华杯赛小高组专题下
华杯赛小学高年级试卷合集(18-21)A3
初赛试卷 A(小学高年级组)试题 一、选择题
第十九届华罗庚杯少儿数学邀请赛
初赛试卷 A(小学高年级组)试题
1、平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( A.0 B.2 C.3 D.4
5、右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF 平行于 BD,若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于 ( )平方厘米。 A.5 B.10 C.15 D.20
6、如图所示,AF=7cm,DH=4cm,BG=5cm,AE=1cm。若正方形 ABCD 内的四边形 EFGH 的面积为 78cm²,则正方形 的边长为( A.10 二、填空题 7、五名选手 A、B、C、D、E 参加“好声音”比赛,五个人站成一排集体亮相。他们胸 前有每人的选手编号牌,5 个编号之和等于 35。已知站在 E 右边的选手的编号和为 13;站在 D 右边的选 )cm。 B.11 C.12 D.13
10、 圣诞老人有 36 个同样的礼物,分别装在 8 个袋子中。 已知 8 个袋子中的礼物的个数 至少为 1 且各不相同。现要从中选出一些袋子,将选出的袋子中的所有礼物平均分给 8 个小朋友,恰好分完(每个小朋友至少分得一个礼物),那么,共 种不同的选择。
第二十一届华罗庚杯少儿数学邀请赛 第二十届华罗庚杯少儿数学邀请赛 一、选择题 1、现在从甲、乙、丙、丁四个人中选出两个人参加一项活动。规定:如果甲去,那么乙也去;如果丙不去, 那么乙也不去;如果丙去,那么丁不去。最后去参加活动的两个人是( A.甲、乙 B.乙、丙 C.甲、丙 ) A. 2017 B. 2016 C. 2015 D. 2014 初赛试卷 A(小学高年级组)试题 一、选择题 1. 算式 的计算结果中含有(
历届华杯赛初赛小高真题
初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754 C DB A5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ).(A )8615 (B )2016 (C )4023 (D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的. (A )1 (B )2 (C )3 (D )4二、填空题 (每小题 10 分, 共40分)7. 若1532 2.254553923444741A ⎛⎫-⨯÷+= ⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________. 这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯第二十届华罗庚金杯少年数学邀请赛决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________. 2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .y x515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程) 13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.) 1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ).(A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟.(A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A 的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么 γβα++ 的最小值是( ).(A )10 (B )17 (C )23 (D )315. 今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、再加入50克含糖率20%的糖水. 再加入20克糖和30克水. 再加入100克糖与水的比是2:3的糖水.乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题 10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是 . 9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是 .10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是 .第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式个个2016201699999999 的结果中含有( )个数字0. (A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542 (C )3 (D )5133. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角,CE CB =, 则2AE 等于( ). (A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ).(A )109 (B )110 (C )111 (D )112二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB的中点, 且2=OM , 那么PM 长为 .9.设q是一个平方数. 如果2-q和2+q都是质数, 就称q为P型平方数. 例如, 9就是一个P型平方数.那么小于1000的最大P型平方数是.10.有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
第19届华杯赛初赛小高组卷及参考答案
1、平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线相互平行。
(A)0
(B)2
(C)3
(D)4
2、某次考试有 50 道试题,答对一道题得 3 分,答错一道题扣 1 分,不答题不得分。小龙得 分 120 分,那么小龙最多答对了( )道试题。
总结:行程问题始终是围绕“路程=速度×时间”展开的,碰到行程问题,首先画出行程图, 明确题目的已知条件,可以通过其隐含的等量关系列方程求解。
6.解析:【知识点】平面几何,割补法
正方形 ABCD 被分成了四个三角形和一个不规则的四边形,我们设法将不规则阴影部分分割 成规则图形,如图过 E 点作 AB 的平行线,过 F 点作 BC 的平行线,过 G 点作 AB 的平行线,过 H 点作 BC 的平行线,四条辅助线的交点为 I、J、K、M ;
3.解析:【知识点】数独,平均数
题目要求的是 A, B, C, D 这四个方格中数的平均数,没必要求出 A, B, C, D 各自对 应的数是多少,求出它们的和即可;
如下图所示,将第四行的四个数字设为分别为 E,F,G,H,每行、每列的四个数都不重复, 且每个纸板内四个格子里的数也不重复,所以,我们可以得到:
行程问题中,有一个重要的公式“路程=速度×时间”,当路程一致时,速度与时间成反比, 我们假定两种情况下都是匀速运动,那么两种情况下,从甲地到丙地的速度比等于从丙地到 乙地的速度比;
从甲地到丙地, t原计划
: t实际
x : (x 5) ,则
v原计划 v实际
x5 x
,
同理,从丙地到乙地, t原计划
: t实际
A B E F 16 C D G H 16
华杯小高组决赛真题演练4-教师版
第十八届华罗庚金杯少年邀请赛决赛试题B (小学高年级组)一、填空题(每小题 10分, 共80分)1.计算: 19×0.125+281×81+12.5=________. 解析:原式=(19+281+100)×0.125 =400×0.125 =50 2.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2012年12月21日是冬至, 那么2013年的2月10日是________九的第________天. 解析:31-21+1+31+10=52,52÷9=5…7,2013年的元旦是六九的第7天.3.某些整数分别被131********,,,除后, 所得的商化作带分数时, 分数部分分别是112927252,,,, 则满足条件且大于1的最小整数是________.解析:设整数为A, 分别被131********,,,除后, 所得的商分别为A A A A 11139117957,,,; )1(111311211113)1(911921911)1(7972179)1(5752157−++=−++=−++=−++=A A A A A A A A ,,,显然,当A-1是[5,7,9,3]的时候满足题意。
所以A-1=3465,A=3466。
4.如图所示, P, Q 分别是正方形ABCD 的边AD 和对角线 AC 上的点, 且PD:AP =4:1, QC: AQ =2:3, 如果正方形ABCD 的面积为25, 那么三角形PBQ 的面积是 .解析:连接QD,做QE ⊥BC 于E, QF ⊥AD 于F, QG ⊥CD 于G, 正方形ABCD 的面积为25,所以AD=EF=5, QC: AQ =2:3,根据正方形对称性,所以QE=QG=2,QF=3, PD:AP =4:1, AP=1,PD=4。
华杯赛小高近5年真题(附详解)20C
A.3
B.4
C.5
D.6
二、填空题(每小题 10 分,满分 40 分)
7. 在每个格子中填入 1~6 中的一个,使得每行、每列及每个 2 3 长方形内(粗线框围成),数字不重复;如果 小圆圈两边格子中所填数的和是合数,其他相邻两格所填数的和是质数,那么四位数 相约华杯 是__________.
3月1 4 相 约 华杯
90000
15975 平方厘米.
(2)连接圆弧交点与正方形底边顶点,如图: A
300
B 300 C 可见 BA BC 300 ,CA CB 300 ,即三角形 ABC 为等边三角形,内角皆为 60 度,故知下半部分阴
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
10.
【答案】 125;1880
【解析】(1)“三人同时到达 D 地”的意义即为甲在两次减速后,以及乙在一次减速后的速度,与丙的速度是相 同的,故可设甲的速度是 100 份,则一次、两次减速后的速度分别应是 100 (1 40%) 60 份和
60 (1 40%) 36 份;说明丙的速度就是 36 份;进一步逆推出乙在减速之前的速度为 36 (1 25%) 48
“相”与 3 的和是质数,只能“相” 4 ,进而“约” 1;
再看右宫:“华”,“杯”,d 分别是 2、3、6,但其中只有 2 3 是质数,故此时可断定 d 6 ;进一步地,
“华”与 1 的和是质数,只能“华” 2 ,进而“杯” 3 .
ቤተ መጻሕፍቲ ባይዱ
4
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
120
4 3
30+ 40 3
第十九届“华杯赛”决赛小高组试题d
第十九届华罗庚金杯少年数学邀请赛决赛试题 D (小学高年级组)(时间: 2014 年 4 月 12 日 10:00~11:30)一、填空题(每小题 10 分, 共 80 分)1. 如右图, 边长为 12 米的正方形池塘的周围是草地, 池塘边 A ,B ,C ,D 处各有一根木桩, 且 AB = BC = CD = 3 米. 现用长 4 米的绳子将一头羊拴在其中的某根木桩上(不计打结处). 为 使羊在草地上活动区域的面积最大, 应将绳子拴在处的木桩上.2. 在所有是 20 的倍数的自然数中, 不超过 3000 并且是 14 的倍数的数之和是.3. 从 1~8 这八个自然数中, 任取三个数, 其中没有连续自然数的取法有种.4. 如右图所示, 网格中每个小正方格的面积都为 1 平方厘米. 小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成, 小线段的端点在格子点上或在格线上), 则这个剪影的面积为平方厘米.5.如果 11○< □7< 54成立, 则“○”与“□”中可以填入的非零自然数之和最大为.6. 如右图, 三个圆交出七个部分. 将整数 1~7 分别填到七个部分中, 要求每个圆内的四个数字的和都相等. 那么和的最大值是.7. 学校组织 482 人去郊游, 租用 42 座大巴和 20 座中巴两种汽车. 如果要求每人一座且每座一人, 则有种租车方案.8. 长为 4 的线段 AB 上有一动点 C , 等腰三角形 ACD 和等腰三角形 BEC 在过AB 的直线同侧, AD = DC , CE = EB , 则线段 DE 的长度最小为.二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9. 把 n 个相同的正方形纸片无重叠地放置在桌面上, 拼成至少两层的多层长方形(含正方形)组成的图形, 并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上. 下图给出了 n = 6 时所有的不同放置方法, 那么 n = 8 时有多少种不同放置方法?10. 有一杯子装满了浓度为 15% 的盐水. 有大中小铁球各一个, 它们的体积比为10 : 5 : 3 . 首先将小球沉入盐水杯中, 结果盐水溢出 10%, 取出小球; 其次把中球沉入盐水杯中, 又将它取出; 接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止. 此时杯中盐水的浓度是多少?11. 清明节, 同学们乘车去烈士陵园扫墓. 如果汽车行驶 1 个小时后, 将车速提高五分之一, 就可以比预定时间提前 10 分钟赶到; 如果该车先按原速行驶 60 千米, 再将速度提高三分之一, 就可以比预定时间提前 20 分钟赶到. 那么从学校到烈士陵园有多少千米?12. 如右图 , 在三角形 ABC 中 , AF = 2BF , CE = 3AE ,CD = 2BD . 连接 CF 交 DE 于 P 点, 求 DPEP的值.三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)13. 在右边的算式中, 字母 a, b, c, d 和“□”代表十个数字 0 到 9 中的一个, 其中 a, b, c, d 四个字母代表不同的数字, 求 a, b, c, d 代表的数字之和.a5 b+ 4c d□ □ □□ - □ □ □214.从连续自然数1, 2, 3,…, 2014中取出n个数,使这n个数满足:任意取其中两个数, 不会有一个数是另一个数的 7 倍. 试求n的最大值, 并说明理由.。
第二十二届“华杯赛”决赛小高组试题A详细解答
第二十二届华罗庚金杯少年数学邀请赛决赛试题A(小学高年级组)详细解答【解】:∵201711=183+411∴[201711×3] = [183×3+411×3]= 183×3+1类似地,可知:[201711×4]= 183×4+1;[201711×5]= 183×5+1[201711×6]= 183×6+2;[201711×7]= 183×7+2;[201711×8]= 183×8+2∴原式= 183×[3+4+5+6+7+8]+1+1+1+2+2+2=6048【答】:所求值为6048。
【解】:假设原来四个整数分别为a,b,c,d,则按照题意所求的四个数的表达式分别为:a+b+c3+d,a+b+d3+ca+c+d3+b,b+c+d3+a∵a+b+c3+d+a+b+d3+c+a+c+d3+b+b+c+d3+a=3(a+b+c+d)3+(a+b+c+d)=2(a+b+c+d)∴a+b+c+d=12×(8+12+1023+913)=12×(20+20) =20【答】:原来给定的4个整数的和为20。
【解】:分三种情形,共有10种不同摆法,如下图:(1)两个点都在第一行;(2)两个点不在同一行但相邻;(3)两个点不在同一行且不相邻;【答】:共有10种不同的摆放方法。
【解】:设甲的速度为V甲,乙的速度为V乙,AB两地距离为SAB,BC两地距离为SBC 根据题意可知:V甲=80÷2=40 (千米/小时) ,甲原来的速度的2倍为80(千米/小时) 所以,BC两地距离:SBC=2×80=160 (千米)又,乙从B地到C地花了2.5小时,所以,乙的速度为:V乙=SBC÷2.5=160÷2.5=64(千米/小时)【答】:乙的速度为64 千米/小时。
第18届华杯赛决赛小高组(A)、(B)卷试题及参考答案
8.用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和 百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有_______个.
7.设 n 是小于 50 的自然数,那么使得 4n+5 和 7n+6 有大于 1 的公约数的所有 n 的可能值之和为________. 8.由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至 少是________.
二、解答下列各题(每题 10 分,共 40 分要求写出简要过程) 9.用四个数字 4 和一些加、减、乘、除号和括号,写出四个分别等于 3,4,5 和 6 的算式.
6.解析:【知识点】立体几何 求出小积木的棱长即可,如图所示:
小积木的棱长是直角三角形的斜边长度,小积木一个面的面积为12 22 5 ,大积木一个面的面积为 32 9 ,立体图形的表面积为: S 9 5 5 5 (9 5) 74 7.解析:【知识点】数论,余数,因数
设 4n 5 和 7n 6 的公约数为 k ,则 (4n 5) k 为整数,(7n 6) k 也为整数,为了作差消去 n ,前者 乘 7,后者乘 4,则[7(4n 5) 4(7n 6)] k 11 k 为整数,因为 k 1,则11 k 为整数时,只能是 k 11, 即 4n 5 和 7n 6 的公约数为 11; 又因为[(7n 6) (4n 5)] 11为整数,则 3n 1 为整数,
第二十二届“华杯赛”决赛小高组试题B详细解答
1 / 1010第二十二届华罗庚金杯少年数学邀请赛决赛试题B (小学高年级组)(时间: 2017 年3 月11 日10:00~11:30)一、填空题(每小题 10 分, 共 80 分)2. 甲、乙两车分别从A 、B 两地同时出发,相向而行相向而行, 出发时甲乙两车的速度出发时甲乙两车的速度比为5 : 4 .出发后不久, 甲车发生爆胎甲车发生爆胎, 停车更换轮胎后继续前进停车更换轮胎后继续前进, 并且将速并且将速度提高20%, 结果在出发后3 小时, 与乙车相遇在与乙车相遇在AB 两地中点.相遇后, 乙车继续往前行驶, 而甲车掉头行驶而甲车掉头行驶, 当甲车回到当甲车回到A 地时, 乙车恰好到达甲车乙车恰好到达甲车爆胎的位置, 那么甲车更换轮胎用了那么甲车更换轮胎用了分钟。
3. 在3× 3的网格中(每个格子是个的网格中(每个格子是个1×1的正方形)摆放两枚相同的棋子的正方形)摆放两枚相同的棋子, , 每个格子最多放一枚棋子每个格子最多放一枚棋子, , , 共有共有种不同的摆放方法。
(如果两种放法能够通过旋转而重合两种放法能够通过旋转而重合, , , 则把它们视为同一种放置方法)。
则把它们视为同一种放置方法)。
4. 小于1000 的自然数中,有个数的数字组成中最多有两个不同的数字。
5. 右图中,∆ABC 的面积为100 平方厘米,∆ABD 的面积为72平方厘米. M 为CD 边的中点,∠MHB = 90°. 已知已知AB =20厘米. 则MH 的长度为厘米。
6. 一列数a 1 ,a 2 , , a n , , 记S (a i ) 为a i 的所有数字之和,如S (22) = 2 + 2 = 4 .若a 1 = 2017 ,a 2 =22,a n =S (a n −1 ) +S (a n −2 ) , 那么a 2017等于。
7. 一个两位数, 其数字和是它的约数其数字和是它的约数, 数字差(较大数减去较小数)也是它的数字差(较大数减去较小数)也是它的约数, 这样的两位数的个数共有这样的两位数的个数共有个。
历届华杯赛初赛小高真题
初赛试卷(小学高年级组)(时间: 2016年12月10日10:00—11:00)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ).(A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.次方, 那么γβα++ 的最小值是( ).(A )10 (B )17 (C )23 (D )315. 今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有( )个三角形.(A )9 (B )10 (C )11 (D )126. 从1~11这11个整数中任意取出6个数, 则下列结论正确的有( )个.① 其中必有两个数互质;② 其中必有一个数是其中另一个数的倍数; ③ 其中必有一个数的2倍是其中另一个数的倍数. (A )3 (B )2 (C )1 (D )0 二、填空题 (每小题 10 分, 满分40分)7. 有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书. .8. 每天, 小明上学都要经过一段平路AB 、一段上坡路BC和一段下坡路 CD (如右图). 已知AB :BC :CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是 .9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式个个2016201699999999⨯的结果中含有( )个数字0. (A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80 (C )75 (D )646. 从自然数1,2,32015,2016,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
详解第二十三届“华杯赛”小学高年级组初赛试题
第二十三届华杯赛初赛试卷(小高组)解析仙桃吴乃华一、选择题(每小题10分,共60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.两袋面粉同样重,第一袋用去1/3,第二袋用去1/3千克,剩下的面粉( D )。
(A) 第一袋重 (B) 第二袋重 (C)两袋同样重 (D) 无法确定哪袋重【解】:因为题目的条件只告诉了两袋面粉同样重,没有告诉两袋面粉的具体重量。
这样就可能出现三种情况①、如果这两袋面粉的重量都为1千克,第一袋用去1/3,则还剩1×(1-1/3)=2/3(千克),第二袋用去1/3千克,则还剩1-1/3=2/3(千克),剩下的面粉两袋同样重;②、如果这两袋面粉的重量大于1千克,比如1.2千克、2千克、3千克……。
如果是3千克,第一袋用去1/3,则还剩3×(1-1/3)=2(千克),第二袋用去1/3千克,则还剩3-1/3=2又2/3(千克),剩下的面粉第二袋重;③、如果这两袋面粉的重量小于1千克,比如0.2千克、0.2千克、1/3千克……。
如果是1/3千克,第一袋用去1/3,则还剩1/3×(1-1/3)=2/9(千克),第二袋用去1/3千克,则还剩1/3-1/3=0(千克),则剩下的面粉第一袋重。
所以,由于没有告诉两袋面粉的具体重量,无法确定哪袋重。
2.一个3×3的正方形网格,如果小正方形边长是1,那么阴影部分的面积是( D )。
(A)5 (B)4 (C)3 (D)2【解】:本题要求阴影部分的面积最少有两种方法:1是用总面积减去空白部分的面积得阴影部分的面积。
总面积:3×3=9 小正方形的面积1×4=4三角形的面积:1×(3÷2)÷2×4=3所以,阴影部分的面积是:9-4-3=22是连接最中间的小正方形的对角线,把阴影部分平分为面积相等的8个小三角形,每个小三角形的底的1,高的1/2,这样,阴影部分的面积就是:1×1/2×1/2×8=2。
华杯赛初赛备考讲义含解析(小学高年级组)
, , , , 华杯赛初赛备考讲义含解析(小学高年级组)第一节 计算、几何精讲考点概述计算考点 一、整数、小数、分数的基本计算; 二、整数、小数、分数的常见巧算方法;(凑整、抵消、约分、提取公因数、裂项) 三、分数比较大小;(通分子、通分母、通分差、取倒数) 四、分数与循环小数.(纯循环小数化分数、混循环小数化分数)几何考点 一、基本面积公式;(长方形、正方形、三角形、平行四边形、梯形、圆、扇形) 二、割补法计算面积;三、等积变换; 四、各类几何模型;(等高模型、蝴蝶模型、共角模型、一半模型、沙漏模型、金字塔模型、燕尾模型等) 五、勾股定理与弦图; 六、立体几何.(基本公式、展开图、三视图)真题精讲例题1. 将 5.425 ⨯ 0.63 的积写成小数形式是.(2007 年 12 届)【答案】 3.4180 .【解答】 5.425=5425 = 5420 ,所以 5.425 ⨯ 0.63= 5420 ⨯ 63 = 34146 =34176 ,999 999 999 100 9990 9990而 4176 =1 ⨯ 4176 =1 ⨯ 4 180 =1⨯ 4.180 = 0.4180 ,所以 5.425 ⨯ 0.63 = 3.4180 . 9990 10 999 10 999 10例题2. 从 1 1 1 1 1中去掉两个数,使得剩下的三个数之和与 6最接近,去掉的两个数是 ().2 3 4 5 67(A ) 1 , 1 (B ) 1 , 1 (C ) 1 , 1 (D ) 1 , 1(2010 年 15 届)25263534【答案】D . 【解答】通分1 = 210 , 1 = 140 , 1 = 105 , 1 = 84 , 1 = 70 , 6 = 360 .2 4203 4204 4205 4206 4207 420显然,210+84+70=364 最接近 360.练习1. 2012.25 ⨯ 2013.75-2010.25 ⨯ 2015.75=.(2013 年 18 届)2 , 2 , 2 , 2 , 2 , 2 ,…,而 1 = 2,所以从23 5 7 9 11 13 1000 20002001 【答案】7.【解答】记 x =2010.25,y = 2013.75,则原式= (x + 2) y - x ( y + 2) = 2( y - x ) = 7 .练习2. 两数之和与两数之商都为 6,那么这两数之积减这两数之差(大减小)等于()(2011 年 16 届)(A ) 26 4 (B ) 5 1 (C ) 6 (D ) 67 7 7 49 【答案】D .【解答】设两数分别为 x 与 6x ,那么 7x =6,x = 6 ,所以这两个数分别为 6 与 36 ,两数之积为216 ,7两数之差为 30,216 - 30 = 6 .7749749 7 49练习3. 若 a =2005 ⨯ 2006 , b = 2006 ⨯ 2007 , c = 2007 ⨯ 2008,则有().2007 ⨯ 2008 2008 ⨯ 2009 2009 ⨯ 2010(A ) a > b > c (B ) a > c > b (C ) a < c < b (D ) a < b < c (2008 年 13 届) 【答案】D .【解答】比较 a 与 b ,两边同时可以约掉2006,而2005<2007,所以 a < b , 20082007 2009比较 b 与 c ,两边同时可以约掉 2007 ,而 2006 < 2008,所以 b < c ,故选D . 2009 2008 2010练习4. 在 1 , 3 , 5 , 7 , 9 , 11,…中,从开始,1 与每个数之差都小于 1 .3 5 7 9 11 131000(2004 年 9 届)【答案】 1999 .2001【解答】这一排分数与 1 的差分别为开始,就开始小于 11000,所以答案为 1999 .2001例题3. 如图所示,AB 是半圆的直径,O 是圆心,AC = CD = DB ,M 是 CD 的中点,H 是弦 CD 的中点.若N 是OB 上一点,半圆的面积等于12 平方厘米,则图中阴影部分的面积是平方厘米.(2009 年14 届)MC DHA O N B【答案】2.【解答】如下图,可以利用等积变换变成一个扇形:MC DHA O B因为AC = CD = DB ,M 是CD 的中点,所以CM 是半圆弧的1,所以阴影扇形面积为半圆面积的1,6 6为2.例题4. 大正方形格板是由81 个1 平方厘米的小正方形铺成,B、C 是两个格点.若请你在其它的格点中标出一点A,使得△ABC 的面积恰好等于3 平方厘米,则这样的A 点共有个.(2010 年15 届)CB(A)6 (B)5 (C)8 (D)10【答案】C.【解答】方法一:从最上面的水平线开始将水平线分别记为第1、第2、…、第10 条水平线,每条水平线均由左至右判断哪个格点符合题目要求.以此穷举法可以得到:第1 条水平线上没有格点符合要求,第2 条水平线上仅有A7 符合要求.如右图所示,类似可以得到格点A2,A1,A6符合要求,对称地,可以得到A ,A ,A ,A 符合要求.故答案是C.5 4 3 8方法二:先通过尝试找到A ,然后找到经过A ,而且平行于BC 的线,画出来,那么这条线经过的格1 1点都是符合要求的(等积变换),这样可以得到A ,A ,A ,A ,然后利用对称性,可以得到A ,A ,A 3 ,A8.故答案是C.2 1 6 7 5 4练习5. 正方形ABCD 的面积为9 平方厘米,正方形EFGH 的面积为64 平方厘米.如图所示,边BC 落在EH 上.已知三角形ACG 的面积为6.75 平方厘米,则三角形ABE 的面积为平方厘米.(2012 年17 届)【答案】2.25.【解答】如图:连接EG,由于AC 和EG 都是对角线,因此相互平行,所以三角形ACG 的面积等于三角形ACE 的面积,所以S△ABE =S△ACE-S△ABC=6.75 -4.5=2.25 .练习6. 右图ABCD 是平行四边形,M 是DC 的中点,E 和F 分别位于AB 和AD 上,且EF 平行于BD.若三角形MDF 的面积等于5 平方厘米,则三角形CEB 的面积等于()平方厘米.(2013 年18 届)(A)5 (B)10 (C)15 (D)20【答案】B【解答】如右图,连接FC,BF,DE.因为M 是DC 的中点,三角形MDF 的面积等于5 平方厘米,所以由三角形面积公式可知:三角形CDF的面积等于10 平方厘米.两个三角形,同底等高,面积则相等.由此可知:由DC / / AB ,得△CEB 的面积=△BDE 的面积;由EF / /B D ,得△BDE 的面积=△BDF 的面积;由AD / /B C ,得△BDF 的面积=△C DF 的面积,所以三角形CEB 的面积等于10 平方厘米.练习7. 如右图所示,梯形ABCD 的面积为117 平方厘米.AD∥BC,EF = 13 厘米,MN = 4 厘米,又已知EF⊥MN 于O,那么阴影部分的总面积为平方厘米.(2011 年16 届)【答案】65.【解答】四边形 EMFN 的面积= 1⨯ EF ⨯ MN =26 .(对角线相互垂直的四边形面积为对角线相乘再除2以 2),又根据蝴蝶模型, S △ABM =S △EFM , S △DCN =S △EFN ,所以空白部分总面积为四边形 EMFN 的面积 的 2 倍,为 52,所以阴影部分总面积=117-52=65.练习8. 右图由 4 个正六边形组成,每个面积是 6,以这 4 个正六边形的顶点为顶点,可以连接面积为 4 的等边三角形有 个.(2011 年 16 届) 【答案】8.【解答】如图,将原图按三角形格线分割,于是我们要找的其实是由 4 个小正三 角形组成的正三角形,注意顶点必须六边形顶点,箭头朝上的有四个(如图), 根据对称性,箭头朝下的也有 4 个,共 8 个.例题5. 如图,大小两个半圆,它们的直径在同一直线上,弦 AB 与小圆相切,且与直径平行,弦 AB 长12 厘米.图中阴影部分的面积是 平方厘米.(圆周率取 3.14)(2004 年 9 届)AB【答案】56.52.【解答】设大圆半径为 R ,小圆半径为 r ,那么阴影部分面积为 1 π R 2 - 1 π r 2 = 1π ( R 2 - r 2 ),所以关 2 2 2 键是求出半径的平方差.如图,过大圆圆心作 AB 的垂线,连接圆心与 B 点,由勾股定理可得,62 + r 2 = R 2 ,所以 R 2 - r 2 = 36 .A6 BrR那么阴影部分面积= 1⨯ 3.14 ⨯ 36=56.52 .2例题6. 一个长方体的长、宽、高恰好是 3 个连续的自然数,并且它的体积的数值等于它的所有棱长之和的数值的 2 倍,那么这个长方体的表面积是 .(2007 年 12 届)(A )74(B )148(C )150(D )154【答案】B.【解答】设这三个连续的自然数分别为x-1,x,x+1,那么可以列出方程:(x-1)x(x+1)=2(x-1+x +x +1)⨯ 4 ,化简后为:x(x2 -1)= 24x ,由于x 肯定不是0,所以两边同时约掉x 后,可得方程:x2 -1= 24 ,所以x = 5 ,这三个连续的自然数分别为4、5、6,那么表面积为:(4⨯5 +5⨯ 6 +4⨯6)⨯ 2=148 .练习9. 如图所示,是一个直圆柱形状的玻璃杯,一个长为12 厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2 厘米,最多能露出4 厘米.则这个玻璃杯的容积为立方厘米.(取π= 3.14 )(提示:直角三角形中“勾6、股8、弦10”)(2006 年11 届)CA B【答案】226.08.【解答】沿AC 放置时,另一端沿吸管露出最少,为2 厘米,说明AC=12-2=10 厘米,沿BC 放置时,另一端沿吸管露出最多,为4 厘米,说明BC=12-4=8 厘米,根据勾股定理,AB2 = 102 - 82 = 36 ,所=9π⨯8=72π=226.08 .以AB=6,底面半径为3,所以V杯练习10. 右图中,AB 是圆O 的直径,长6 厘米,正方形BCDE 的一个顶点E 在圆周上,∠ABE = 45︒.那么圆O 中非阴影部分的面积与正方形BCDE 中非阴影部分面积的差等于平方厘米(取π= 3.14 ).(2013 年18 届)【答案】10.26【解答】因为∠ABE = 45︒,∠EAB 所对的圆弧和∠ABE 所对的圆弧弧度相等,且圆弧的直径相同,故∠EAB = 45︒,三角形ABE 是直角三角形.由勾股定理:2BE2 =AB2 = 62 = 36 (平方厘米),正方形BCDE 的面积=BE2 =18 (平方厘米).圆O 的面积-正方形BCDE 的面积=(圆非阴影部分的面积+圆和正方形相交部分的面积)-(正方形BCDE 中非阴影部分面积+圆和正方形相交部分的面积)=圆非阴影部分面积-正方形非阴影部分面积=32 ⨯π-18 = 28.26 -18 =10.26 (平方厘米).练习11. 图中的方格纸中有五个编号为1,2,3,4,5 的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是().(A)1,2 (B)2,3 (C)3,4 (D)4,5(2012 年17 届)【答案】D【解答】注意到展开图中不能出现“田”字结构,因此排除掉ABC,选D.练习12. 如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M 和BC 的中点N,减掉△MBN 得五边形AMNCD.则将折叠的五边形AMNCD 纸片展开铺平后的图形是.(2006 年11 届)D C D CNNA MB A M【答案】D.【解答】注意对折方向,可以判断B 点是原正方形中心,因此是中心被掏空的形状,再注意减掉的形状是三角形,也就是展开后,横竖四等分以后,每一部分缺的都是三角形,结合这两点,答案为D.课后作业:1. 计算:⎡⎛0.8 +1 ⎫⨯ 24 + 6.6⎤÷9- 7.6 =().(2012 年17 届)⎢ 5 ⎪ ⎥14⎣⎝ ⎭ ⎦(A)30 (B)40 (C)50 (D)60【答案】B.【解答】原式= [1⨯ 24 +6.6]⨯14 - 7.6 = 30.6 ⨯14 - 7.6=47.6 - 7.6=40 .9 92. 算式1 -27+ 2 ⨯ 0.3的值为.(2010 年15 届)0.25 + 3 ⨯1 1.3 - 0.44【答案】1 8.211 -2 5 3【解答】7 +2 ⨯ 0.3= 7 + 5 =5+2=18.0.25 + 3 ⨯1 1.3 - 0.441+39 7 3 214 4 103. 下面有四个算式:①0.6 + 0.133=0.733 ;②0.625= 5 ;8③ 5+3=5 + 3=8=1;14 2 14 + 2 16 2④3 3 ⨯ 4 1 =14 2 .7 5 5其中正确的算式是()(2009 年14 届)(A)①和②(B)②和④(C)②和③(D)①和④【答案】B.【解答】①式错,因为0.6 并不循环,②式对,③式错,不符合分数加法规则,④式对,因此选B.4. 题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A、B、C 处填的数各是、、.(2004 年9 届)提示:注意相对两个面展开后的位置.C 2B 1A 4【答案】6、5、3.【解答】注意到,展开图中的形状,黑色两个面在合上后是相对的,所以在原图中,A 和1 相对,B 和2 相对,C 和4 相对,所以A=6,B=5,C=3.5. 如图,ABCD 是个直角梯形(∠DAB=∠ABC=90o).以AD 为一边向外作长方形ADEF,其面积为6.36 平方厘米,连接BE 交AD 于P,再连接PC.则图中阴影部分的面积是平方厘米.(2006年11 届)提示:等积变换.(A)6.36 (B) 3.18 (C)2.12 (D)1.59 【答案】B.【解答】连接BD、AE,利用等积变换,S△PDC =S△PDB,所以S阴=S△EDB,再次利用等积变换,可以得到S△EDB =S△EDA,而三角形EDA 面积是长方形ADEF 的一半,为3.18,所以以S阴=S△EDB=S△EDA=3.18 .6. 一块长方形的木板,长为90 厘米,宽为40 厘米,将它锯成2 块,然后拼成一个正方形,你能做到吗?请画出分割线.(2004 年9 届)提示:阶梯形.【答案】如图,沿粗线剪开即可..【解答】图形面积为90×40=3600 平方厘米,因此拼成的正方形边长为60 厘米,我们把这个图形画出来与原图形进行比较:3020两条边的差分别为30 和20,因此把90 厘米那边30 厘米一截,40 厘米那边20 厘米一截,分成6 块之后,稍作尝试即可.7. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有()条直线互相平行.(A)0 (B)2(C)3 (D)4(2014 年19 届)【答案】C.【解答】当4 条直线都互相平行时,平面被分成5 个部分,不满足要求,因此最多只能3 条直线互相平行.构造:有3 条直线互相平行,另外一条直线与它们都互相垂直,此时平面被分成8 个部分.8. 如右图所示,AF = 7 cm,DH = 4 cm,BG = 5 cm,AE =1c m.若正方形ABCD内的四边形EFGH 的面积为78 cm2,则正方形的边长为()cm.(A)10 (B)11 (C)12 (D)13(2014 年19 届)提示:类比弦图.【答案】C.【解答】用竖直线和水平线将正方形ABCD 分割为如右图所示的5 个长方形,中间长方形的面积是4⨯ 3=12 ,所以,正方形的面积= (78-12)⨯ 2 +12=144 ,正方形的边长是12.9. 如图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的( ).提示:分割图形.(A)1 (B)2 (C)2 (D)52 3 5 12(2010 年15 届)【答案】A.【解答】由图可知,左上角和右上角的阴影部分的面积分别恰等于一个平行四边形内正六边形的面积,因此阴影部分的面积占平行四边形面积的1 . 2第二节数论、应用题精讲考点概述数论考点五、数的整除性相关知识六、质数合数七、约数与倍数八、余数问题应用题考点一、常考应用题类型(和差倍应用题,比例应用题,经济问题,浓度问题等)1. 画线段图帮助解题2. 列方程解应用题二、行程问题:1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇与追及问题等)2. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件)3. 方程与比例解行程问题真题精讲例1.在一个圆周上有70 个点,任选其中一个点标上1,按顺时针方向隔一个点的点上标2,隔两个点的点上标3,再隔三个点的点上标4,继续这个操作,直到1,2,3,…,2014 都被标记在点上.每个点可能不只标有一个数,那么标记了2014 的点上标记的最小整数是.(2014 年19 届)【答案】5【解析】将70 个点中某个点为起始点,然后按顺时针方向依次将这70 个点记为第1 个,第2 个,第3 个,…,第70 个,用a 表示第a 个点上标记的数字是i.i i依题意a1= 1 ,a2 = 3 ,a3 = 6 ,a4 = 10 ,…,且按规律得:a 2014 =1+ 2 + 3 + + 2014 =2014 ⨯ 2015=202910522029105 = 28987 ⨯ 70 +15 ,而a5 = 15 ,因此第15 个点上标记的最小整数为5.例2.若a = 1515 15 ⨯ 333 3 ,则整数a 的所有数位上的数字和等于.(2008 年13 届)1004个15 2008个3(A)18063 (B)18072 (C)18079 (D)18054【答案】B【解析】a = 505 05 ⨯ 999 9 ,利用结论A⨯ 999 9 的数字和为9n ,可知a 的数字和为18072,选B.1004个5 2008个9 n个9练习1.恰有20 个因数的最小自然数是().(2010 年15 届)(A)120 (B)240 (C)360 (D)432【答案】B.【解析】因为20=2×10=4×5=2×2×5,因此,具有20 个因数的自然数的质因数分解形式只有19 ,⨯9 ,3 ⨯4 ,⨯⨯ 4 这4 种,对应类型的最小自然数分别为219 ,3⨯ 29 ,33 ⨯ 24 ,3⨯5⨯ 24 ,其中最小的是240,选B.练习2.在19、197、2009 这三个数中,质数的个数是().(2009 年14 届)(A)0 (B)1 (C)2 (D)3【答案】C【解析】质数判定,检验所有平方小于2009 的质数即可.练习3.若连续的四个自然数都为合数,那么这四个数之和的最小值为().(2011 年16 届)(A)100 (B)101 (C)102 (D)103【答案】C【解析】最小连续4 个合数为24,25,26,27,它们之和为102.例3.一个奇怪的动物庄园里住着猫和狗,狗比猫多180 只.有20%的狗错认为自己是猫;有20%的猫错认为自己是狗.在所有的猫和狗中,有32%认为自己是猫,那么狗有()只.(2012 年17 届)(A)240 (B)248 (C)420 (D)842【答案】A【解析】设猫有x 只,狗有y 只,则认为自己是猫的动物共有80%x + 20% y 只,从而80%x + 20%y = 32%(x +y) ,可以得到4x =y ,再结合狗比猫多少180 只,可得x = 60 ,y = 240 ,从而狗有240 只,选A.例4.一只青蛙8 点从深为12 米的井底向上爬,它每向上爬3 米,因为井壁打滑,就会下滑1 米,下滑1 米的时间是向上爬3 米所用时间的三分之一.8 点17 分时,青蛙第二次爬至离井口3 米之处,那么青蛙从井底爬到井口时所花的时间为()分钟.(2013 年18 届)(A)22 (B)20 (C)17 (D)16【答案】A【解析】记青蛙每向上爬行1 米,所用时间为t 分钟,则下滑1 米的时间是向上爬3 米所用时间的三分之一,也为t 分钟.当青蛙刚爬至离井口3 米时,离井底9 米,所用时间是17 分钟.将2 米分为1 段,则一段所需时间为4t,第一次离井口3 米的时候是,向上爬了3 段之后再向上爬了3 米,第二次离井口3 米的时候是,向上爬了4 段之后再向上爬了1 米,此时总共花了17t 的时间,此时为8 点17,过了17 分钟,所以t=1,即每分钟1 米.向上爬出井口的时候,总共是向上爬了5 段,然后向上爬了2 米,总共花了22 分钟.练习5.两条纸带,较长的一条为23cm,较短的一条为15cm.把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是( )cm.(2010 年15 届)(A)6 (B)7 (C)8 (D)9【答案】B.【解析】设剪下的长度为x cm,那么有:23 -x ≥ 2(15 -x) ,解得x ≥ 7 ,因此剪下的长度至少为7cm,选B.练习6.某次考试有50 道试题,答对一道题得3 分,答错一道题扣1 分,不答题不得分.小龙得分120 分,那么小龙最多答对了()道试题.(2014 年19 届)(A)40 (B)42 (C)48 (D)50【答案】B【解析】得分120 分,说明至少需要答对40 道题,其余10 道题不答,满足题意.若答对41 道题,答错3 道题,其余题不答,此时得分也是120 分.若答对42 道题,答错6 道题,其余题不答,此时得分也是120 分.若答对43 道题,得分依然为120 分,需要再答错9 道题,此时至少需要有52 道题,52>50,因此不满足题意.解法二:设作对x 题,做错y 题,未答z 题,则有:3x - y =120, x +y +z = 50,合并两个等式,得到:4x =170 - z, x = 42 +2- z ,x 是非负整数,尽可能大,故z = 2, x = 42 ,即小4龙最多答对42 道试题.练习7.两个水池内有金鱼若干条,数目相同.亮亮和红红进行捞鱼比赛,第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时,亮亮比第一次多捞33 条,与红红捞到的金鱼数目比是5:3.那么每个水池内有金鱼()条.(2010 年15 届)(A)112 (B)168 (C)224 (D)336【答案】B【解析】这是一道工程问题的变形,每个水池内有金鱼33 ÷ ( 5-3) =168 (条).5 + 3 4 + 3解法2:可以认为是比例应用题,设亮亮第一次捞到3n 条,则红红第一次捞到4n 条,依题意,有3n + 33=5,解得n=24,因此水池内共有金鱼7n=168 条.4n - 33 3练习8.用若干台计算机同时录入一部书稿,计划若干小时完成.如果增加3 台计算机,则只需原定时间的75%;如果减少3 台计算机,则比原定时间多用5小时.那么原定完成录入这部书稿的时间是()6小时.(2011 年16 届)(A)5 3【答案】A (B)103(C)56(D)116【解析】增加3 台计算机,则只需原定时间的75%,所以原先有9 台计算机;如果减少3 台计算机,则所需时间为原定时间的9=3,比原定时间多用了5小时,所以原定要5÷⎛3-1⎫=5小时.9 -32 6 6 2 ⎪ 32⎝ ⎭例6. 图中是一个玩具火车轨道,A 点有个变轨开关,可以连接 B 或者 C .小圈轨道的周长是 1.5 米,大圈轨道的周长是 3 米.开始时, A 连接 C ,火车从 A 点出发,按照顺时针方向在轨道上移动,同时 变轨开关每隔 1 分钟变换一次轨道连接.若火车的速度是每分钟 10 米,则火车第 10 次回到 A 点时用了 分钟.(2010 年 15 届)【答案】2.1【解析】根据条件,在小圈火车行驶一圈用时1.5 ÷10 = 0.15 分钟,在大圈火车行驶一圈用时3 ÷10 = 0.3 分钟.设回到 A 点时用时为 t 分钟,这样我们有下表:回到 A 的次数 1 2 3 4 5 6 7 8 910到 A 点用时 0.3 0.6 0.9 1.2 1.35 1.5 1.65 1.8 1.95 2.1经过的轨道ACACACABABABABABABAC下面我们给出一个一般的解答:设玩具火车绕小圈轨道 m 圈,绕大圈轨道 n 圈,则玩具火车运动路程是 S = 1.5m + 3n ,时间是1.5m + 3n .如果 ⎡1.5m + 3n ⎤ 是偶数,则变轨开关 AC 连通,如果 ⎡1.5m + 3n ⎤是奇数,则变轨开关 AC 10 ⎢ 10⎥ ⎢ 10⎥⎣⎦⎣⎦连通.我们寻找最小的 m + n ,使1.5m + 3n是偶数.无妨设 101.5m + 3n = 10K ,或 3m + 6n = 20K ,这里 K 是偶数,并且有 3 为约数,是玩具火车运动的时间,因此最小的 K 是 6.即求 m 和 n 使m + 2n = 40 .12 当 n =3,S AA C = 2S ABC = 12 ,故开始玩具火车绕大圈轨道 4 圈之后进入小圈,时间是 10= 1.2(分钟);当 n =4, m =5 时,⎡ 7.5 + 12 ⎤ = 1 , ⎡ 9 + 12 ⎤= 2 ,故玩具火车绕小圈轨道 6 之后再次进入大圈轨道, ⎢ 10 ⎥ ⎢ 10 ⎥3⎣⎦ ⎣ ⎦此时1.5m + 3n=1.5 ⨯ 6 + 3 ⨯ 4= 2.1 (分钟)(可以称为一个拟循环)1010将玩具火车再次进入大圈运行,运行圈数记为 n . n =3 时, 1.5 ⨯ 6 + 3 ⨯ 7= 3 (分钟),玩具火车应2210当再次进入小圈运行,运行圈数记为 m ,既然1.5 ⨯ 7> 1 > 1.5 ⨯ 6,故玩具火车绕小圈运行 7 圈后,应 210 10再次进入大圈运行,此时 1.5m + 3n = 1.5 ⨯13 + 3 ⨯ 7= 4.05 (分钟).10 10 将玩具火车再次进入大圈运行, 运行圈数记为 n .既然1.5 ⨯13 + 3 ⨯11 > 5 > 1.5 ⨯13 + 3 ⨯10 ,10 10故玩具火车绕大圈运行 4 圈后,应再次进入小圈运行,此时1.5m + 3n = 1.5 ⨯13 + 3 ⨯11 = 5.25 (分钟), 10 10则玩具火车绕大圈运行 5 圈后,1.5m + 3n = 1.5 ⨯18 + 3 ⨯11= 6 (分钟). 10 10结论玩具火车第 29 次回到 A 时, 变轨开关 AC 连通,即回到原始状态.练习9. 4 个整数中任意选出 3 个,求出它们的平均值,然后再求这个平均值和余下 1 个数的和,这样可以得到 4 个数:4、6、 5 1 和 4 2,则原来给定的 4 个整数的和为.(2009 年 14 届)3 3 【答案】10【解析】设 4 个整数分别为 a 、b 、c 、d ,则有a +b +c +d = 4 、 a + b + d + c = 6 、a + c + d + b = 5 1、 3 3 3 3b +c +d + a = 4 2,四式相加可得 2(a + b + c + d ) = 20 ,从而 a + b + c + d = 10 .3 3练习10. A 、B 、C 、D 、E 五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A →C ,B →E ,C →A ,D →B ,E →D .开始时 A 、B 拿着福娃,C 、D 、E 拿着福牛,传递完5 轮时,拿着福娃的小朋友是().(2009 年14 届)(A)C 与D (B)A 与D (C)C 与E (D)A 与B【答案】A【解析】A 和C 之间的传递以2 为周期,B、E、D 之间的传递以3 为周期,所以5 轮之后,A 和C 之间的福娃最后在C 手中,B、E、D 之间的福娃最后在D 手中,所以最后拿着福娃的是C 与D.练习11. 某学校组织一次远足活动,计划10 点10 分从甲地出发,13 点10 分到达乙地,但出发晚了5 分钟,却早到达了 4 分钟.甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是().(2014 年19 届)(A)11 点40 分(B)11 点50 分(C)12 点(D)12 点10 分【答案】B【解析】从10 点10 分到13 点10 分共有3 个小时,比计划时间少用9 分钟,即每小时少用3 分钟,少用5 分钟的时候即是到达B 点的时间.此时需要5÷(3÷60)=100 分钟,即1 小时40 分钟,所以到达B 点的时间是11 点50 分.练习12. 甲、乙两车分别从A,B 两地同时出发,且在A,B 两地往返来回匀速行驶.若两车第一次相遇后,甲车继续行驶4 小时到达B,而乙车只行驶了1 小时就到达A,则两车第15 次(在A,B 两地相遇次数不计)相遇时,它们行驶了小时.(2012 年17 届)【答案】B【解析】设甲、乙的速度分别为V甲、V乙,则甲、乙相遇时,他们行驶的路程比为V甲:V乙;另一方面,第一次相遇后,甲车继续行驶4 小时到达B,乙车继续行驶了1 小时到达A,所以这两段的路程比也为V乙: 4V甲,从而V甲:V乙=V乙: 4V甲,进而有V甲:V乙= 1: 2 ,进而可以得到甲从A 到B 需要6 小时,乙需要3 小时,一个周期为12 小时且周期内相遇两次,7 个周期后,甲、乙相遇14 次,且分别回到A 和B,2 小时后,甲、乙第15 次相遇,总共用时7 ⨯12 + 2 = 86 小时.课后练习1. 任意写一个两位数,再将它依次重复3 遍成一个8 位数.将此8 位数除以该两位数所得到的商再除以9,问:得到的余数是.(2004 年9 届)【答案】4【解析】abababab ÷ab =1010101,1010101 除以9 的余数为4.2. 2008006 共有个质因数.(2006 年11 届)(A)4 (B)5 (C)6 (D)7【答案】C【解析】2008006 = 2 ⨯ 7 ⨯11⨯13⨯17 ⨯ 59 .3. 小明所在班级的人数不足40 人,但比30 人多,那么这个班男、女生人数的比不可能是().(2014 年19 届)(A)2:3 (B)3:4 (C)4:5 (D)3:7【答案】D【解析】如果男、女生人数的比是2:3,那么全班人数一定是5 的倍数,男生14 人,女生21 人,满足题意.如果男、女生人数的比是3:4,那么全班人数一定是7 的倍数,男生15 人,女生20 人,满足题意.如果男、女生人数的比是4:5,那么全班人数一定是9 的倍数,男生16 人,女生20 人,满足题意.如果男、女生人数的比是3:7,那么全班人数一定是10 的倍数,但本班人数不足40 人,但比30 人多,所以男、女生人数的比不可能是3:7.4. 开学前6 天,小明还没做寒假数学作业,而小强已完成了60 道题,开学时,两人都完成了数学作业.在这6 天中,小明做的题的数目是小强的3 倍,他平均每天做()道题.(2009 年14 届)y 7 ⎩(A )6 (B )9 (C )12 (D )15【答案】D【解析】这 6 天小明比小强多做了 60 道,平均每天多做 10 道,小明每天做题量是小强的 3 倍,所以 小强每天做 5 道,小明每天做 15 道.5. 一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为 9:7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为 7:5,那么盒子里原有的黑子数比白子数 多( )个.(2013 年 18 届)(A )5 (B )6(C )7(D )8【答案】C【解析】设原有黑子数为 x ,白子数为 y ,得方程⎧ x - 1 = 9⎧7 x - 9y = 7⎪ ⎪ ⎪ ⎨x 7 即 ⎨⎪ = ⎪⎩ y - 1 5⎪5x - 7y = - 7由此解得x = 28 , y = 21 .故 x - y = 7 .解法二:前后两次均取出一枚棋子,剩下棋子的总数不变,而 9 + 7 = 16 ,7 + 5 = 12 ,16 与 12 的最小 公倍数为 48 ,因此设取出一枚棋子后,剩下棋子的总数为 48 份.第一次余下的黑子数为 48 ÷ (9 + 7) ⨯ 9 = 27 份;第二次余下的黑子数为 48 ÷ (7 + 5) ⨯ 7 = 28 份;两次相差 1 份.而前后两次余 下的黑子数相差 1,因此 1 份对应 1 枚棋子.原有黑子 28 个,原有的白子数为 28 ÷ 7 ⨯ 5 + 1 = 21个, 黑子比白子多 28 - 21 = 7 个6. 水池 A 和 B 同为长 3 米,宽 2 米,深 1.2 米的长方体.1 号阀门用来向 A 池注水,18 分钟可将无水的A 池注满;2 号阀门用来从 A 池向B 池放水,24 分钟可将 A 池中满池水放入 B 池.若同时打开 1 号和 2 号阀门,那么当 A 池水深 0.4 米时,B 池有( )立方米的水.(2013 年 18 届) 【答案】D【解析】由已知, 1 号阀门每分钟注入 1 18池水,而 2 号阀门放出 1 24池水.到A 池深 0.4 米时,正好在 A 池中留存了 1池水,31 ÷ ⎡ 1 -1 ⎤ = 24 (分钟).⎣ ⎦3 ⎢18 24 ⎥故此时恰好放了24 分钟,正好把B 池放满,进而B 水池中有水3⨯ 2 ⨯1.2 = 7.2 (立方米).7. “低碳生活”从现在做起,从我做起.据测算,1 公顷落叶阔叶林每年可吸收二氧化碳14 吨.如果每台空调制冷温度在国家提倡的26℃基础上调到27℃,相应每年减排二氧化碳21 千克.某市仅此项减排就相当于25000 公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按3 台空调计,该市家庭约有万户.(保留整数)(2010 年15 届)【答案】556【解析】25000⨯14⨯1000÷(21⨯3)≈5555555.6.8. 甲乙同时出发,他们的速度如下图所示,30 分钟后,乙比甲一共多行走了米.(2014 年19 届)10080604020米/分5分10 15 20 25 30甲10080604020米/分分5 10 15 20 25 30乙【答案】300【解析】由图所示,前10 分钟,甲和乙速度相同;第10 分钟至第20 分钟,乙速度是100 米/分,甲的速度是80 米/分,故乙多走了200 米;第20 分钟至第25 分钟,甲乙速度相同;第25 分钟至30 分钟,乙的速度是80 米/分,甲的速度是60 米/分,故乙多走了100 米;乙共计多走了300 米.9. 甲、乙两车分别从A,B 两地同时出发,相向而行,3 小时相遇后,甲掉头返回A 地,乙继续前行.甲到达A 地后掉头往B 行驶,半小时后和乙相遇.那么乙从A 到B 共需小时.(2011 年16 届)【答案】7.2【解析】甲、乙相遇后,同时向B 行驶,甲先是花了3 小时到达A 地,然后甲掉头行驶了半小时和乙相遇,从而甲乙相遇后,乙行驶了3.5 小时,且这段路甲只需要2.5 小时,所以甲、乙的速度比为7:5,从而甲花了3 小时的这段路,乙需要3⨯ 7 ÷ 5 = 4.2 小时,所以乙从A 到B 共需3 + 4.2 = 7.2 小时.第三节数字谜、计数、组合精讲考点概述数字谜考点:竖式问题常用方法:(1)加数相加时每进1 位,和的数字和将比加数的数字和之和减少9.(2)与各个数位上的数字有关的问题,往往需要多次尝试才能得到结果.(3)与整除相关的问题,注意运用以前学过的整除知识.计数问题考点:1. 枚举法(有序、分类)2. 加乘原理(分类,加法;分步,乘法)3. 排列组合(排列,有序;组合,无序;常用方法,插空、捆绑、插板、排除等)4. 综合运用(结合几何、数论等知识)组合问题考点:1. 最值问题:(1)满足题目条件的情况不多时,可以用枚举法把可能的情况一一列举出来,再找出最大值或最小值.(2)两个数的和一定,当它们越接近时乘积越大.(3)极端思考与局部调整也是解决最值问题的常用方法.2. 逻辑推理、统筹对策、抽屉原理等.真题精讲。
第二十二届“华杯赛”决赛小高组试题A详细解答
第二十二届华罗庚金杯少年数学邀请赛决赛试题A(小学高年级组)详细解答一、填空题(每小题10分,共80分)1.用[x]表示不超过xx的最大整数,例如:[3.14]=3,则�2017×311�+�2017×411�+�2017×511�+�2017×611�+�2017×711�+�2017×811�的值为。
2.从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12, 1023和913,则原来给定的4个整数的和为。
3.在3×3的网格中(每个格子是1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有种不同的摆放方法。
(如果两种方法能够由旋转而重合,则把它们视为同一种摆放方法)。
4.甲从A地出发去找乙,走了80千米后达到B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来速度的2倍去C地,又经过了2个小时后,甲乙两人同时到达C地,则乙的速度是千米/小时。
5.某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的27,是只参加朗诵小组人数的15,那么书法小组与朗诵小组的人数比是。
6.右图中,⊿ABC的面积为100平方厘米,⊿ABD的面积为72平方厘米。
M为CD边的中点,∠MHB=90º。
已知AB=20厘米,则MH的长度为厘米。
7.一列数a1, a2,…,a n,…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4.若a1=2017, a2=22, a n=S(a n-1)+S(a n-2),那么a2017等于。
8.如右图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉子分别位于A,B,C,D,E,F顶点处。
将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种。
2017年华杯赛决赛小高组模拟试题(2)
2017年华杯赛决赛小高组模拟试题(2)决赛模拟测试题(2)一、填空题(每小题10分)1.设n = 321 × 732 × 133,那么n的个位数字是______。
2.图F1-20的阴影部分是由正方形的边和四分之一的圆弧围成的。
如果圆周率取3.14,阴影部分面积为73.88,那么大正方形的边长等于______。
3.某班共有30名学生,分甲、乙、丙三组。
甲组每人发2支铅笔和3本小人书,乙组每人发2支铅笔和4本小人书,丙组每人发3支铅笔和4本小人书,一共发了72支铅笔和113本小人书。
乙组有______人。
4.一个两位数减2等于它各位数字之积的三分之四,则此数是______。
5.图F1-21是由一个边长为2厘米的正方形和一个长为5厘米的长方形拼接而成的,线段MN把它们各分成两部分。
a,b两块的面积和是c,d两块面积和的1.5倍,那么长方形的宽是______厘米。
6.我们知道,PM2.5的值(每立方米空气中有害细小颗粒物的含量)是衡量空气质量的重要指标。
现在实验室中做实验,A中空气的PM2.5的值为150微克/立方米,B中是洁净空气,PM2.5的值为0.将A和B中的空气全部充入另一个较大的真空中,PM2.5的值下降为100微克/立方米。
如果再混合与B中同样多的洁净空气,PM2.5的值为______微克/立方米。
(注:本实验过程要求每次混合后气体的体积等于混合前气体体积的和)7.从1,2,3,4,5,6,7,8这8个数中选出4个不同的数填入下面4个方格中,□+□>□+□,有______种不同的填法使式子成立。
(提示:3+2和2+3是不同的填法)8.有10个人围成一圈,每人选择一个整数并告诉与他相邻的两个人,然后每人都算出与他相邻的两人告诉他的数的平均数并宣布,宣布的结果如图F1-22所示。
则宣布5的那个人选择的整数是______。
二、简答题(每小题10分,要求写出简要):9.设S = (10 + 11 + 12 + … + 18 + 19 + 20) × 5,那么S的整数部分是多少?10.某班有30名学生,其中男生占总人数的40%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 等差数列知1、数列定义:若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项(我们将用 1a 来表示),第二个数叫做第二项 以此类推,最后一个数叫做这个数列的末项(我们将用 n a 来表示),数列中数的个数称为项数,我们将用 n 来表示。
如:2,4,6,8, ,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差(我们用 d 来表示),即: 1122312----=-==-=-=n n n n a a a a a a a a d 例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
(省略号表示什么?)练习1:试举出一个等差数列,并指出首项、末项、项数和公差。
3、 计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差即:d n a a n ⨯-+=)1(1(2)项数公式:项数=(末项-首项)÷公差+1即:1)(1+÷-=d a a n n(3)求和公式:总和=(首项+末项)×项数÷2即:()21321÷⨯+=+++n a a a a a a n n在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例1、计算2+4+6+……+96+98+100。
练习:1、计算1+2+3+4+5+6+7+8+9+10。
2、计算12+13+14+……+29+30+31。
3、试用两种方法计算以下题目:(1)、73+77+81+85+89+93 (2)、995+996+997+998+9994、求出所有的两位数的和。
例2、计算:(1)100+95+90+……+15+10+5。
练习:1、计算:1+2+3+4+5+……+99+100+99+98+……3+2+1。
2、有10只盒子,44只乒乓球,把这44只乒乓球放到盒子中,能不能使每个盒子中的球数都不相同(每个盒子中至少要放一个球)?例3、小红读一本长篇小说,第一天读了30页,从第二天起,每天读的页数都比前一天多4页,最后一天读了70页,刚好读完。
问:这本小说共有多少页?练习:1、影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位,最后一排有94个座位。
问:这个影剧院共有多少个座位?2、有一堆木材堆在一起,一共25层,第一层有3根,第二层有4根,下面每一层比上一层多1根,这堆木材共有多少根?3、时钟每逢几时就敲几下,每半点时钟敲1下。
问:一昼夜该时钟总共敲了多少下?例5、计算(2+4+6+……+18+20)—(1+3+5+……+17+19)。
练习:1、2013—2012+2011—2010+……+3—2+1。
2、(1+3+5+……+79)—(2+4+6+……+78)。
3、100—98+96—94+92—90+……+8—6+4—2。
巩固练习:1、在12 与60 之间插入3个数,使这5个数成为一个等差数列。
2、在6和38 之间插入7个数,使他们成为等差数列,求这9 个数的和是多少?3、省工人体育馆的12区共有20排座位,呈梯形,第1排有10个座位,第2排有11个座位,第3排有12个座位……这个体育馆的12区共有多少个座位?第二讲求因数个数有的时候我们只需要知道某数的因数有多少而不需要找出这些因数具体是那些。
对一些数来说因数很少很容易就能一一列举出来,数一数有多少。
但是有些数因数比较多,一一列举的话比较麻烦,并且也不一定能够全都找出来。
在这种情况下,我们可以先分解质因数,在通过计算求出因数的个数。
一、求8和243的因数有多少个首先分解质因数8=2×2×2 243=3×3×3×3×3这样,把一个合数写成几个质数(也叫素数)相乘的形式,就叫做分解质因数。
几个相同的因数相乘,如2×2×2可以记作23,读作:2的3次方。
3×3×3×3×3记作35,读作:3的5次方。
注:任何一个大于0的数的0次方都等于1。
我们知道8的因数有4个:1,2,4,8。
可以写成1=20,2=21,4=22,8=23,8的因数个数刚好是3+1=4。
用同样的方法计算243的因数个数243=35,因数的个数为:5+1=6个。
二、求72的因数有多少因为72=8×9=23×32,所以72的因数有(3+1)×(2+1)=4×3=12个。
练习:1、144的全部因数有多少个?4500共有多少个因数?2、筐里共有96个苹果,如果不一次拿出,也不一个个地拿,要求每次拿出的个数同样多,拿完时又正好不多不少。
共有多少种不同的拿法?3、自然数9的因数有1、3、9三个,自然数16的因数有1、2、4、8、16五个,那么, 9×16的因数共有多少个?4、已知自然数A只有两个因数,那么5A有多少个因数?5、有八个不同因数的自然数中,最小的一个数是多少?6、自然数A的所有因数两两求和,又得到若干个自然数,在这些自然数中,最小的是4,最大的是900,那么数A是多少?7、求不大于200的只有15个因数的所有自然数?8、在所有含九个因数的自然数中,最小的一个是多少?9、在100至300之间,只有三个因数的数是多少?10、写出从360到630的自然数中有奇数个因数的数。
11、恰好有6个因数的两位数共有多少个?12、有一个小于2000的四位数,它恰有14个因数,其中有一个质数的末位数是1,求此四位数?13、求不大于100的只有八个因数的一切自然数的和是多少?14、A、B两数都只含有质因数3和5,它们的最大公因数是75,已知A数有12个因数,B数有10个因数,那么,A、B两数的和等于多少?15、在12345678987654321的所有因数中,除去它本身外,因数最大是多少?16、写出三个小于20的自然数,它们的最大公因数是1,但两两均不互质,一共可以写出几组?17、144的全部因数之和是多少?360的全部因数之和是多少?18、右图中一共有多少个长方形(含正方形)?所有长方形(含正方形)的面积和是多少?(单位:厘米)(第十五届华杯赛初赛试题)恰有20个因子的最小自然数是。
(A) 120 (B) 240 (C) 360 (D) 432第三讲同余问题知识概要:1. 同余的表达式和特殊符号37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。
记作:(mod7)“”读作同余。
一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余,记作:2. 同余的性质(1)(每个整数都与自身同余,称为同余的反身性。
)(2)若,那么(这称作同余的对称性)(3)若,,则(这称为同余的传递性)(4)若,,则()(这称为同余的可加性、可减性)(称为同余的可乘性)(5)若,则,n为正整数。
(6)如果,那么的差一定能被k整除同余问题解题口诀:“差同减差,和同加和,余同取余”1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数。
例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取减3,表示为60n-3。
2、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数。
例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。
3、余同取余:用一个数除以几个不同的数,得到的余数相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数。
例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。
【例题一】例1. 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?例2. 除以19,余数是几?例3. 有一个1997位数,它的每个数位都是2,这个数除以13,商的第100位是几?最后余数是几?【练习】1. 求下列算式中的余数。
(1)(2)2. 6254与37的积除以7,余数是几?3.如果某数除482,992,1094都余74,这个数是几?【例题二】例1. 一个自然数除以3余2,除以5余3,除以7余1,这个自然数最小是几?例2. 在求51173526被7除的余数时,小明这样做:所以余数是5刘老师说,小明的算法不仅正确,而且巧妙迅速,你知道其中的道理吗?例3. 除以3的余数是几?为什么?【综合练习】1.(1)今天是星期日,再过天又是星期几?(2)求除以3所得的余数。
2.某数除680,970和1521,余数相同,这个数最大是几?3.有一列数排成一行,其中第一个数是3,第二个数是7,从第三个数开始,每个数恰好是前两个数的和,那么,第1997个数被3除,余数是几?4.若将一批货物共千克装入纸箱,每箱装10千克,最后余多少千克?5.(1)1309被一个质数除,余数是21,求这个质数;(2)1796被一个质数相除,余数是24,求这个质数。
6.(1)求2001×2000除以7的余数。
(2)求123×345+234×456除以11的余数。
7、(1)两个自然数相除,商15,余3,被除数、除数、商、余数的和是853,求被除数。
(2)两数相除商40余7,被除数、除数、余数和商的和是710,求被除数。
8、(1)有一个数除以3余1,除以4余2,问这个数除以12,余数是几?(2)一个数除以5余1,除以6余3,除以7余4,这个数最小是几?9、(1)当2002和1781除以某一个自然数,余数分别是2和1,那么这个数最大是多少?(2)有一个数用它去除100,余数是1,用它去除50,余数是6,求这个数。
(3)有一个整数,用它去除45,53,143得到的3个余数的和是20,这个数是多少?10、写出除以8所得的商和余数(不为0)相同的所有的数。
11、(1)3867×4253=1644□351,求□里的数。
(2)4937×6845=3379□765,求□里的数。
数的整除特征:①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。