解一元一次方程(去括号)答案

合集下载

(学生自学)第四课解一元一次方程(1)去括号课后作业解答

(学生自学)第四课解一元一次方程(1)去括号课后作业解答
合并同类项,得14x=28 系数化为1,得x=2
课后作业:
解下列一元一次方程:
(3) 1-4(0.25-t)=2
解:去括号,得1-Leabharlann +4t=2 合并,得4t=2
系数化为1,得t= 1
2
课后作业:
解下列一元一次方程:
(4) 8x-2(1-x)=7x-3(x-1)
解:去括号,得8x-2+2x=7x-3x+3 移项,得8x+2x-7x+3x=3+2
课后作业:
解下列一元一次方程:
(1) 4(x-1)=2(1-x)
解:去括号,得4x-4=2-2x 移项,得4x+2x=2+4
合并同类项,得6x=6 系数化为1,得x=1
课后作业:
解下列一元一次方程:
(2) 5(3-2x)-12(5-2x)=-17
解:去括号,得15-10x-60+24x=-17 移项,得-10x+24x=-17-15+60
合并同类项,得6x=5 系数化为1,得x= 5
6
课后作业:
解下列一元一次方程:
(5) 2(1-3x)-(x+4)-3(2x-5)+9=0
解:去括号,得21-6x-x-4-6x+15+9=0 合并同类项,得-13x+20=0 移项,得-13x=-20 系数化为1,得x= 20
13
挑战自我
足球的表面是由若干黑色五边形和白色 六边形皮块围成的。黑白皮块的数目比 为3:5,一个足球表面一共有32个皮块, 黑色皮块与白色皮块各多少块? (列出方程并求解)
足球的表面是由若干黑色五边形和白色六边形皮块围 成的。黑白皮块的数目比为3:5,一个足球表面一共 有32个皮块,黑色皮块与白色皮块各多少块?

解一元一次方程---去括号

解一元一次方程---去括号

❖ 化简x-(2-2y) 的结果是 : x-2+2y
例题 解方程:
3x-7(x-1)=3-2(x+3)
解:去括号,得: 3x-7x+7=3-2x-6
移项,得: 3x-7x+2x=3-6-7
合并同类项,得: 系数化成1,得:
-2x=-10 X=5
练习:课本94页例1(1)和95页练习题
❖ 解方程(1)5(x-2)-4(2x+1)=-2(2.5-3x)
则该物品进价约是(
)ALeabharlann 105元 D. 118元B. 106元
C. 108元
这节课你学到了什么?
1、去括号的依据是:分配律
2、解一元一次方程的步骤 (1)去括号 (2)移项 (3)合并同类项 (4)系数化成1
列方程解决实际问题的关键是正确 地建立方程中的等量关系。
另外在求出x的值后,一定要检验它 是否合理,虽然不必写出检验过程,但 这一步绝不是可有可无。
解:设船在静水中的平均速度是X千米/小 时,则船在顺水中的速度是__(X_+__3_) 千米/ 小时,船在逆水中的速度是_(_X_-_3_) __千米/ 小时.
2(X+3)=2.5(X-3)
2x 3 2.5x 3
去括号得: 2x 6 2.5x 7.5
移项及合并同类项,得:
0.5x 13.5
解:设有X名工人生产螺钉,则有_(_2_2_-X__) _ 名工人生产螺母;那么螺钉共生产 _1_2_0_0_X___个,螺母共生产_2_0_0_0_(_2_2_-X__) 个.
2000(22-X)=2×1200X
巩固练习
1. 已知关于x的方程3x + a = 0的解

解一元一次方程:去括号例题解析示范

解一元一次方程:去括号例题解析示范
解:去括号,得15-10x-60+24x=-17 移项,得-10x+24x=-17-15+60
合并同类项,得14x=28 系数化为1,得x=2 在具体求解过程中,要灵活选择方法、 步骤,不要拘泥于形式。
课后作业:
解下列一元一次方程:
(3) 1-4(0.25-t)=2
解:去括号,得1-1+4t=2 合并,得4t=2
系数化为1,得t= 1
2
课后作业:
解下列一元一次方程:
(4) 8x-2(1-x)=7x-3(x-1)
解:去括号,得8x-2+2x=7x-3x+3 移项,得8x+2x-7x+3x=3+2
合并同类项,得6x=5 系数化为1,得x= 5
6
第二步也可先合并同类项,再移项。
课后作业:
解下列一元一次方程:
(5) 2(1-3x)-(x+4)-3(2x-5)+9=0
足球的表面是由若干黑色五边形和白色六边形皮块围 成的。黑白皮块的数目比为3:5,一个足球表面一共 有32个皮块,黑色皮块与白色皮块各多少块?
解:设黑色皮块有3x块,白色皮块有5x块. 由题意,得方程3x+5x=32 解方程,得x=4 经检验,符合题意. 则3x=3×4=12,5x=5×4=20.
答:黑色皮块有12块,白色皮块有20块.
方法二
解:设黑色皮块有x块,则白色皮块有
由题意,得方程x+
5 3
x=32
5 3
x块.
解方程,得x=12
经检验,符合题意.
则Leabharlann 5 3x=5 3
×12=20.
答:黑色皮块有12块,白色皮块有20块.

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案) (100)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案) (100)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案)已知关于x的方程3x+a=4的解是x=1,则a的值是_____.【答案】1.【解析】【分析】把x的值代入进而求出答案.【详解】解:∵关于x的方程3x+a=4的解是x=1,∴3+a=4,解得:a=1.故答案为:1.【点睛】本题主要考查了一元一次方程的解,正确解方程是解题关键.92.我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:3x=4.5的解为1.5,且1.5=4.5﹣3,则该方程3x =4.5是“差解方程”.若关于x的一元一次方程2x=m+2是“差解方程”,则m=_____.【答案】2.【解析】【分析】先求出方程的解,根据新概念得出关于m的方程,求出方程的解即可.【详解】解:根据题意得:2x =m +2,x =22m +, ∵关于x 的一元一次方程2x =m +2是“差解方程”, ∴22m +=m +2﹣2, 解得:m =2,故答案为:2.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的方程是解此题的关键.93.已知数列112112321,,,,,,,,122233333⋯⋯,记第一个数为1a ,第二个数为2a ,…,第n 个数为n a ,若n a 是方程131123x x +-=+的解,则n a =__________,n=__________. 【答案】1737或49 【解析】【分析】求出方程的解即可求出a n 的值,观察所给数列可知分母为m 的数有2m-1个,进而可求出n 的值.【详解】∵131123x x +-=+, ∴3+9x=2x-2+6,∴9x-2x=-3-2+6,∴7x=1,∴x=17, ∴a n =17. ∵112112321,,,,,,,,122233333⋯⋯, ∴分母为m 的数有2m-1个,∴分母为1,2,3,4,5,6的数共有1+3+5+7+9+11=36个, 当17为分母为7的数中的第一个数时,n=36+1=37, 当17为分母为7的数中的最后一个数时,n=36+2×7-1=49, ∴n=37或49. 故答案为:17,37或49. 【点睛】本题考查了一元一次方程的解法,数字类探索与规律,以及分类讨论的数学思想,分类讨论是解答本题的关键.94.已知关于x 的一元一次方程2019523a x x --=的解为x=2,那么关于y 的一元一次方程()201915123y a y +---=的解为__________. 【答案】y=1【解析】【分析】根据换元法求解即可.【详解】∵关于x 的一元一次方程2019523a x x --=的解为x=2, ∴关于y 的一元一次方程()201915123y a y +---=中y+1=2, ∴y=1.故答案为:y=1.【点睛】此题考查利用换元法解一元一次方程,注意要根据方程的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.95.设a ,b ,c ,d 为有理数,现规定一种新的运算a cb d =ad ﹣bc ,则满足等式531x x+=4的x 的值为_____. 【答案】72【解析】【分析】根据“设a ,b ,c ,d 为有理数,现规定一种新的运算a cb d =ad-bc ”,列出关于x的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.【详解】解:根据题意得:5x﹣3(x+1)=4,去括号得:5x﹣3x﹣3=4,移项得:5x﹣3x=4+3,合并同类项得:2x=7,系数化为1得:x=72,故答案为:72.【点睛】此题考查解一元一次方程和有理数的混合运算,正确掌握解一元一次方程的方法是解题的关键.96.现定义一种新运算,对于任意有理数a、b、c、d满足a bc d=ad﹣bc,若对于含未知数x的式子满足332121x x--+=3,则未知数x=____________.【答案】14【解析】【分析】根据已知阅读得出方程3(-2x+1)-3(2x-1)=3,再去括号、移项、系数化为1,求出方程的解即可.【详解】解:∵a bc d =ad ﹣bc ∴332121x x --+=3(-2x+1)-3(2x-1) ∴3(-2x+1)-3(2x-1)=3 解得14x = 故答案为:14. 【点睛】本题考查了解一元一次方程,能根据已知得出方程3(-2x+1)-3(2x-1)=3是解此题的关键.97.在梯形面积公式S =()2a b h +中,已知S =120,b =18,h =8,则a =_____.【答案】12【解析】【分析】 将S =120,b =18,h =8代入S =()2a b h +,解关于a 的一元一次方程即可.【详解】解:将S =120,b =18,h =8代入得:120=()1882a +⨯,去分母得:240=8a +144,移项合并得:8a =96,系数化为1得:a =12.故答案为:12.【点睛】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.98.当x=______时,322x -的值是2. 【答案】2【解析】【分析】根据题意解方程即可.【详解】322x -=2, 3x-2=43x=6x=2.即x=2时,322x -的值是2. 故答案为:2.【点睛】此题主要考查解方程的能力.99.若关于x 的方程2370a x --=是一个一元一次方程,则a 的值为______.【答案】3【解析】【分析】根据一元一次方程的未知数的指数为1列方程解答即可.【详解】解:∵方程3x a-2-7=0是一个一元一次方程,∴a-2=1,解得:a=3.故答案为:3.【点睛】本题考查了一元一次方程的定义,解题关键根据未知数次数为1构造方程. 100.已知关于x 的方程37ax +=与方程215x -=的解相同,则a =__________. 【答案】43. 【解析】【分析】先求出方程215x -=的解,把x 的值代入37ax +=,即可求解.【详解】解:215x -=,移项,得2x=5+1,合并同类项,得2x=6,解得 x=3.把x=3代入37ax +=,得337a +=.移项,得373a =-.合并同类项,得34a =,系数化为1,得a = 43. 故答案是:a =43. 【点睛】本题考查了同解方程,先求出第二个方程,把方程的解代入第一个方程得出关于a 的一元一次方程是解题关键.。

初一数学解一元一次方程——去括号与去分母试题

初一数学解一元一次方程——去括号与去分母试题

初一数学解一元一次方程——去括号与去分母试题1.某学生在一次考试中,语文、数学、外语三门学科的平均成绩为80分,物理、化学两门学科的平均成绩为x分,该学生这5门学科的平均成绩是82分,则x=____.【答案】85【解析】本题主要考查一元一次方程的应用。

根据题意得语文、数学、外语三门学科的总分是240分,物理、化学两门学科的总分是2x分,等量关系为5门学科的总分5=82,列方程得:解得x=852.方程2-去分母得()A.2-2(2x-4)=-(x-7)B.12-2(2x-4)=-x-7C.12-4x-8=-(x-7)D.12-2(2x-4)=x-7【答案】D【解析】本题主要考查解元一次方程。

去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.∵分母的最小公倍数6,∴方程两边同乘以6得:12-2(2x-4)=x-7.故选D.3.甲、乙两人练习赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米,甲让乙先跑5米,•设甲出发x秒钟后,甲追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-5【答案】B【解析】本题主要考查一元一次方程的应用。

首先理解题意找出题中存在的等量关系:乙跑的路程=甲跑的路程,根据此等式列方程即可.解:设甲出发x秒钟后追上乙,则甲所跑的路程为7x,而此时乙所跑的路程为6.5x+5;根据此时“甲追上乙”那么他们的总路程应该相同,即7x=6.5x+5.很显然题目中的第二个选项是错误的.故选B.4.解方程:【答案】(1)x=3(2)x=1 (3)x=-1【解析】本题主要考查解一元一次方程。

解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解解:(1)去分母得:2 (x-1)-x=3(4-x)去括号得2x-2-x=12-3x移项合并得4x=14,系数化为1得:x=3(2)原式变形为去分母得:30x-6=40x-16移项合并得:10x=10系数化为1得:x=1(3)由题意得去分母得:3(3-5x)-4(5+2x)+12=6(1-3x)去括号得:9-15x-20-8x+12=6-18x移项合并得:-5x=5系数化为1得:x=-15.七(一)班学生参加运土劳动,其中一部分人挑土,一部分人抬土,总共有40•支扁担和60只筐,设x人抬土,用去扁担x支和x只筐.挑土的人用(40-x)_____和(60-x)______,得方程60-x=2(40-x),解得x=_______.【答案】支扁担,只筐,40人【解析】本题主要考查解一元一次方程,去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.60-x=2(40-x)解:去括号得:60-x=80- x移项合并得:x=20解得: x=406.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.•问鸡兔各有几只?设鸡为x只得方程()A.2x+4(14-x)=44B.4x+2(14-x)=44C.4x+2(x-14)=44D.2x+4(x-14)=44【答案】A【解析】本题主要考查一元一次方程的应用。

解一元一次方程——去括号与去分母例题

解一元一次方程——去括号与去分母例题

1.解一元一次方程(1)一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向___________形式转化.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即___________=c.使方程逐渐转化为ax=b的最简形式,这一过程体现了数学中的化归思想.(3)解一元一次方程时先观察方程的形式和特点,若有分母一般先___________;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先___________.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a 为分数时;二要准确判断符号,a、b同号x为___________,a、b异号x为___________.2.去括号:把方程中含有的括号去掉的过程叫做去括号.(1)去括号的依据:___________.(2)去括号的法则:将括号外的因数连同它前面的符号看成一个整体,按照分配律与括号内各项相乘.括号外的因数是正数,去括号后各项符号与原括号内相应的各项符号___________;括号外的因数是负数,去括号后各项符号与原括号内相应的各项符号___________.(3)对于多重括号的,可以先去___________,再去___________,若有大括号,最后去大括号,或由___________向___________去括号,有时也可用去分母的方法去括号.3.去分母:(1)一元一次方程中如果有分母,在方程的两边同时乘所有分母的___________,将分母去掉,这一变形过程叫做___________.(2)去分母的依据:___________.(3)去分母的做法:方程两边同时乘所有分母的___________.(4)注意:①在去分母的过程中,不能漏乘某些不含分母的项;②分子是多项式时要加___________.(5)解分母是小数的一元一次方程方程,可先利用分数的基本性质,将分子、分母同时扩大若干倍,注意要___________,此时,不是去分母,不能把方程其余的项也扩大若干倍.K知识参考答案:1.(1)x=a;(2)(a+b)x;(3)去分母,去括号,正,负2.(1)分配律;(2)相同,相反;(3)小括号,中括号,外,内3.(1)最小公倍数,去分母;(2)等式的性质2;(3)最小公倍数;(4)括号;(5)加括号一、解一元一次方程——去括号1.去括号时,当括号前面不是“+1”或“–1”时,应将括号外的因数连同它前面的符号看成一个整体,按乘法分配律与括号内每一项相乘,再把积相加,即a(b+c)=ab+ac.2.解方程中的去括号法则与整式运算中的去括号法则相同:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【例1】解方程3–(x+6)=–5(x–1)时,去括号正确的是A.3–x+6=–5x+5 B.3–x–6=–5x+5C.3–x+6=–5x–5 D.3–x–6=–5x+1A.①B.②C.③D.④【答案】B【解析】第②步中将y的符号弄错,而出现错误,应为4y–y–2y=1+4而不是4y+y–2y=1+4.故选B.【名师点睛】去括号:把方程中含有的括号去掉的过程叫做去括号.(1)去括号的依据:分配律.(2)去括号的法则:将括号外的因数连同它前面的符号看成一个整体,按照分配律与括号内各项相乘.括号外的因数是正数,去括号后各项符号与原括号内相应的各项符号相同;括号外的因数是负数,去括号后各项符号与原括号内相应的各项符号相反.(3)对于多重括号的,可以先去小括号,再去中括号,若有大括号,最后去大括号,或由外向内去括号,有时也可用去分母的方法去括号.二、解一元一次方程——去分母1.去分母的方法一元一次方程的各项都乘以所有分母的最小公倍数,依据等式的性质2使方程中的分母变为1.2.去分母的目的把方程化简,便于解方程.3.去分母的理论依据去分母的理论依据是等式性质2,即在方程的两边都乘所有分母的最小公倍数,使方程的系数化为整数.【例3】解方程−1=时,为了去分母应将方程两边同乘以A.10 B.12 C.24 D.6【答案】B【解析】∵去分母时方程两边同乘以分母4、6的最小公倍数12,∴方程两边同乘以12.故选B .【例4】解下列一元一次方程:132125x x -+=-. 【答案】x =1.【名师点睛】1.方程运算中的去括号法则与整式运算中的去括号法则相同;2.运用乘法的分配律去括号时,注意不要漏乘括号内的每一项;去掉括号后,注意原括号内各项的符号的变化情况.三、解一元一次方程1.解一元一次方程的基本思想:解一元一次方程的基本思想是把原方程化为ax =b (a ≠0)的形式.其解法可分为两大步:一是化为ax =b (a ≠0)的形式,二是解方程ax =b .2.解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.【例5】已知093)1(2=+--x x a 是关于x 的一元一次方程.(1)求a 的值,并解上述一元一次方程;(2)若上述方程的解比关于x 的方程4223-=-x k x 的解大1,求k 的值.【答案】(1)a =1;x =3;(2)k =3【名师点睛】一般来说,解方程有五个步骤,但在解具体的方程时有些可能用不到,也不一定按从上到下的顺序进行,可根据方程的特点灵活选用.四、行程问题1.相遇问题:甲的行程+乙的行程=甲、乙出发点之间的距离;若甲乙同时出发,则甲用的时间=乙用的时间.2.追及问题:快者走的路程–慢者走的路程=追及路程;若同时出发,则快者追上慢者时,快者用的时间=慢者用的时间.3.航行问题:顺流速度=静水速度+水流速度;逆流速度=静水速度–水流速度;顺风速度=无风速度+风速;逆风速度=无风速度–风速.往返于A、B两地时,顺流(风)航程=逆流(风)航程.【例6】一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/小时,求:(1)船在静水中的速度.(2)两码头间的距离.【答案】(1)船在静水中的速度是27千米/小时;(2)两码头间的距离是60千米.。

人教版七年级上第三章解一元一次方程去括号与去分母(含解析)

人教版七年级上第三章解一元一次方程去括号与去分母(含解析)

人教版七年级上第三章解一元一次方程去括号与去分母学校:___________姓名:___________班级:___________考号:___________一、填空题1.比较大小:3x 2+5x +1___2x 2+5x ﹣1(用“>、=或<”填空)2.计算222324a a a -+的结果等于______.3.解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ①由342x -=,得324x =-;①由0.221 1.530.1x x -+=+,得366045x x +=-+; ①由253x x -=,得352x x -=. 以上变形过程正确的有_____.(只填序号)4.已知关于x 的一元一次方程21x m +=的解是1x =-,则m 的值为______________. 5.若关于x 的方程()22x m x +=-的解满足方程112x -=,则m 的值是________. 6.如果2x =-是方程32kx k -=8的解,则k =________.二、单选题7.如果2(x +3)的值与-24互为相反数,那么x 等于( )A .9B .8C .-9D .-8 8.今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,若设妹妹今年x 岁,可列方程为( )A .243(4)x x +=-B .243(4)x x -=-C .23(4)x x =-D .243x x -= 9.若关于x 的方程32(21)(325)x a x a ++=--的解为1x =,则a 的值是( ) A .0 B .1 C .2 D .310.一个长方形的周长为28cm ,若把它的长减少1cm ,宽增加3cm ,就变成一个正方形,则这个长方形的面积是( )A .482cmB .452cmC .402cmD .332cm 11.关于方程(a +1)x =1,下列结论正确的是( )A .方程无解B .x =11a +C .a≠﹣1时方程解为任意实数D .以上结论都不对12.已知a ,b 是等腰三角形的两边长,且a ,b 满足2|2|(2313)0a a b -++-=,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或8三、解答题13.解方程:(1)2(3x ﹣5)﹣3(4x ﹣3)=0 (2)321123x x -+-= 14.举例说明解方程时怎样“移项”,你知道这样做的根据吗?15.若方程()12317x x -+=-的解与关于x 的方程()6223k x -=+的解相同,求k 的值.参考答案:1.>【分析】利用作差法比较即可.【详解】解:(3x 2+5x +1)﹣(2x 2+5x ﹣1)=3x 2+5x +1﹣2x 2﹣5x +1=x 2+2,①x 2≥0,①x 2+2>0,①3x 2+5x +1>2x 2+5x ﹣1,故答案为:>.【点睛】本题考查整式的加减,理解偶次幂的非负性,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键. 2.25a【分析】直接根据合并同类项法则进行计算即可.【详解】解:222324a a a -+=2(324)a -+=25a .故答案为:25a .【点睛】本题主要考查了合并同类项,熟练掌握运算法则是解答本题的关键.3.无.【分析】①方程x 系数化为1求出解,即可做出判断;①方程移项得到结果,即可做出判断;①方程去分母得到结果,即可做出判断;①方程去分母得到结果,即可做出判断.【详解】①由2316x =-,得1623x =-; ①由342x -=,得324x =+; ①由0.221 1.530.1x x -+=+,得3660 4.5x x +=-+;①由253x x -=,得3530x x -=. 则以上变形过程正确的有无,故答案为:无【点睛】本题考查等式的基本性质,掌握等式的基本性质,对等式进行变形是解答此题的关键.4.3【分析】将1x =-代入方程21x m +=,得到关于m 的一元一次方程,解方程即可. 【详解】解:关于x 的一元一次方程21x m +=的解为1x =-,21m ∴-+=,解得3m =.故答案为:3.【点睛】本题考查了一元一次方程的解的定义,解题的关键是理解使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.5.14或134 【分析】根据112x -=解出x 的值,代入()22x m x +=-,即可求解 【详解】解112x -=,得 112x -=±, 112x ∴=±+, 32x ∴= 或12x =-, 代入()22x m x +=-,得22x m x +=+, 134m ∴= 或14, 故答案为14或134. 【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.6.-1【分析】根据方程的解的定义可知,2x =-满足方程32kx k -=8,故将2x =-代入方程32kx k -=8,即可解得k 值.【详解】解:①2x =-是方程32kx k -=8的解,①将2x =-代入方程32kx k -=8,得628k k --=解得1k =-故答案为:-1.【点睛】本题考查了方程的解的概念,将2x =-代入方程32kx k -=8,正确计算k 值,是解题关键.7.A【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:2(x +3)-24=0,去括号得:2x +6-24=0,解得:x =9,故选:A .【点睛】此题考查了相反数的含义,解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.8.B【分析】若设妹妹今年x 岁,根据今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,可列出方程.【详解】解:设妹妹今年x 岁.2x ﹣4=3(x ﹣4).故选:B .【点睛】本题考查理解题意的能力,关键知道年龄差是不变的,所以根据倍数关系可列出方程.9.D【分析】使方程左右两边的值相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a 的值.【详解】解:①关于x 的方程32(21)(325)x a x a ++=--的解为1x =,①32(21)1(325)a a ++=--解得3a =故选D【点睛】本题考查了一元一次方程的解的定义,解一元一次方程,将1x=代入原方程是解题的关键.10.B【分析】设这个长方形的长为x cm,宽为(14-x)cm.则根据题意列出方程组,解可得到长方形的长,进而得到正方形的边长,再计算面积即可.【详解】解:设这个长方形的长为x cm,宽为(282-x)cm,即(14-x)cm,依题意得:x-1=14-x+3,解得x=9.所以14-x=14-9=5(cm),故该长方形的面积=9×5=45(cm2).故选:B.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.D【分析】根据一元一次方程的定义解答.【详解】解:该方程是一元一次方程,但其中含有一个未知量“a”,此时就要判断x的系数“a +1”是否为0.当a+1≠0即a≠﹣1时,方程有实数解,解为:x=11a+.当a+1=0时,方程无解.故选:D.【点睛】此题考查一元一次方程的定义,求方程的解,正确理解定义中未知数的系数不等于0由此解答是解题的关键.12.D【分析】首先根据|a-2|+(2a+3b-13)2=0求得a、b的值,然后求得等腰三角形的周长即可.【详解】解:①|a-2|+(2a+3b-13)2=0,①2023130aa b-⎧⎨+-⎩==,解得:23ab⎧⎨⎩==,当a 为底时,三角形的三边长为2,3,3,则周长为8;当b 为底时,三角形的三边长为2,2,3,则周长为7.故选:D .【点睛】本题考查了等腰三角形的定义,三角形三边关系定理.关键是根据等腰三角形的定义进行分类讨论.13.(1)16x =- (2)17x =-【分析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解; (2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解. (1)解:去括号得:6x -10-12x +9=0,移项得:6x -12x =10-9,合并得:-6x =1, 解得:16x =-; (2)去分母得:3(x -3)-2(2x +1)=6,去括号得:3x -9-4x -2=6,移项得:3x -4x =6+9+2,合并得:-x =17,解得:17x =-.【点睛】此题考查了解一元一次方程,掌握解题步骤是解题的关键,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.14.举例见解析,移项的依据是等式的性质1.【分析】根据等式的性质1,等式两边加(或减)同一个数(或式子),结果仍相等,可得移项的依据.【详解】例,534x x =-根据等式的性质,两边同时减去3x ,即移项得,53343x x x x -=--,∴移项的依据是等式的性质1【点睛】本题考查了移项,等式的性质1,掌握等式的性质是解题的关键.15.1-【分析】先解方程()12317x x -+=-得1x =,根据同解方程的定义把1x =代入()6223k x -=+得628k -=,然后解关于k 的一元一次方程即可.【详解】解:①()12317x x -+=-,①12337x x --=-,①22x -=-,①1x =,把1x =代入()6223k x -=+得:628k -=,①1k =-,①k 的值为1-.【点睛】本题考查了同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程.。

华东师大版数学七年级下册 解一元一次方程(定义及去括号类)同步练习(Word版含答案)

华东师大版数学七年级下册 解一元一次方程(定义及去括号类)同步练习(Word版含答案)

6.2.2.1解一元一次方程(定义及去括号类)★只含有未知数(元),并且含有未知数的式子都是式,未知数的次数都是,这样的方程叫做一元一次方程★解含括号的一元一次方程(1)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(2)去括号的依据是去括号法则(3)一般步骤:去括号、合并同类项、移项、系数化为1。

一.选择题(共5小题)1.下列方程:①2x2﹣x=6;②y=x﹣7;③;④;⑤;⑥x=3,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对2.方程3(x+1)=x+1的解是()A.x=﹣1B.x=0C.x=1D.x=23.下列方程的解是x=2的方程是()A.3x+6=0B.C.D.1﹣2x=54.如果方程﹣4x=﹣2与关于x的方程6x﹣2m=9的解互为相反数,则m的值是()A.﹣6B.6C.D.5.已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.0二.填空题(共5小题)6.若4x2k+3=9是一元一次方程,则k=.7.若x=﹣1是关于x的方程2x﹣m=6的解,则m的值是.8.若方程(k﹣2)x|k|﹣1+7=0是关于x的一元一次方程,则k的值等于.9.方程(2a﹣1)x2+3x+1=4是一元一次方程,则a=.10.若关于x的方程(3a+2)x2+4x b﹣2﹣5=0是一元一次方程,则关于x的方程ax+b=0的解是.三.解答题(共30小题)11.解方程:2x﹣9=5x+3.12.解方程:(1)8﹣x=3x+2;(2).13.解方程:(1)2x+3=11﹣6x;(2)(3x﹣6)=x﹣3.14.解方程:8x=﹣2(x+4).15.解方程:3x﹣2(x+3)=6﹣2x.16.解方程:3(2x﹣1)=4x+3.17.2(x﹣3)=5﹣3(x+1).18.解方程:7x+2(3x﹣3)=20.19.解方程:6(x+)+2=29﹣3(x﹣1)20.解方程:3x﹣7(x﹣1)=3﹣2(x+3).21.解方程:4x﹣6=2(3x﹣1)22.(3x﹣6)=x﹣3.23.解方程:5x﹣2(3﹣2x)=﹣3.24.解方程:4x﹣3=2(x﹣1)25.2(x+8)=3(x﹣1)26.(x+1)﹣2(x﹣1)=1﹣3x.27.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x)28.解方程:7+2x=12﹣2x.29.解方程:(x﹣1)=2﹣(x+2).30.解方程:x﹣1=2(x+1)31.解方程:2﹣2(x﹣1)=3x+4.32.解方程:5x+2=3(x+2)33.34.35.解下列方程:(1)2{3[4(5x﹣1)﹣8]﹣20}﹣7=1;(2)=1;(3)x﹣2[x﹣3(x+4)﹣5]=3{2x﹣[x﹣8(x﹣4)]}﹣2;36.有一位同学在解方程3(x+5)+5[(x+5)﹣1]=7(x+5)﹣1,首先去括号,得3x+15+5x+25﹣5=7x+35﹣1,然后移项,合并同类项,最后求解,你有没有比他更简单的解法?试求解.37.已知y=1是方程2﹣(m﹣y)=2y的解,求关于x的方程m(x﹣3)﹣2=m(2x+5)的解.38.若方程3(2x﹣1)=2﹣3x的解与关于x的方程6﹣2k=2(x+3)的解相同,求k的值.39.已知方程(1﹣m2)x2﹣(m+1)x+8=0是关于x的一元一次方程.(1)求m的值及方程的解.(2)求代数式5x2﹣2(xm+2x2)﹣3(xm+2)的值.40.已知(m﹣3)x|m|﹣2+6=0是关于x的一元一次方程.(1)求m的值;(2)若|y﹣m|=3,求y的值.6.2.2.1解一元一次方程(定义及去括号类)参考答案与试题解析★只含有一个未知数(元),并且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫做一元一次方程★解含括号的一元一次方程(4)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(5)去括号的依据是去括号法则(6)一般步骤:去括号、合并同类项、移项、系数化为1。

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案) (80)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案) (80)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题1(含答案)解下列方程(1)()52=327)x x ++( (2)123173x x -+-=. 【答案】(1)x= -11;(2)3x =-【解析】【分析】(1)先去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,然后去括号,再移项合并,系数化为1,即可得到答案.【详解】解:(1)5(x+2)=3(2x+7),∴5x+10=6x+21,∴5x-6x=21-10,∴-x=11,∴x= -11;(2)123173x x -+-= 解:去分母,得:3(12)217(3)x x --=+,去括号,得:3621721x x --=+,移项,合并得:1339x -=,系数化1,得:3x =-,∴原方程的解是:3x =-;【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解方程的步骤和方法进行解题.92.解方程(1)21802x x x x ++=- (2)2(8)31x x +=-(3)132125x x -+=- 【答案】(1)x=40;(2)x=17;(3)x=1【解析】【分析】(1)根据解一元一次方程的步骤依次移项、合并同类项、系数化为1,据此计算可得;(2)根据解一元一次方程的步骤依次去括号、移项、合并同类项、系数化为1,据此计算可得;(3)根据解一元一次方程的步骤依次去分母、去括号、移项、合并同类项、系数化为1,据此计算可得.【详解】(1)21802x x x x +++= 91802x = 40x =(2)2x+16=3x-12x-3x=-1-16-x=-17x=17(3)5(x-1)=10-2(3x+2)5x-5=10-6x-45x+6x=10-4+511x=11x=1【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.三、填空题93.若关于x 的方程2152x kx x -+=-解为-2,则k 的值为______. 【答案】92-【解析】【分析】把方程的解代入方程,即可得出k 的值.【详解】由题意,得将2x =-代入方程,得()()()2221522k ⨯--⨯-+=⨯--解得9k=-2故答案为:9-.2【点睛】此题主要考查根据一元一次方程的解求参数的值,熟练掌握,即可解题.94.对于任意实数x,通常用[]x表示不超过x的最大整数,如[2.9]2=,给出如下结论:①[3]3-=-③[0.9]0=④[][]0-=②[2.9]2+-=.以上结论中,你认为正确x x的有__________.(填序号)【答案】①③【解析】【分析】根据题目中的新定义可以判断出各个小题中的结论是否正确,本题得以解决.【详解】由题意可得,[-3]=-3,故①正确;[-2.9]=-3,故②错误;[0.9]=0,故③正确;当x为整数时,[x]+[-x]=x+(-x)=0,当x为小数时,如x=1.2,则[x]+[-x]=1+(-2)=-1≠0,故④错误;故答案为:①③.【点睛】此题考查解一元一次方程,解题的关键是明确题目中的新定义,可以判断出各个小题中的结论是否正确.95.如果()33x +的值与()21x -的值互为相反数,那么x =__________.【答案】-11【解析】【分析】互为相反数的两个数的和等于0,根据题意可列出方程.【详解】解:根据题意得:()33x ++()21x -=0,解得x=-11,故答案为:-11.【点睛】本题考查了解一元一次方程以及相反数,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系,再求解.96.规定一种关于a ,b 的运算:2*a b a ab b =+-,如果()4*0x -=,则x =_____. 【答案】165±【解析】【分析】根据规定的新运算代入,再解方程即可得出答案.【详解】根据题意可得,()2440x x ---=,解得:165x =±,故答案为165±.【点睛】本题考查的是解一元一次方程,难度适中,解题关键是根据新定义列出方程.97.已知方程25x -=2﹣22x +的解也是方程|3x ﹣2|=b 的解,则b =__________.【答案】4【解析】【分析】先求方程的解为x =2,将x =2代入|3x ﹣2|=b 可求b 的值.【详解】 解:25x -=2﹣22x + 2(x ﹣2)=20﹣5(x+2)7x =14x =2将x =2代入|3x ﹣2|=b∴b =4故答案为4.【点睛】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.98.阅读理解:a b c d ,,,是有理数,我们把符号a b c d 称为22⨯阶行列式,并且规定:a b ad bc c d =-,则满足等式112321xx +=的x 的值是____________.【答案】-10【解析】【分析】根据新定义运算得到关于x的方程进行求解.【详解】∵11 2321x x+=∴()211 23xx+-=解得x=-10故答案为:-10.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意得到方程.99.解一元一次方程的五个步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)系数化为1,其中有用到乘法分配律的有_____.(填序号)【答案】(2)【解析】【分析】通过解一元一次方程的步骤即可判断得到去括号时用到乘法分配律.【详解】解:解一元一次方程的五个步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)系数化为1,其中有用到乘法分配律的有(2),故答案为:(2).【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键. 100.如果关于x 方程ax b 0+=的解是x=0.5,那么方程bx 0a -=的解是____________.【答案】-2【解析】【分析】解方程0ax b +=可得b x a =-,然后根据方程的解即可得出0.5b a-=,变形可得0.5b a =-,然后将0.5b a =-代入方程0bx a -=中,即可求出方程的解.【详解】解:由0ax b += 解得:b x a=- ∵关于x 方程0ax b +=的解为0.5x = ∴0.5b a-= 变形得:0.5b a =-将0.5b a =-代入方程0bx a -=中,0.50ax a --=解得: 2x =-故答案为:2x =-.【点睛】此题考查的是解含参数的方程,根据已知方程找到参数之间的关系是解决此题的关键.。

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题四(含答案) (76)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题四(含答案) (76)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习题四(含答案)解方程: (1)4-x =3(2-x); (2)211134x x -+-=. 【答案】(1)x=1;(2) x=195【解析】试题分析(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.试题解析:(1)去括号得,4-x=6-3x ,移项得,-x+3x=6-4,合并同类项得,2x=2,系数化为1得,x=1;(2)去分母得,4(2x-1)-3(x+1)=12,去括号得,8x-4-3x-3=12,移项得,8x-3x=12+4+3,合并同类项得,5x=19,系数化为1得,x=195. 52.解方程(1)2x+5=3(x-1) (2)123123x x -+-= 【答案】(1)x=8 (2)x=﹣15【解析】分析:(1)先把方程中的括号去掉,可得2x+5=3x-3,然后再移项,合并同类项,系数化为1即可求解.(2) 先去分母,去括号,移项,合并同类项,系数化为1,去分母时,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.本题解析:(1)去括号得:2x+5=3x −3,移项合并得:−x=−8,解得:x=8;(2)3x-3-4x-6=6,-x=15,x=-1553.解方程:(1)3(1)54x x -=+;(2)123123x x +--= 【答案】(1)72-;(2)79【解析】试题分析:利用解方程的步骤与方法求得方程的解即可.试题解析:(1)3(x −1)=5x+4 ,3x −3=5x+4,3x −5x=4+3,−2x=7,x=−72; (2)x 123x 123+--=3(x+1)−6=2(2−3x),3x+3−6=4−6x ,3x+6x=4+6−3,9x=7, x=79. 54.已知:关于x 的方程:2236kx a x bk +-=+ (其中a 、b 、k 为常数) (1)如果该方程无解,则k 的值一定为多少?(2)如果该方程有解,且不论K 为何值时,它的解总是1,试求a, b 的值。

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (98)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (98)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案)解方程:2(x +1)12-(x -1)=2(x -1)12+(x +1) 【答案】x =4.【解析】【分析】先把(x+1)和(x-1)当做一个整体进行移项、合并同类项,然后再去括号解方程即可.【详解】移项,得2(x+1)12-(x+1)=2(x-1)12+(x-1), 合并同类项,得32(x+1)=52(x-1), 去括号,得32x+32=52x-52, 移项,得32x-52x=5322--, 合并同类项,得-x=-4,系数化为1,得x=4.【点睛】本题考查了解一元一次方程,根据方程的特点灵活选取解题的方法是关键.72.解下列方程:(1)212132x x +++= (2)0.430.20.5x x ---=1.6 【答案】(1) x=﹣2;(2) x=5.2.【解析】【分析】(1)根据解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1依次计算可得;(2)根据解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1依次计算可得.【详解】(1)去分母,得:2(2x+1)+6=3(x+2),去括号,得:4x+2+6=3x+6,移项,得:4x ﹣3x=6﹣2﹣6,合并同类项,得:x=﹣2;(2)去分母,得:5(x ﹣4)﹣2(x ﹣3)=1.6,去括号,得:5x ﹣20﹣2x+6=1.6,移项,得:5x ﹣2x=1.6+20﹣6,合并同类项,得:3x=15.6,系数化为1,得:x=5.2.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.73.解方程131148x x ---=. 【答案】x=-9【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】原方程可变为()()21318x x ---=,去括号,得:2x-2-3x+1=8,移项得,2x-3x=8+2-1,合并同类项,得,-x=9,解得9x =-.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.74.解方程(组): ①352x +=213x -. ①415323x y x y +=⎧⎨-=⎩【答案】①x =-175;①33x y =⎧⎨=⎩. 【解析】【分析】(1)根据去分母、去括号、移项、合并同类项、系数化为1解方程;(2)应用加减法×2+,可进一步求解.【详解】解:(1)去分母,得()3352(21)x x +=-,去括号,得91542x x +=-,移项,得94215x x -=--,合并同类项,得517x =-,系数化为1,得175x =-.(2)415323x y x y +=⎧⎨-=⎩①②, 由×2+,得11x=33解得x=3.把x=3代入①,得4×3+y=15,解得,y=3.所以方程组的解是:33x y =⎧⎨=⎩【点睛】本题考核知识点:(1)解一元一次方程;(2)解二元一次方程组.解题关键点:要牢记解方程和方程组的一般方法,按步骤求解.75.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.【答案】152张【解析】【分析】设该人共有x 张邮票,则2000年以前的国内外发行的邮票数是14x ,2001年国内发行的是18x ,2002年国内发行的是119x ,根据题意列不等式求得x 的范围,然后根据x 一定是4,8,19的倍数即可确定x 的值.【详解】该人共有x 张邮票, 根据题意列方程得:14x+18x+119x >x-100, 解得:x <167391. ∵其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,∴x 一定是4,8,19的倍数,这三个数的最小公倍数是:152.故该人共有邮票约152张.【点睛】列方程解应用题的关键是正确找出题目中的不等关系,用代数式表示出不等关系中的各个部分,把列不等式的问题转化为列代数式的问题.76.老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的:4(21)13(2)x x -=-+……………… …① 84136x x -=--…………………… …①83164x x +=-+…………………… …①111x =-………………………………… ①111x =-………………………………… ① 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1)211163x x +-+= (2)2157146y y ---= 【答案】①(1)x=-3.4;(2)y=-0.25【分析】小明第①步去分母时出错;(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【详解】小明错在①;故答案为:①;(1)去括号得:9x+15=4x-2,移项合并得:5x=-17,解得:x=-3.4;(2)去分母得:3(2y-1)-2(5y-7)=12,去括号得:6y-3-10y+14=12,移项合并得:-4y=1,解得:y=-0.25.【点睛】此题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.77.已知等式2-++=是关于x的一元一次方程(即x未知),求a x ax(2)10这个方程的解.【答案】1x=-2【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a ,b 是常数且a ≠0).高于一次的项系数是0.据此可得出关于a 的方程,继而可得出a 的值.【详解】由一元一次方程的特点得a-2=0,解得:a=2;故原方程可化为2x+1=0,解得:x=−12. 【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是系数不是0的条件,高于一次的项系数是0.78.解下列方程(1)76163x x +=-;(2)2(3)4(5)x x -=-+(3)758143x x -+-= (4)1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦ 【答案】(1)1x =;(2)13x =-;(3)6517-;(4)-513【解析】【分析】(1)移项合并后化系数为1即可.(2)先去括号,然后再进行移项合并.(3)按解一元一次方程的一般步骤进行解答即可.(4)此题比较麻烦,要根据步骤一步一步的进行.【详解】(1)解:移项合并同类项得,10x=10,系数化为得,x=1;(2)解:去括号得,6-2x=-4x-20,移项合并同类项得,2x=-26,系数化为1得,x=-13;(3)解:去分母得,3(x-7)-4(5x+8)=12,去括号得,3x-21-20x-32=12,移项合并同类项得,-17x=65,系数化为1得,x=−6517;(4)解:去括号得,2x-12x+14x-14=23x-23,去分母得,24x-6x+3x-3=8x-8,移项合并同类项得,13x=-5,系数化为1得,x=-513.【点睛】本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.79.解下列方程:(1)3x(7-x)=18-x(3x-15);(2)0.170.210.70.03x x --=. 【答案】(1)x=3(2)x=1417 【解析】【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤求解;(2)先根据分数的基本性质把分子、分母化整,再按照去分母,去括号,移项,合并同类项,系数化为1的步骤求解.【详解】(1)去括号,得21x-3x 2=18-3x 2+15x.移项、合并同类项,得6x=18,解得x=3.(2)将分母转化为整数,得101720=173x x -- 方程两边同乘21,得30x-7(17-20x)=21.去括号,得30x-119+140x=21.移项、合并同类项,得170x=140.系数化为1,得x=1417. 【点睛】本题考查了一元一次方程的解法,解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1. 去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号;去分母时,一是注意不要漏乘没有分母的项,二是去掉分母后把分子加括号.80.已知()2310a b -++=,代数式22b a m -+的值比12b a m -+多1,求m .【答案】0m =.【解析】【分析】先根据|a-3|+(b+1)2=0求出a ,b 的值,再根据代数式22b a m -+的值比12b −a +m 的值多1列出方程22b a m -+=12b −a +m +1,把a ,b 的值代入解出x 的值.【详解】∵|a-3|≥0,(b+1)2≥0,且|a-3|+(b+1)2=0,∴a-3=0且b+1=0,解得:a=3,b=-1. 由题意得:22b a m -+=12b −a +m +1, 即:513122m m -+--++=, 5522m m --=, 解得:m=0,∴m 的值为0.【点睛】考查了非负数的和为0,则非负数都为0.要掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为.注意移项要变号.。

解一元一次方程(去括号)答案

解一元一次方程(去括号)答案

注: ⑴有多重括号,通用方法是由里向外依 次去括号。⑵在去括号的过程中,可以同时 作合并变形。 练习 2:解下列方程
( 1) 3 2 1 3x 5 4 x 1 2
( 2) 10 2 4 0.5x 1 3 x 1 5
例3
【课堂操练】
1. 将多项式 2 x 2 3 4x 2 去括号
得 ,合并得。
2.方程 2 x 2 3 4x 1 9 1 x 去括
系数化为 1,得 练习 2:
9
x=
104
( 等式的性质 2)
( 1)答案: 解:去括号,得
3–(2 –6 x –5)= 4 x –4+ 2 合并、去括号,得
3 + 3 + 6 x = 4 x–2 移项,得
6x –4x = –2–3–3 合并同类项,得
2x = –8 系数化为 1,得
x =–4 ( 2)答案: 解:去括号,得
–10 –(8 –x –1)= 3 x –3+ 5 合并、去括号,得
–10 –7 +x = 3 x + 2 移项,得
x –3x = 2 + 10 + 7 合并同类项,得
–2x = 19 系数化为 1,得
19
x=
2
例3 ( 1) ≠ 2( 2)= 2
【课堂操练】 1. 2x + 4 + 12 x–614 x –2
8 –6x = 20 + 15 + 12 x 移项合同类项,得
–18x = 27
系数化为 1,得
3
x= –
2
【课外拓展】
1.答案: 解: m( x–1) = 5x –2
去括号,得 mx–m = 5x –2

人教版七年级上第三章解一元一次方程去括号与去分母(含答案)

人教版七年级上第三章解一元一次方程去括号与去分母(含答案)
【详解】解 ,得


或 ,
代入 ,得

或 ,
故答案为 或 .
【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.
6.0 1或4##4或1
【分析】(1)根据定义求解即可;
(2)由定义可得 ,解方程得 ,再由题意,可得 ,求出相应的m值即可.
【详解】解:(1)∵(a,b)=a+b-1

故答案为:0;
12.C
【分析】根据(a﹣10)2+|b+6|=0,得a=10,b=﹣6,由已知得P表示的数是10﹣8t,Q表示的数是﹣6﹣4t,而P、Q两点相距4个单位长度,故可列方程|(10﹣8t)﹣(﹣6﹣4t)|=4,即可解得答案.
【详解】解:∵(a﹣10)2+|b+6|=0,
∴a﹣10=0,b+6=8,
∴a=10,b=﹣6,
所以m的值为1或2.
【点睛】本题主要考查了方程的解和解一元一次不等式,根据题意得到关于 的不等式是解题的关键.
②∵|a|>|b|,
∴a2>b2,
∴(a+b)(a﹣b)=a2﹣b2>0,是正数,正确;
③(2a5+a﹣3)+(﹣a5+2a﹣3)+(﹣a5+a2﹣30)=a2+3a﹣36,
则三个五次多项式的和不一定是五次多项式,不正确;
④当a+b+c<0,abc>0时,a、b、c有一个正数、两个负数,
当a>0,b<0,c<0时,原式=-1-1-1-1=-4;
A.3B.5C.3或5D.1或
三、解答题
13.解方程:
(1) ;
(2) .

黄久珍--解一元一次方程--去括号-很好

黄久珍--解一元一次方程--去括号-很好

这节课我们学到了什么? 1,当方程中出现括号时,应先去括号; 2,解方程的一般步骤: 去括号
移项 合并同类项 系数化为一
拓展练习:
2,解方程的一些简便方法: (1)运用整体思想: 解方程: 4( x 1) 2( x 1) 3( x 1) ( x 1) 提示:可以把(x-1)和(x+1)当作整体移项合并, 再去括号; (2)逆用分配律: 解方程:5(2 x 1) 3(22x 11) 4(6 x 3) 提示:可以把利用分配律把系数提出来,再利 用整体思想进行移项;
(4)5(x-4)-7(7-x)-9=12-3(9-x) 5x-20-49+7x-9=12-27+3x
3,下列方程解中开始出现错误的是( D ) 2 解方程: x 3(10 x ) 5 x 7( x 3)
A.2 x 30 3 x 5 x 7 x 21 B .2 x 3 x 5 x 7 x 21 30 C .7 x 9 7 D. x 小结: 9
基础练习:
1 、去括号 3 x 7 ( x 1 ) 3 - 2 ( x 3 )
3x-7x+7=3-2x-6
2、方程2(x-2)-3(4x-1)=9(1-x)去括号得( C ) A、2x-2-12x-3=9-9x C、2x-4-12x+3=9-9x B、2x-4-12x-3=9-9x D、2x+4-12x-3=9-9x
随堂练习
1.已知2x+1与-12x+5的值是相反数,求x的值.
解:根据题意得: (2x+1)+(-12x+5)=0 去括号,得 2x+1-12x+5=0 称项,得 2x-12x=-1-5 合并同类项,得 -10x=-6 系数化为1,得 x=0.6 答:x的值为0.6.

3.3解一元一次方程(二)——去括号习题

3.3解一元一次方程(二)——去括号习题

3.3解一元一次方程(二)一一去括号与去分母第1课时去括号Ol课前预习要点感知解方程时的去括号和有理数运算中的去括号类似,都是逆用,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号—;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号—.预习练习1—1解方程l-(2x+3)=6,去括号的结果是()A.l÷2χ-3=6B.1—2χ-3=6C.l-2x+3=6D.2x+l-3=61-2填空:5(X-4)-3(2X+1)=2(1-2X)-1.解:去括号,得.移项,得.合并同类项,得.系数化为1,得.02巧堂训练学问点1利用去括号解一元一次方程1.将方程2χ-3(4-2x)=5去括号正确的是()A.2χ-12—6x=5B.2χ-12~2x=5C.2χ-12÷6x=5D.2χ-3÷6x=52.方程2(χ-3)+5=9的解是()A.x=4B.x=5C.x=6D.x=73.解方程4(x—1)-χ=2(x+]),步骤如下:①去括号:得4x—1—x=2x+1;②移项,得4x—2x—X=1+2;③合并,得x=5,其中做错的一步是()A.①B.②C.③D.①②4.解方程-2(x—l)—4(x—2)=1时,去括号,得.5.解方程4(χ-2)=2(x+3),去括号,得.移项,得.合并同类项,得.系数化为1,得.6.(厦门中考)方程x+5=](x+3)的解是.7.解下列方程:(l)2(3χ-2)-5x=0;(2)∣(χ-2)=3—∣(χ-2).学问点2去括号解方程的应用8.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时行()A.20千米B.17.5千米C.15千米D.12.5千米9.元代朱世杰所著的《算学启蒙》中有这样一道题:“良马日行二百四十里,驾马日行一百五十里,鸳马先行一十二日,问良马几何追及之?”请你回答:良马一天可以追上驾马.10.(济南中考)2014年世界杯足球赛在巴西实行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?03课后作业11.下列是四个同学解方程2(X—2)—3(4x—1)=9的去括号的过程,其中正确的是()A.2χ-4-12x+3=9B.2χ-4-12χ-3=9C.2χ-4-12x+l=9D.2χ-2-12x+l=912.对于非零的两个有理数a,6,规定ab=2b_3a,若1 (x+l)=l,则X的值为()C 1 1A.-1B.1C,-D.--13.式子4—3(x—1)与式子x+12的值相等,则X=—.14.解下列方程:(l)3χ-2(10-χ)=5;(2)3(2y+l)=2(l÷y)+3(y+3);Λ31(3)-[-(-χ-2)-6]=l.15.(荷泽中考)食品平安是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克.己知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?16.一架飞机在两城市之间飞行,风速为24千米/时,顺风飞行须要2小时50分,逆风飞行须要3小时.求无风时飞机的飞行速度和两城之间的航程.挑战自我17.(株洲中考)家住山脚下的孔明同学想从家动身登山游玩,据以往的阅历,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;⑷下山用1个小时;依据上面信息,他作出如下安排:(1)在山顶巡游1个小时;⑵中午12:00回到家吃中餐.若依据以上信息和安排登山游玩,请问:孔明同学应当在什么时间从家动身?参考答案Ol课前预习要点感知乘法安排律,相同;相反.预习练习1-1B1—25χ-20—6χ-3=2—4χ-1,5χ-6x+4x=2-1÷20÷3,3x=24,x=802巧堂训练1.C2.B3.A4.-2x÷2-4x+8=l5.4χ-8=2x÷6.4χ-2x=6÷8.2x=14.x=7 6.x=-77(1)去括号,得6x—4—5x=0.移项,得6x—5x=4.合并同类项,得x=4.⑵去括号,得%—1=3—gx+l.移项,得$+$=3+1+1.合并同类项,得x=5.8.C9.2010.设小李预定了小组赛球票X张,淘汰赛球票(10—X)张.依据题意,得550x+700(10-χ)=5800.解得x=8.10—X=IO-8=2.答:小李预定了小组赛球票8张,淘汰赛球票2张.03课后作业511.A12.B3.--14.(1)去括号,得3x—20+2x=5.移项,得3x+2x=20+5.合并同类项,得5x=25.系数化为1,得x=5.(2)去括号,得6y+3=2+2y+3y+9.移项,得6y—2y—3y=-3+2+9.合并同类项,得y=8.(3)去括号,得《一2—8=1.移项,得4=2+8+1.合并同类项,得9=11.系数化为1,得x=55.O D O15.设A饮料生产了X瓶,则B饮料生产了(IO0—x)瓶.依据题意,得2x+3(100-χ)=270.解得x=30.100—x=70.答:A饮料生产了30瓶,B饮料生产了70瓶.16.设无风时飞机的飞行速度为X千米/时,则顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x—24)千米/时.依据题意,得17—(x+24)=3(χ-24).解得x=840.所以3(χ-24)=2448.O答:无风时飞机的飞行速度为840千米/时,两城间的航程为2448千米.挑战自我17.设上山的速度为:xkm/h,则下山的速度为:(x+l)km∕h,则整个山路长为(2x+l)km.依题意得:1X(x+1)=(2x÷l)—2,解得x=2.所以山路长为2X2+1=5km,路途上总用时为:5÷2+3÷3=3.5(三).总用时为:3.5+1=4.5(三),故动身时的时间为:12-4.5=7.5.答:孔明同学应当在早晨7:30从家里动身.。

解一元一次方程-去括号

解一元一次方程-去括号
(4)-3(x-y-1)=___-__3_x_+__3_y_+__3.
去括号时,若括号前是“+”,则括号里各项都 ___不__用_变__符__号___.若括号前是“-”,则括号里 各项都_改__变_符__号_______.
自学质疑
议一议: 解方程: 3(2x -1) = 3x + 1.
解 去括号,得 6x-3 = 3x+1
②移项要变号。
③ 合并同类项时,只是把同类项的系 数相加作为所得项的系数,字母部分不 变。
④系数化为1,要方程两边同时除以未 知数前面的系数。
合作探究
例1.解方程:3x-7(x-1)=3-2(x+3)
解:去括号,得 移项,得
合并同类项,得 系数化成1,得
3x-7x+7=3-2x-6 3x-7x+2x=3-6-7
-2x=-10 X=5
合作探究
例2:解方程:2(x-2)-3(4x-1)=9(1-x). 解 :去括号,得 2x-4-12x+3=9-9x
移项,得 6x -3x = 1+3
合并同类项,得 3x = 4
两边都除以3,得
x
=
4 3
因此,原方程的解是
x
=
4 3
.
口答完成解以下方程的第一步:
(1)5a+(2-4a)=0
5a+2-4a=0
(2)25b-(b-5)=29 (3)7x+2(3x-3)=20 (4)8y-3(3y+2)=6
25b-b+5=29 7x+6x-6=20 8y-9y-6=6
解:移项:3x 4x 3 2,
合并同类项: x 1 解:移项:3x 4x 3 2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3解一元一次方程(去括号)【目标导航】1.掌握有括号的一元一次方程的解法;2.通过列方程解决实际问题,感受到数学的应用价值;3.培养分析问题、解决问题的能力.【预习引领】1. 化简:⑴()()=+-+--33121y y⑵()()=-+--a a 245232.问题 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度。

这个工厂去年上半年每月平均用电多少度? 3.你会用方程解这道题吗?设上半年每月平均用电x 度,则下半年每月平均用电度;上半年共用电 度,下半年共用电度。

列方程为。

4.这个方程与上一课所解方程有何不同点?怎样使这个方程向a x =的形式转化呢?【要点梳理】知识点:有括号的一元一次方程的解法引例:解方程()15000200066=-+x x 解:注:1.根据,先去掉等式两边的小括号,然后再移项、合并、系数化为12.本题用的思想,将有括号的方程转化为已学的无括号的方程。

例1 解方程()()323173+-=--x x x 注:运算过程中,特别防止符号的错误. 练习1:解下列方程()()()41232341+-=-+x x x()⎪⎭⎫ ⎝⎛--=+⎪⎭⎫ ⎝⎛-1317242162x x x例2 解方程,并说明每步的依据:()[]{}()1082721324321--=+---x x注:⑴有多重括号,通用方法是由里向外依次去括号。

⑵在去括号的过程中,可以同时作合并变形。

练习2:解下列方程(1)()[]()21453123+-=---x x (2)()[]()51315.04210+-=----x x 例3【课堂操练】 1. 将多项式()()24322+--+x x 去括号得,合并得。

2.方程()()()x x x -=---1914322去括号得,这种变形的根据是。

3.解方程: ⑴()62338=+-y y ⑵()33322+-=+-x x x ⑶()()63734--=+x x⑷()()()36411223125+=+-+x x x ⑸()()()121212345--=+--x x x ⑹()[]()2321432-=+--x x x ⑺()[]{}1720815432=----x ⑻已知关于x 的方程()ax x =-+324无解,求a 的值。

【课后盘点】1.若关于x 的方程b x x a 3746-=+的解是1=x ,则a 和b 满足的关系式是2a+b =1. 2.(2011广东湛江15,4分)若2x =是关于x 的方程2310x m +-=的解,则的值为–1. 3.比方程()472=+x 的解的3倍小5的数是–20.4.(2011山东菏泽,7,3分)某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打7折 51.化简下列各式⑴()()223248y xy y xy +-+--- ⑵()[]a b a b a +----22 ⑶()[]()y x y x +----25 ⑷()[]152322+---x x x x6.方程()113=--x x 的根是( ) A .2=x B .1=x C .0=x D .1-=x 7.下列去括号正确的是( )A .()1123=--x x 得4123=--x xB .()x x =++-314得x x =++-344C .()59172+-=-+x x x 得59772+-=--x x xD .()[]21423=+--x x 得24423=++-x x8.解下列方程 ⑴()212-=--t ⑵()()32523-=+x x ⑶()()23341+=+-x x ⑷()()x x x 3234248--+=+ ⑸()()()x x x -=---1914322联欢会上,小红按照4个红气球,3个黄气球,2•个绿气 ⑹()x x 415126556=-⎥⎦⎤⎢⎣⎡++ 9.已知关于x 的方程()3245-=-x ax 无解,求a 的值。

10.若x A 34-=,x B 45+=,且B A 3202+=。

求x 的值。

【课外拓展】1.已知关于x 的方程()251-=-x x m 有唯一解,求m 的值。

2.已知关于x 的方程()()b x a x a 3512+-=-有无数多个解,求a 、b 的值。

3.三年前父亲的年龄是儿子年龄的4倍,三年后父亲的年龄是儿子年龄的3倍,求父子两人现在的年龄各是多少岁?No .3参考答案:3.3解一元一次方程 (去括号)【预习引领】1. 化简(1) 5-5y (2) 23-10a 2.答案 解:(15×10000+2000×6)÷2÷6=13500度 3.( x-2000)6x 6(x-2000)列方程为6x +6(x-2000)=150000 4.答案:不同点是有括号;先去括号,再移项合并同类项,最后再系数化为1。

【要点梳理】引例 答案:解:去括号,得6x + 6x – 12000 = 15000 移项,得6x + 6x = 15000 + 12000 合并同类项,得12x = 27000 系数化为1,得 x =2250 注:1。

乘法分配律2. 化归例1。

答案: 解:去括号,得3x – 7x + 7=3 – 2x – 6 移项,得3x – 7x + 2x = 3 – 6 – 7 合并同类项,得 –2x = –10系数化为1,得 x = 5 练习1: (1)答案: 解:去括号,得4x + 6x – 9=12 –x – 4 移项,得4x + 6x + x = 12 – 4+9 合并同类项,得 11x =17 系数化为1,得 x =1117 (2)答案: 解:去括号,得 3x – 24+ 2x =7 –31x + 1 移项,得 3x + 2x +31x = 7 + 1+24 合并同类项,得316x =32 系数化为1,得 x = 6例2答案:解:去括号,得 1– 2[3 – 4(6x – 2 + 2)]=14 – 56x –10(去括号法则或乘法分配律)合并、去括号,得1 – 2(3 – 24x )= 4 – 56x (去括号、合并同类项法则) 去括号,得1 – 6 + 48x = 4 – 56x(去括号法则)移项,得48x + 56x = 4 + 6 – 1 (等式的性质1) 合并同类项,得 104x =9(合并同类项法则)系数化为1,得x =1049 (等式的性质2)练习2: (1)答案: 解:去括号,得3–(2 – 6 x – 5)= 4 x – 4+ 2 合并、去括号,得3 + 3 + 6x = 4x – 2 移项,得6x – 4x = –2–3–3 合并同类项,得 2x = –8 系数化为1,得 x =– 4(2)答案: 解:去括号,得–10 –(8 – x – 1)= 3 x – 3+ 5 合并、去括号,得 –10 – 7 +x = 3x + 2 移项,得x – 3x = 2 + 10 + 7 合并同类项,得 –2x = 19系数化为1,得 x =219例3(1)≠ 2(2)= 2【课堂操练】1.2x + 4 + 12x –614 x –22.2 x – 4 –12 x + 3=9–9 x 去括号法则3.(1)答案: 解:去括号,得 8y – 9y – 6 = 6 移项,得 8y – 9y = 6 + 6 合并同类项,得 –y = 12系数化为1,得 y = –12(2)答案: 解:去括号,得 2x –32x – 2= –x + 3 移项,得 2x –32x + x = 3 +2 合并同类项,得37x = 5 系数化为1,得 x =715 (3)答案: 解:去括号,得4x + 12= 7x –21–6 移项,得4x – 7x = –21–6 –12 合并同类项,得 –3x = –39系数化为1,得 x =13(4)答案: 解:去括号,得10x + 5 – 66x – 33= 24x + 12 移项,得10x – 66x – 24x = 12 – 5 + 33 合并同类项,得 –80x = 40系数化为1,得 x = –21 (5)答案: 解:去括号,得5x – 20 – 6x – 3= 2 – 4x – 1 移项,得5x – 6x + 4x = 2 – 1 + 20 + 3 合并同类项,得 3x = 24 系数化为1,得 x = 8(6)答案: 解:去括号,得2(3x – 4 x +4) + 2= 3 x – 6 合并、去括号,得 – 2 x +8 + 2= 3x – 6 移项,得– 2 x – 3x = – 6 – 2 – 8 合并同类项,得 – 5x = –16系数化为1,得 x =516 (7)答案: 解:去括号,得2[3 (20x – 4 – 8)– 20]– 7 = 1 合并、去括号,得2(60x – 36 – 20) – 7= 1 去括号,得120x – 72 – 40 – 7 = 1 移项合并同类项,得 120x = 120 系数化为1,得x =14答案:解:4(x +2)– 3 = ax 去括号,得4x + 8 – 3 = ax 移项合并同类项,得(4–a )x = – 5 因为方程无解,所以 4–a = 0 既 a = 4【课后盘点】1.2a+b=12.–13.–204.7折5.(1)答案:解原式= – 8xy + 4y²– 2xy –3y² = – 8xy– 2xy+ 4y²–3y²= –(8+2)xy+ (4 – 3)y²= –10xy+y²(2)答案:解原式= 2a – (– 2b –a + b + a)= 2a + b(3)答案:解原式= 5x –y – 2x – 2y= (5– 2)x– (1+2)y= 3x– 3y(4)答案:解原式= x²– 3(2x – 5x²+ 5x – 5) = x²– 3(– 5x²+ 7x – 5)= x²+15x²– 21x +15= 16x²– 21x +156.C7.D8.(1)答案:解:去括号,得2– t + 1 = –2移项合并同类项,得– t = –5系数化为1,得t = 5(2)答案:解:去括号,得3x + 6 = 10x – 15移项合并同类项,得– 7x = –21系数化为1,得x = 3(3)答案:解:去括号,得1 –4x – 12 = 3x + 6移项合并同类项,得– 7x = 17系数化为1,得x = –717(4)答案:解:去括号,得8x + 4 = 8x +6 + 6x移项,得8x – 8x– 6x = 6 – 4合并同类项,得–6x = 2系数化为1,得x = –31(5)答案:解:去括号,得2x – 4 – 12x + 3= 9 – 9x移项,得2x – 12x +9x = 9 + 4 – 3合并同类项,得–x = 10系数化为1,得x = –10(6)答案:解:去括号,得56(35x +65+ 5)– 1 = 4x去括号,得2x + 1 + 6 – 1= 4x移项合并同类项,得– 2x = –6系数化为1,得x=39.答案:解:ax– 5 = 4(2x– 3)去括号,得ax– 5 = 8x– 12移项合并同类项,得(a – 8)x = – 7因为方程无解,所以a – 8= 0 既a = 810.答案:解:把A=4 – 3x ,B=5 + 4x代入2A = 20 + 3B,得2(4 – 3x) = 20 + 3(5 + 4x)去括号,得8 – 6x = 20 + 15 + 12x移项合同类项,得– 18x = 27系数化为1,得x = –23【课外拓展】1.答案:解:m(x–1) = 5x – 2去括号,得mx–m = 5x – 2移项合并同类项,得(m– 5)x= m– 2因为方程有唯一解,所以m–5≠0即m≠52.答案:解:2a(x–1) = (5–a)x +3b去括号,得2ax–2a = 5x–ax +3b移项合并同类项,得(3a– 5)x= 3b+2a因为方程有无数多个解,所以3a– 5=0且3b+2a=0所以a =35,b =9103.答案:解:设今年儿子的年龄是x岁,3年前父亲、儿子的年龄分别是x – 3、4(x – 3)岁,3年后分别是x + 3、3(x + 3)岁,因为年龄差不变所以4(x – 3)–(x – 3)=3(x + 3)–(x + 3)去括号,得4x –12–x +3 = 3x + 9 –x –3移项合并同类项,得x=154(x – 3)+ 3=51答:现在父子的年龄分别为15岁、51岁。

相关文档
最新文档