计算机控制实验三数字PID调节器算法的研究
数字PID
科 技
凑试法是通过模拟运行观察系统的响应曲线(如阶跃响应),然
大 学
后根据各调节参数对系统响应大致影响,反复凑试参数,以达到满意
网 络
的响应,从而确定PID的调节参数。
教 育
25
KP↑,系统响应加快,有利于减小静差,但KP过大,使系统有较大的 超调,产生振荡,使系统稳定性变坏; Ti↑,减小超调,使系统稳定,但静差的消除将减慢; Td↑,加快系统响应,减小超调量,稳定性增加,但对干扰的抑制 作用却减弱。 具体步骤:
技
大
学
网
络
教 育
6
图4.3 模拟PID调节器方框图
PID控制器把给定值W与实际输出值Y相减,得到控制偏差e,偏
西 南
差e经比例、积分、微分运算后,通过线性组合构成控制量u,然后
科 技
用u对对象进行控制。
大
学
网
络
教 育
7
1. 比例调节器
是一种简单的调节器,其控制 规律为:
u = KPe + u0
KP:比例系数, u0:控制常量, 即误差为零时的控制变量;如图所
数字PID控制算法是一种准连续控制过程,是建立在计算机对连 续PID控制进行数字仿真的基础上的控制。这种控制方式要求采样周 期与系统的时间常数比很小,采样周期越小,数字仿真越精确,控 制效果也就越接近连续控制,采样周期的选择是受多方面影响:
1. 根据香农采样定理,应满足:
其中:fmax为输入信号的上限频率。这样采样信号经过保持环节后, 仍可复原或近似复原为模拟信号,而不丢失任何信息。
西
2. 从执行机构的特性要求来看,需要输出信号保持一定的宽度;
南
科
3. 从控制系统的随动和抗干扰的性能要求采样周期短些;
《计算机控制技术》数字PID控制器设计与仿真实验报告
《计算机控制技术》数字PID控制器设计与仿真实验报告课程名称:计算机控制技术实验实验类型:设计型实验项目名称:数字PID控制器设计与仿真一、实验目的和要求1. 学习并掌握数字PID以及积分分离PID控制算法的设计原理及应用。
2. 学习并掌握数字PID控制算法参数整定方法。
二、实验内容和原理图3-1图3-1是一个典型的 PID 闭环控制系统方框图,其硬件电路原理及接线图可设计如图1-2所示。
图3-2中画“○”的线需用户在实验中自行接好,对象需用户在模拟实验平台上的运放单元搭接。
图3-2上图中,ADC1为模拟输入,DAC1为模拟输出,“DIN0”是C8051F管脚 P1.4,在这里作为输入管脚用来检测信号是否同步。
这里,系统误差信号E通过模数转换“ADC1”端输入,控制机的定时器作为基准时钟(初始化为10ms),定时采集“ADC1”端的信号,得到信号E的数字量,并进行PID计算,得到相应的控制量,再把控制量送到控制计算机及其接口单元,由“DAC1”端输出相应的模拟信号,来控制对象系统。
本实验中,采用位置式PID算式。
在一般的PID控制中,当有较大的扰动或大幅度改变给定值时,会有较大的误差,以及系统有惯性和滞后,因此在积分项的作用下,往往会使系统超调变大、过渡时间变长。
为此,可采用积分分离法PID控制算法,即:当误差e(k)较大时,取消积分作用;当误差e(k)较小时才将积分作用加入。
图3-3是积分分离法PID控制实验的参考程序流程图。
图3-3三、主要仪器设备计算机、模拟电气实验箱四、操作方法与实验步骤1.按照图3-2搭建实验仿真平台。
2.确定系统的采样周期以及积分分离值。
3.参考给出的流程图编写实验程序,将积分分离值设为最大值0x7F,编译、链接。
4.点击,使系统进入调试模式,点击,使系统开始运行,用示波器分别观测输入端R以及输出端C。
5.如果系统性能不满意,用凑试法修改PID参数,再重复步骤3和4,直到响应曲线满意,并记录响应曲线的超调量和过渡时间。
数字PID及其算法
printf("v1=%f",velocity_1); printf("v2=%f\n",velocity_2); u_1_i=K1*(error_1_i+T/Ti1*error_1_i2+Td1/T*(error_1_ierror_1_i1))+50.0; u_2_i=K2*(error_2_i+T/Ti2*error_2_i2+Td2/T*(error_2_ierror_2_i1))+50.0; /* u_1_i=K1*error_1_i+50.0; u_2_i=K2*error_2_i+50.0; */ /* u_1_i=K1*(error_1_i+T/Ti1*error_1_i2)+50.0; u_2_i=K2*(error_2_i+T/Ti2*error_2_i2)+50.0; */ motor(1,(int)u_1_i); motor(2,(int)u_2_i);
但是其中还存在不少问题,在电池电量不同的情 况下,能力风暴在相同设定值下的转速不同,这 样就会发生刚刚调的最好的PID 参数过一会就显 得没那么好了,所以我们要寻找鲁棒性最好的PID 参数。 并且需注意的是,以上的数据是基于某台能力风 暴,对于不同的能力风暴,机械特性不同,所以 可以参照我做实验的步骤,从测对象特性开始做 。我的实验数据的价值在于观察变化趋势,其绝 对值可能因为不同情况而不同。
/*用PID 控制算法实现的走直线控制,位置式算法 */ /*左右轮有相同的设定值,对误差进行调整;根 据左右轮的误差再对右轮进行调整, 使左右轮尽量保持一致,从而走直线。*/ float K1=0.05; float Ti1=15.0; float Td1=0.1; float K2=0.2; float Ti2=15.0; float Td2=0.1; float T=0.5; float velocity_1; float velocity_2; float u_1_i;/*控制量*/
PID自控原理实验报告范文pid调节实验报告范文
PID自控原理实验报告范文pid调节实验报告范文自动控制原理实验——第七次实验实验目的了解数字PID控制的特点,控制方式。
理解和掌握连续控制系统的PID控制算法表达式。
了解和掌握用试验箱进行数字PID控制过程。
观察和分析在标PID控制系统中,PID参数对系统性能的影响。
实验内容1、数字PID控制一个控制系统中采用比例积分和微分控制方式控制,称之为PID控制。
数字PID控制器原理简单,使用方便适应性强,可用于多种工业控制,鲁棒性强。
可以用硬件实现,也可以用软件实现,也可以用如见硬件结合的形式实现。
PID控制常见的是一种负反馈控制,在反馈控制系统中,自动调节器和被控对象构成一个闭合回路。
模拟PID控制框图如下:U(s)U(s)E(s)KpKiKd输出传递函数形式:其中Kp为调节器的比例系数,Ti为调节器的积分常数,Td是调节器的微分常数。
2、被控对象数学模型的建立1)建立模型结构在工程中遇到的实际对象大多可以表示为带时延的一阶或二价惯性环节,故PID整定的方法多从这样的系统入手,考虑有时延的单容被控过程,其传递函数为:这样的有时延的单容被控过程可以用两个惯性环节串联组成的自平衡双容被控过程来近似,本实验采用该方式作为实验被控对象,如图3-127所示。
2)被控对象参数的确认对于这种用两个惯性环节串联组成的自平衡双容被控过程的被控对象,在工程中普遍采用单位阶跃输入实验辨识的方法确认和τ,以达到转换成有时延的单容被控过程的目的。
单位阶跃输入实验辨识的原理方框如图3-127所示。
对于不同的T1、T2和K值,得到其单位阶跃输入响应曲线后,由和得到和,再利用拉氏反变换公式得到To=To=t2-t1Ln1-Yoτ=t2Ln1-Yot13、采样周期的选择采样周期选择0.05s。
4、数字PID调节器控制参数的工程整定方法虽然PID调节可全面、综合的考虑系统的各项性能,但在工程实际中,考虑到工程造价和调节器的易于实现,长采用PID三个参数来对系统进行校正。
计算机控制PID实验报告
实验报告实验名称:积分分离PID控制算法课程名称:计算机控制系统姓名:蓝娜学号:12062115班级:电气2班指导老师:陈雪亭日期:2014年11月11日实验背景:在数字控制系统中,积分控制分量的引入主要是为了消除静差,提高系统的精度。
但在过程启动、停车或大幅度改变设定值时,由于产生较大的偏差,加上系统本身的惯性和滞后,在积分作用下,计算得到的控制量将超出执行机构可能的最大动作范围对应的极限控制量,结果产生系统输出的较大超调,甚至引起系统长时间的振荡,这对大多数的生产过程是不允许的,由此引进积分分离PID 算法,既保持了积分作用,又可减少超调量,使系统的控制性能得到较大的改善。
实验基本思想:在偏差e(k)较大时,暂时取消积分作用;当偏差e(k)小于某个阈值时,才将积分作用投入。
1)根据实际需要,设定一个阈值ε>0。
2)当|e(k)|>ε,即偏差较大时,采用PD 控制,可避免大的超调,又使系统有较快的响应。
3)当|e(k)|<=ε,即偏差较小时,采用PID 控制或PI 控制,可保证系统的控制精度。
积分分离形式:u(k)=Kp{e(k)+)]1()([)(0--+∑=k e k e TTd j e Ti T k j β} 式中β=1(|e(k)<=ε|) 或β=0 (|e(k)|>ε)实验目的:利用Simulink 设计数字PID 控制器,加入模块Switch ,通过调整阈值实现积分分离,并通过Simulink 仿真与标准PID 控制进行比较。
实验线路图:普通PID 控制线路:上次实验得到较好系统性能的整定后的参数为Kp=600,Ki=450,Kd=26。
此次实验会在上次实验的基础上作进一步的改进,引入积分分离。
/s/blog_6a04c83201018gu9.html实验结果:(1)当Ki、Kd为0,Kp=1时得到的响应曲线如下:(2)当Kp逐渐增大,Ki、Kd=0时,得到图像如下:(2)由上图像得,只改变比例系数Kp,超调量变大,且稳定性能也不高。
数字PID调节器算法的研究实验报告
实验四数字PID 调节器算法的研究一、实验目的1.学习并熟悉常规的数字PID 控制算法的原理;2.学习并熟悉积分分离PID 控制算法的原理;3.掌握具有数字PID 调节器控制系统的实验和调节器参数的整定方法。
二、实验设备1.THTJ-1 型计算机控制技术实验箱2.THVLW-1 型USB 数据采集卡一块(含37 芯通信线、USB 电缆线各1 根)3.PC 机1 台(含上位机软件“THTJ-1”)三、实验内容1.利用本实验平台,设计并构成一个用于混合仿真实验的计算机闭环实时控制系统;2.采用常规的PI 和PID 调节器,构成计算机闭环系统,并对调节器的参数进行整定,使之具有满意的动态性能;3.对系统采用积分分离PID 控制,并整定调节器的参数。
四、实验原理在工业过程控制中,应用最广泛的控制器是 PID 控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。
而数字PID 控制器则是由模拟PID 控制规律直接变换所得。
在 PID 控制规律中,引入积分的目的是为了消除静差,提高控制精度,但系统中引入了积分,往往使之产生过大的超调量,这对某些生产过程是不允许的。
因此在工业生产中常用改进的PID 算法,如积分分离PID 算法,其思想是当被控量与设定值偏差较大时取消积分控制;当控制量接近给定值时才将积分作用投入,以消除静差,提高控制精度。
这样,既保持了积分的作用,又减小了超调量。
五、实验步骤1、实验接线1.1 按图4-1 和图4-2 连接一个二阶被控对象闭环控制系统的电路;1.2 该电路的输出与数据采集卡的输入端AD1 相连,电路的输入与数据采集卡的输出端DA1 相连;1.3 待检查电路接线无误后,打开实验平台的电源总开关,并将锁零单元的锁零按钮处于“不锁零”状态。
2、脚本程序运行2.1 启动计算机,在桌面双击图标THTJ-1,运行实验软件;2.2 顺序点击虚拟示波器界面上的“开始采集”按钮和工具栏上的脚本编程器按钮;2.3 在脚本编辑器窗口的文件菜单下点击“打开”按钮,并在“计算机控制算法VBS\ 计算机控制技术基础算法\数字PID 调器算法”文件夹下选中“位置式PID”脚本程序并打开,阅读、理解该程序,然后点击脚本编辑器窗口的调试菜单下“步长设置”,将脚本算法的运行步长设为100ms;2.4 点击脚本编辑器窗口的调试菜单下“启动”;用虚拟示波器观察图4-2 输出端的响应曲线;2.5 点击脚本编辑器的调试菜单下“停止”,利用扩充响应曲线法(参考本实验附录4)整定PID控制器的P、I、D及系统采样时间Ts等参数,然后再运行。
(完整版)数字PID及其算法
数字PID 及其算法主要内容:1、PID 算法的原理及数字实现2、数字PID 调节中的几个实际问题3、几种发展的PID 算法4、PID 参数的整定方法一、概述几个概念:1、程序控制:使被控量按照预先规定的时间函数变化所作 的控制,被控量是时间的函数。
2、顺序控制:是指控制系统根据预先规定的控制要求,按 照各个输入信号的条件,使过程的各个执行机构自动地按预 先规定的顺序动作。
3、PID 控制:调节器的输出是输入的比例、积分、微分的 函数。
4、直接数字控制:根据采样定理,先把被控对象的数学模 型离散化,然后由计算机根据数学模型进行控制。
5、最优控制:是一种使控制过程处在某种最优状态的控制。
6、模糊控制:由于被控对象的不确定性,可采用模糊控制。
二、PID 算法的原理及数字实现PID 调节的实质:根据系统输入的偏差,按照PID 的函数 关系进行运算,其结果用以控制输出。
PID 调节的特点:PID 的函数中各项的物理意义清晰,调节灵活,便于程序化实现。
三、 PID 算法的原理及数字实现PID 调节器是一种线性调节器,他将设定值w 与实际值y 的偏差:按其比例、积分、微分通过线性组合构成控制量1、比例调节器:比例调节器的微分方程为:)(*y t e Kp =y 为调节器输出,Kp 为比例系数,e(t)为调节器输入偏差。
由上式可以看出比例调节的特点:调节器的输出与输入偏差成正比。
只要偏差出现,就能及时地产生与之成比例的调节作用,使被控量朝着减小偏差的方向变化,具有调节及时的特点。
但是,Kp 过大会导致动态品质变坏,甚至使系统不稳定。
比例调节器的阶跃响应特性曲线如下图yw e -=sd *K s Ki pK 对象 we + - + + + u y2、积分调节器:积分作用是指调节器的输出与输入偏差的积分成比例的作用,其作用是消除静差。
积分方程为:TI 是积分时间常数,它表示积分速度的大小,TI 越大,积分速度越慢,积分作用越弱。
PID控制实验报告
实验二 数字PID 控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID 控制算法不能直接使用,需要采用离散化方法。
在计算机PID 控制中,使用的是数字PID 控制器。
一、位置式PID 控制算法按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式:∑∑==--++=⎪⎪⎭⎫ ⎝⎛--++=k j di p k j D I p T k e k e k T j e k k e k k e k e T T j e T T k e k k u 00)1()()()())1()(()()()( 式中,D p d I pi T k k T k k ==,,e 为误差信号(即PID 控制器的输入),u 为控制信号(即控制器的输出)。
在仿真过程中,可根据实际情况,对控制器的输出进行限幅。
二、连续系统的数字PID 控制仿真连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。
1.Ex3 设被控对象为一个电机模型传递函数BsJs s G +=21)(,式中J=0.0067,B=0.1。
输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。
采用ODE45方法求解连续被控对象方程。
因为Bs Js s U s Y s G +==21)()()(,所以u dt dy B dty d J =+22,另y y y y ==2,1,则⎪⎩⎪⎨⎧+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数ex3f.m 如下 function dy = ex3f(t,y,flag,para)u=para;J=0.0067;B=0.1;dy=zeros(2,1);dy(1) = y(2);dy(2) = -(B/J)*y(2) + (1/J)*u;控制主程序ex3.mclear all;close all;ts=0.001; %采样周期xk=zeros(2,1);%被控对象经A/D转换器的输出信号y的初值e_1=0;%误差e(k-1)初值u_1=0;%控制信号u(k-1)初值for k=1:1:2000 %k为采样步数time(k) = k*ts; %time中存放着各采样时刻rin(k)=0.50*sin(1*2*pi*k*ts); %计算输入信号的采样值para=u_1; % D/AtSpan=[0 ts];[tt,xx]=ode45('ex3f',tSpan,xk,[],para); %ode45解系统微分方程%xx有两列,第一列为tt时刻对应的y,第二列为tt时刻对应的y导数xk = xx(end,:); % A/D,提取xx中最后一行的值,即当前y和y导数yout(k)=xk(1); %xk(1)即为当前系统输出采样值y(k)e(k)=rin(k)-yout(k);%计算当前误差de(k)=(e(k)-e_1)/ts; %计算u(k)中微分项输出u(k)=20.0*e(k)+0.50*de(k);%计算当前u(k)的输出%控制信号限幅if u(k)>10.0u(k)=10.0;endif u(k)<-10.0u(k)=-10.0;end%更新u(k-1)和e(k-1)u_1=u(k);e_1=e(k);endfigure(1);plot(time,rin,'r',time,yout,'b');%输入输出信号图xlabel('time(s)'),ylabel('rin,yout');figure(2);plot(time,rin-yout,'r');xlabel('time(s)'),ylabel('error');%误差图程序运行结果显示表1所示。
PID控制算法(PID控制原理与程序流程)
PID控制算法(PID控制原理与程序流程)⼀、PID控制原理与程序流程(⼀)过程控制的基本概念过程控制――对⽣产过程的某⼀或某些物理参数进⾏的⾃动控制。
1、模拟控制系统图5-1-1 基本模拟反馈控制回路被控量的值由传感器或变送器来检测,这个值与给定值进⾏⽐较,得到偏差,模拟调节器依⼀定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执⾏器作⽤于过程。
控制规律⽤对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。
2、微机过程控制系统图5-1-2 微机过程控制系统基本框图以微型计算机作为控制器。
控制规律的实现,是通过软件来完成的。
改变控制规律,只要改变相应的程序即可。
3、数字控制系统DDC图5-1-3 DDC系统构成框图DDC(Direct Digital Congtrol)系统是计算机⽤于过程控制的最典型的⼀种系统。
微型计算机通过过程输⼊通道对⼀个或多个物理量进⾏检测,并根据确定的控制规律(算法)进⾏计算,通过输出通道直接去控制执⾏机构,使各被控量达到预定的要求。
由于计算机的决策直接作⽤于过程,故称为直接数字控制。
DDC系统也是计算机在⼯业应⽤中最普遍的⼀种形式。
(⼆)模拟PID调节器1、模拟PID控制系统组成图5-1-4 模拟PID控制系统原理框图2、模拟PID调节器的微分⽅程和传输函数PID调节器是⼀种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的⽐例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进⾏控制。
a、PID调节器的微分⽅程式中b、PID调节器的传输函数3、PID调节器各校正环节的作⽤a、⽐例环节:即时成⽐例地反应控制系统的偏差信号e(t),偏差⼀旦产⽣,调节器⽴即产⽣控制作⽤以减⼩偏差。
b、积分环节:主要⽤于消除静差,提⾼系统的⽆差度。
积分作⽤的强弱取决于积分时间常数TI,TI越⼤,积分作⽤越弱,反之则越强。
c、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太⼤之前,在系统中引⼊⼀个有效的早期修正信号,从⽽加快系统的动作速度,减⼩调节时间。
PID控制实验报告
页脚内容1实验二 数字PID 控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID 控制算法不能直接使用,需要采用离散化方法。
在计算机PID 控制中,使用的是数字PID 控制器。
一、位置式PID 控制算法按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式:∑∑==--++=⎪⎪⎭⎫ ⎝⎛--++=k j di p kj D I p T k e k e k T j e k k e k k e k e T T j e T T k e k k u 00)1()()()())1()(()()()( 式中,D p d I pi T k k T k k ==,,e 为误差信号(即PID 控制器的输入),u 为控制信号(即控制器的输出)。
在仿真过程中,可根据实际情况,对控制器的输出进行限幅。
二、连续系统的数字PID 控制仿真连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。
1.Ex3 设被控对象为一个电机模型传递函数BsJs s G +=21)(,式中J=0.0067,B=0.1。
输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。
采用ODE45方法求解连续被控对象方程。
页脚内容2 因为Bs Js s U s Y s G +==21)()()(,所以u dt dy B dt y d J =+22,另y y y y ==2,1,则⎪⎩⎪⎨⎧+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数ex3f.m 如下function dy = ex3f(t,y,flag,para)u=para;J=0.0067;B=0.1;dy=zeros(2,1);dy(1) = y(2);dy(2) = -(B/J)*y(2) + (1/J)*u;控制主程序ex3.mclear all;close all;ts=0.001; %采样周期xk=zeros(2,1);%被控对象经A/D 转换器的输出信号y 的初值e_1=0;%误差e(k-1)初值u_1=0;%控制信号u(k-1)初值for k=1:1:2000 %k 为采样步数time(k) = k*ts; %time中存放着各采样时刻rin(k)=0.50*sin(1*2*pi*k*ts); %计算输入信号的采样值para=u_1; % D/AtSpan=[0 ts];[tt,xx]=ode45('ex3f',tSpan,xk,[],para); %ode45解系统微分方程%xx有两列,第一列为tt时刻对应的y,第二列为tt时刻对应的y导数xk = xx(end,:); % A/D,提取xx中最后一行的值,即当前y和y导数yout(k)=xk(1); %xk(1)即为当前系统输出采样值y(k)e(k)=rin(k)-yout(k);%计算当前误差de(k)=(e(k)-e_1)/ts; %计算u(k)中微分项输出u(k)=20.0*e(k)+0.50*de(k);%计算当前u(k)的输出%控制信号限幅if u(k)>10.0u(k)=10.0;endif u(k)<-10.0页脚内容3u(k)=-10.0;end%更新u(k-1)和e(k-1)u_1=u(k);e_1=e(k);endfigure(1);plot(time,rin,'r',time,yout,'b');%输入输出信号图xlabel('time(s)'),ylabel('rin,yout');figure(2);plot(time,rin-yout,'r');xlabel('time(s)'),ylabel('error');%误差图程序运行结果显示表1所示。
PID控制算法
PID (Proportional Integral Differential )控制是比例、积分、微分控制的简称。
在自动控制领域中,PID 控制是历史最久、生命力最强的基本控制方式。
PID 控制器的原理是根据系统的被调量实测值与设定值之间的偏差,利用偏差的比例、积分、微分三个环节的不同组合计算出对广义被控对象的控制量。
图1是常规PID 控制系统的原理图。
其中虚线框内的部分是PID 控制器,其输入为设定值)(t r 与被调量实测值)(t y 构成的控制偏差信号)(t e :)(t e =)(t r -)(t y (1)其输出为该偏差信号的比例、积分、微分的线性组合,也即PID 控制律:])()(1)([)(0⎰++=tDIP dtt de T dt t e T t e K t u (2)式中,P K 为比例系数;D T 为积分时间常数;D T 为微分时间常数。
根据被控对象动态特性和控制要求的不同,式(2)中还可以只包含比例和积分的PI 调节或者只包含比例微分的PD 调节。
下面主要讨论PID 控制的特点及其对控制过程的影响、数字PID 控制策略的实现和改进,以及数字PID 控制系统的设计和控制参数的整定等问题。
1.PID 控制规律的特点 (1)比例控制器比例控制器是最简单的控制器,其控制规律为0)()(u t e K t u P += (3)式中,Kp 为比例系数;0u 为控制量的初值,也就是在启动控制系统时的控制量。
图2所示是比例控制器对单位阶跃输入的阶跃响应。
由图2可以看到,比例控制器对于偏差是及时反应的,偏差一旦产生,控制器立即产生控制作用使被控量朝着减小偏差的方向变化,控制作用的强弱取决于比例系数Kp 。
图2 比例控制器的阶跃响应比例控制器虽然简单快速,但对于具有自平衡性(即系统阶跃响应终值为一有限值)的被控对象存在静差。
加大比例系数Kp 虽然可以减小静差,但当Kp 过大时,动态性能会变差,会引起被控量振荡,甚至导致闭环系统不稳定。
计算机控制系统实验
K PTD 0.36 K PU T
实验三 数字PID算法实验
(4)根据PID参数不同的控制作用,适当加以调 整,重复做几次,直至超调量小于20%、调节时间 小于1s。记录实验数据。
5. 实验报告内容
(1)编制应用软件程序实现数字PID控制器。给 出程序流程图和程序清单。 (2)给出PID参数整定的详细实验步骤。 (3)记录实验数据,分析实验结果。
2. 实验仪器
(1) (2) (3) (4) (5) 示波器 一台 MCS-51单片机开发系统 一套 直流稳压电源(±5V) 一台 个人PC机 一台 函数发生器(也可用程序自行编制)一台
实验五 最小拍无纹波控制算法实验
3. 实验原理
(1)过程原理 以 8 9 C51 单 片 机 为 核 心 , 将 8 位 A / D 转 换 器 ADC0809和DAC0832作为模/数和数/模转换环节, 针对阶跃输入,利用单片机系统实现最小拍无纹波 控制算法。借助示波器观测系统输出和控制器输出 来观察最小拍无纹波算法对控制系统的作用效果及 不同输入信号作用下的算法的适应性。记录实验数 据,分析最小拍无纹波控制算法的作用。
实验六 大林算法实验
(2)算法原理
1 eTs 10eTs 广义被控对象传递函数为 G( s) s s( s 1) 广义目标传递函数为
1 eTs eTs ( s) , T 0.2s, τ 0.1s s τs 1 则大林算法对应的数字控制器可表为
实验三 数字PID算法实验
(2)算法原理 数字PID控制算法可表述为
简记为
其中e(k)和u(k)分别为第k时刻的控制器的输入和 输出。
实验三 数字PID算法实验
4. 实验步骤
(1)按原理图E3.1连接实验电路。 (2)设定采样周期为50ms,参考输入为单位阶 跃输入,编制应用软件实现数字PID控制算法。 (3)利用临界比例带法整定PID参数:先去掉微 分和积分作用,增大KP,用示波器观测系统输出, 直至系统出现等幅振荡,记下振荡周期TU 和此时 的比例值KPU,按以下公式整定PID参数。 ① 用比例环节:KP=P=0.5KPU ② 用比例、积分调节(T取 1 TU ): 5 比例 KP=P=0.36KPU
PID调节原理与PID参数整定方法
PID调节原理与PID参数整定方法PID调节原理与参数整定方法是自动控制系统中常用的调节算法和方法之一、PID调节器是一种反馈调节控制器,利用当前的偏差值、偏差累积值和偏差变化率来产生控制输出,进而改变被控对象的状态,使其尽可能地满足设定值。
PID调节器由三个部分组成:比例(P)调节器、积分(I)调节器和微分(D)调节器。
P调节器根据偏差值来产生控制信号;I调节器根据偏差累积值来产生控制信号;D调节器根据偏差变化率来产生控制信号。
这三个调节器的输出都与偏差成比例,然后将它们相加得到最终的控制输出。
PID控制器的数学表达式为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)是控制输出,Kp、Ki和Kd是调节器的增益参数,e(t)是偏差,t是时间。
参数整定是指选择合适的PID控制参数以实现系统良好性能。
对于PID参数整定,常用的方法有以下几种:1.经验法:根据经验和实际应用中相似系统的参数进行估计和调整。
这种方法简单易行,但对于不同系统的参数整定效果不一致。
2. Ziegler-Nichols方法:此方法通过实验获取系统的临界增益(Kcr)和临界周期(Pcr),然后根据不同的整定规则选择PID参数。
常用的整定规则有:P控制器(Kp = 0.5 * Kcr)、PI控制器(Kp = 0.45* Kcr,Ki = 1.2 / Pcr)和PID控制器(Kp = 0.6 * Kcr,Ki = 2 / Pcr,Kd = 8 / Pcr)。
3.最小二乘法:通过最小化系统的输出与设定值之间的误差,来确定合适的PID参数。
这种方法需要进行大量的计算,适用于精确调节和要求高性能的系统。
4.频响法:通过系统的频率响应曲线来进行参数整定。
此方法需要对系统进行频率扫描,可以获得系统的幅频特性和相频特性,然后根据相应的调节规则选择PID参数。
总结来说,PID调节原理是利用当前的偏差值、偏差累积值和偏差变化率来产生控制输出;而PID参数整定方法可以通过经验法、Ziegler-Nichols方法、最小二乘法和频响法等多种方法来选择合适的参数,以实现系统的稳定性和性能要求。
数字PID控制算法
连续域里PID 调节器的输出为1()()[()()]t p dide t u t K e t e t dt T T dt=++⎰数字PID 控制算法用数值逼近的方法实现PID 控制规律, 数值逼近的方法:用求和代替积分、用后向差分代替微分,使模拟PID 离散化为差分方程。
数字PID 控制有两种实现方法:位置式、增量式。
程序中ASR 部分的PID 采用的是位置式。
(1)位置式PID 控制算法()kt s j j e t dt T e =≈∑⎰1()k k se e de t dtT --≈10[()]ks D k p k j k k j IsT T u K e e e e T T -==++-∑p K 为比例增益,s T 为计算周期,I T 为积分时间,D T 为微分时间。
位置式PID 控制算法的程序设计思路:将三项拆开,并应用递推进行编程10()kk p k I j D k k j u K e K e K e e -==++-∑比例输出()p p k P k K e =积分输出0()(1)kI I j I k I j P k K e K e P k ===+-∑=(1)s pk I IT K e P k T +-微分输出1()()D D k k P k K e e -=-=1()D pk k sT K e e T --()()()()p I D P k P k P k P k =++注:程序中ASR 实际是对速度偏差的PI 控制,没有对速度偏差进行微分处理。
而“ASR 加速度补偿微分时间”是:通过设置此参数,将给定速度进行微分,得到一个前馈转矩给定,并加在给定转矩上,使在加减速过程中运行速度更好的跟踪给定速度,并减小超调。
(2)增量式PID 控制算法 10[()]ks D k p k j k k j IsT T u K e e e e T T -==++-∑111120[()]k s D k p k j k k j IsT T u K e e e e T T -----==++-∑1112[(2)]s D k k k p k k k k k k IsT T u u u K e e e e e e T T ----∆=-=-++-+增量式控制算法提供执行机构的增量k u ∆,只需要保持现时以前3个时刻的偏差值即可。
实验三数字PID控制
实验三数字PID控制一、实验目的1.研究PID控制器的参数对系统稳定性及过渡过程的影响。
2.研究采样周期T对系统特性的影响。
3.研究I型系统及系统的稳定误差。
二、实验仪器1.EL-AT-III型计算机控制系统实验箱一台2.PC计算机一台三、实验容1.系统结构图如3-1图。
图3-1 系统结构图图中 Gc(s)=Kp(1+Ki/s+Kds)Gh(s)=(1-e-TS)/sGp1(s)=5/((0.5s+1)(0.1s+1))Gp2(s)=1/(s(0.1s+1))2.开环系统(被控制对象)的模拟电路图如图3-2和图3-3,其中图3-2对应GP1(s),图3-3对应Gp2(s)。
图3-2 开环系统结构图1 图3-3开环系统结构图2 3.被控对象GP1(s)为“0型”系统,采用PI控制或PID控制,可系统变为“I型”系统,被控对象Gp2(s)为“I型”系统,采用PI控制或PID控制可使系统变成“II型”系统。
4.当r(t)=1(t)时(实际是方波),研究其过渡过程。
5.PI调节器及PID调节器的增益Gc(s)=Kp(1+K1/s)=KpK1((1/k1)s+1) /s=K(Tis+1)/s式中 K=KpKi , Ti=(1/K1)不难看出PI调节器的增益K=KpKi,因此在改变Ki时,同时改变了闭环增益K,如果不想改变K,则应相应改变Kp。
采用PID调节器相同。
6.“II型”系统要注意稳定性。
对于Gp2(s),若采用PI调节器控制,其开环传递函数为G(s)=Gc(s)·Gp2(s)=K(Tis+1)/s·1/s(0.1s+1)为使用环系统稳定,应满足Ti>0.1,即K1<107.PID递推算法如果PID调节器输入信号为e(t),其输送信号为u(t),则离散的递推算法如下:u(k)=u(k-1)+q0e(k)+q1e(k-1)+q2e(k-2)其中 q0=Kp(1+KiT+(Kd/T))q1=-Kp(1+(2Kd/T))q2=Kp(Kd/T)T--采样周期四、实验步骤1.连接被测量典型环节的模拟电路(图3-2)。
计算机控制技术实验报告
实验一 基于Matlab 的控制系统模型一、 实验目的1. 熟悉Matlab 的使用环境,学习Matlab 软件的使用方法和编程方法2. 学习使用Matlab 进行各类数学变换运算的方法3. 学习使用Matlab 建立控制系统模型的方法二、 实验器材x86系列兼容型计算机,Matlab 软件三、 实验原理1. 香农采样定理对一个具有有限频谱的连续信号f(t)进行连续采样,当采样频率满足max 2ωω≥S 时,采样信号f*(t)能无失真的复现原连续信号。
作信号tet f 105)(-=和kT10*5)(-=et f 的曲线,比较采样前后的差异。
幅度曲线: T=0.05 t=0:T:0.5f=5*exp(-10*t) subplot(2,1,1) plot(t,f) gridsubplot(2,1,2) stem(t,f) grid请改变采样周期T ,观察不同的采样周期下的采样效果。
幅频曲线: w=-50:1:50F=5./sqrt(100+w.^2) plot(w,F) grid若|)0(|1.0|)(|max F j F =ω,选择合理的采样周期T 并加以验证。
(抽样后的频谱是将原信号频谱以抽样频率s ω为周期进行周期延拓,幅度变为原来的s T 1而得到)w=-400:20:400ws=200 Ts=2*pi/wsF0=5/Ts*(1./sqrt(100+(w).^2)) F1=5/Ts*(1./sqrt(100+(w-ws).^2)) F2=5/Ts*(1./sqrt(100+(w+ws).^2)) plot(w,F0,w,F1,w,F2) grid请改变采样频率ws ,观察何时出现频谱混叠?2. 拉式变换和Z 变换使用Matlab 求函数的拉氏变换和Z 变换拉式变换: syms a w t f1=exp(-a*t)Z 变换: syms a k T f1=exp(-a*k*T)laplace(f1) f2=tlaplace(f2) f3=t* exp(-a*t) laplace(f3) f4=sin(w*t) laplace(f4)f5=exp(-a*t)*cos(w*t) laplace(f5)反拉式变换 syms s a f1=1/silaplace(f1) f2=1/(s+a) ilaplace(f2) f3=1/s^2 ilaplace(f3)f4=w/(s^2+w^2) ilaplace(f4)f5=1/(s*(s+2)^2*(s+3)) ilaplace(f5)ztrans(f1) f2=k*T ztrans(f2)f3=k*T*exp(-a*k*T) ztrans(f3) f4=sin(a*k*T) ztrans(f4) f5=a^k ztrans(f5)反Z 变换 syms z a T f1=z/(z-1) iztrans(f1)f2=z/(z-exp(-a*T)) iztrans(f2) f3=T*z/(z-1)^2 iztrans(f3) f4=z/(z-a) iztrans(f4)f5=z/((z+2)^2*(z+3)) iztrans(f5)3. 控制系统模型的建立与转化传递函数模型:num=[b1,b2,…bm],den=[a1,a2,…an],nn n mm m b s a s a b s b s b den num s G ++++++==-- 121121)( 零极点增益模型:z=[z1,z2,……zm],p=[p1,p2……pn],k=[k],)())(()())(()(2121n m p s p s p s z s z s z s ks G ------=建立系统模型65)3)(2()1()(22+++=+++=s s ss s s s s s G 和65)3)(2()1()(22+++=+++=z z zz z z z z z G 传递函数模型: num=[1,1,0] den=[1,5,6] T=0.1Gs1=tf(num,den) Gz1=tf(num,den,T) 零极点增益模型: z=[0,-1] p=[-2,-3] k=[1] T=0.1Gs2=zpk(z,p,k) Gz2=zpk(z,p,k,T)传递函数模型和零极点增益模型相互转化 传递函数模型转化零极点增益模型: num=[1,1,0] den=[1,5,6] T=0.1Gs1=tf(num,den) Gz1=tf(num,den,T) [z,p,k]=tf2zp(num,den) Gs2=zpk(z,p,k) Gz2=zpk(z,p,k,T)零极点增益模型转化传递函数模型: z=[0,-1] p=[-2,-3] k=[2] T=0.1Gs1=zpk(z,p,k) Gz1=zpk(z,p,k,T)[num,den]=zp2tf(z',p',k) Gs2=tf(num,den) Gz2=tf(num,den,T)建立系统模型)84)(2()22)(1()(222++++++=s s s s s s s G 和)84)(2()22)(1()(222++++++=z z z z z z z G num1=[1,1]num2=[1,2,2] den1=[1,0,2] den2=[1,4,8]num=conv(num1,num2) den=conv(den1,den2) T=0.1Gs1=tf(num,den) Gz1=tf(num,den,T) [z,p,k]=tf2zp(num,den) Gs2=zpk(z,p,k) Gz2=zpk(z,p,k,T)四、 实验步骤1. 根据参考程序,验证采样定理、拉氏变换和Z 变换、控制系统模型建立的方法2. 观察记录输出的结果,与理论计算结果相比较3. 自行选则相应的参数,熟悉上述的各指令的运用方法五、 实验数据及结果分析记录输出的数据和图表并分析 T=0.05时,幅度曲线和幅频曲线0.050.10.150.20.250.30.350.40.450.501234500.050.10.150.20.250.30.350.40.450.50123450.050.10.150.20.250.30.350.40.450.5012345-50-40-30-20-10102030405000.10.20.30.40.5T=0.1时,幅度曲线和幅频曲线拉氏变换结果: 反拉氏变换结果: f1 = f1= exp(-a*t) 1/s ans = ans= 1/(s+a) 1 f2 = f2 =t 1/(s+a) ans = ans =1/s^2 exp(-a*t) f3 = f3 = t*exp(-a*t) 1/s^2 ans = ans= 1/(s+a)^2 t f4 = f4=sin(w*t) w/(s^2+w^2) ans = ans=w/(s^2+w^2) sin(w*t) f5 = f5 =0 0.0 0. 0.1 0. 0.2 0. 0.30. 0.4 0.1 2 3 4 5 -5-4 -3 -2 -1 01 2 3 4 50 0. 0. 0. 0.0.0.05 0.10.15 0.20.25 0.30.35 0.40.45 0.50 1 2 3 4 50.05 0.10.15 0.20.25 0.30.35 0.40.45 0.50 1 2 3 4 5exp(-a*t)*cos(w*t) 1/s/(s+2)^2/(s+3) ans = ans =(s+a)/((s+a)^2+w^2) 1/12+(-1/2*t+1/4)*exp(-2*t)-1/3*exp(-3*t)s ω=200时, s ω=400时,Z 变换: 反Z 变换: f1 =f1 = exp(-a*k*T) z/(z-1) ans = ans = z/exp(-a*T)/(z/exp(-a*T)-1) 1 f2 = f2 =k*T z/(z-exp(-a*T)) ans = ans =T*z/(z-1)^2 exp(-a*T)^n f3 = f3 =k*T*exp(-a*k*T) T*z/(z-1)^2 ans = ans = T*z*exp(-a*T)/(z-exp(-a*T))^2 T*n f4 = f4 = sin(a*k*T) z/(z-a) ans = ans = z*sin(a*T)/(z^2-2*z*cos(a*T)+1) a^n f5 = f5 =a^k z/(z+2)^2/(z+3) ans = ans =z/a/(z/a-1) -(-2)^n-1/2*(-2)^n*n+(-3传递函数模型: 零极点增益模型: Transfer function: Zero/pole/gain:s^2 + s s (s+1) ------------- ----------- s^2 + 5 s + 6 (s+2) (s+3) Transfer function: Zero/pole/gain:-400-300-200-100010020030040005101520253035-400-300-200-1000100200300400246810121416z^2 + 5 z + 6 z (z+1) Sampling time: 0.1 -----------(z+2) (z+3)Sampling time: 0.1系统模型:num =1 3 4 2den =1 4 10 8 16T =0.1000Transfer function:s^3 + 3 s^2 + 4 s + 2-------------------------------s^4 + 4 s^3 + 10 s^2 + 8 s + 16Transfer function:z^3 + 3 z^2 + 4 z + 2-------------------------------z^4 + 4 z^3 + 10 z^2 + 8 z + 16Sampling time: 0.1z =-1.0000 + 1.0000i-1.0000 - 1.0000i-1.0000p =-2.0000 + 2.0000i-2.0000 - 2.0000i-0.0000 + 1.4142i-0.0000 - 1.4142ik =1Zero/pole/gain:(s+1) (s^2 + 2s + 2)--------------------------(s^2 + 2) (s^2 + 4s + 8)Zero/pole/gain:(z+1) (z^2 + 2z + 2)--------------------------(z^2 + 2) (z^2 + 4z + 8)Sampling time: 0.1实验二 基于Matlab 的控制系统仿真一、 实验目的1. 学习使用Matlab 的命令对控制系统进行仿真的方法2. 学习使用Matlab 中的Simulink 工具箱进行系统仿真的方法二、 实验器材 x86系列兼容型计算机,Matlab 软件 三、实验原理1. 控制系统命令行仿真建立如图所示一阶系统控制模型并进行系统仿真。
自动控制理论实验三pid调节器及参数整定
实验三PID调节器及参数整定一.实验目的:通过Simulink仿真,使学生了解FID控制器的参数(P. I> D)对系统性能(动态性能和稳态性能)的影响。
二、实验设备PC机及MATLAB平台三、实验原理及方法1、模型文件的建立在命令窗口(matlab conmand window)键入simulink (或在MATLAB窗口中单击按纽岭),就出现一个称为Simulink Library Browser的窗口。
在这个窗口中列出了按功能分类的各种模块的名称。
以往十分困难的系统仿真问题,用SIMULINK只需拖动鼠标即可轻而易举地解决问题。
若想建立一个模型文件(.mdl),则选取文件/New/Model菜单项,Simulink 就会打开一个名为Untiled的模型窗口。
2、S IMULINK环境介绍双击simulink库中模块simulink前面的"+"就出现如图所示的窗口。
此即是SIMULINK环境。
一般而言,simulink提供以下8类模块。
(1)Continuous:连续模块(2)Discrete:离散模块(3)Functions & Table:函数和表格模块(4)Math:数学模块(5)Nonlinear:线性模块(6)Signals & Systems:信号和系统模块(7)Sinks:输出设备模块(8)Sources:输入源模块3、S IMULINK仿真的运行前面我们介绍了如何创建一个Simulink模型,构建好一个系统的模型之后,接下来的事情就是运行模型,得出仿真结果。
运行一个仿真的完整过程分成三个步骤:设置仿真参数,启动仿真和仿真结果分析。
四、实验内容:1、被控制对象传递函数为G⑸一仝)°试设计PID调节器,s(s" + 30s + 200)研究比例调节器(P)、比例积分调节器(PI)、比例微分积分调节器(PID) 对系统性能的影响;原仿真系统仿真框图:原系统输出:加入PID后的仿真系统框图:加入比例调节器(P)后系统的输出:1.8 o.a 1 --------- 11 -------- 1 -------- 1 --------- 1 | -------- 1 --------- 1(---------- 1A 1 /l1i 1 1 tLi... I J 1 1r■L I .......1 J __________ !1 I i i I1!i i i1 I0.2 1235791.6 1.41.21O.G 04 加入比例积分调节器(PI)后系统的输出: 加入比例微分积分调节器(PID)后系统的输出:1.8结论:由图可知,控制器的比例增益能及时.快速地对系统进行调节,但是会降低系统稳定性降低;FI调节器提高系统稳态精度,PID调节器既提高系统稳态精度又改善系统动态性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学院:********** 班级:********** 姓名:****** 学号:**********实验三数字PID调节器算法的研究实验项目名称:数字PID调节器算法的研究实验项目性质:普通所属课程名称:计算机控制技术实验计划学时:2学时一、实验目的1.学习并熟悉常规的数字PID控制算法的原理;2.学习并熟悉积分分离PID控制算法的原理;3.掌握具有数字PID调节器控制系统的实验和调节器参数的整定方法。
二、实验内容和要求1.利用本实验平台,设计并构成一个用于混合仿真实验的计算机闭环实时控制系统;2.采用常规的PI和PID调节器,构成计算机闭环系统,并对调节器的参数进行整定,使之具有满意的动态性能;3.对系统采用积分分离PID控制,并整定调节器的参数。
二、实验主要仪器和材料1.THTJ-1型计算机控制技术实验箱2.THVLW-1型USB数据采集卡一块(含37芯通信线、USB电缆线各1根)3.PC机1台(含上位机软件“THTJ-1”)四、实验方法、步骤及结果测试1、实验原理在工业过程控制中,应用最广泛的控制器是PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。
而数字PID控制器则是由模拟PID控制规律直接变换所得。
在PID控制规律中,引入积分的目的是为了消除静差,提高控制精度,但系统中引入了积分,往往使之产生过大的超调量,这对某些生产过程是不允许的。
因此在工业生产中常用改进的PID算法,如积分分离PID算法,其思想是当被控量与设定值偏差较大时取消积分控制;当控制量接近给定值时才将积分作用投入,以消除静差,提高控制精度。
这样,既保持了积分的作用,又减小了超调量。
2、实验步骤1、实验接线1.1按图1和图2连接一个二阶被控对象闭环控制系统的电路;1.2该电路的输出与数据采集卡的输入端AD1相连,电路的输入与数据采集卡的输出端DA1相连;1.3待检查电路接线无误后,打开实验平台的电源总开关,并将锁零单元的锁零按钮处于“不锁零”状态。
2、脚本程序运行2.1启动计算机,在桌面双击图标THTJ-1,运行实验软件;2.2顺序点击虚拟示波器界面上的“”按钮和工具栏上的“”按钮(脚本编程器);2.3在脚本编辑器窗口的文件菜单下点击“打开”按钮,并在“计算机控制算法VBS\计算机控制技术基础算法\数字PID调器算法”文件夹下选中“位置式PID”脚本程序并打开,阅读、理解该程序,然后点击脚本编辑器窗口的调试菜单下“步长设置”,将脚本算法的运行步长设为100ms;2.4点击脚本编辑器窗口的调试菜单下“启动”;用虚拟示波器观察图4-2输出端的响应曲线;2.5点击脚本编辑器的调试菜单下“停止”,利用扩充响应曲线法(参考本实验七附录4)整定PID控制器的P、I、D及系统采样时间Ts等参数,然后再运行。
在整定过程中注意观察参数的变化对系统动态性能的影响;2.6 参考步骤2.4、2.4和2.5,用同样的方法分别运行增量式PID和积分分离PID脚本程序,并整定PID控制器的P、I、D及系统采样时间Ts等参数,然后观察参数的变化对系统动态性能的影响。
另外在积分分离PID程序运行过程中,注意不同的分离阈值tem对系统动态性能的影响;2.7 实验结束后,关闭脚本编辑器窗口,退出实验软件。
五、实验报告要求1.绘出实验中二阶被控对象在各种不同的PID控制下的响应曲线。
2.编写积分分离PID控制算法的脚本程序。
3.分析常规PID控制算法与积分分离PID控制算法在实验中的控制效果。
数据分析:(1):位置型PID响应曲线:(2):增量型PID响应曲线:超调量:7.293 峰值时间:0.235ms 达到稳态的时间:5.563ms 稳态值:2.0积分分离型PID响应曲线:超调量:6.514 峰值时间:0.277ms 达到稳态的时间:6.435ms 稳态值:2.0六、思考题1. 该实验中被控对象是什么?有什么特点?答:被控对象是一个积分放大电路的输出;其特点是刚上电的瞬间由于电容的充电作用,其输出电压值会有一个瞬时升高的过程,然后随着电容的充电,输出电压会逐渐稳定。
2. 试画出该实验中数字PID控制系统的方框图。
PID控制系统的方框图3. 试叙述带积分分离的PID 控制算法的特点和应用的场合。
答:带积分分离的PID 算法的特点是:偏差e(k)较大时,取消积分作用;当偏差e(k)较小时才将积分作用投入;其应用场合:当有较大的扰动或大幅度改变给定值采用积分分离措施。
4. 位置式PID 算式与增量式算式有何区别?各有什么优缺点?答:位置式算式提供了执行机构的位置u(k),增量式算式则反映了前后位置之差Δu(k);位置式算法的优点是简单明了,但较容易产生较大的累加误差;增量式算式的优点是误差较小,易于控制,但其算法相对复杂。
5. 数字PID 调节器的参数Kp 、Ti 、Td 和采样周期T 对系统响应有何影响?参数的整定使用什么方法?答:Kp 能控制误差,但其加大会造成系统不稳定;Ti 累积输出控制量以消除误差,但作用太强大会造成系统的超调量加大,甚至出到系统振荡;Td 可以减小超调量,提高稳定性,加快系统动态响应速度,减小调整时间,改善动态性能。
参数的整定用简易工程法中的扩充阶跃响应曲线法。
七、附录1.被控对象的模拟与计算机闭环控制系统的构成图1 数-模混合控制系统的方框图图中信号的离散化通过数据采集卡的采样开关来实现。
被控对象的传递函数为:)15.0)(1(5)2)(1(10)(++=++=s s s s S G它的模拟电路图如下图所示图2 被控二阶对象的模拟电路图2.常规PID 控制算法 1)常规PID 控制位置式算法为:})]1()([)()({)(1∑=--++=ki dip k e k e T T i e T Tk e k k u对应的Z 传递函数为:)1(11)()(D(Z)11---+-+==Z K z K K Z E z U d i P式中K p ---比例系数K i =i p T T K 积分系数,T 采样周期K d =TT K dp 微分系数其增量形式为:)]2()1(2)([)()]1()([)1()(-+--++--+-=k e k e k e K k e K k e k e K k u k u d i p3.积分分离PID 控制算法:系统中引入的积分分离算法时,积分分离PID 算法要设置分离阈E 0: 当 │e(kT)│≤│E 0│时,采用PID 控制,以保持系统的控制精度。
当 │e(kT)│>│E 0│时,采用PD 控制,可使δp 减小。
积分分离PID 控制算法为:∑=--++=kj d i e p k e k e K jT e K K k e K k u 0)1()([)()()(式中K e 称为逻辑系数: 当 │e(k)│≤│E0│时, Ke=1 当 │e(k)│>│E0│时, Ke=0对应的控制方框图为图4-3 上位机控制的方框图图中信号的离散化是由数据采集卡的采样开关来实现。
4.数字PID 控制器的参数整定在模拟控制系统中,参数整定的方法较多,常用的实验整定法有:临界比例度法、阶跃响应曲线法、试凑法等。
数字控制器参数的整定也可采用类似的方法,如扩充的临界比例度法、扩充的阶跃响应曲线法、试凑法等。
下面简要介绍扩充阶跃响应曲线法。
扩充阶跃响应曲线法只适合于含多个惯性环节的自平衡系统。
用扩充阶跃响应曲线法整定PID参数的步骤如下:①数字控制器不接入控制系统,让系统处于开环工作状态下,将被调量调节到给定值附近,并使之稳定下来。
②记录被调量在阶跃输入下的整个变化过程,如下图所示。
③在曲线最大斜率处作切线,求得滞后时间τ和被控对象时间常数Tx,以及它们的比值Tx/τ,然后查下表确定控制器的K P、K i、K d及采样周期T。
扩充阶跃响应曲线法通过测取响应曲线的τ、Tx参数获得一个初步的PID控制参数,然后在此基础上通过部分参数的调节(试凑)使系统获得满意的控制性能。
5.位置式PID数字控制器程序的编写与调试示例:5.1参考程序dim pv,sv,ei,K,Ti,Td,q0,q1,q2,mx,pvx,op ‘变量定义sub Initialize(arg) ‘初始化函数WriteData 0 ,1 '给通道一写0mx=0 '给mx赋初值pvx=0 '给pvx赋初值end sub '结束初始化子函数sub TakeOneStep (arg) ‘算法运行函数pv = ReadData(1) 'pv为当前测量值sv=2 ‘sv为给定值K=0.8 ‘比例系数PTi=5 ‘积分时间常数ITd=0 ‘微分时间常数DTs=0.1 ‘采样周期ei=sv-pv 'ei为当前偏差值q0=K*ei ‘比例项if Ti=0 thenmx=0q1=0elsemx=K*Ts*ei/Ti ‘当前积分项end ifq2=K*Td*(pvx-pv)/Ts ‘'微分项q1=q1+mx '当前积分项if q1>4.9 then ‘积分限幅,以防积分饱和q1=4.9end ifif q1<-4.9 thenq1=-4.9end ifpvx=pv '将当前输出值赋给pvx, 为下一时刻做准备op=q0+q1+q2 'op为控制器当前输出值if op<=-4.9 then '输出值限幅,op下限为-4.9op=-4.9end ifif op>=4.9 then 'op上限为4.9op=4.9end ifWriteData op ,1 '通道1写入op的值end sub '结束算法运行子函数sub Finalize (arg) ‘退出函数WriteData 0 ,1 '给通道一写0end sub '结束退出子函数5.2位置式PID (k=0.8,ti=5,td=0);运行步长100ms,超调量为27.5%。
(如图3)图36、积分分离PID控制算法的编程参考示例:6.1程序dim pv,sv,ei,K,Ti,Td,q0,q1,q2,mx,pvx,op,ke,tem '变量定义sub Initialize(arg) '初始化函数WriteData 0 ,1 '给通道一写0mx=0 '给mx赋初值pvx=0 '给pvx赋初值end sub '结束初始化子函数sub TakeOneStep (arg) '算法运行函数pv = ReadData(1) ' pv为当前测量值sv=2 'sv为给定值K=0.8 'K为比例系数Ti=5 'Ti为积分时间常数Td=0 'Td为微分时间常数Ts=0.1 ' Ts为采集周期ei=sv-pv 'ei为当前偏差值tem=abs(ei)if tem>=0.8 then '丨ei丨≥0.8时,ke=0;其中0.8为分离阈值ke=0elseke=1 '丨ei丨<0.8时,ke=1end ifq0=K*ei '比例项if Ti=0 thenmx=0q1=0elsemx=ke*K*Ts*ei/Ti '当前积分项end ifq2=K*Td*(pvx-pv)/Ts '微分项if mx>4.9 then '当前积分限幅,以防积分饱和mx=4.9end ifif mx<-4.9 thenmx=-4.9end ifq1=q1+mx '当前积分项pvx=pv '将当前输出值赋给pvx, 为下一时刻做准备op=q0+q1+q2 '当前输出值'op为控制器当前输出值if op<=-4.9 then '输出值限幅,op下限为-4.9op=-4.9end ifif op>=4.9 thenop=4.9 'op上限为4.9end ifWriteData op ,1 '通道1写入op的值end sub '结束算法运行子函数sub Finalize (arg) '退出函数WriteData 0 ,1 '给通道一写0end sub '结束退出子函数6.2积分分离PID (k=0.8,ti=5,td=0),超调量为15.6%7、增量式PID控制算法的编程参考示例:7.1参考程序dim pv,sv,ei,ex,ey,K,Ti,Td,q0,q1,q2,op '变量定义sub Initialize(arg) '初始化函数WriteData 0 ,1 '给通道一写0end sub '结束初始化子函数sub TakeOneStep (arg) '算法运行函数pv = ReadData(1) ' pv为当前测量值sv=2 'sv为给定值K=0.8 'K为比例系数Ti=5 'Ti为积分时间常数Td=0 'Td为积分时间常数Ts=0.1 ' Ts为采集周期ei=sv-pv 'ei为当前偏差值q0=k*(ei-ex) '比例项if Ti=0 thenq1=0elseq1=K*Ts*ei/Ti '当前积分项end ifq2=k*td*(ei-2*ex+ey) /Ts '微分项ey=ex '赋值,为下一时刻做准备ex=eiif q1>4.9 then '当前积分限幅,以防积分饱和q1=4.9end ifif q1<-4.9 thenq1=-4.9end ifop=op+q0+q1+q2 'op为控制器当前输出值if op<=-4.9 then '输出值限幅,op下限为-4.9 op=-4.9end ifif op>=4.9 then 'op上限为4.9op=4.9end ifWriteData op ,1 '通道1写入op的值end sub '结束算法运行子函数sub Finalize (arg) '退出函数WriteData 0 ,1 '给通道一写0end sub '结束退出子函数7.2增量式PID (k=0.8,ti=5,td=0),超调量为27.3%。