usually is this, cannot duplicate injects the processing, also is the thermosetting plastics which said.Since is the chain shape structure, that plastic when processing contracts the direction also is with the polymer molecular chain under the stress function the orientation and the cooling contraction related, must be more than in the flow direction contraction its vertical direction in contraction. The product contraction also with the product shape, therunner, the temperature,guarantees presses factor and so on time and internal stress concerns.In the usual book provides the shrinkage scope is broad, considers is product wall thickness, the structure and the determination casts the temperature pressure size when the practical application and the orientation. The common product if does not have the core strut, the contraction correspondingly wants big. The plastic casts the mold basically to divide into the static mold and to move the mold. Injection Molding . Injection molding is principally used for the production of thermolplastic part ,although some progress has been made in developing a method for injection molding some thermosetting materials .The problem of injecting a melted plastic into a mold cavity from a reservoir of melted material has been extremely difficult to solve for thermosetting plastics which cure and harden under such conditions within a few minutes 。
pom注塑成型工艺参数优化
pom注塑成型工艺参数优化标题:POM注塑成型工艺参数优化:提高生产效率与产品质量引言:POM(聚甲醛)是一种常见的工程塑料,具有优异的物理和化学性能,广泛应用于汽车、电子、仪器仪表等行业。
注塑成型是POM加工的主要方法之一,而优化注塑成型工艺参数能够提高生产效率和产品质量,降低生产成本。
本文将深入探讨POM注塑成型工艺参数的优化方法,帮助读者更全面理解此一主题。
一、基本概念和原理1. POM注塑成型工艺概述1.1 注塑成型原理1.2 注塑成型工艺参数简介二、注塑成型工艺参数优化的重要性1. 提高生产效率2.1 塑化温度的优化2.2 注射速度的优化2.3 模具温度的优化2. 提高产品质量2.1 熔体温度的控制2.2 注射压力的控制2.3 注塑时间的控制三、POM注塑成型工艺参数优化方法1. 实验设计法1.1 正交实验设计法的基本原理1.2 正交实验设计在POM注塑中的应用2. 建立模拟模型2.1 POM注塑成型模拟软件介绍2.2 模拟模型的建立与优化3. 数值优化算法3.1 遗传算法的基本原理3.2 遗传算法在POM注塑成型中的应用四、总结与回顾1. 优化POM注塑成型工艺参数的关键因素2. 不同注塑成型工艺参数对产品性能的影响3. 注塑成型工艺参数优化的挑战与前景展望观点和理解:在优化POM注塑成型工艺参数时,需要综合考虑生产效率和产品质量两方面的要求。
通过实验设计和模拟模型建立,可以较为准确地预测不同参数对成型过程和产品性能的影响,从而进行合理的优化。
数值优化算法的引入可以加快优化过程,提高效率。
未来,随着科技的进步,注塑成型工艺参数的优化方法将不断完善,帮助企业提高POM 产品的竞争力。
总结:本文深入探讨了POM注塑成型工艺参数优化的重要性、方法和影响因素,并提供了对这一主题的观点和理解。
通过合理优化注塑成型工艺参数,可以提高生产效率和产品质量,为企业创造更大的经济效益。
在今后的研究和实践中,应注重不断改进方法和算法,以更好地满足市场需求,并推动POM注塑行业的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南交通大学本科毕业设计论文翻译对注塑成型工艺参数优化的一般框架年级:2010级学号:20101476姓名:段威力专业:机械设计制造及其自动化指导老师:罗征志2014 年 3 月第1章前言成型条件和工艺参数在注塑成型工艺中起着重要角色。
模塑部分的质量包括:受力、热变形和残余应力,很大程度上受注塑工艺进程的条件状况影响。
成型条件也会影响注塑工艺的生产率、生产周期和资源消耗率。
成型条件与其他一些决定塑料产品的因素也有密切关系,如材料、零件的设计和加工等。
成型条件主要包括以下几个因素[1]:熔点、浇铸温度、填充时间、填料时间和填充压力。
指定模型零件的质量不仅取决于塑料材料特性同时取决于公益参数。
最佳工艺参数可以生产周期,提高产品质量。
在实际生产中,工艺参数的设定主要取决于工程师的经验。
这种方法不能一直确保工艺参数适当的价值。
由于塑料具有复杂的热塑性,设定工艺参数获得想要的产品质量是一个挑战。
最终,工艺参数往往从工具书中选取,随后通过反复试验法调整。
但是,事实上反复试验法耗时耗力。
对于分析法,为了得到合适的工艺参数需要陈列大量的数学方程[2]。
但是,由于复杂的注塑工艺,而方程中又应用了很多简化,这些方程并不能总是达到一个可靠的解决方案。
因此,很多研究者投入了大量精力研究注塑成型工艺参数的优化。
尽管目前有大量的文献注塑模工艺参数的优化,但是很多都是理论上的可行,没法投入到实际生产中。
因此,并没有对着这些优化方法的适用范围以及优缺点的系统地比较和评估。
优化方法的选择主要取决于每位作者的经验和主管选择。
甚至,分析现有有话方法的特点和适用范围都是很有意义的任务。
因此,寻求合适的一般框架简化注塑成型工艺参数设定是很有必要的。
第2章理论背景和现有注塑模型工艺参数优化的调查2.1 优化技术如果我们对现有的数值优化技术通过基于每次迭代后改进设计点的方式进行分类,有三种优化技术:非基于梯度的优化技术、基于梯度的优化技术和混合优化技术。
对他们的大致描述如下:非基于梯度的优化技术不需要目标函数f(x),具有可区分性,因为这类算法中没有f(x)的微分方程。
非基于梯度的优化技术的例子有自适应模拟退火法(adaptive simulatedannealing,)、胡克-纪夫斯直接搜索法(Hooke-Jeeves direct search)以及遗传算法(genetic algorithm, 以下简称GA)。
这些优化方法旨在寻求整体的最佳效果,但是需要大量的函数估计。
GA是一个比较著名的非基于梯度的优化技术。
它是一个模仿达尔文生物进化论的随机研究或者最优化算法基于梯度的优化技术现阶段主要通过功能梯度来定义调查方向。
在实际生产中,有很多的基于梯度的优化技术,例如广义简约梯度、共轭梯度、可行方向法、混合整数优化、序列线性规划、序列二次规划、和大卫-弗莱彻-鲍威尔法。
一般而言,基于梯度的优化技术可以给出一个快速集合,但是当变量增长是可能需要长时间运行。
基于梯度的优化技术也可以得到高非线性最优化问题的局部风险极值。
混合优化技术同时使用非基于梯度和梯度为基础的技术随后的结合,利用了双方的优点,同时减少单优化技术的缺点。
上文所述的这些优化技术都不在本文讨论范围内。
2.2 一般优化法在本文的优化方法,不论显性目标函数是否用公式表示出,均为术语的优化方法。
在基于模拟的优化中,目标函数通常以隐式方程的形式显示。
在模拟结果得出以前,目标函数的价值是不明显的。
如图1所示,有直接优化和基于元模型的两种优化方法来解决优化问题。
这两种优化方法的细节描述如下。
2.2.1直接优化法直接优化法是一种不需要明确的目标函数的优化方法。
非基于梯度的优化技术和基于梯度的优化技术都可以用来解决优化问题。
有时直接优化法结合了GA和其他优化方法。
众所周知,遗传算法更倾向于得到整体的极值。
但是这种方法需要大量的函数估计。
相反,基于梯度的优化方法更有效的确保得到局部极值。
如果这两种方法可以结合作为一个混合系统,便可以强化优势,消除劣势。
2.2.2 基于元模型的优化法元模型为基础的优化方法是一种方法,此方法的目标函数经常通过低阶多项式近似成具有可接受的精度的显式形式。
一旦元模型在数学上呈现具有最小误差的过程,最优化问题是很容易通过施加适当的优化技术解决。
相比于直接优化法,元模型为基础的优化方法应用更广泛。
常见的元模型是响应面法(RSM),人工神经网络(ANN),径向基函数(RBF),克里格(Kriging)和混合模式。
基于计算机工程设计和优化技术的元建模的审查,可以在辛普森等的调查[3]和Wang和Shan的成果[4]中找到。
这种优化方法有很多的优点,例如易于连接模拟程序,渲染整个设计空间的视图以及计算效率,对此Papalambros[5],Wang和Shan[4]以及Park和Dang[4]有提及。
2.3 注塑成型工艺参数优化的回顾在注塑成型工艺中直接优化法是不经常使用的。
这种方法需要模拟工具和优化代码的复杂结合。
部分学者已经研究过这种方法。
拉姆(Lam)等[7]提出了注塑模工艺条件优化GA/梯度混合法。
GA优化方法需要大量估值函数或者大量的模拟循环。
当许多计算机同时运行时并行计算可以减少模拟次数。
吴(Wu)等人采用了增强型的GA,简称分布多种群GA。
他们把优化算法、商业软件Moldflow与基于优势关系的约束处理技术以及主从分布式体系结构相结合[8]。
直接优化法也可以只应用基于梯度的优化方法。
当优化问题具有较低非线性是,这种方法运行更加迅速。
元模型优化方法广泛的应用在注塑模工艺中。
大多数普通的元模型优化方法应用广泛,如RSM,ANN,RBF和Kriging模型。
元模型优化方法的应用主要取依靠特别案例和研究人员的喜好。
以下是常见的优化方法在塑料注塑成型领域文献中出现。
2.3.1 响应面法(RSM)模型RSM模型是元模型技术之一,RSM模型中输入和输出之间的关系经常被表示为二次多项式的形式。
尽管这是传统的模型,但因为它的成熟完备和应用简单的特点仍然应用广泛。
在这种方法中正交阵列被应用作实验设计(Design of Experiment, DOE)。
RSM 是用来与GA优化算法结合使用,以减少翘曲,凹痕或收缩[9]。
实际上,我们可以使用任何优化技术来解决RSM模型方面的优化问题。
但是,大多数研究人员都应用GA,因为他们认为GA是整体通用的。
GA可以避免局部极值困扰。
其他作者采用RSM与基于梯度的优化技术相结合,或者他们应用RSM模型来预测工艺参数对模型零件的影响[11,14-17]。
2.3.2人工神经网络(ANN)模型人工神经网络是一种新兴的、用来模仿人类大脑一些基本功能的方法,因为它是一种功能强大工具,通过函数逼近预测的高非线性响应。
很多作者把ANN模型作为表示工艺参数和质量指数之间关系的预测模型。
Kwak等[18]、Yarlagadda和TeckKhong[19]以及Yarlagadda[20]指出,利用CAE分析提取数据学习的神经网络预测与实验结果吻合。
Kenig等[21]、Mok和Kwong[22]、Chen等[23]以及Altan[24]指出,神经网络模型能够精确地预测了产品质量,并且这种方法是可用的高效的质量标准(收缩、重量抗拉强度)预测工具。
人工神经网络被认为是一种可靠的模型,用以预测工艺参数和模型零件质量的关系。
基于这种模糊关系工艺参数优化可以就此解决。
人工神经网络更适合与GA结合应用。
Shen等[25]优化了注塑成型工艺参数中使用的人工神经网络和GA相结合的方法。
Chen等[26, 27]通过带有对ANN和GA的软计算对工艺参数优化,实现多输入多输出(multi-input multi-output, MIMO)和多输入单输出(multi-input single-output, MISO)的注塑模工艺。
Ozcelik 和Erzurumlu[28]比较了在应用方差分析(ANOVA),ANN和GA的注塑模工艺中的翘曲变形。
其他研究人员[29, 34]也在注塑模工艺中应用ANN和GA以提高模型零件的质量。
研究人员中总结出ANN和GA相结合的方法是可靠的方法。
然而,他们大多没有提到他们是怎样决定那些用以获得ANN模型的训练数据的实验的次数。
在这些研究中注塑参数从4到6变换不等,但是实验数目却在很大范围内波动((从27次[28]到252次[25])。
很显然,如果实验次数过高,模拟或物理实验的成本是非常高的。
2.3.3克里格(Kriging)模型克里格模型是一种元模型。
当工艺参数的数量适度时,它被认为是一个合适的确定性和高非线性的模型[3, 35]。
然而,这种方法对注塑模工艺领域的研究人员吸引力不高,因为相比RSM模型而言,它过于复杂或者说它不如ANN声誉好。
只有在很少的研究中应用到克里格模型。
Gao和Wang[36, 37]介绍了一种应用克里格模型有效的翘曲变形优化方法。
2.3.4 径向基函数(RBF)模型径向基函数模型也是一种常见的元模型,但是相比较其他元模型而言,它在工艺参数优化中的应用并不是十分广泛。
Li等人应用了径向基函数来优化注塑过程的包装更新问题[38]。
他们应用了基于梯度的优化方法(也就是序列二次规划)。
拉丁超立方体抽样技术被用于实验设计(DOE)。
这种技术给予设计者选择实验数量的自由。
虽然大量的研究是专门为了优化工艺参数,但现在还存在着一些相当大的问题。
现存的很多方法表明注塑成型工艺参数优化是相当复杂和多样的。
这些复杂程度由优化目标、模制部件的几何形状、材料和设计变量的数量决定。
此外,优化技术和优化方法的选择主要取决于经验和研究人员的主观选择。
在文献中,没有任何准则或一般化的优化方法使用,来达到优化注射成型工艺参数。
因此,本文提出基于模拟的注塑模优化方法以促进加快设计和优化进程。
第3章优化模型参数框架的提出3.1 使用直接数值优化模型的成型参数优化法使用直接数值优化模型来优化成型工艺参数的框架包括这样一个框架,它用于自动化模拟和基于直接模拟的优化的流程。
优化进程是基于直接数值优化方法的。
基于梯度和非基于梯度的优化方法都可以用来寻找最适宜的优化方法。
数值优化是指收敛完成最优化循环终止的搜索处理(最优方法已经建立),或者满足终值条件。
因为为大型和复杂的零件的CAE(计算机辅助工程)模拟的计算成本通常价格昂贵,一般终值条件预先设定为最大模拟数。
为了加速优化过程,使用直接数值优化模型的基于模拟的优化过程应该是自动的。
图2展示了使用直接数值优化模型的自动模拟框架。
该框架包括两个部分:优化控制器和CAE。
从CAE得到的模拟结果将会立刻被送至优化控制器。
随后,优化控制器在每次使用选择优化技术的迭代中评估结果并修改输入参数(设计变量)。