二次函数的图象与性质(第1课时)教学设计
22.1.2 二次函数的图象和性质(1)教案
描点,并连线
图略
由图象可得二次函数y=x2的性质:
1.二次函数y=x2是一条曲线,把这条曲线叫做______________.
2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的范围是____________.
4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.
在八年级下册,我们学习了一次函数的概念,研究了它的图象和性质。回忆一下如何研究一次函数的图象和性质的?
2、类比探究二次函数
y=ax2的图象与性质。
问题1:类比一次函数的研究内容和研究方法,画二次函数y=x2的图象,你能说说它的图像特征和特性吗?你是如何描点画图的?你打算从哪些角度去观察、概括特征?
【提示:画图象的一般步骤:①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】
2.难点、关键:用描点法画二次函数y=ax2的图象、探索其性质及二次函数y=ax2的灵活运用
教学准备
教科书、多媒体课件
教学时间
1课时
教学过程
第(2)课时
教学环节
教师活动预设
学生活动预设
设计意图
备注
情境导入
如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时达到最大高度3.5,然后准确落入篮筐内。已知,篮圈中心离地面距离为3.05m
(2)已知抛物线y=-2x2,在对称轴的左侧,y随x的增大而;在对称轴的右侧,y随x的增大而
通过描点法画出一次函数的图象,观察图象得出图象的特征和特性,如位置、形状、函数随自变量的增大如何变化。
《二次函数的图像和性质》教学设计与反思
《二次函数的图像和性质》教学设计与反思课题:二次函数的图像和性质科目:数学提供者:XXX教学对象:九年级单位:XXX课时:第一课时一、教学内容分析(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一.二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中研究一元二次不等式和圆锥曲线奠定基础。
在历届淮安市中考试题中,二次函数都是不可缺少的内容。
(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会二、教学目标一、知识技能目标1.学生会用描点法画出y ax2的图象;2.掌握二次函数y ax2的性质。
二、过程方法目标1.学生类比前面所学的函数图像的画法,用描点法画二次函数y ax2的图像;2.学生经历观察、考虑、探索二次函数y ax2图象性质的过程,结合解析式特性、图像特性,感知二次函数y ax2的性质。
三、情感立场方针使学生体会数形结合思想,培养学生观察、思考、归纳的良好思维惯三、研究者特性分析我本期才接手的两个班级,大部分学生数学基础不够扎实,理解能力,运算能力,思维能力等方面都还有所欠缺;研究积极性不高。
针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和研究积极性,指导学生积极思维、主动获取知识,养成良好的研究惯。
并逐步学会独立提出问题、解决问题。
引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
四、讲授策略挑选与设计1.探究引导策略:商量式研究;教师开导引导。
2.自主合作探究式研究策略:相互讨论、交流、合作的课堂氛围。
五、教学重点及难点讲授重点:会用描点法画出二次函数y=ax2的图象,探索二次函数性质教学难点:探索二次函数性质学生活动设计意图教师引导学生回顾:先画出一次函数的图象,然后创设问题情观察、分析、归纳得到一境,让学生通过一、情境引入可以用研类比学过的知识一次函数的性质是如何研究的?我们能否类次函数的性质。
《二次函数的图象和性质(1)》教学设计1
5.4 二次函数的图象和性质(1)教学目标1.能用描点法画函数y=x2图象.2.能画y=-x2图象,并说出它与y=x2图象的共同特征.教学重点1.能用描点法画函数y=x2图象.2.能作出函数y=-x2图象,并说出它与y=x2图象的共同特征.教学难点用描点法画函数y=x2图象,理解它与y=-x2图象的共同特征.教学过程(教师)学生活动设计思路创设情境说一说1.画函数图象步骤:列表、描点、连线.2.研究函数性质方法:数形结合.3.猜想二次函数图象是怎样的?学生回顾画函数图象步骤,研究函数性质方法,并猜想二次函数图象形状.通过回顾已学知识,为二次函数图象与性质的学习打下基础.探索活动活动1.想一想.根据二次函数y=x²表达式,你能描述它的图象有什么特征吗?学生根据函数y=x²表达式描述它的图象有什么特征.通过列表、描点、连线画y=x2图象,让学生经历作图、观察、交流、思考这一过程,感受图象是一个叫“抛物线”的图象.活动2.画一画.在平面直角坐标系中,用描点法画出二次函数y=x²的图象.思考:列表选取哪些点?为什么?画一画.类似地,在平面直角坐标系中,画出二次函数y=-x²的图象.议一议.函数y=x²的图象与函数y=-x²的图象有什么共同特征?(小组交流)抛物线:二次函数y=x²、y=-x²的图象都关于y 轴对称的曲线,称为抛物线.顶点:抛物线与对称轴的交点叫做抛物线的顶点.1.学生通过列表、描点、连线画y=x2的图象.2.学生通过列表、描点、连线画y=-x2的图象.3.学生交流函数y=x²的图象与函数y=-x²的图象有什么共同特征.x ...-3 -2 -1 0 1 2 3 ...y=x²...9 4 1 014 9...x ...-3 -2 -1 0 1 2 3 ...y=-x²...-9 -4 -1 0 -1 -4 -9 ...通过画函数y=-x2图象以及总结其特征再次让学生经历二次函数图象的形成过程.。
《第1课时 二次函数y=ax2(a>0)的图象与性质》教案 (公开课)2022年湘教版数学
1.2 二次函数的图象与性质第1课时 二次函数y =ax 2(a >0)的图象与性质1.会用描点法画二次函数y =ax 2(a >0)的图象,理解抛物线的概念;(重点)2.掌握形如y =ax 2(a >0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入自由落体公式h =12gt 2(g 为常量),h 与t 之间是什么关系呢?它是什么函数?它的图象是什么形状呢?二、合作探究 探究点一:二次函数y =ax 2(a >0)的图象 y =(k +2)xk 2+k 是二次函数. (1)求k 的值;(2)画出函数的图象.解析:根据二次函数的定义,自变量x 的最高次数为2,且二次项系数不为0,这样能确定k 的值,从而确定表达式,画出图象.解:(1)∵y =(k +2)xk 2+k 为二次函数,∴⎩⎪⎨⎪⎧k 2+k =2,k +2≠0,解得k =1;(2)当k =1时,函数的表达式为y =3x 2,用描点法画出函数的图象.描点:(-1,3),(-12,34),(0,0),(12,34),(1,3). 连线:用光滑的曲线按x 的从小到大的顺序连接各点,图象如以下图.方法总结:列表时先取原点(0,0),然后在原点两侧对称地取四个点,由于函数y =ax 2(a ≠0)图象关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等,所以先计算y 轴右侧的两个点的纵坐标,左侧对应写出即可.变式训练:见?学练优?本课时练习“课后稳固提升〞第7题探究点二:二次函数y =ax 2(a >0)的性质 点(-3,y 1),(1,y 2),(2,y 3)都在函数y =x 2的图象上,那么y 1、y 2、y 3的大小关系是________.解析:方法一:把x =-3,1,2分别代入y =x 2中,得y 1=9,y 2=1,y 3=2,那么y 1>y 3>y 2;方法二:如图,作出函数y =x 2的图象,把各点依次在函数图象上标出.由图象可知y 3>y 2;方法三:∵该图象的对称轴为y 轴,a >0,y 随x 的增大而增大,(-3,y 1)关于y 轴的对称点为(3,y 3).又3>2>1,∴y 1>y 3>y 2.方法总结:比拟二次函数中函数值的大小有三种方法:①直接把自变量的值代入解析式中,求出对应函数值进行比拟;②图象法;③根据函数的增减性进行比拟,但当要比拟的几个点在对称轴的两侧时,可根据抛物线的对称轴找出某个点的对称点,转化到同侧后,然后利用性质进行比拟. 变式训练:见?学练优?本课时练习“课后稳固提升〞第2题探究点三:二次函数y =ax 2(a >0)的图象与性质的简单应用函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值; (2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大?解析:由二次函数的定义知:m 2+m -4=2且m +2≠0;抛物线有最低点,那么抛物线开口向上,即m +2>0.解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0,解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2,∴当m =2或m =-3时,原函数为二次函数;(2)假设抛物线有最低点,那么抛物线开口向上,∴m +2>0,即m >-2,∴取m =2.∴这个最低点为抛物线的顶点,其坐标为(0,0).当x >0时,y 随x 的增大而增大.方法总结:二次函数必须满足自变量的最高次数是2且二次项的系数不为0;函数有最低点即开口向上.变式训练:见?学练优?本课时练习“课堂达标训练〞第9题三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =ax 2(a >0)的图象与性质,培养学生动手、动脑、探究归纳问题的能力.4.5 一次函数的应用第1课时 利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱? 二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图. (1)求a 的值,并求出该户居民上月用水8t 应收的水费; (2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式; (3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨? 解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量. 解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元; (2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t. 方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:元,那么这两种水果各购进多少千克? (2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元? 解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,那么购进乙种水果(140-x )千克,根据题意可得5x +9(140-x )=1000,解得x =65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克; (2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560,故W 随x 的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35,∴当x =35时,W 最大=-35+560=525(元),故140-35=105(千克). 答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题 2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计
人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(1)》是本册教材的重要内容,主要介绍二次函数的一般形式、图象特点以及一些基本性质。
通过本节内容的学习,学生可以掌握二次函数的基本知识,为后续学习二次函数的应用打下基础。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备一定的函数知识基础。
但二次函数相对复杂,学生对其理解和掌握可能存在一定的困难。
因此,在教学过程中,需要注重引导学生通过观察、思考、探索等方式,自主发现和总结二次函数的性质。
三. 教学目标1.理解二次函数的一般形式和图象特点。
2.掌握二次函数的顶点坐标、开口方向和判别式的概念。
3.能够运用二次函数的性质解决一些实际问题。
四. 教学重难点1.二次函数的一般形式和图象特点。
2.二次函数的顶点坐标、开口方向和判别式的理解与应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探索等方式自主学习。
2.利用多媒体课件辅助教学,直观展示二次函数的图象和性质。
3.注重数学语言的训练,引导学生规范表达。
六. 教学准备1.多媒体课件。
2.相关练习题。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学模型来描述这些问题。
例如,抛物线运动、物体抛掷等。
从而引出二次函数的概念。
2.呈现(10分钟)利用多媒体课件,呈现二次函数的一般形式和图象特点。
引导学生观察并总结二次函数的性质。
3.操练(10分钟)让学生通过计算器或者绘图软件,自己动手绘制一些二次函数的图象,并观察其性质。
同时,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生运用所学的二次函数知识解决问题。
教师及时批改并给予反馈,帮助学生巩固所学知识。
5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,例如抛物线射门、跳水运动等。
人教版九年级数学上册22.1.3-二次函数的图像和性质(第1课时)一等奖优秀教学设计
人教版九年级数学上册22.1.3-二次函数的图
像和性质(第1课时)
一等奖优秀教学设计-CAL-FENGHAI.-(YICAI)-Company One1
人教版义务教育课程标准实验教科书九年级上册
22.1.3. 二次函数的图像和性质教学设计
一、教材分析 1、地位作用:
二次函数y=ax 2+k 的图像和性质是人教版九年级数学上册第二十一章第三节第一课时的内容,是在学生学习了二次函数的基本概念及y=ax 2的图像和性质之后引入的新内容。
本节课的教学内容既是对y=ax 2的图像和性质的引申,也是后面研究y=a(x-h)2+k 和一般形式的二次函数图像性质的基础。
所以,学习本节内容我们既要对前段的内容进行升华,又要对后段内容进行启发。
2、教学目标:
(1)能够准确绘制y=ax 2+k 二次函数图像;通过图像发现和研究二次函数y=ax 2+k 的性质。
(2)会应用二次函数的性质解决问题.
(3)经历观察,推理和交流等过程,获得研究问题与合作交流的方法和经验;体验数学活动中的探索性和创造性。
3、教学重、难点
教学重点:用描点法画二次函数的图像;探索二次函数y=ax 2+k 的图像特点和性质。
教学难点:二次函数y=ax 2+k 的性质的应用。
突破难点的方法:类比一次函数的平移和二次函数2ax y 的性质学习,构建一个知识体系。
二、教学准备:多媒体课件,几何画板.。
《二次函数y=a(x-h)2+k的图象和性质(第1课时)》教学设计【初中数学人教版九年级上册】
第二十二章 二次函数22.1二次函数的图象和性质 二次函数y =a (x -h )2+k 的图象和性质教学设计 第 1 课时一、教学目标1.使学生理解二次函数y =ax 2+k 的图象与二次函数y =ax 2的图象之间的关系. 2.会确定二次函数y =ax 2+k 的图象的开口方向、对称轴和顶点坐标.二、教学重点及难点重点:理解二次函数y =ax 2+k 的性质及其图象与y =ax 2的图象之间的关系. 难点:正确理解二次函数y =ax 2+k 的图象与二次函数y =ax 2的图象之间的关系以及二次函数y =ax 2+k 的性质.三、教学用具多媒体课件,三角板或直尺。
四、相关资源《二次函数y =ax 2图象与性质的复习》动画,《二次函数y =2x 2+1和y =2x 2-1的图象画法》动画,《《二次函数y =2x 2+1和y =2x 2-1的图象》图片,《函数2133y x =+,2123y x =-》动画)。
五、教学过程【复习提问】你能说出二次函数y =ax 2的性质吗?师生活动:教师提出问题,全班学生回顾,一起回答问题.小结:一般地,抛物线2y ax =的对称轴是y 轴,顶点是原点.当a >0时,抛物线的开口向上,顶点是抛物线的最低点;当a <0时,抛物线的开口向下,顶点是抛物线的最高点.对于抛物线2y ax =,|a |越大,抛物线的开口越小,|a |越小,抛物线的开口越大.如果a >0,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大; 如果a <0,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小.设计意图:让学生温习已学的知识,巩固上节课的内容,为本节课作铺垫. 【合作探究】1.在同一直角坐标系中,画出二次函数y =2x 2+1,y =2x 2-1的图象.师生活动:师生一起完成列表,再由学生画出图象,交流成果,如图所示,教师投影订正.在学生画函数图象时,教师巡视指导.解:(1)列表:(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点.(3)连线:用光滑曲线顺次连接各点,得到二次函数y =2x 2+1和y =2x 2-1的图象.设计意图:通过学生动手画二次函数2y ax k =+的图象,给学生创设活动时间和空间,体现教师是主导,学生是主体的教学地位,让学生经历知识的发生、发展的过程,并通过观察、分析、探索出二次函数2y ax k =+的图象的有关性质,培养学生数形给合的思想.2.思考:(1)抛物线y =2x 2+1,y =2x 2-1的开口方向、对称轴和顶点各是什么?此图片是动画缩略图,此处插入交互动画《【知识探究】画二次函数平移的图象》,可以对y =ax 2图象上下平移得出y =ax 2±k 的图象,观察、分析函数y =ax 2±k 的图象的开口方向、对称轴和顶点坐标.师生活动:让学生分组讨论,交流合作,各组选派代表发表意见.教师聆听,关注学生回答是否正确.小结:抛物线y =2x 2+1,y =2x 2-1的开口都是向上,对称轴都是y 轴,顶点分别是(0,1)与(0,-1).(2)抛物线y =2x 2+1,y =2x 2-1与抛物线y =2x 2有什么关系?师生活动:让学生观察三个函数图象,说出把抛物线y =2x 2的图象向上平移1个单位长度,就得到抛物线y =2x 2+1;把抛物线y =2x 2向下平移1个单位长度,就得到抛物线y =2x 2-1.(3)抛物线y =ax 2+k 与y =ax 2有什么关系?师生活动:四人一小组,小组讨论、交流.教师巡查,关注学生是否认真讨论,能否讨论归纳得出结论.归纳:抛物线y =ax 2+k 与y =ax 2形状相同,位置不同;当k >0时,抛物线y =ax 2向上平移|k |个单位长度可以得到抛物线y =ax 2+k ; 当k <0时,抛物线y =ax 2向下平移|k |个单位长度可以得到抛物线y =ax 2+k .设计意图:通过分析、小组合作探究,引导学生完成对知识的归纳,符合学生的认知规律,同时也培养了学生分析问题和解决问题的能力,完成由实践上升到理论这一认知过程.【例题分析】例 分别在同一直角坐标系中,描点画出下列二次函数的图象,并写出对称轴和顶点:2133y x =+,2123y x =-。
二次函数的图象和性质(1)教案
湘教版数学九年级二次函数的图象与性质(1)教学设计课题二次函数的图象与性质(一) 单元第一单元学科数学年级九年级学习目标1.学生会用描点法画出的图象,理解抛物线的有关概念.2.使学生经历、探索二次函数图象性质的过程.3.培养学生观察、思考、归纳的良好思维习惯.重点使学生理解抛物线的有关概念,会用描点法画出二次函数的图象.难点用描点法画出二次函数的图象以及探索二次函数性质教学过程教学环节教师活动学生活动设计意图复习导入师:同学们,回忆一下1、二次函数的一般形式是怎样的?2、一次函数图象是什么样的?它的图像画法步骤,你还记得吗,请列出来。
3、二次函数图象是什么形状呢?是否可以借鉴一次函数的图像画法呢?学生回顾.通过回顾所学知识为本节课的学习做好铺垫.讲授新课一、探究二次函数y=ax2(a>0)的图象和性质1.探究:画二次函数的图象.(1)列表:在列表时对自变量x取这些值的理由是什么?观察表格中的数据,你有什么发现?(2)描点:描点时应以哪些数值作为点的坐标?在平面直角坐标系内,以x取的值为横坐标,相应的函数值为纵坐标,描出相应的点.(3)连线:光滑的曲线顺次连接学生填表.在教师的引导启发学生观察表达式的特点.通过学生思考和点A与点A′,点B与点B′,…,它们有什么关系?由此你能作出什么猜想?从图还可看出,y轴右边描出的各点,当横坐标增大时,纵坐标怎样变化?y=x2的图象在y轴右边所有点都具有这样的性质吗?图象在y轴右边的部分,函数值随自变量取值的增大而增大,简称为“右升”.当x<0 (在对称轴的左侧)时,y随着x的增大而减小.简称为“左降”.当x>0 (在对称轴的右侧)时,y随着x的增大而增大.简称为“右升”.抛物线y=x2在x轴的上方(除顶点外),顶点是它的最低点,开口向上,并且向上无限伸展;当x=0时,函数y的值最小,最小值是0.我们已经正确画出了y=x2的图象,因此,现在可以从图象看出的其他一些性质(除了上面已知的关于y轴对称和“右升”外),还有哪些性质?对称轴与图象的交点是___________;图象的开口向_________;图象在对称轴左边的部分,函数值随自变量取值的增大而_________,简称“左降;当x=_______时,函数值最_____.一般地,当a>0时,y=ax2的图象都具有上述性质.于是我们画y=ax2(a>0)的图象时,可以下观察图像,引导学生自主探究,让学生讨论、交流,达成共识.交流对函数性质的认识,并积累从图象的角度研究函数性质的经验.先画出图象在y 轴右边的部分,然后利用对称性,画出图象在y 轴左边的部分.在画右边部分时,只需“列表、描点、连线”三个步骤.例 1 画二次函数212y x =的图象. 二、探究二次函数y =ax 2(a <0)的图象和性质探究:我们已经会画212y x =的图象, 能不能从它得出二次函数212y x =-的图象呢? 分析:把212y x =的图象沿着x 轴翻折并将图象 “复制”出来, 就可以得到212y x =-的图象.画二次函数212y x =-的图象. 在212y x =的图象上任取一点21(,)2P a a ,它关于x 轴的对称点Q 的坐标是21(,)2P a a -.如图所示,从点Q 的坐标看出,点Q 在212y x =-的图象上.由此可知,212y x =-的图象与 212y x =的图象关于x 轴对称.因此只要把212y x = 的图象沿着x 轴翻折并将图象“复制”出来,就可得到212y x =-的图象.如图的绿色曲线.观察图象,归纳与总结:一般地,抛物线y =ax 2的对称轴是_____,顶点是________.当a >0时,抛物线的开口向______,顶点是抛物线的最_____点,在对称轴的左侧,y 随x 的增大而_____,在对称轴的右学生动手画图象.对比画图.归纳二次函数y =ax 2(a <0)的图象和性培养学生画图能力.体会二次函数y =ax 2(a <0)的图象和性质.掌握y =ax 2(a <0)的图象和性质.侧,y 随x 的增大而_____.当a <0时,抛物线的开口向___,顶点是抛物线的最_____点,在对称轴的左侧,y 随x 的增大而______,在对称轴的右侧,y 随x 的增大而________. 例2 画二次函数214y x =-的图象.观察函数2y x =和212y x =图象的开口大小,你能得出什么结论?观察函数2y x =-和212y x =-图象的开口大小,你又能得出什么结论?三、抛物线的概念在棒球赛场上,棒球在空中沿着一条曲线运动,它与二次函数y =x 2的图象相像吗?以棒球在空中经过的路线的最高点为原点建立直角坐标系,x 轴的正方向水平向右,y 轴的正方向竖直向上,则可以看出棒球在空中经过的路线是形如y =ax 2(a <0)的图象的一段.由此受到启发,我们把二次函数y =ax 2的图象这样的曲线叫作抛物线,简称为抛物线y =ax 2.一般地,二次函数y =ax 2的图象关于y 轴对称,抛物线与它的对称轴的交点(0,0)叫作抛物线y =ax 2的顶点.质.通过实际问题理解抛物线的概念.帮助学生理解二次函数是具有广泛应用价值的,重要的数学模型.巩固练习 1、直接运用性质填空: (1)图象的对称轴是 , 顶点是 ,图象的开口向 ; (2)图象的对称轴是 , 顶点是 ,图象的开口向 . 2、如图所示,已知二次函数y =ax 2的图象经过点A . (1)求a 的值;(2)试判断点(-4,12)是否在此函数的图象上.3、已知函数221m m y mx --=的图象是开口向下的抛物线.(1)求m 的值;(2)当x =3时,函数值是多少?当y =-6时,求x 的值;(3)试说明当x <3时,函数值的变化情况,并求当x 为何值时,函数有最小值,最小值是多少? 4、底面是边长为x (cm )的正方形,高为0.5 cm 的长方体的体积为y (cm 3).(1)求y 关于x 的函数关系式,并画出函数图象; (2)根据图象求出y =8 cm 3时,底面边长x 的值; (3)根据图象,求出x 为何值时,y ≥4.5 cm 3.学生独立完成并展示.巩固学习,让学生用自己的方法展示出来,并且让学生得到进一步的锻炼.让学生建立自己对本节内容的认知.课堂小结学生自主交流、归纳、总结.培养学生的归纳、总结能力.板书1.2 二次函数的图象与性质(1)1.探究:画二次函数的图象. (1)列表:(2)描点:(3)连线:。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案
22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
人教版数学九年级上册22.1.2二次函数y=ax2的图象和性质(第1课时)教学设计
三、课堂练习
1.让学生独立绘制二次函数y=ax^2的图象,并描述其性质。
2.通过小组合作,讨论并总结二次函数图象和性质的特点。
四、巩固拓展
1.让学生思考:如何通过观察二次函数图象,判断其开口方向和对称轴?
2.引导学生运用二次函数的图象和性质,解决实际问题。
4.注重分层教学,关注个体差异:
(1)针对不同层次的学生,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。
(2)鼓励学生主动提问,及时解答他们的疑惑,帮助他们建立信心。
5.强化课堂小结,巩固所学知识:
(1)让学生用自己的话总结二次函数y=ax^2的图象和性质,加深对知识的理解和记忆。
(2)通过课堂小结,检查学生的学习效果,及时发现问题并进行针对性的辅导。
3.组织学生进行小组合作交流,培养学生团队协作能力和表达能力,激发他们学习数学的兴趣。
(三)情感态度与价值观
1.培养学生勇于探索、积极思考的学习态度,使他们体会数学学习的乐趣,增强学习数学的自信心。
2.通过对二次函数y=ax^2图象和性质的探究,使学生感受数学的对称美、秩序美,提高他们的审美情趣。
3.使学生认识到数学知识在实际生活中的广泛应用,激发他们学习数学的积极性,培养他们运用数学知识解决实际问题的意识。
3.培养学生运用数形结合思想,通过观察、分析、归纳二次函数图象和性质,提高解决问题的能力。
(二)过程与方法
1.通过引导学生在探索二次函数y=ax^2图象和性质的过程中,培养他们提出问题、分析问题、解决问题的能力。
2.引导学生运用数形结合思想,将二次函数的图象与性质相互验证,提高他们的逻辑思维能力和推理能力。
二次函数一般式的图像和性质 初中九年级数学教案教学设计课后反思 人教版
义务教育课程标准试验教科书九年级上册22.1.4二次函数的图象和性质(第一课时)一、内容和内容解析1.内容二次函数的图象与性质.2.内容解析了二次函数的图象和性质的基础上对二次函数的图主要的研究方法是从一个具体的二次函数开始,通过配方将向转化,体会知识之间内在的联系究过程中,再从特殊例子归纳一般结论得出的图象和性质,体现类比、数形结合和归纳的思想.化为的形式,并由此得到二次函数的图象和性质.二、目标和目标解析1.目标)理解二次函数与之间的联系,会指出二次函数的图象的开口方向、顶点坐标、对称轴)能熟练地用描点法画二次函数的图象.(3)能观察图象并描述二次函数图象的性质.2.目标解析达成目标(1)的标志是:会通过配方将数字系数的二次函数的解析式化为的形式,并能由此得到二次函数图象的开口方向、顶点坐标、对称轴.达成目标(2)的标志是:经历画二次函数图象的一般过程,能体会对称轴在画抛物线中的作用.达成目标(3)的标志是:经历通过观察二次函数图象得出二次函数性质的研究过程,体会数形结合和从特殊到一般的数学思想以及研究函数的一般思路.三、教学问题诊断分析在本节课前,学生已经探究过二次函数的图象和性质.面对形如的二次函数,要想到将其转化为的形式,这种化归.在将通过配方化为时,.基于以上分析,本节课的教学难点是:如何想到将转化为的形式来研究它的图象和性质.四、教学过程设计(一)探索新知尝试发现1.探索二次函数的图象和性质问题1:如何探究二次函数的图象和性质?分析:要画出这知道图象的对称轴和顶点,即需要将转化成的形式.【设计意图】学生对画的图象可能会比较盲目或无从下手,教师适时地引导,帮助学生建立已知与未知的桥梁.问题2:如何将转化成的形式?根据已有的知识对进行配方,教师展示配方过程.问题3:如何直接画的图象?确定顶点,利用抛物线的对称性画出图象.感受画的图象的一般过程:首先通过配方将解析式化为的形式,然后确定图象的开口方向、对称轴、顶点坐标,最后利用对称性描点连线.问题4:你能通过观察图象,描述出二次函数学生正确描述图象的性质,能否准确的分段说明,能否从抛物线的最低点得出函数有最小值..2.探索二次函数的图象和性质问题5:你能说出二次函数的对称轴和顶点坐标吗?将二次函数转化为的形式.确定图象的对称轴和顶点坐标.问题6:你能描述二次函数的图象和性质吗?类比前面的两个具体函数例子得出:对于一般的二次函数,如果a>0,当x<时,y随x的增大而减小;当x>时,y随x的增大而增大.如果a<0,当x<时,y随x的增大而增大;当x>时,y随x的增大而减小.这里我们借助从特殊例子归纳一般结论的研究思路,通过针对性的类比、对比引导,这样既突破了难点,又升华了新知,也体现了从特殊到一般的研究思路.由浅入深,由一般到特殊能有效地促进学生对本节课知识的理解,让学生体会到问题之间的内在联系.利用这种由一般到特殊的教学培养了学生思维的灵活性和深刻性,同时也让他们学会从变化问题中去寻找不变的数学本质.(五)归纳小结归纳小结:学生对二次函数的图象特征的理解及怎样通过配方法研究函数性质.。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案
22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c的图象和性质(第1课时)一、教学目标【知识与技能】1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.【过程与方法】通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.【情感态度与价值观】经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课教师问:二次函数y=a(x-h)2+k的性质有哪些?(出示课件2)师生共同回忆:教师问:我们已经知道二次函数y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论二次函数y=ax2+bx+c 图象和性质?(出示课件3)(二)探索新知探究一 画出二次函数y=ax 2+bx+c 的图象我们已经知道y=a(x-h)2+k 的图象和性质,能否利用这些知识来讨论216212y x x =-+的图象和性质?(出示课件5) 问题1:怎样将216212y x x =-+化成y=a(x-h)2+k 的形式?学生回忆配方的方法及步骤,并回答.(出示课件6)216212y x x =-+ 21(1242)2x x =-+ 2221(126642)2x x =-+-+ 2221[(126)642]2x x =-+-+ 21[(6)6]2x =-+ 21(6) 3.2x =-+ 学生回答后,教师总结并强调.(出示课件7) 配方的步骤:(1)“提”:提出二次项系数; (2)“配”:括号内配成完全平方; (3)“化”:化成顶点式.配方后的表达式通常称为配方式或顶点式. 问题2:你能说出21(6)32y x =-+的对称轴及顶点坐标吗?(出示课件8) 生答:对称轴是直线x=6,顶点坐标是(6,3). 问题3:二次函数21(6)32y x =-+可以看作是由212y x =怎样平移得到的? 生答:平移方法1:先向上平移3个单位,再向右平移6个单位得到的;平移方法2:先向右平移6个单位,再向上平移3个单位得到的. 问题4:如何画二次函数216212y x x =-+的图象?(出示课件:9) 学生自主操作,画图,教师加以巡视.并引导他们进行分析. 方法一:描点法. 1.列表.2.描点,连线:方法二:平移法.(出示课件10)问题5:结合二次函数216212y x x =-+的图象,说出其性质.(出示课件11) 生答:当x<6时,y 随x 的增大而减小;当x>6时,y 随x 的增大而增大. 开口方向:向上.对称轴:x=6. 顶点:(6,3). 例 画出函数21522y x x =-+-的图象,并说明这个函数具有哪些性质.(出示课件12)师生共同解答如下: 解:函数21522y x x =-+-通过配方可得21(1)22y x =---, 先列表:然后描点、连线,得到图象如下图:(出示课件13)生观察图象,并总结性质如下: 开口方向:向下. 顶点坐标:(1,-2). 对称轴:x=1.最值:x=1时,y 最大值=-2.当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小; 当x=1时,函数取得最大值,最大值y=-2.出示课件14:求二次函数y=2x 2-8x+7图象的对称轴和顶点坐标. 生板演解题过程: 解:y=2x 2-8x+722(4)7x x =-+ 22(44)87x x =-+-+ 22(2) 1.x =--因此,二次函数y=2x 2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-1). 探究二 二次函数y=ax 2+bx+c 的图象与性质出示课件15:根据下列关系你能发现二次函数y=ax 2+bx+c 的图象和性质吗?师生共同探究强化认知:y=ax 2+bx+c 224()24b ac b a x a a-++=出示课件16:显然,二次函数y 224()24b ac b a x a a-++=的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =- 因此,抛物线y=ax 2+bx+c 的对称轴是2bx a=-,顶点坐标是24,24b ac b a a ⎛⎫ ⎪⎝-⎭- . 师生共同总结整理如下:(出示课件18)出示课件19:例二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)学生自主思考后,师生共同解答如下:解析∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x²+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4).教师加以强调:把函数的一般式化为顶点式,再由顶点式确定开口方向、对称轴、顶点及其他性质.出示课件20:填一填.生自主思考,并填表. 答案:(1,1);x=1;最大值1; (0,-1);y 轴;最大值-1;(13-,-6);x=13-;最小值-6. 出示课件21:一次函数y=kx+b 的图象如下图所示,请根据一次函数图象的性质填空:生观察图象,并填空.k 1<0;b 1>0;k 2>0;b 2<0;k 3>0;b 3>0.出示课件22,23:二次函数y=ax 2+bx+c 的图象如下图所示,请根据二次函数的性质填空:a1___0,b1___0,c1___0;a20,b2___0,c20;a3___0,b3___0,c3___0;a4___0,b4___0,c4___0.生观察图象后,独立填空,教师加以纠正.a1>0,b1>0,c1>0;a2>0,b2<0,c2=0;a3<0,b3=0,c3>0;a4<0,b4>0,c4<0.师生共同总结:二次函数y=ax2+bx+c的图象与a、b、c的关系(出示课件24)出示课件25:例已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是( )A.1 B.2 C.3 D.4生独立思考后,师生共同分析:由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图象上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图可知x=1的点在第四象限得a+b+c<0,由图象上x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.出示课件26:二次函数y=ax²+bx+c的图象如图所示,下列选项中正确的是()A.a>0 B.b>0 C.c<0 D.ac>0生独立思考后,自主解决.解析根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.①∵开口向下,∴a<0,A错误;②对称轴在y轴的右侧和a<0,可知b>0,B正确;③抛物线与y轴交于正半轴,c>0,C错误;④因为a<0,c>0,所以ac<0,D错误.(三)课堂练习(出示课件27-32)1.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤2.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y 轴B.直线x=52C.直线x=2D.直线x=323.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:(1)a ,b 同号;(2)当x=–1和x=3时,函数值相等;(3)4a+b=0;(4)当y=–2时,x 的值只能取0;其中正确的是 .4.如图是二次函数y=ax 2+bx+c(a ≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④5.根据公式确定下列二次函数图象的对称轴和顶点坐标:()()()22(1) 21213;(2) 580319;1(3) 22;2(4)12.y x x y x x y x x y x x =-+=-+-⎛⎫=-- ⎪⎝⎭=+-6.已知函数y=-2x2+x-4,当x= 时,y 有最大值 .7.已知二次函数y=x 2-2x+1,那么它的图象大致为( )参考答案:1.A2.D3.(2)4.B5.⑴直线x=3,(3,-5);⑵直线x=8,(8,1);⑶直线x=1.25,59, 48⎛⎫- ⎪⎝⎭; ⑷直线x=0.5,19, 24⎛⎫ ⎪⎝⎭. 6.14;318- 7.B(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.4第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时的主要任务是理解和掌握二次函数的一般式.我们研究函数的一般基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征.因此本课时的教学仍可采用这种思维方法来探讨二次函数一般式的性质(如顶点坐标,对称轴以及增减性等),另外还要向学生渗透转化思想,即如何将相对复杂的一般式转化为其他解析式的形式.。
二次函数的图象与性质(第1课时) 教学设计
第二章 二次函数《二次函数的图象与性质(第1课时)》教学设计教学目标1.经历探索二函数2x y ±=的图象的画法和性质的过程,获得利用图象研究函数性质的经验.2.能够利用描点法画函数2x y ±=的图象,能根据图象认识和理解二次函数2x y ±=的性质.能比较2x y ±=图象和性质的异同.3.发展学生的观察、归纳、猜测、验证的能力,培养学生运用数形结合的思想解决问题能力.4.运用类比的方法学习二次函数的性质,培养学生掌握学习数学知识的通性通法,发展学生核心素养.教学重点:画出函数2x y ±=的图象,并根据图象认识和理解二次函数2x y ±=的性质.教学难点:探索二次函数2x y ±=增减性. 教学过程(一)创设问题情境,引入新课[师]我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是过原点的一条直线.一般地一次函数的图象是不过原点的一条直线,反比例函数的图象是双曲线.上节课我们学习了二次函数的一般形式为c bx ax y ++=2(其中c b a 、、均为常数且0≠a ).那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.(二)新课讲解 1、作函数2x y =的图象[师]一次函数的图象是一条直线.二次函数的图象是什么形状呢?让我们先看最简单的二次函数2x y =.大家还记得画函数图象的一般步骤吗? [生]记得. 列表,描点,连线.[师]非常正确,下面就请同学们跟我按下面的步骤作出2x y =的图象. (1)列表:(2)在直角坐标系中描点.(3)用光滑的曲线连结各点,便得到函数图象.[师]同学们有没有什么疑惑?[生]老师,为什么要用光滑的曲线来连接各点呢?在作一次函数图象时我们都是直接用直线来连接各点的,我这里画出的是折线图,难道不对吗? [师]这个问题提得好.二次函数图象是到底用直线连接还是用光滑的曲线来连接更为合理呢?不知同学们考虑这个问题没有:列表时我们取的点都是整数点,在整数点之间还有许多小数的点并未取,如自变量1与2之间还有无数个小数,假设我们把点取得更多一些我们就能看出二次函数图象的真正面貌了.不妨取20个点试试,再取50个点试试.[生]老师,我明白了,取的点足够多时我们就能看出其本来面貌的. 2、议一议对于二次函数2x y =的图象,(1)你能描述图象的形状吗?与同伴进行交流. (2)图象与x 轴有交点吗?如果有,交点坐标是什么? (3)当0<x 时,随着值的增大,的值如何变化?当0>x 时呢? (4)当x 取什么值时,y 的值最小?最小值是什么?你是如何知道的? (5)图象是轴对称图形吗?如果是,它的对称轴是什么?请找出几对对称点,并与同伴进行交流.[生](1)图象的形状是一条曲线,就像抛出的物体所进行的路线的倒影. (2)图象与x 轴有交点,交于原点,交点坐标就是(0,0).(3)当0<x 时,图象在y 轴的左侧随着x 值的增大,y 的值逐渐减小;当0>x 时,图象在y 轴的右侧,随着x 值的增大,y 的值逐渐增大.(4)观察图象可知,当x=0时,y 的值最小,最小值为0.(5)观察图象是轴对称图形,它的对称轴是y 轴,从刚才的列表中可找到对应点(-1,1)和(1,1);(-2,4)和(2,4);(-3,9)和(3,9). [师]大家分析判断能力很棒,下面我们系统地总结一下. 3、2x y =的图象的性质[师]二次函数________2的图象是一条x y =,它的开口________,且关于______对称.对称轴与抛物线的交点是抛物线的________,它是图象的_________.同学们在补充一下:挑选一名学生在交互一体机上书写.其余学生在学案上完成下表:4、做一做PPT 显示:2x y-=二次函数图象是什么形状?先想一想,然后作出它的图象.它与二次函数2x y =的图象有什么关系?与同伴进行交流. [师]请大家按照画图的步骤作出函数2x y -=的图象.[生]2x y -=的图象如右图:形状还是抛物线,只是它的开口方向向下,它与2x y =的图象形状相同,方向相反,这两个图形可以看作是关于x [师]下面我们试着讨论2x y -=的图象的性质.挑选一名学生在交互一体机上书写.其余学生在学案上完成下表:[师]大家总结得非常棒.5、2x=图象的比较.y=函数与的2xy-我们观察函数2x=的图象,并完成下表:y=与2xy-(三)课堂小结分享一下本节课的收获. 先在小组内分享,再挑选学生利用板中板把自己的收获展示出来.(四)布置作业必做题:一、习题2.2 第1、2题.二、利用网络搜索生活中见到的抛物线图片. 拓展提升(选做):已知二次函数2xy ,若x≥m 时,y最小值为0,求实数 m 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的图象与性质(第1课时)教学设计教材来源:义务教育教科书《数学(九年级下册)》/北京师范大学出版社2014年版
内容来源:义务教育教科书《数学(九年级下册)》第二章第二节主题:二次函数的图象与性质(1)课时:1课时
授课对象:九年级学生
设计者:田梦梦
目标确定的依据
1、课程标准相关要求
会用描点法画出二次函数的图象,通过图象了解二次函数的性质。
2、教材分析
函数是“数与代数”的重要内容,也是义务教育阶段学生比较难理解和掌握的数学概念之一。
因此教材对函数内容的编排体现了螺旋上升的原则,分阶段逐渐深化。
而“二次函数的图象与性质(1)”正处于第二阶段,即在感性认识的基础上,研究具体的二次函数2x
y±
=及其性质,了解研究二次函数2x
=的基本方法,使得学生能够在操作
y±
层面认识和理解二次函数2x
=,这有助于学生形成模型思想,对于学
y±
生感受数学的广泛联系和应用价值、获得相应的知识和技能、积累运用函数解决问题的经验都具有重要的作用。
3、学情分析
学生的知识技能基础:学生在前面已经学习过一次函数、反比例函数,经历过探索、分析和建立两个变量之间的一次函数、反比例函数关系的过程,学会了用描点法画函数图象的方法,并结合图象归纳
总结函数的性质。
在本章第一节课中,又学习了二次函数的概念,经历了探索和表示二次函数关系的过程,获得了用二次函数表示变量之间关系的体验。
学生活动经验基础:在学习一次函数、反比例函数过程中,学会了用描点法画函数图象的方法,学生已具备了一定的作图能力,并经历了利用一次函数、反比例函数图象探索函数性质的活动,解决了一些简单的现实问题,感受到了数形结合的必要性和重要性,获得了一些探究函数图象和性质的数学活动经验基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
目标
1、经历列表、描点、连线等动手操作活动,画出二次函数2x
y=的图象。
2、借助二次函数2x
y=的图象会描述图象的形状,说出并理解二次函数2x
y=图象的开口方向、对称轴和顶点坐标。
3、通过观察图象、讨论并归纳出二次函数2x
y=的增减性,经历观察图象或分析表达式确定函数的最值的过程;获得利用图象研究函数性质的经验.
4、通过类比函数2x
y=的图象及性质,猜想、动手操作、合作交流、归纳总结出二次函数2
y=的性质,比较两个函数的图象及性质;
-x
提高类比学习能力、形成求同求异思维。
5、通过观察图象或计算函数值比较图象上两个点纵坐标的大小。
评价任务
1、说出画函数图象的基本方法:列表、描点、连线;动手画二次函数2x
y=的图象。
2、用自己的语言描述二次函数2x
y=的图象的形状,说出图象的开口方向,利用平面直角坐标系这一数学工具总结归纳出图象的对称轴和顶点坐标,并指出几对对称点。
3、判断二次函数2x
y=的增减性,说出函数的最值及相应的x的值。
4、画出二次函数2
y=的性质,指出函
-x
y=的图象,说出函数2-x
数2x
y=的图象的关系。
y=的图象与函数2-x
5、比较图象上两个点纵坐标的大小。
教学重点:作出函数2x
=的图象,并根据图象认识和理解二次
y±
函数2x
=的性质.
y±
教学难点:由2x
=的图象及性
y-
y=的图象及性质对比地学习2x
质,并能比较出它们的异同点.
教学关键:通过动手作出并观察函数2x
±的图象,分析函数特点,理解函数的性质.
教学过程
设计意图:学生用描点法画二次函数2x
y±
=的图象,能更深刻地感受二次函数2x
=的图象是抛物线,既锻炼了画图能力,又为探讨函
y±
数性质奠定了基础;通过观察比较,总结出二次函数2x
=的图象特
y±
征,突破重点,更有利于学生掌握二次函数2x
y±
=的图象性质,同时体会数形结合的数学思想及从特殊到一般的数学研究方法,积累数学活动经验。
学生用语言概括结论,利于培养学生的抽象概括能力及数学语言表达能力。
安排一定量的“拓展延伸”练习和“自我评价测试”,
既可以检验学生的学习效果,也可以起到练习巩固的作用。