人教A版 参 数 方 程 学案
2019-2020学年高中数学人教A版选修4-4学案:第二讲 一 2. 圆的参数方程 Word版含答案
2.圆的参数方程[对应学生用书P17]圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cosωt =x r,sinωt =y r,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧ x =rcosωt y =rsinωt(t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时间.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =rcos θy =rsin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x0+Rcos θy =y0+Rsin θ(0≤θ<2π).[对应学生用书P17][例1] 圆(x -r )2+y 2=r 2(r >0),点M 在圆上,O 为原点,以∠MOx =φ为参数,求圆的参数方程.[思路点拨] 根据圆的特点,结合参数方程概念求解. [解] 如图所示,设圆心为O ′,连O ′M ,∵O ′为圆心, ∴∠MO ′x =2φ. ∴⎩⎪⎨⎪⎧x =r +rcos 2φ,y =rsin 2φ.(1)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +rcos φ,y =rsin φ.(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则 参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ,(θ为参数)这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.[例2] 若x ,y 满足(x -1)2+(y +2)2=4,求2x +y 的最值.[思路点拨] (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.[解] 令x -1=2cos θ,y +2=2sin θ,则有 x =2cos θ+1,y =2sin θ-2, 故2x +y =4cos θ+2+2sin θ-2. =4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤25.即2x +y 的最大值为25,最小值为-25.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.已知圆C ⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,求实数a 的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1.∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a|2≤1.解得1-2≤a ≤1+2.法二:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0, 即a =1-(sin θ+cos θ)=1-2sin(θ+π4).∵-1≤sin(θ+π4)≤1,∴1-2≤a ≤1+2.[对应学生用书P19]一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)解析:将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).答案:D2.直线:x +y =1与曲线⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的公共点有( )A .0个B .1个C .2个D .3个解析:将⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ化为x 2+y 2=4,它表示以(0,0)为圆心,2为半径的圆,由于12=22<2=r ,故直线与圆相交,有两个公共点. 答案:C3.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θy =2sin θ,(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心解析:圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2,故选D.答案:D4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:设P (2+cos α,sin α),代入得: (2+cos α-5)2+(sin α+4)2 =25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ).∴最大值为36.答案:A 二、填空题5.x =1与圆x 2+y 2=4的交点坐标是________. 解析:圆x 2+y 2=4的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,令2cos θ=1得cos θ=12,∴sin θ=±32.∴交点坐标为(1,3)和(1,-3).答案:(1,3);(1,-3)6.参数方程⎩⎪⎨⎪⎧x =3cos φ+4sin φ,y =4cos φ-3sin φ表示的图形是________.解析:x 2+y 2=(3cos φ+4sin φ)2+(4cos φ-3sin φ)2=25.∴表示圆. 答案:圆7.设Q (x 1,y 1)是单位圆x 2+y 2=1上一个动点,则动点P (x 21-y 21,x 1y 1)的轨迹方程是________.解析:设x 1=cos θ,y 1=sin θ,P (x ,y ). 则⎩⎪⎨⎪⎧x =x21-y21=cos 2θ,y =x1y1=12sin 2θ.即⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θ,为所求.答案:⎩⎪⎨⎪⎧x =cos 2θy =12sin 2θ三、解答题8.P 是以原点为圆心,r =2的圆上的任意一点,Q (6,0),M 是PQ 中点 ①画图并写出⊙O 的参数方程;②当点P 在圆上运动时,求点M 的轨迹的参数方程. 解:①如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ.②设M (x ,y ),P (2cos θ,2sin θ), 因Q (6,0),∴M 的参数方程为⎩⎪⎨⎪⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ.9.(新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎪⎫32,32. 10.已知直线C 1:⎩⎪⎨⎪⎧x =1+tcos α,y =tsin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1. 联立方程组错误!解得C 1与C 2的交点为(1,0),⎝ ⎛⎭⎪⎪⎫12,-32. (2)C 1的普通方程为x sin α-y cos α-sin α=0. A 点坐标为(sin 2α,-cos αsin α), 故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin2α,y =-12sin αcos α,(α为参数).P 点轨迹的普通方程为⎝ ⎛⎭⎪⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝ ⎛⎭⎪⎪⎫14,0,半径为14的圆.。
新教材 人教A版高中数学选择性必修第一册全册优秀学案(知识点考点汇总及配套习题,含解析)
人教A版高中数学选择性必修第一册全册学案第一章空间向量与立体几何........................................................................................................ - 2 -1.1空间向量及其运算......................................................................................................... - 2 -1.1.1空间向量及其线性运算...................................................................................... - 2 -1.1.2空间向量的数量积运算.................................................................................... - 16 -1.2空间向量基本定理....................................................................................................... - 29 -1.3空间向量及其运算的坐标表示................................................................................... - 38 -1.3.1空间直角坐标系................................................................................................ - 38 -1.3.2空间运算的坐标表示........................................................................................ - 46 -1.4空间向量的应用 .......................................................................................................... - 59 -1.4.1用空间向量研究直线、平面的位置关系........................................................ - 59 -第1课时空间向量与平行关系........................................................................ - 59 -第2课时空间向量与垂直关系........................................................................ - 69 -1.4.2用空量研究距离、夹角问题............................................................................ - 79 -章末总结 ............................................................................................................................... - 97 - 第二章直线和圆的方程............................................................................................................ - 113 -2.1直线的倾斜角与斜率................................................................................................. - 113 -2.1.1倾斜角与斜率 ................................................................................................. - 113 -2.1.2两条直线平行和垂直的判定.......................................................................... - 121 -2.2直线的方程 ................................................................................................................ - 131 -2.2.1直线点斜式方程.............................................................................................. - 131 -2.2.2直线的两点式方程.......................................................................................... - 137 -2.2.3直线的一般式方程.......................................................................................... - 145 -2.3直线的交点坐标与距离公式..................................................................................... - 154 -2.3.1两条直线的交点坐标...................................................................................... - 154 -2.3.2两点间的距离公式.......................................................................................... - 154 -2.3.3点到直线的距离公式...................................................................................... - 163 -2.3.4两条平行直线间的距离.................................................................................. - 163 -2.4圆的方程 .................................................................................................................... - 171 -2.4.1圆的标准方程 ................................................................................................. - 171 -2.4.2圆的一般方程 ................................................................................................. - 180 -2.5直线与圆、圆与圆的位置关系................................................................................. - 188 -2.5.1直线与圆的位置关系...................................................................................... - 188 -2.5.2圆与圆的位置关系.......................................................................................... - 199 -章末复习 ............................................................................................................................. - 208 - 第三章圆锥曲线的方程............................................................................................................ - 222 -3.1椭圆 ............................................................................................................................ - 222 -3.1.1椭圆及其标准方程.......................................................................................... - 222 -3.1.2椭圆的简单几何性质...................................................................................... - 234 -第1课时椭圆的简单几何性质...................................................................... - 234 -第2课时椭圆的标准方程及性质的应用...................................................... - 244 -3.2双曲线 ........................................................................................................................ - 256 -3.2.1双曲线及其标准方程...................................................................................... - 256 -3.2.2双曲线的简单几何性质.................................................................................. - 267 -3.3抛物线 ........................................................................................................................ - 281 -3.3.1抛物线及其标准方程...................................................................................... - 281 -3.3.2抛物线的简单几何性质.................................................................................. - 291 -章末复习 ............................................................................................................................. - 303 - 全书复习 ..................................................................................................................................... - 316 -第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其线性运算学习目标核心素养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点) 1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观赏黄浦江,然后抵达东方明珠(B)游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1图2如果游客还要登上东方明珠顶端(D)俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称方向 模 记法 零向量任意 0 0 单位向量任意 1 相反向量相反 相等 a 的相反向量:-a AB →的相反向量:BA → 相等向量 相同 相等 a =b3.(1)向量的加法、减法空间向量的运算 加法 OB →=OA →+OC →=a +b减法 CA →=OA →-OC →=a -b 加法运算律 ①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算.当λ>0时,λa 与向量a 方向相同;当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍.②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb .思考:向量运算的结果与向量起点的选择有关系吗?[提示] 没有关系.4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量. (2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量. (2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”)(1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c .( ) (2)相等向量一定是共线向量.( ) (3)三个空间向量一定是共面向量.( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行.(2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD -A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________. -53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.]4.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD→+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |;③在正方体ABCD -A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p .其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→ [(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确;对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确;对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向.(2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量. [跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( )①长度相等、方向相同的两个向量是相等向量;②平行且模相等的两个向量是相等向量;③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算 1111为向量AC 1→的有( )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P -ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zP A →;②P A →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解.(1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→;对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.](2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(P A →+PC →)=PQ →-12PC →-12P A →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点,∴P A →+PC →=2PO →,PC →+PD →=2PQ →,∴P A →=2PO →-PC →,PC →=2PQ →-PD →,∴P A →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质. [跟进训练] 2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB → B .3MG →C .3GM →D .2MG →B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB →=MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎨⎧ λ=7λk =k +6,解得k =1.] (2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM →=2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线.(1)存在实数λ,使P A →=λPB →成立.(2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ).(3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →, 所以A 1E →=23A 1D 1→,A 1F →=25A 1C →, 所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c .又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c , 所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如P A →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+ y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c .因为a ,b ,c 不共面,所以⎩⎨⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示,即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P 是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →),∴3CP →=P A →+2PB →,即P A →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面.[解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则 OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →, ∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎨⎧1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断? [解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1. ∴点P 与点A 、B 、C 不共面.解决向量共面的策略(1)若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.(2)证明三个向量共面(或四点共面),需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( ) A .OM →=2OA →-OB →-OC → B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0 D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.] 2.已知正方体ABCD -A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB→-nAA 1→,则m ,n 的值分别为( )A .12,-12 B .-12,-12 C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .] 4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a ,b 满足|a |>|b |且a ,b 同向,则a >b ; ③不相等的两个空间向量的模必不相等; ④对于任何向量a ,b ,必有|a +b |≤|a |+|b |. 其中正确命题的序号为________.④ [对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,求k 的值. [解] ∵两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,∴k e 1+e 2=t (e 1+k e 2),则(k -t )e 1+(1-tk )e 2=0.∵非零向量e 1,e 2不共线,∴k -t =0,1-kt =0,解得k =±1.1.1.2 空间向量的数量积运算学习 目 标核心 素 养1.掌握空间向量夹角的概念及表示方法.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.掌握投影向量的概念.(重点)4.能用向量的数量积解决立体几何问题.(难点)1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养.2.借助投影向量概念的学习,培养学生直观想象和逻辑推理的核心素养.3.借助利用空间向量数量积证明垂直关系、求夹角和距离运算,提升学生的逻辑推理和数学运算核心素养.已知两个非零向量a 与b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.如果a 与b 的夹角为90°,则称a 与b 垂直,记作a ⊥b .已知两个非零向量a 与b ,它们的夹角为θ,把a ·b =|a ||b |cos θ叫做a 与b 的数量积(或内积)类比探究一下:两个空间向量的夹角以及它们的数量积能否像平面向量那样来定义呢?1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2. ③cos 〈a ,b 〉=a ·b|a ||b |. (3)数量积的运算律(2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a|a |.(2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =k a ,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等. ( ) (2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC -A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos 〈AB 1,BC 1〉=122×2=14.故选B.]3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4 A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c 的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]空间向量数量积的运算【例1】 (1)如图,三棱锥A -BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC=60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →) =OA →+13[(OB →-OA →)+(OC →-OA →)] =13OB →+13OC →+13OA →.∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2 =13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. (3)根据向量的方向,正确求出向量的夹角及向量的模. (4)代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.利用数量积证明空间垂直关系=OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ,又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →) =12⎣⎢⎡⎦⎥⎤12OA →+12(OB →+OC →) =14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b ) =14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0. ∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:P A ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又P A →=PD →+DA →,∴P A →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即P A ⊥BD .夹角问题夹角〈a ,b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4; 由余弦定理,得:cos ∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14, 又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos 〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos 〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值.(2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos 〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3. 即BC 1→与AC →夹角的大小为π3.距离问题1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2 注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC →+2BA →·CD →+2AC →·CD →=3+2×1×1×cos 〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角α-AB -β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角α-AB -β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b |a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC 的中点,则FG →·AB →=( )A .34B .14C .12D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.]2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b|a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________. 0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →) =AB →·(CD →-CA →)+AD →·(BC →+CA →) =AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角α-AB -β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →, ∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116, ∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线; (2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值. [解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°. (1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB → =12(q +r -p ), ∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0 ∴MN ⊥AB ,同理可证MN ⊥CD . ∴MN 为AB 与CD 的公垂线. (2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a 22-a 22-a 22]=14×2a 2=a 22.∴|MN →|=22a , ∴MN 的长度为22a .(3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p , ∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a 24+a 22-a 24=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →|·|MC →|·cos θ=32a·32a ·cos θ=a 22. ∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23. 从而异面直线AN 与MC 所成角的余弦值为23.1.2 空间向量基本定理学 习 目 标核 心 素 养1.了解空间向量基本定理及其意义.2.掌握空间向量的正交分解.(难点)3.掌握在简单问题中运用空间三个不共面的向量作为基底表示其他向量的方法.(重点)1.通过基底概念的学习,培养学生数学抽象的核心素养.2.借助基底的判断及应用,提升逻辑推理、直观想象及数学运算的核心素养.(1)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对(x ,y ),使得p =x a +y b .(2)共面向量定理的推论:空间一点P 在平面MAB 内的充要条件是存在有序实数对(x ,y ),使得MP →=xMA →+yMB →,或对于空间任意一定点O ,有OP →=xOM →+yOA →+zOB →(x +y +z =1).今天我们将对平面向量基本定理加以推广,应用上面的几个公式我们可以解决与四点共面有关的问题,得出空间向量基本定理.1.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .。
人教A版2019高中数学选修4-4教学案: 第二讲 第1节 第3课时 参数方程和普通方程的互化_含答案
第3课时 参数方程和普通方程的互化[核心必知]参数方程和普通方程的互化(1)将曲线的参数方程化为普通方程,有利于识别曲线类型,曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数而从参数方程得到普通方程.(2)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.[问题思考]1.将参数方程化为普通方程的实质是什么?提示:将参数方程化为普通方程的实质是消参法的应用. 2.将普通方程化为参数方程时,所得到的参数方程是唯一的吗?提示:同一个普通方程,选取的参数不同,所得到的参数方程也不同,所以在写参数方程时,必须注明参数是哪一个.根据所给条件,把曲线的普通方程化为参数方程.(1)(x -1)23+(y -2)25=1,x =3cos θ+1.(θ为参数)(2)x 2-y +x -1=0,x =t +1.(t 为参数)[精讲详析] 本题考查化普通方程为参数方程的方法,解答本题只需将已知的变量x 代入方程,求出y 即可.(1)将x =3cos θ+1代入(x -1)23+(y -2)25=1得:y =2+5sin θ.∴⎩⎨⎧x =3cos θ+1,y =5sin θ+2.(θ为参数) 这就是所求的参数方程.(2)将x =t +1代入x 2-y +x -1=0得: y =x 2+x -1=(t +1)2+t +1-1 =t 2+3t +1∴⎩⎪⎨⎪⎧x =t +1,y =t 2+3t +1.(t 为参数) 这就是所求的参数方程.(1)求曲线的参数方程,首先要注意参数的选取,一般来说,选择参数时应注意以下两点:一是曲线上每一点的坐标(x ,y )都能由参数取某一值唯一地确定出来;二是参数与x ,y 的相互关系比较明显,容易引出方程.(2)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与普通方程等价.1.把方程xy =1化为以t 为参数的参数方程是( ) A.⎩⎨⎧x =t 12,y =t -12 B.⎩⎪⎨⎪⎧x =sin t ,y =1sin t C.⎩⎪⎨⎪⎧x =cos t ,y =1cos t D.⎩⎪⎨⎪⎧x =tan t ,y =1tan t 解析:选D 由xy =1得x ∈(-∞,0)∪(0,+∞),而A 中x ∈[0,+∞),B 中x ∈[-1,1],C 中x ∈[-1,1],只有D 选项中x 、y 的取值范围与方程xy =1中x 、y 的取值范围相对应.分别在下列两种情况下,把参数方程⎩⎨⎧x =12(e t +e-t)cos θ,y =12(e t-e-t)sin θ化为普通方程:(1)θ为参数,t 为常数; (2)t 为参数,θ为常数.[精讲详析] 本题考查化参数方程为普通方程的方法,解答本题需要分清谁为参数,谁为常数,然后想办法消掉参数.(1)当t =0时,y =0,x =cos θ,即|x |≤1,且y =0; 当t ≠0时,cos θ=x 12(e t +e -t ),sin θ=y12(e t -e -t ),而sin 2θ+cos 2θ=1, 即x 214(e t +e -t )2+y 214(e t -e -t )2=1.(2)当θ=k π,k ∈Z 时,y =0,x =±12(e t +e -t ),即|x |≥1,且y =0;当θ=k π+π2,k ∈Z 时,x =0,y =±12(e t -e -t ),即x =0;当θ≠k π2,k ∈Z 时,得⎩⎨⎧e t +e -t =2x cos θ,e t -e -t =2y sin θ,即⎩⎨⎧2e t =2x cos θ+2y sin θ,2e -t =2x cos θ-2y sin θ.得2e t ·2e -t =(2x cos θ+2y sin θ)(2x cos θ-2y sin θ),即x 2cos 2θ-y 2sin 2θ=1.(1)将参数方程化为普通方程时,消去参数的常用方法有:①代入法.先由一个方程求出参数的表达式(用直角坐标变量表示),再代入另一个方程.②利用代数或三角函数中的恒等式消去参数.例如对于参数方程⎩⎨⎧x =a ⎝⎛⎭⎫t +1t cos θ,y =a ⎝⎛⎭⎫t -1t sin θ,如果t 是常数,θ是参数,那么可以利用公式sin 2θ+cos 2θ=1消参;如果θ是常数,t 是参数,那么可以利用⎝⎛⎭⎫t +1t 2-⎝⎛⎭⎫t -1t 2=4消参.(2)一般来说,如果消去曲线的参数方程中的参数,就可以得到曲线的普通方程,但要注意,这种消参的过程要求不减少也不增加曲线上的点,即要求参数方程和消去参数后的普通方程是等价的.2.已知某曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (3,1)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.解:(1)由题意可知有⎩⎪⎨⎪⎧1+2t =3at 2=1,故⎩⎪⎨⎪⎧t =1,a =1,∴a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2.由第一个方程得t =x -12代入第二个方程得y =(x -12)2,即(x -1)2=4y 为所求.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线x -2y-7=0距离的最小值.[精讲详析] 本题考查化参数方程为普通方程的方法以及点到直线的距离的求法.解答本题需要先把题目条件中的参数方程转化为普通方程,然后根据普通方程解决问题.(1)C 1:(x +4)2+(y -3)2=1,C 2:x 264+y 29=1.C 1为圆心是(-4,3),半径是1的圆.C 2为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).M到C 3的距离d =55|4cos θ-3sin θ-13|=55|5sin (φ-θ)-13|(φ为锐角且tan φ=43). 从而当sin (φ-θ)=1时,d 取得最小值855.(1)将参数方程转化为我们所熟悉的普通方程是解决问题的关键. (2)将所求的问题用恰当的参数表示,是解决此类问题的转折点.3.已知方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,(0≤θ<2π). (1)试证:不论θ如何变化,方程都表示顶点在同一椭圆上的抛物线; (2)θ为何值时,该抛物线在直线x =14上截得的弦最长,并求出此弦长.解:(1)证明:将方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0可配方为(y -3sin θ)2=2(x -4cos θ)∴图象为抛物线设其顶点为(x ,y ),则有⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ,消去θ得顶点轨迹是椭圆x 216+y 29=1.(2)联立⎩⎪⎨⎪⎧x =14,y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0, 消去x ,得y 2-6y sin θ+9sin 2θ+8cos θ-28=0. 弦长|AB |=|y 1-y 2|=47-2cos θ, 当cos θ=-1,即θ=π时,弦长最大为12.曲线的参数方程化为普通方程是解决参数方程问题的根本方法,也是高考命题的重点内容,它体现了转化与化归的数学思想.湖北高考中,以射线(极坐标方程)与曲线(参数方程)相交为背景设置问题,是高考命题的一个新亮点.[考题印证](湖北高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =(t -1)2,(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.[命题立意] 本题主要考查参数方程与普通方程的互化,射线的极坐标方程及联立方程解方程组的解题思想.[解析] 记A (x 1,y 1),B (x 2,y 2),将θ=π4,转化为直角坐标方程为y =x (x ≥0),曲线为y =(x -2)2,联立上述两个方程得x 2-5x +4=0,所以x 1+x 2=5,故线段AB 的中点坐标为(52,52). 答案:(52,52)一、选择题1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为( ) A .y =x -2 B .y =x +2 C .y =x -2(2≤x ≤3) D .y =x +2(0≤y ≤1)解析:选C 化为普通方程:y =x -2,但是x ∈[2,3],y ∈[0,1].2.下列在曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ+sin θ(θ为参数)上的点是( )A.⎝⎛⎭⎫12,-2B.⎝⎛⎭⎫-34,12 C .(2,3) D .(1,3)解析:选B 化为普通方程:y 2=1+x (-1≤x ≤1), 当x =-34时,y =±12.3.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( ) A .线段 B .双曲线的一支C .圆D .射线解析:选D 消去参数得:x -3y -5=0,且x ≥2,故是射线.4.与参数方程为⎩⎨⎧x =t ,y =21-t(t 为参数)等价的普通方程为 ( )A .x 2+y 24=1B .x 2+y 24=1(0≤x ≤1)C .x 2+y 24=1(0≤y ≤2)D .x 2+y 24=1(0≤x ≤1,0≤y ≤2)解析:选D x 2=t ,y 24=1-t =1-x 2,x 2+y 24=1,而由⎩⎪⎨⎪⎧t ≥01-t ≥0得0≤t ≤1,从而0≤x ≤1,0≤y ≤2.二、填空题5.曲线的参数方程是⎩⎪⎨⎪⎧x =1-1t ,y =1-t 2(t 为参数,t ≠0),则它的普通方程为________.解析:1-x =1t ,t =11-x ,而y =1-t 2,即y =1-(11-x )2=x (x -2)(x -1)2(x ≠1).答案:y =x (x -2)(x -1)2(x ≠1)6.参数方程⎩⎪⎨⎪⎧x =e t +e -t,y =2(e t-e -t )(t 为参数)的普通方程为________. 解析:⎩⎪⎨⎪⎧x =e t+e -t,y 2=e t -e -t ,⇒⎩⎨⎧x +y2=2e t,x -y 2=2e -t ,⇒(x +y 2)(x -y2)=4.答案:x 24-y 216=1(x ≥2)7.若点(x ,y )在圆⎩⎪⎨⎪⎧x =3+2cos θ,y =-4+2sin θ(θ为参数)上,则x 2+y 2的最小值是________.解析:法一:由题可知,x 2+y 2=(3+2cos θ)2+(-4+2sin θ)2=29+12cos θ- 16sin θ=29+20cos (θ+φ)(tan φ=43),当cos (θ+φ)=-1时最小,因此可得最小值为9.法二:将原式转化为普通方程(x -3)2+(y +4)2=4,它表示圆.令t =x 2+y 2,则t 可看做圆上的点到点(0,0)的距离的平方,圆外一点与圆上点的最近距离为该点与圆心的距离减去半径,t min =()(0-3)2+(0+4)2-22=9,所以x 2+y 2的最小值为9. 答案:98.点(x ,y )是曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数,0≤θ<2π)上任意一点,则yx 的取值范围是________.解析:曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ是以(-2,0)为圆心,1为半径的圆,即(x +2)2+y 2=1.设yx =k , ∴y =kx .当直线y =kx 与圆相切时,k 取得最小值与最大值. ∴|-2k |k 2+1=1,k 2=13.∴y x 的范围为⎣⎡⎦⎤-33,33. 答案:⎣⎡⎦⎤-33,33 三、解答题9.化下列参数方程为普通方程.(1)⎩⎪⎨⎪⎧x =1-t 1+t,y =2t1+t(t ∈R 且t ≠-1);(2)⎩⎨⎧x =tan θ+1tan θ,y =1cos θ+1sin θ⎝⎛⎭⎫θ≠k π,k π+π2,k ∈Z . 解:(1)变形为⎩⎨⎧x =-1+21+t,y =2-21+t.∴x ≠-1,y ≠2,∴x +y =1(x ≠-1).(2)⎩⎪⎨⎪⎧x =1sin θcos θ, ①y =sin θ+cos θsin θ·cos θ. ②②式平方结合①得y 2=x 2+2x , 又x =tan θ+1tan θ知|x |≥2,所以方程为(x +1)2-y 2=1(|x |≥2).10.求直线x +y =2被圆⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)截得的弦长.解:将圆⎩⎪⎨⎪⎧x =3cos α,y =3sin α化为普通方程为x 2+y 2=9.圆心O 到直线的距离d =22=2,∴弦长L =2R 2-d 2=29-2=27.所以直线x +y =2被圆⎩⎪⎨⎪⎧x =3cos α,y =3sin α截得的弦长为27.11.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),直线l 的方程是4x +3y -8=0.(1)将曲线C 的参数方程化为普通方程;(2)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求|MN |的最大值. 解:(1)曲线C 的普通方程为x 2+(y -1)2=1. (2)在方程4x +3y -8=0中, 令y =0,得x =2,即M 点的坐标为(2,0).又曲线C 为圆,圆C 的圆心坐标为(0,1),半径r =1,则|MC |= 5.所以|MN |≤|MC |+r =5+1. 即|MN |的最大值为5+1.。
高中数学人教A版选修4-4 2-2-1 椭圆的参数方程 导学案 精品
2.2.1 椭圆的参数方程学案【学习目标】:1. 知识与技能:了解椭圆的参数方程及参数的的意义2. 过程与方法:能选取适当的参数,求简单曲线的参数方程3. 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识【学习重点】:椭圆参数方程的定义和方法【学习方法】:分组讨论学习法、探究式;【学习过程】:一、课前准备复习1:圆的参数方程及参数的几何意义是什么?圆x 2+y 2=r 2(r>0)的参数方程:圆(x-a)2+(y-b)2=r 2的参数方程:其中参数的几何意义为:复习2:圆的参数方程是怎样推导出来的呢?二、新课导学学习探究探究任务一:圆的参数方程问题1:你能仿此推导出椭圆的参数方程吗?问题2:你能仿此推导出椭圆 的参数方程吗?提问3:把下列普通方程化为参数方程,把参数方程化为普通方程.194)1(22=+y x 116)2(22=+y x【典型例题】12222=+a y b x 为参数)ϕϕϕ(sin 5cos 3)3(⎩⎨⎧==y x 为参数)ϕϕϕ(sin 10cos 8)4(⎩⎨⎧==y x【例1】:如下图,以原点为圆心,分别以a ,b (a >b >0)为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当半径OA 绕点O 旋转时点M 的轨迹参数方程.反思: 椭圆 的参数方程为的几何意义是什么?知识点小结:1.在椭圆的参数方程中,常数a 、b 分别是椭圆的 和 . (其中a>b )2.ϕ称为离心角,规定参数ϕ的取值范围是3. 当焦点在X 轴时椭圆的参数方程为: 当焦点在Y 轴时椭圆的参数方程为: 知识归纳名称参数方程各元素的几何意义圆椭圆)0(12222>>=+b a b ya x 其中为参数)(sin cos ϕϕϕ⎩⎨⎧==b y a x ϕ,,b a【例2】:设P 是椭圆223641y x +=在第一象限部分的弧AB 上的一点,求使四边形OAPB 的面积最大的点P 的坐标。
人教A版高中同步学案数学必修第一册 第四章 指数函数与对数函数 函数的应用(二)函数的零点与方程的解
所示.由图象可知,两个函数图象只有一个交点,故函数()只有一
个零点.
1
(3)() = 2 + lg( + 1) − 2.
解(方法1)∵ (0) = 1 + 0 − 2 = −1 < 0,(2) = 4 + lg 3 − 2 = 2 + lg 3 > 0,
∴ () = 0在(0,2)内必定存在实根.
C.(−1,1)和(1,2)D.(−∞, −3)和(4, +∞)
[解析]易知() = + + ( ≠ )的图象是一条连续不断的曲线,又
(−)(−) = × (−) = − < ,所以()在(−, −)内有零点,即方程
+ + = ( ≠ )在(−, −)内有根,同理,方程 + + = ( ≠ )在
( )
( )
∵
= + = − < ,( ) = + = − < ,
= + = − + = − ,() =
> ,∴ > ,即 − > ,∴ ( ) > ,
() = − − 有2个不同的实根,即函数()的图象与直线
= − − 的图象有2个交点.作出直线 = − − 与函数
1 = ()和2 = ℎ()的图象,则两个图象公共点的个数就是函数 = ()零点的个数.
高中数学 第2讲 参数方程 2 圆锥曲线的参数方程学案 新人教A版选修4-4-新人教A版高中选修4-
二 圆锥曲线的参数方程1.理解椭圆的参数方程及其应用.(重点) 2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题.(难点、易错点)[基础·初探]教材整理1 椭圆的参数方程阅读教材P 27~P 29“思考”及以上部分,完成下列问题.普通方程参数方程x 2a 2+y2b 2=1(a >b >0) ⎩⎪⎨⎪⎧ x =a cos φy =b sin φ(φ为参数)y 2a 2+x2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =b cos φy =a sin φ(φ为参数)椭圆⎩⎪⎨⎪⎧x =4cos φy =5sin φ(φ为参数)的离心率为( )A.45 B.35 C.34D.15【解析】 由椭圆方程知a =5,b =4,∴c 2=9,c =3,e =35.【答案】 B教材整理2 双曲线的参数方程 阅读教材P 29~P 32,完成下列问题.普通方程参数方程x 2a 2-y2b 2=1(a >0,b >0) ⎩⎪⎨⎪⎧x =a sec φy =b tan φ(φ为参数)下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 【解析】 由x =3sec θ得, x 2=3cos 2θ=3sin 2θ+cos 2θcos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适. 【答案】 B教材整理3 抛物线的参数方程阅读教材P 33~P 34“习题”以上部分,完成下列问题. 1.抛物线y2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2y =2pt(t 为参数).2.参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.若点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t2y =4t (t 为参数)上,则|PF |=________.【解析】 抛物线为y 2=4x ,准线为x =-1, |PF |等于点P (3,m )到准线x =-1的距离,即为4. 【答案】 4[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑:疑问2: 解惑: 疑问3: 解惑:椭圆的参数方程及应用将参数方程⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎪⎨⎪⎧cos θ=x5,sin θ=y3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a ,b分别是椭圆的长半轴长和短半轴长,焦点在长轴上.[再练一题]1.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,化为⎩⎪⎨⎪⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).双曲线参数方程的应用求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2, 则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+-a 2=|a 2b2sec 2 φ-tan 2 φ|a 2+b 2=a 2b2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.[再练一题]2.如图221,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.图221【证明】 设P (sec φ,tan φ), ∵F 1(-2,0),F 2(2,0), ∴|PF 1|=sec φ+22+tan 2φ=2sec 2φ+22sec φ+1,|PF 2|=sec φ-22+tan 2φ=2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=2sec 2φ+12-8sec 2φ=2sec 2φ-1.∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l于Q ,求QF 与OP 的交点M 的轨迹方程.【导学号:91060021】【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t ⎝⎛⎭⎪⎫x -p 2,它们的交点M (x ,y )由方程组 ⎩⎪⎨⎪⎧y =1t x y =-2t ⎝ ⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝ ⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0). 当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.[再练一题]3.已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2[构建·体系]圆锥曲线的参数方程—⎪⎪⎪—椭圆的参数方程—双曲线的参数方程—抛物线的参数方程1.参数方程⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1C .y 2+x 24=1D .y 2+x 24=1【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y 24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ(θ为参数,ab ≠0)表示的曲线是( )【导学号:91060022】A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax, 代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0) 4.在直角坐标系xOy中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.【解析】 ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0.又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将⎝ ⎛⎭⎪⎫32,0代入x 2a 2+y 29=1,得94a 2=1. 又a >0,∴a =32.【答案】 325.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),求它们的交点坐标.【解】 将⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)化为普通方程得:x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入得:516t 4+t 2-1=0,解得t 2=45,∴t =255(y =t ≥0),x =54t 2=54×45=1,∴交点坐标为⎝⎛⎭⎪⎫1,255.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评(七) (建议用时:45分钟)[学业达标]一、选择题1.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A 2.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ(θ为参数,0≤θ≤π)上一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点坐标是( )A .(3,4) B.⎝⎛⎭⎪⎫322,22 C .(-3,-4) D.⎝ ⎛⎭⎪⎫125,125 【解析】 因为y -0x -0=43tan θ=tan π4=1,所以tan θ=34,所以cos θ=45,sin θ=35,代入得P 点坐标为⎝ ⎛⎭⎪⎫125,125.【答案】 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程是( )A .y 2-x 2=1 B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3) D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α, 所以sin α=x 2-1.又因为y 2=2+sin α=2+(x 2-1), 所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤3,∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2, 由t 2≥0得d 2≥1,故d min =1. 【答案】 B5.方程⎩⎪⎨⎪⎧x =2t-2-ty =2t +2-t(t 为参数)表示的曲线是( )【导学号:91060023】A .双曲线B .双曲线的上支C .双曲线的下支D .圆【解析】 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,得y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 【答案】 B 二、填空题6.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎪⎨⎪⎧x =2cos π3=1,y =4sin π3=23,得点M 的坐标为(1,23) 直线OM 的斜率k =231=2 3.【答案】 2 37.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=08.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.【解析】 由⎩⎨⎧x =t ,y =t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1,即曲线C 1与C 2的交点坐标为(1,1). 【答案】 (1,1) 三、解答题9.如图222所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图222【解】 抛物线标准方程为x2=2y ,其参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎪⎨⎪⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t2(t 为参数),消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.10.已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长.【解】 由题意知直线和椭圆方程可化为:x +y -1=0,① x 24+y 2=1,②①②联立,消去y 得:5x 2-8x =0, 解得x 1=0,x 2=85.设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),⎝ ⎛⎭⎪⎫85,-35,则|AB |=⎝ ⎛⎭⎪⎫-35-12+⎝ ⎛⎭⎪⎫852=825,故所求的弦长为825.[能力提升]1.P 为双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)上任意一点,F 1,F 2为其两个焦点,则△F 1PF 2重心的轨迹方程是( )A .9x 2-16y 2=16(y ≠0) B .9x 2+16y 2=16(y ≠0) C .9x 2-16y 2=1(y ≠0) D .9x 2+16y 2=1(y ≠0)【解析】 由题意知a =4,b =3,可得c =5, 故F 1(-5,0),F 2(5,0),设P (4sec θ,3tan θ),重心M (x ,y ),则x =-5+5+4sec θ3=43sec θ,y =0+0+3tan θ3=tan θ.从而有9x 2-16y 2=16(y ≠0). 【答案】 A2.若曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1(θ为参数)与直线x =m 相交于不同两点,则m 的取值范围是( )A .RB .(0,+∞)C .(0,1)D .[0,1)【解析】 将曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1化为普通方程得(y +1)2=-(x -1)(0≤x ≤1).它是抛物线的一部分,如图所示,由数形结合知0≤m <1.【答案】 D3.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θy =4sin θ(0≤θ≤2π),恒有公共点,则b 的取值范围是________.【解析】 将(2cos θ,4sin θ)代入y =x +b 得: 4sin θ=2cos θ+b .∵恒有公共点,∴以上方程有解.令f (θ)=4sin θ-2cos θ=25sin(θ+φ)⎝ ⎛⎭⎪⎫tan φ=12,∴-25≤f (θ)≤25, ∴-25≤b ≤2 5. 【答案】 [-25,25]4.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+22,由此得,当cos ⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.。
人教A版高中同步学案数学选择性必修第一册精品课件 第2章 直线和圆的方程 点到直线的距离公式
|P1P2|= (x2 -x1 )2 + (y2 -y1 )2 .
当P1P2∥x轴(y1=y2)时,|P1P2|=|x2-x1|,当P1P2∥y轴(x1=x2)时,|P1P2|=|y2-y1|
2.特别地,原点O(0,0)与任一点P(x,y)间的距离 |OP|= 2 + 2 .
条直线上任一点到另一条直线的距离都相等.
重难探究·能力素养全提升
问题1线段由两个端点确定,其长度也是最基本的几何量.在平面直角坐标
系中,如何用两个端点的坐标来表示线段的长度,即两端点间的距离呢?
问题2两点间的距离,可以类似于向量的什么?据此,可否思考如何求出两点
间的距离?
探究点一
两点间距离公式的应用
则|AB|2=(-b-0)2+(0-a)2=a2+b2,
|AD|2=(m-0)2+(0-a)2=m2+a2,
|BD|·|DC|=|m+b|·|b-m|=(b+m)(b-m)=b2-m2,
∴|AD|2+|BD|·|DC|=a2+b2,
∴|AB|2=|AD|2+|BD|·|DC|.
规律方法
坐标法及其应用
问题3如何通过对几何问题的定量研究来判断三角形的形状?
【例1】 已知△ABC三个顶点的坐标分别为A(-3,1),B(3,-3),C(1,7),试判断
△ABC的形状.
思路分析可求出三条边的长,根据所求长度判断三角形的形状.
解 (方法 1)∵|AB|= (3 + 3)2 + (-3-1)2 = 52,
7 13
新人教A版必修3 高中数学1.1.2.1程序框图学案1
学 习 过 程 与 ② 说出终端框(起止框)的图形符号与功能: 方 法 ③ 说出输入、输出框的图形符号与功能:
二.认真自学课本 P6-9, 完成下列问题.: ① 什么是流程图?
④ 说出处理框(执行框)的图形符号与功能:
⑤ 说出判断框的图形符号与功能:
1
⑥ 说出流程线的图形符号与功能:
⑦ 出连接点的图形符号与功能:
总结如下表: 图形符号 名称 功能
⑧ 什么是顺序结构?顺序结构对应的流程图怎样表示?
2
达标训练 已知一个三角形三条边的边长分别为 a,b,c,利用海伦-秦九韶公式设计一个计算三角 形面积的方法并画出流程图.(已知一个三角形三条边的边长分别为 a,b,c,则三角形 面积为 S
p( p a)( p b)( p c) ,其中 p
高中数学 1.1.2.1 程序框图学案 1 文 新人教 A 版必修 3
授 课 时 间 学 习 目 标 重 点 难 点 主备课 人
第 周
星期 第
节
课型
新授课
1.熟悉各种程序框及流程线的功能和作用; 2.通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程.在具体问题的 解决过程中,理解流程图的顺序结构; 3.通过比较,体会流程图的直观性、准确性. 重点:流程图的画法. 难点:流程图的画法. 自主学习: 一.复习回顾:了解了算法的概念及处理某些问题的算法后,你觉得用自然语言表述 的算法有什么不方便之处?谈谈自己的感想.
abc .) 2
作 业 布 置
学 习 小 结
3
高中数学 第二章 参数方程 第2节 第2课时 双曲线、抛物线的参数方程教学案 新人教A版选修4-4-
第2课时 双曲线、抛物线的参数方程[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值X 围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程 (1)抛物线y2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,那么焦点在x 轴上; 如果y 对应的参数形式是a sec φ,那么焦点在y 轴上.3.假设抛物线的参数方程表示为⎩⎪⎨⎪⎧x =2p tan 2α,y =2ptan α.那么参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 此题考查双曲线的参数方程的应用,解答此题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).——————————————————参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),那么B ′(-a sec α,a tan α).∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 此题考查抛物线的参数方程的求法及其应用.解答此题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2, 变形为y 0=14x 20,即x 2=4y .表示的为抛物线.——————————————————在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 此题考查椭圆及双曲线的参数方程,解答此题需要先将双曲线化为普通方程并求得渐近线方程,然后根据条件求出椭圆的参数方程求解即可.∵x 216-y 29=1,∴右焦点(5,0),右顶点(4,0).设椭圆x 2a 2+y 2b2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin 〔θ-φ〕|5(tan φ=54).∴d max =3415.——————————————————对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(某某高考)两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得x =54y 2.联立方程可得⎩⎪⎨⎪⎧x 25+y 2=1,x =54y2那么5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),那么x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.某某高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](某某高考)抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.[命题立意] 此题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用. [解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EFA 中,|EF |=2|FA |,即3+p2=2p ,得p =2.答案:2一、选择题1.以下参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数X 围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.以下双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3〔sin 2θ+cos 2θ〕cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t 2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t-2-t,y =2t +2-t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,即y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支.二、填空题5.(某某高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,那么焦点坐标为(1,0). 答案:(1,0)6.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t(t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O 不重合),P (x ,y )是线段OM 的中点,那么点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),那么x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(某某高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.解析:由⎩⎨⎧x =t ,y = t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2. 由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1, 即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1) 三、解答题9.双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),那么中点为M (a2(sec α+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β)=-a 〔sec α-sec β〕b 〔tan α-tan β〕[x -a2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a(sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2.∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2), 那么k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2. 又设MN 的中点为P (x ,y ),那么⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴kAP=4〔t 1+t 2〕4〔t 21+t 22〕-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4〔t 21+t 22〕,y =4〔t 1+t 2〕, 那么y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1).∴所求轨迹方程为y 2=4(x -1).11.圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。
高中数学第二章参数方程一1参数方程的概念教学案新人教A版选修4
1.参数方程的概念[对应学生用书P15] 1.参数方程的概念在平面直角坐标系中,曲线上任一点的坐标x ,y 都是某个变数t (θ,φ,…)的函数:⎩⎪⎨⎪⎧x =f t y =g t①,并且对于每一个t 的允许值,方程组①所确定的点(x ,y )都在这条曲线上,那么方程组①就叫这条曲线的参数方程,t 叫做参数,相对于参数方程而言,直接给出坐标间关系的方程叫普通方程.2.参数的意义参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.[对应学生用书P15][例1] 已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3ty =2t 2+1(t 为参数).(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系. (2)已知点M 3(6,a )在曲线C 上,求a 的值.[思路点拨] 由参数方程的概念,只需判断对应于点的参数是否存在即可,若存在,说明点在曲线上,否则不在曲线上.[解] (1)把点M 1的坐标(0,1)代入方程组,得:⎩⎪⎨⎪⎧0=3t ,1=2t 2+1.解得:t =0.∴点M 1在曲线C 上. 同理:可知点M 2不在曲线C 上.(2)∵点M 3(6,a )在曲线C 上,∴⎩⎪⎨⎪⎧6=3t ,a =2t 2+1.解得:t =2,a =9. ∴a =9.参数方程是曲线方程的另一种表达形式,点与曲线位置关系的判断,与平面直角坐标方程下的判断方法是一致的.1.已知点M (2,-2)在曲线C :⎩⎪⎨⎪⎧x =t +1t ,y =-2(t 为参数)上,则其对应的参数t 的值为________.解析:由t +1t=2知t =1.答案:12.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 为参数,a ∈R ).点M (5,4)在该曲线上,求常数a .解:∵点M (5,4)在曲线C 上,∴⎩⎪⎨⎪⎧5=1+2t ,4=at 2,解得:⎩⎪⎨⎪⎧t =2,a =1.∴a 的值为1.[例2] 如图,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B 、A 分别在x 轴、y 轴上滑动,求点P 在第一象限的轨迹的参数方程.[思路点拨] 此类问题关键是参数的选取.本例中由于A 、B 的滑动而引起点P 的运动,故可以OB 的长为参数,或以角为参数,不妨取BP 与x 轴正向夹角为参数来求解.[解] 法一:设P 点的坐标为(x ,y ),过P 点作x 轴的垂线交x 轴于Q .如图所示,则 Rt △OAB ≌Rt △QBP .取OB =t ,t 为参数(0<t <a ). ∵|OA |=a 2-t 2, ∴|BQ |=a 2-t 2.∴点P 在第一象限的轨迹的参数方程为⎩⎨⎧x =t +a 2-t 2,y =t ,(0<t <a ).法二:设点P 的坐标为(x ,y ),过点P 作x 轴的垂线交x 轴于点Q ,如图所示.取∠QBP =θ,θ为参数⎝ ⎛⎭⎪⎫0<θ<π2, 则∠ABO =π2-θ.在Rt △OAB 中, |OB |=a cos ⎝⎛⎭⎪⎫π2-θ=a sin θ.在Rt △QBP 中,|BQ |=a cos θ,|PQ |=a sin θ. ∴点P 在第一象限的轨迹的参数方程为⎩⎪⎨⎪⎧x =a θ+cos θ,y =a sin θ.⎝⎛⎭⎪⎫θ为参数,0<θ<π2.求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的“有向距离”、直线的倾斜角、斜率、截距等也常常被选为参数.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.3.设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60 rad/s ,试以时间t 为参数,建立质点运动轨迹的参数方程.解:如图,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知:⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,又θ=π60·t ,故参数方程为:⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t .[对应学生用书P16]一、选择题1.下列方程可以作为x 轴的参数方程是( )A.⎩⎪⎨⎪⎧x =t 2+1y =0B.⎩⎪⎨⎪⎧x =0y =3t +1C.⎩⎪⎨⎪⎧x =1+sin θy =0D.⎩⎪⎨⎪⎧x =4t +1y =0解析:x 轴上的点横坐标可取任意实数,纵坐标为0. 答案:D2.若点P (4,a )在曲线⎩⎪⎨⎪⎧x =t 2,y =2t(t 为参数)上,则a 等于( )A .4B .4 2C .8D .1解析:根据题意,将点P 坐标代入曲线方程中得⎩⎪⎨⎪⎧4=t 2,a =2t⇒⎩⎨⎧t =8,a =4 2.答案:B3.在方程⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ(θ为参数)所表示的曲线上的一点的坐标为( )A .(2,-7)B .(13,23)C .(12,12)D .(1,0)解析:将点的坐标代入参数方程,若能求出θ,则点在曲线上,经检验,知C 满足条件.答案:C4.由方程x 2+y 2-4tx -2ty +3t 2-4=0(t 为参数)所表示的一族圆的圆心的轨迹方程为( )A.⎩⎪⎨⎪⎧ x =2t y =tB.⎩⎪⎨⎪⎧ x =-2t y =tC.⎩⎪⎨⎪⎧ x =2t y =-tD.⎩⎪⎨⎪⎧x =-2t y =-t解析:设(x ,y )为所求轨迹上任一点. 由x 2+y 2-4tx -2ty +3t 2-4=0得: (x -2t )2+(y -t )2=4+2t 2. ∴⎩⎪⎨⎪⎧x =2t y =t.答案:A 二、填空题5.已知曲线⎩⎪⎨⎪⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.解析:将A 点坐标代入方程得:θ=0或π,将B 、C 点坐标代入方程,方程无解,故A 点在曲线上.答案:A (1,3)6.下列各参数方程与方程xy =1表示相同曲线的序号是________.①⎩⎪⎨⎪⎧x =t 2y =-t2;②⎩⎪⎨⎪⎧x =sin ty =csc t;③⎩⎪⎨⎪⎧x =cos ty =sec t;④⎩⎪⎨⎪⎧x =tan ty =cot t.解析:普通方程中,x ,y 均为不等于0的实数,而①②③中x 的取值依次为:[0,+∞),[-1,1],[-1,1],故①②③均不正确,而④中,x ∈R ,y ∈R ,且xy =1,故④正确.答案:④7.动点M 作匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,运动开始时,点M 位于A (1,1),则点M 的参数方程为________________________.解析:设M (x ,y ),则在x 轴上的位移为:x =1+9t , 在y 轴上的位移为y =1+12t . ∴参数方程为:⎩⎪⎨⎪⎧x =1+9t ,y =1+12t ..答案:⎩⎪⎨⎪⎧x =1+9t y =1+12t三、解答题8.已知动圆x 2+y 2-2ax cos θ-2by sin θ=0(a ,b 是正常数,且a ≠b ,θ为参数),求圆心的轨迹方程.解:设P (x ,y )为所求轨迹上任一点. 由x 2+y 2-2ax cos θ-2by sin θ=0得:(x -a cos θ)2+(y -b sin θ)2=a 2cos 2θ+b 2sin 2θ∴⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ.这就是所求的轨迹方程.9.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,作PQ ⊥OA ,PB ∥OA ,试求点P 的轨迹方程.解:设P (x ,y )是轨迹上任意一点,取∠DOQ =θ, 由PQ ⊥OA ,PB ∥OA ,得x =OD =OQ cos θ=OA cos 2θ=2a cos 2θ, y =AB =OA tan θ=2a tan θ.所以P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =2a cos 2θ,y =2a tan θ,θ∈⎝ ⎛⎭⎪⎫-π2,π2.10.试确定过M (0,1)作椭圆x 2+y 24=1的弦的中点的轨迹方程.解:设过M (0,1)的弦所在的直线方程为y =kx +1,其与椭圆的交点为(x 1,y 1)和(x 2,y 2).设中点P (x ,y ),则有:x =x 1+x 22,y =y 1+y 22.由⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1得:(k 2+4)y 2-8y +4-4k 2=0.∴x 1+x 2=-2k k +4,y 1+y 2=8k +4. ∴⎩⎪⎨⎪⎧x =-k k 2+4,y =4k 2+4.这就是以动弦斜率k 为参数的动弦中点的轨迹方程.。
人教A版高中同步学案数学选择性必修第三册精品习题课件 第六章 综合训练
三、填空题(本题共3小题)
12.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴某大型展览会的三个不同场馆服务,不同的分配方案有____种.
90
[解析]先分组,再把三组分配到三个不同的场馆,得共有不同的分配方案(种).
A
A.320 B.160 C.96 D.60
[解析]根据分步计算原理,区域①有5种颜色可供选择,区域③有4种颜色可供选择,区域②和区域④只要不选择区域③的颜色即可,故各有4种颜色可供选择,所以根据分步乘法计数原理,得不同涂色方法有(种).
8.某学校实行新课程改革,即除语文、数学、外语三科为必考科目外,还要在物理、化学、生物、历史、地理、思想政治六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求,物理、化学必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( )
C
A.18 B.24 C.30 D.36
[解析]由于选出的3名学生中男女生都有,所以可分成两类:第1类,3人中是1男2女,共有(种)不同的选法;第2类,3人中是2男1女,共有(种)不同的选法.所以男女生都有的不同的选法种数是.
4.已知,则实数的值为()
D
A.15 B.20 C.40 D.60
[解析]的展开式的通项为,令,则,解得, 则.
[解析]若任意选择三门课程,选法种数为,故A错误;若物理和化学至少选一门,选法种数为,故B错误;若物理和历史不能同时选,选法种数为,故C正确;若物理和化学至少选一门,且物理和历史不能同时选,选法种数为,故D错误.故选.
参数方程 教案
教学重点:掌握参数方程与普通方程互相转化的原理和应用.
教学难点:掌握圆锥曲线和直线的参数方程在计算中的应用.
四、学法指导
本节课是在学习了参数方程的概念、初步了解圆锥曲线和直线的参数方程的基础上的运用,学生已经了解了一些解题的基本思想和方法,应用曲线的参数方程来解题对学生来说已不陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们分析问题和解决问题的能力,提高应用所学知识的能力.
典例剖析
【例3】已知直线 的参数方程为 ,圆 的参数方程为
,求直线 被圆 所截得的弦长.
课堂检测
(备用题)
【例4】求经过点 ,倾斜角为 的直线截椭圆 所得的弦长.
【例5】已知圆 和直线
⑴当 时,求圆上的点到直线 距离的最小值;
⑵当直线 与圆 有公共点时,求 的取值范围.
课堂小结
1.掌握参数方程与普通方程互相转化的原理和应用;
参数方程
课题名称
参数方程
时间
学生年级
高二11班
课时
1课时
教师
指导教师
一、教材分析
本节是人教A版选修4-4第二讲.参数方程是高考的选考内容,其中直线的参数方程与圆、椭圆的参数方程的考察较为频繁.利用参数方程解题有时比用普通方程解题更为便捷.因此,熟练掌握参数方程的相关知识与技巧,能帮助我们高效解决部分题目.
在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,指导学生形成良好的学习习惯,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习.
五、教法指导
数学是一门培养人的思维、发展人的思维的重要学科,本节课的主要内容是参数方程的综合运用,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老师启发、总结、提炼,升华为分析和解决问题的能力.
2021学年高中数学第二讲参数方程四渐开线与摆线学案新人教A版选修4_4
四 渐开线与摆线学习目标 1.了解圆的渐开线的参数方程.2.了解摆线的生成过程及它的参数方程.3.学习并体会用向量知识推导运动轨迹曲线的方法和步骤.知识点一 渐开线思考 把绕在圆盘上的细绳展开,细绳外端点的轨迹是一条曲线,看看曲线的形状.假设要建立曲线的参数方程,请试着确定一下参数.答案 根据动点满足的几何条件,我们以基圆圆心O 为原点,直线OA 为x 轴,建立平面直角坐标系,如下图.设基圆的半径为r ,绳子外端M 的坐标为(x ,y ).显然,点M 由角φ惟一确定.梳理 圆的渐开线及其参数方程 (1)定义把线绕在圆周上,假设线的粗细可以忽略,拉着线头的外端点,保持线与圆相切,外端点的轨迹就叫做圆的渐开线,相应的定圆叫做渐开线的基圆. (2)参数方程设基圆的半径为r ,圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ)(φ是参数).知识点二 摆线思考 当一个圆沿着一条定直线无滑动地滚动时,圆周上一个定点的轨迹是什么? 答案 摆线.梳理 摆线及其参数方程 (1)定义当一个圆沿着一条定直线无滑动地滚动时,圆周上的一个定点的轨迹叫做平摆线,简称摆线,又叫做旋轮线. (2)参数方程设圆的半径为r ,圆滚动的角为φ,那么摆线的参数方程是⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ是参数).类型一 圆的渐开线例1 求半径为4的圆的渐开线的参数方程.解 以圆心为原点O ,绳端点的初始位置为M 0,向量OM 0―→的方向为x 轴正方向,建立坐标系,设渐开线上的任意点M (x ,y ),绳拉直时和圆的切点为A ,故OA ⊥AM ,按渐开线定义,弧0AM 的长和线段AM 的长相等,记OA →和x 轴正向所夹的角为θ(以弧度为单位),那么|AM |=0AM =4θ.作AB 垂直于x 轴,过M 点作AB 的垂线,由三角函数和向量知识,得OA →=(4cos θ,4sin θ). 由几何知识知,∠MAB =θ,AM →=(4θsin θ,-4θcos θ), 得OM →=OA →+AM →=(4cos θ+4θsin θ,4sin θ-4θcos θ) =(4(cos θ+θsin θ),4(sin θ-θcos θ)). 又OM →=(x ,y ), 因此所求的参数方程为⎩⎪⎨⎪⎧x =4(cos θ+θsin θ),y =4(sin θ-θcos θ).反思与感悟 圆的渐开线的参数方程中,字母r 表示基圆的半径,字母φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.跟踪训练1 圆的渐开线方程为⎩⎪⎨⎪⎧x =cos φsin30°+φsin φsin30°,y =sin φcos60°-φcos φcos60°(φ为参数),那么该基圆半径为________,当圆心角φ=π时,曲线上点A 的直角坐标为________. 答案 12 ⎝ ⎛⎭⎪⎫-12,π2解析 ⎩⎪⎨⎪⎧x =cos φsin 30°+φsin φsin 30°,y =sin φcos 60°-φcos φcos 60°,即⎩⎪⎨⎪⎧x =12(cos φ+φsin φ),y =12(sin φ-φcos φ)(φ为参数).∴基圆半径r =12.当φ=π时,x =-12,y =π2,∴A 的直角坐标为⎝ ⎛⎭⎪⎫-12,π2. 类型二 平摆线例2 一个圆的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3sin φ(φ为参数),那么圆的摆线方程中与参数φ=π2对应的点A 与点B ⎝ ⎛⎭⎪⎫3π2,2之间的距离为________.答案10解析 由圆的参数方程⎩⎪⎨⎪⎧x =3cos φ,y =3sin φ知,圆的方程为x 2+y 2=9,∴圆的圆心为(0,0),半径r =3,∴圆上定点M 的摆线的参数方程为⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数).当φ=π2时,x =3×⎝ ⎛⎭⎪⎫π2-1=3π2-3,y =3×(1-0)=3,∴A ⎝⎛⎭⎪⎫3π2-3,3,∴|AB |=(-3)2+12=10.反思与感悟 (1)摆线的参数方程摆线的参数方程为⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数),其中r :生成圆的半径,φ:圆在直线上滚动时,点M 绕圆心作圆周运动转过的角度∠ABM .(2)将参数φ的值代入渐开线或摆线的参数方程可以确定对应点的坐标,进而可求渐开线或摆线上两点间的距离.跟踪训练2 一个圆的摆线的参数方程是⎩⎪⎨⎪⎧x =3φ-3sin φ,y =3-3cos φ(φ为参数),那么该摆线一个拱的高度是________;一个拱的跨度为________. 答案 6 6π解析 当φ=π时,y =3-3cos π=6为拱高;当φ=2π时,x =3×2π-3sin 2π=6π为跨度.1.圆⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的平摆线上一点的纵坐标为0,那么其横坐标可能是( )A .πB .3πC .6πD .10π答案 C2.当φ=2π时,圆的渐开线⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)上的点是( )A .(6,0)B .(6,6π)C .(6,-12π)D .(-π,12π)答案 C3.如下图,四边形ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线〞,其中AE ,EF ,FG ,GH …的圆心依次按B ,C ,D ,A 循环,它们依次相连接,那么曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π答案 C解析 根据渐开线的定义可知,AE 是半径为1的14圆周长,长度为π2,继续旋转可得EF 是半径为2的14圆周长,长度为π;FG 是半径为3的14圆周长,长度为3π2;GH 是半径为4的14AEFGH 的长是5π. 4.一个圆的摆线方程是⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.解 首先根据摆线的参数方程可知,圆的半径为4, 所以面积为16π,该圆对应的渐开线的参数方程是⎩⎪⎨⎪⎧x =4cos φ+4φsin φ,y =4sin φ-4φcos φ(φ为参数).1.圆的渐开线的参数方程中,字母r 表示基圆的半径,字母φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.2.由圆的摆线的参数方程的形式可知,只要确定了摆线生成圆的半径,就能确定摆线的参数方程.3.由于渐开线、摆线的方程复杂,所以不宜用普通方程来表示.一、选择题1.圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =cos θ+θsin θ,y =sin θ-θcos θ(θ为参数),那么此渐开线对应的基圆的周长是( ) A .π B .2π C .3π D .4π答案 B2.摆线⎩⎪⎨⎪⎧x =2(t -sin t ),y =2(1-cos t )(t 为参数,0≤t <2π)与直线y =2的交点的直角坐标是( )A .(π-2,2),(3π+2,2)B .(π-3,2),(3π+3,2)C .(π,2),(-π,2)D .(2π-2,2),(2π+2,2)答案 A3.给出以下说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比拟麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x 轴一定有交点而且是惟一的交点. 其中正确的说法有( ) A .①③ B .②④ C .②③ D .①③④答案 C 4.圆的渐开线⎩⎨⎧x =2(cos t +t sin t ),y =2(sin t -t cos t )(t 为参数)上与t =π4对应的点的直角坐标为( )A.⎝⎛⎭⎪⎫1+π4,1-π4B.⎝⎛⎭⎪⎫1-π4,1+π4C.⎝ ⎛⎭⎪⎫-1-π4,1-π4D.⎝⎛⎭⎪⎫1+π4,-1-π4答案 A5.圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ) (φ为参数),点A ⎝ ⎛⎭⎪⎫32,0是此渐开线上的一点,那么渐开线对应的基圆的周长是( ) A.32π B .3π C .4π D .6π答案 B解析 由点A ⎝ ⎛⎭⎪⎫32,0在渐开线上, 得⎩⎪⎨⎪⎧32=r (cos φ+φsin φ),0=r (sin φ-φcos φ),易知φ=0,那么r =32,故基圆的周长为3π.6.圆的渐开线方程为⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数),当φ=π时,渐开线上的对应点的坐标为( ) A .(-2,2π) B .(-2,π) C .(4,2π) D .(-4,2π)答案 A解析 将φ=π代入⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ),可得⎩⎪⎨⎪⎧x =2×(-1+π×0),y =2×[0-π×(-1)],即⎩⎪⎨⎪⎧x =-2,y =2π.二、填空题7.基圆直径为10,那么其渐开线的参数方程为__________________.答案 ⎩⎪⎨⎪⎧x =5(cos φ+φsin φ),y =5(sin φ-φcos φ)(φ为参数)8.有一标准的齿轮,其齿廓线的基圆直径为22mm ,那么齿廓所在的摆线的参数方程为__________________. 答案 ⎩⎪⎨⎪⎧x =11(φ-sin φ),y =11(1-cos φ)(φ为参数)解析 因为基圆直径为22 mm , 所以基圆半径为11 mm ,所以摆线的参数方程为⎩⎪⎨⎪⎧x =11(φ-sin φ),y =11(1-cos φ)(φ为参数).9.圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =6(cos t +t sin t ),y =6(sin t -t cos t )(t 为参数),那么该渐开线的基圆的半径为________,参数t =2π3对应的点的直角坐标是_______________________________________. 答案 6 (-3+23π,33+2π)解析 由参数方程,得基圆的半径rt =2π3代入参数方程,得⎩⎨⎧x =-3+23π,y =33+2π,即参数t =2π3对应的点的直角坐标是(-3+23π,33+2π). 10.圆的方程为x 2+y 2=4,点P 为其渐开线上一点,对应的参数φ=π2,那么点P 的坐标为________. 答案 (π,2)解析 由题意知,圆的半径r =2,其渐开线的参数方程为⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数).当φ=π2时,x =π,y =2,故点P 的坐标为(π,2).三、解答题11.给出直径为6的圆,分别写出对应的渐开线的参数方程和摆线的参数方程. 解 以圆的圆心为原点,一条半径所在的直线为x 轴,建立直角坐标系. 又圆的直径为6,所以半径为3,所以圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =3cos φ+3φsin φ,y =3sin φ-3φcos φ(φ为参数).以圆周上的某一定点为原点,以定直线为x 轴,建立直角坐标系,所以摆线的参数方程为⎩⎪⎨⎪⎧x =3φ-3sin φ,y =3-3cos φ(φ为参数).12.圆的参数方程是⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数),求此圆的摆线中,参数φ=π2对应的点A 与点B ⎝⎛⎭⎪⎫3π2,2之间的距离.解 由圆的参数方程,得圆的半径r =3,那么其摆线的参数方程为⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数).把φ=π2代入摆线的参数方程,得⎩⎪⎨⎪⎧x =3⎝ ⎛⎭⎪⎫π2-1,y =3,故点A 与点B 之间的距离 |AB |=⎝ ⎛⎭⎪⎫3π2+3-3π22+(2-3)2=10.13.一个圆的平摆线方程是x =2φ-2sin φ,y =2-2cos φ(φ为参数),求该圆的周长,并写出平摆线上最高点的坐标. 解 由平摆线方程知,圆的半径为2,φ=π时,y 有最大值4,平摆线具有周期性,周期为4π.∴平摆线上最高点的坐标为(2π+4k π,4)(k ∈Z ). 四、探究与拓展14.如图,△ABC 是正三角形,曲线ABCDEF …叫做“正三角形的渐开线〞,其中弧CD ,弧DE ,弧EF …的圆心依次按A ,B ,C 循环,它们依次相连接,如果AB =1,那么曲线CDEF 的长是( )A .8πB .6πC .4πD .2π答案 C解析 ∵∠CAD ,∠DBE ,∠ECF 是等边三角形的外角, ∴∠CAD =∠DBE =∠ECF =120°. 又AC =1,∴BD =2,CE =3, ∴弧CD 的长=13×2π×1,弧DE 的长=13×2π×2,弧EF 的长=13×2π×3,∴曲线CDEF 的长=13×2π×1+13×2π×2+13×2π×3=4π.15.渐开线方程为⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍得到曲线C ,求曲线C 的方程,及焦点坐标. 解 由渐开线方程可知,基圆的半径为6,那么圆的方程为x 2+y 2=36. 把横坐标伸长为原来的2倍,得到椭圆方程x 24+y 2=36,即x 2144+y 236=1, 对应的焦点坐标为(63,0)和(-63,0).。
《志鸿优化设计》2022年高考数学人教A版理科一轮复习教学案:4-4坐标系与参数方程
《志鸿优化设计》2022年高考数学人教A 版理科一轮复习教学案:4-4坐标系与参数方程 考纲要求1.明白得坐标系的作用.2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情形.3.能在极坐标系中用极坐标表示点的位置,明白得在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标与直角坐标的互化.4.能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标系与直角坐标系中的方程,明白得用方程表示平面图形时选择适当坐标系的意义.5.了解参数方程,了解参数的含义.6.能选择适当的参数写出直线、圆和椭圆的参数方程.1.极坐标系在平面内取一个定点O ,叫做____;自极点O 引一条射线Ox ,叫做____;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),如此就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的____,记为ρ;以极轴Ox 为始边,射线O M 为终边的角xOM 叫做点M 的极角,记为θ,有序数对(ρ,θ)叫做点M 的极坐标,记作________.极坐标系的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.由极径的意义知ρ≥0,当极角θ的取值范畴是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立________关系,约定极点的极坐标是极径______,极角可取任意角.2.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y)和(ρ,θ),则x =ρcos θ,y =ρsin θ;也可化为关系式ρ2=x2+y2,tan θ=y x(x ≠0).3.直线的参数方程(1)过点P0(x0,y0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x0+tcos α,y =y0+tsin α(t 为参数),通常称该方程为直线l 的参数方程的标准形式,其中t 表示P0(x0,y0)到l 上一点P(x ,y)的有向线段P0P →的数量.t >0时,P0P →的方向向上;t <0时,P0P →的方向向下;t =0时,P 与P0重合. (2)直线l 的参数方程的一样形式是⎩⎪⎨⎪⎧x =x0+at ,y =y0+bt (t 为参数),该直线倾斜角α的正切为tan α=b a (α=0°或α=90°时例外).当且仅当a2+b 2=1且b >0时,上式中的t 才具有(1)中的t 所具有的几何意义. 4.圆的参数方程圆心在M0(x0,y0),半径为r 的圆的参数方程为______________________.[来源:1]5.椭圆的参数方程椭圆x2a2+y2b2=1的参数方程为__________________. 1.若直线⎩⎪⎨⎪⎧ x =1-2t ,y =2+3t (t 为参数)与直线4x +ky =1垂直,求常数k 的值. 2.已知直线l :⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t (t 为参数),圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎪⎫θ+π4. (1)求圆心C 到直线l 的距离;(2)若直线l 被圆C 截得的弦长为655,求a 的值.3.已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2. (1)把圆O1和圆O2的极坐标方程化为直角坐标方程; (2)求通过两圆交点的直线的极坐标方程.一、平面直角坐标系下的伸缩变换【例1】 在同一直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,求满足图象变换的伸缩变换.方法提炼求满足图象变换的伸缩变换,可先求出变换公式,分清新旧坐标,代入对应的曲线方程,然后比较系数可得变换规则.请做演练巩固提升1二、如何求曲线的极坐标方程【例2】过原点的一动直线交圆x2+(y-1)2=1于点Q,在直线OQ上取一点P,使P到直线y=2的距离等于|PQ|.用极坐标法求动直线绕原点一周时P点的轨迹方程.方法提炼求曲线极坐标方程的差不多步骤是:(1)建立适当的极坐标系;(2)在曲线上任取一点P(ρ,θ);(3)依照曲线上的点所满足的条件写出等式;(4)用极坐标ρ,θ表示上述等式,并化简得极坐标方程;(5)证明所得的方程是曲线的极坐标方程.请做演练巩固提升2三、极坐标方程的应用【例3】已知极坐标系的极点是直角坐标系的原点,极轴与直角坐标系中x轴的正半轴重合.曲线C的极坐标方程为ρ=2cos θ-2sin θ,曲线l的极坐标方程是ρ(cos θ-2sin θ)=2.(1)求曲线C和l的直角坐标方程并画出草图;(2)设曲线C和l相交于A,B两点,求|AB|.方法提炼1.极坐标与直角坐标互化公式:x=ρcos θ,y=ρsin θ成立的条件是直角坐标的原点为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.2.用极坐标法可使几何中的一些问题得出更直截了当、简单的解法,但解题的关键是选取适当极坐标系,如此能够简化运算过程,转化为直角坐标时也容易一些.专门提醒:极坐标与直角坐标的区别有:多值性:在直角坐标系中,点与直角坐标是“一对一”的关系.在极坐标系中,由于终边相同的角有许多个,即点的极角不唯独,因此点与极坐标是“一对多”的关系.但不同的极坐标能够写出统一的表达式.假如(ρ,θ)是点M 的极坐标,那么(ρ,θ+2k π)或(-ρ,θ+(2k +1)π)(k ∈Z)都能够作为点M 的极坐标.请做演练巩固提升3四、参数方程及其应用 【例4】在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+45t ,y =-1-35t (t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4,求直线l 被曲线C 所截得的弦长. 方法提炼1.直线的参数方程的应用专门广泛,要紧用来解决直线与圆锥曲线的位置关系问题.在解决这类问题时,充分利用直线参数方程中参数t 的几何意义,能够幸免通过解方程组找交点等繁琐的运算,使问题得到简化.直线的参数方程有多种形式,只有标准式中的参数才具有明确的几何意义.2.把参数方程化为一般方程,消参数的方法有:代入消去法、加减消去法、恒等式(三角的或代数的)消去法等.一般方程化为参数方程:关键是如何引入参数.若动点坐标x ,y 与旋转角有关时,通常选择角为参数;与运动有关的问题,通常选择时刻为参数等.在参数方程与一般方程的互化中,必须使x ,y 的取值范畴保持一致.提醒:将曲线的参数方程化为一般方程要紧消去参数,简称为“消参”.把参数方程化为一般方程后,专门容易改变变量的取值范畴,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与一般方程的等价性.请做演练巩固提升4极坐标与参数方程的综合应用【典例】 (10分)已知曲线C 的极坐标方程是ρ=1,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =1+t 2,y =2+32t(t 为参数). (1)写出直线l 与曲线C 的直角坐标方程; (2)若将曲线C 上任意一点保持纵坐标不变,横坐标缩为原先的12后,得到曲线C ′,设曲线C ′上任一点为M(x ,y),求x +2y 的最小值.规范解答:(1)直线l 的直角坐标方程为3x -y -3+2=0,曲线C 的一般方程为x2+y2=1.(4分)(2)曲线C ′的一般方程为4x2+y2=1.令x =12cos θ,y =sin θ,∴x +2y =12cos θ+2sin θ=172sin(θ+φ).(8分)[来源:学,科,网]∴x +2y 的最小值为-172.(10分)答题指导:1.研究含有极坐标方程和参数方程的题目时,可先将它们同时化为直角坐标方程,再借助于直角坐标方程研究它们的性质.2.本题第(2)问还可利用线性规划及直线与椭圆相切等知识来解决. 1.设平面上的伸缩变换的坐标表达式为⎩⎨⎧x ′=12x ,y ′=3y ,求在这一坐标变换下正弦曲线y =sin x 的方程. 2.将极坐标系的极轴与直角坐标系的x 轴的非负半轴重合,并取相同的单位长度和角度,求过曲线ρcos θ+ρsin θ=1和曲线⎩⎪⎨⎪⎧y =t +1,x =t (t 为参数)的交点且与极轴平行的直线的极坐标方程. 3.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =-1+tcos α,y =1+tsin α(t 为参数),曲线C 的极坐标方程为ρ=4cos θ. (1)若直线l 的斜率为-1,求直线l 与曲线C 交点的极坐标;(2)若直线l 与曲线C 相交弦长为23,求直线l 的参数方程. 4.已知直线l 的参数方程为⎩⎨⎧x =12t ,y =2+32t (t 为参数),曲线C 的极坐标方程为ρ=sin θ1-sin2θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,M 点坐标为(0,2),直线l 与曲线C 交于A ,B 两点. (1)写出直线l 的一般方程与曲线C 的直角坐标方程;(2)线段MA ,MB 长度分别记|MA|,|MB|,求|MA|·|MB|的值.参考答案基础梳理自测知识梳理1.极点 极轴 极径 M(ρ,θ) 一一对应 ρ=0 4.⎩⎪⎨⎪⎧ x =x0+rcos θ,y =y0+rsin θ(θ为参数) 5.⎩⎪⎨⎪⎧ x acos θ,y =bsin θ(θ为参数) 基础自测 1.解:将⎩⎪⎨⎪⎧x =1-2t ,y =2+3t 化为一般方程y =-32x +72,该直线的斜率为k 1=-32;当k ≠0时,直线4x +ky =1的斜率为k2=-4k ,由k1·k2=-1,得k =-6.当k =0时,明显不成立. 2.解:(1)把⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t 化为一般方程为x +2y +2-a =0,把ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4化为一般方程为x2+y2-2x +2y =0, ∴圆心到直线的距离为5|1-a|5. (2)由已知,⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫|a -1|52=(2)2, ∴a2-2a =0,a =0或a =2. 3.解:(1)∵ρ=2,∴ρ2=4,即x2+y2=4.∵ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2, ∴ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2. ∴x2+y2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得通过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎪⎫θ+π4= 22. 考点探究突破【例1】 解:设伸缩变换为⎩⎪⎨⎪⎧ x ′=λ·x ,λ>0,y ′=μ·y ,μ>0,可将其代入第二个方程,得2λx -μy =4,把x -2y =2化为2x -4y =4,比较系数得λ=1,μ=4. 现在,⎩⎪⎨⎪⎧ x ′=x ,y ′=4y ,即把直线x -2y =2图象上所有点的横坐标不变,纵坐标扩大到原先的4倍可得到直线2x ′-y ′=4.【例2】 解:以O 为极点,Ox 为极轴,建立极坐标系,如图所示,过P 作PR 垂直直线y =2,[来源:学,科,网]则|PQ|=|PR|. 设P(ρ,θ),Q(ρ0,θ),则有ρ0=2sin θ.∵|PR|=|PQ|,∴|2-ρsin θ|=|ρ-2sin θ|.[来源:Z,xx,k ]∴ρ=±2或sin θ=±1.即为点P 的轨迹的极坐标方程,化为直角坐标方程为x2+y2=4或x =0.【例3】 解:(1)由ρcos θ=x ,ρsin θ=y ,得曲线C 直角坐标方程(x -1)2+(y +1)2=2,l 的直角坐标方程x -2y -2=0.(2)设圆C 的圆心C(1,-1)到直线l 的距离为d , 则d =|1-2×(-1)-2|5=55, 因此|AB|=2(2)2-⎝ ⎛⎭⎪⎫552=655. 【例4】 解:将方程⎩⎪⎨⎪⎧x =1+45t ,y =-1-35t (t 为参数)化为一般方程3x +4y +1=0,将方程ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4化为一般方程x2+y2-x +y =0,此圆的圆心为⎝ ⎛⎭⎪⎫12,-12,半径为22,则圆心到直线的距离d =110,弦长=2r2-d2=212-1100=75. 演练巩固提升 1.解:由⎩⎨⎧ x ′=12x ,y ′=3y ,得⎩⎨⎧x =2x ′,y =13y ′.将其代入y =sin x ,得13y ′=sin 2x ′,即y ′=3sin 2x ′. 2.解:曲线ρcos θ+ρsin θ=1在直角坐标系下的方程为x +y =1,曲线⎩⎪⎨⎪⎧y =t +1,x =t 的一般方程为y =x +1,两直线的交点坐标为⎩⎪⎨⎪⎧y =x +1,y =-x +1,即得(0,1),与极轴平行的方程为y =1,则该直线的极坐标方程为ρsin θ=1. 3.解:(1)直线l 的方程:y -1=-1(x +1),即y =-x , C :ρ=4cos θ,即x2+y2-4x =0,联立方程得2x2-4x =0,∴A(0,0),B(2,-2);极坐标为A(0,0),B ⎝ ⎛⎭⎪⎫22,7π4. (2)d =r2-⎝ ⎛⎭⎪⎫2322=1, C :(x -2)2+y2=4,[来源:Z&xx&k ]设直线l 的方程为kx -y +k +1=0,∴|2k +k +1|k2+1=1. ∴k =0或k =-34. ∴l :⎩⎪⎨⎪⎧ x =-1+t ,y =1(t 为参数)或⎩⎪⎨⎪⎧ x =-1-45t ,y =1+35t (t 为参数).4.解:(1)直线l 的一般方程为3x -y +2=0. ∵ρcos2θ=sin θ,∴ρ2cos2θ=ρsin θ.∴曲线C 的直角坐标方程为y =x2. (2)将⎩⎨⎧ x =12t ,y =2+32t 代入y =x2得t2-23t -8=0, 由参数t 的几何意义知|MA|·|MB|=|t1t2|=8.。
高中数学第二讲2圆的参数方程学案含解析新人教A版选修4
2.圆的参数方程圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =xr ,sin ωt =y r,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt (t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时刻.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θ,y =y 0+R sin θ(0≤θ<2π).求圆的参数方程圆(r 2y 2r 2r M O MOx φ数方程.根据圆的特点,结合参数方程概念求解. 如图所示,设圆心为O ′,连接O ′M , ∵O ′为圆心, ∴∠MO ′x =2φ.∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.(φ为参数)(1)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.(φ为参数)(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数,0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ(θ为参数).这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.圆的参数方程的应用若 (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2,故2x +y =4cos θ+2+2sin θ-2. =4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.求原点到曲线C :⎩⎪⎨⎪⎧x =3+2sin θ,y =-2+2cos θ(θ为参数)的最短距离.解:原点到曲线C 的距离为:x -02+y -02=3+2sin θ2+-2+2cos θ2=17+43sin θ-2cos θ =17+413⎝ ⎛⎭⎪⎫313sin θ-213cos θ= 17+413sin θ+φ≥17-413=13-22=13-2.∴原点到曲线C 的最短距离为13-2.4.已知圆C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ(θ为参数)与直线x +y +a =0有公共点,求实数a的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1,∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a |2≤1.解得1-2≤a ≤1+2,即a 的取值范围是. 法二:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵-1≤sin ⎝⎛⎭⎪⎫θ+π4≤1,∴1-2≤a ≤1+2,即a 的取值范围是.课时跟踪检测(八)一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)解析:选D 将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).2.直线:x +y =1与曲线⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的公共点有( )A .0个B .1个C .2个D .3个解析:选C 将⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ化为x 2+y 2=4,它表示以(0,0)为圆心,2为半径的圆,由于12=22<2=r , 故直线与圆相交,有两个公共点.3.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:选D 圆心坐标为(0,0),半径为2,显然直线不过圆心, 又圆心到直线距离d =95<2,故选D.4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入,得 (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ). ∴最大值为36. 二、填空题5.参数方程⎩⎪⎨⎪⎧x =3cos φ+4sin φ,y =4cos φ-3sin φ(φ为参数)表示的图形是________.解析:x 2+y 2=(3cos φ+4sin φ)2+(4cos φ-3sin φ)2=25.∴表示圆. 答案:圆 6.已知圆C的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ=1,则直线l 与圆C 的交点的直角坐标为________.解析:由极坐标系与直角坐标系互化关系可知,直线l 的直角坐标方程为x =1. 由圆C 的参数方程可得x 2+(y -1)2=1,由⎩⎪⎨⎪⎧x =1,x 2+y -12=1得直线l 与圆C 的交点坐标为(1,1). 答案:(1,1)7.(广东高考)已知曲线C 的极坐标方程为 ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析:由极坐标方程与直角坐标方程互化公式可得,曲线C 的直角坐标方程为(x -1)2+y 2=1,故曲线C 对应的参数方程可写为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)三、解答题8.P 是以原点为圆心,半径r =2的圆上的任意一点,Q (6,0),M 是PQ 中点. (1)画图并写出⊙O 的参数方程;(2)当点P 在圆上运动时,求点M 的轨迹的参数方程.解:(1)如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数).(2)设M (x ,y ),P (2cos θ,2sin θ),∵Q (6,0),∴M 的参数方程为⎩⎪⎨⎪⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ(θ为参数).9.设点M (x ,y )在圆x 2+y 2=1上移动,求点Q (x (x +y ),y (x +y ))的轨迹. 解:设M (cos θ,sin θ)(0≤θ<2π),点Q (x 1,y 1),则⎩⎪⎨⎪⎧x 1=cos θcos θ+sin θ=cos 2θ+cos θsin θ,y 1=sin θcos θ+sin θ=sin θcos θ+sin 2θ,∴⎩⎪⎨⎪⎧x 1+y 1=1+sin 2θ,x 1y 1=12sin 2θ+12sin 22θ.将sin 2θ=x 1+y 1-1代入另一个方程, 整理,得⎝⎛⎭⎪⎫x 1-122+⎝ ⎛⎭⎪⎫y 1-122=12.∴所求轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,以22为半径的圆.10.已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3x -1,x 2+y 2=1,解得C 1与C 2的交点坐标为(1,0),⎝ ⎛⎭⎪⎫12,-32.(2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsinα),故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α(α为参数).P 点轨迹的普通方程为⎝⎛⎭⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝⎛⎭⎪⎫14,0,半径为14的圆.。
人教A版高中学案数学必修第一册精品课件 第二章 一元二次函数、方程和不等式 一元二次不等式的简单应用
+
+
> 0(< 0)(其中,,,为
常数)
+ > 0(< 0), + < 0(> 0),
法一:ቊ
或ቊ
+ > 0
+ < 0
法二:( + )( + ) > 0(< 0)
+
≥ 0(≤ 0)
+
+
+
同解不等式
提示若 = 0,显然 > 0不能对一切 ∈ 都成立,所以 ≠ 0,此时只有二次函数
= 2 + 2 + 2的图象与直角坐标系中的轴无交点且抛物线开口向上时,才满足题
> 0,
1
意,则ቊ
解得 > .
2
Δ = 4 − 8 < 0,
2.若函数 = 2 − − 3对−3 ≤ ≤ −1上恒有 2 − − 3 < 0成立,如何求的范围?
> 3},则下列说法正确的是() BCD
A. < 0B. < 0C. > 0D.: : = 1: (−4): 3
[解析]设,,为实数,不等式 + + > 的解集是{| < 或 > },∴ > ,1
+=− ,
和3是方程 + + = 的两个根,∴ ൞
【例1】(多选题)已知关于的不等式 2 + + ≥ 0的解集为{| ≤ −3或
≥ 4},则下列说法正确的是() ABD
A. > 0
高中数学第二讲参数方程二圆锥曲线的参数方程1椭圆的参数方程学案含解析新人教A版选修4_42
1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ是参数),规定参数φ的取值范围是 已知实数x ,y 满足x 225+y 216=1,求目标函数z =x -2y的最大值与最小值.将椭圆上的点的坐标设成参数方程的形式,将问题转化成三角函数求最值问题. 椭圆x 225+y 216=1的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =4sin φ(φ为参数).代入目标函数得z =5cos φ-8sin φ =52+82cos(φ+φ0)=89cos(φ+φ0)⎝ ⎛⎭⎪⎫tan φ0=85.所以目标函数z min =-89,z max =89.利用椭圆的参数方程,求目标函数的最大(小)值,通常是利用辅助角公式转化为三角函数求解.1.已知椭圆x 225+y 216=1,点A 的坐标为(3,0).在椭圆上找一点P ,使点P 与点A 的距离最大.解:椭圆的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ(θ为参数).设P (5cos θ,4sin θ),则|PA |= 5cos θ-3 2+ 4sin θ 2=9cos 2θ-30cos θ+25 = 3cos θ-5 2=|3cos θ-5|≤8, 当cos θ=-1时,|PA |最大.此时,sin θ=0,点P 的坐标为(-5,0).2.椭圆x 29+y 24=1上一动点P (x ,y )与定点A (a,0)(0<a <3)之间的距离的最小值为1,求a 的值.解:椭圆的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数).设动点P (3cos θ,2sin θ),则 |PA |2=(3cos θ-a )2+4sin 2θ =5⎝ ⎛⎭⎪⎫cos θ-35a 2-45a 2+4. ∵0<a <3,∴0<35a <95.于是若0<35a ≤1,则当cos θ=35a 时,|PA |min =-45a 2+4=1,得a =152(舍去); 若1<35a <95,则当cos θ=1时,由|PA |min =a 2-6a +9=1,得|a -3|=1,∴a =2,故满足要求的a 值为2.已知A ,B 分别是椭圆36+9=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC的重心G 的轨迹方程.由条件可知,A ,B 两点坐标已知,点C 在椭圆上,故可设出点C 坐标的椭圆参数方程形式,由三角形重心坐标公式求解.由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标设为(x ,y ),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3,即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ.消去参数θ得到 x -2 24+(y -1)2=1.本题的解法体现了椭圆的参数方程对于解决相关问题的优越性,运用参数方程显得很简单,运算更简便.3.已知椭圆方程是x 216+y 29=1,点A (6,6),P 是椭圆上一动点,求线段PA 中点Q 的轨迹方程.解:椭圆的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).设P (4cos θ,3sin θ),Q (x ,y ),则有 ⎩⎪⎨⎪⎧x =4cos θ+62,y =3sin θ+62,即⎩⎪⎨⎪⎧x =2cos θ+3,y =32sin θ+3(θ为参数).∴9(x -3)2+16(y -3)2=36, 即为所求轨迹方程.4.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A ⎝ ⎛⎭⎪⎫1,32到F 1,F 2的距离之和等于4,写出椭圆C 的方程和焦点坐标; (2)设点P 是(1)中所得椭圆上的动点,求线段F 1P 的中点的轨迹方程. 解:(1)由椭圆上点A 到F 1,F 2的距离之和是4, 得2a =4,即a =2.又点A ⎝ ⎛⎭⎪⎫1,32在椭圆上, 因此14+⎝ ⎛⎭⎪⎫322b 2=1,得b 2=3,于是c 2=a 2-b 2=1,所以椭圆C 的方程为x 24+y 23=1,焦点坐标为F 1(-1,0),F 2(1,0).(2)设椭圆C 上的动点P 的坐标为(2cos θ,3sin θ),线段F 1P 的中点坐标为(x ,y ),则x =2cos θ-12,y =3sin θ+02, 所以x +12=cos θ,2y3=sin θ.消去θ,得⎝ ⎛⎭⎪⎫x +122+4y23=1.即为线段F 1P 中点的轨迹方程.已知椭圆4+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x轴于P ,Q 两点,求证:|OP |·|OQ |为定值.利用参数方程,设出点M 的坐标,并由此得到直线MB 1,MB 2的方程,从而得到P ,Q 两点坐标,求出|OP |,|OQ |,再求|OP |·|OQ |的值.设M (2cos φ,sin φ),φ为参数,B 1(0,-1),B 2(0,1).则MB 1的方程:y +1=sin φ+12cos φx ,令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程:y -1=sin φ-12cos φx ,令y =0,则x =2cos φ1-sin φ.∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ×⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.即|OP |·|OQ |=4为定值.利用参数方程证明定值(或恒成立)问题,首先是用参数把要证明的定值(或恒成立的式子)表示出来,然后利用条件消去参数,得到一个与参数无关的定值即可.5.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(0≤θ≤2π)恒有公共点,则b 的取值范围是________.解析:将(2cos θ,4sin θ)代入y =x +b ,得4sin θ=2cos θ+b . ∵恒有公共点,∴以上方程有解. 令f (θ)=4sin θ-2cos θ =25sin(θ-φ). ∴-25≤f (θ)≤2 5. ∴-25≤b ≤2 5. 答案:6.曲线⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(a >b >0)上一点M 与两焦点F 1,F 2所成角为∠F 1MF 2=α.求证:△F 1MF 2的面积为b 2tan α2.证明:∵M 在椭圆上,∴由椭圆的定义,得|MF 1|+|MF 2|=2a , 两边平方,得|MF 1|2+|MF 2|2+2|MF 1||MF 2|=4a 2. 在△F 1MF 2中,由余弦定理,得|MF 1|2+|MF 2|2-2|MF 1|·|MF 2|cos α=|F 1F 2|2=4c 2. 由两式,得|MF 1|·|MF 2|=b 2cos2α2.故S △F 1MF 2=12|MF 1|·|MF 2|sin α=b 2tan α2.课时跟踪检测(十) 一、选择题1.椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数),若θ∈,则椭圆上的点(-a,0)对应的θ等于( )A .π B.π2 C .2π D.3π2解析:选A ∵点(-a,0)中x =-a , ∴-a =a cos θ, ∴cos θ=-1,∴θ=π. 2.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为( )A. 3 B .-33C .2 3D .-2 3 解析:选C 点M 的坐标为(1,23), ∴k OM =2 3.3.直线x 4+y 3=1与椭圆x 216+y 29=1相交于A ,B 两点,该椭圆上点P 使得△PAB 的面积等于4,这样的点P 共有( )A .1个B .2个C .3个D .4个 解析:选B 设椭圆上一点P 1的坐标为(4cos θ,3sin θ),θ∈⎝⎛⎭⎪⎫0,π2,如图所示,则S四边形P 1AOB =S △OAP 1+S △OBP 1=12×4×3sin θ+12×3×4cos θ =6(sin θ+cos θ)=62sin ⎝ ⎛⎭⎪⎫θ+π4.当θ=π4时,S 四边形P 1AOB 有最大值为6 2.所以S △ABP 1≤62-S △AOB =62-6<4.故在直线AB 的右上方不存在点P 使得△PAB 的面积等于4,又S △AOB =6>4,所以在直线AB 的左下方,存在两个点满足到直线AB 的距离为85,使得S △PAB =4.故椭圆上有两个点使得△PAB 的面积等于4.4.两条曲线的参数方程分别是⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ(θ为参数)和⎩⎪⎨⎪⎧x =3cos t ,y =2sin t (t为参数),则其交点个数为( )A .0B .1C .0或1D .2 解析:选B由⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ,得x +y -1=0(-1≤x ≤0,1≤y ≤2),由⎩⎪⎨⎪⎧x =3cos t ,y =2sin t 得x 29+y 24=1.如图所示,可知两曲线交点有1个. 二、填空题5.椭圆⎩⎪⎨⎪⎧x =-4+2cos θ,y =1+5sin θ(θ为参数)的焦距为________.解析:椭圆的普通方程为 x +4 24+ y -1225=1.∴c 2=21,∴2c =221. 答案:2216.实数x ,y 满足3x 2+4y 2=12,则2x +3y 的最大值是________. 解析:因为实数x ,y 满足3x 2+4y 2=12, 所以设x =2cos α,y =3sin α,则 2x +3y =4cos α+3sin α=5sin(α+φ), 其中sin φ=45,cos φ=35.当sin(α+φ)=1时,2x +3y 有最大值为5. 答案:57.在直角坐标系xOy 中,椭圆C的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆 O 的极坐标方程分别为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为____________.解析:l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,由直线l 与圆O 相切,得m =±2b .从而椭圆的一个焦点为(2b,0),即c =2b , 所以a =3b ,则离心率e =c a =63. 答案:63三、解答题8.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R),求它们的交点坐标.解:将⎩⎨⎧x =5cos θy =sin θ(0≤θ<π)化为普通方程,得x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入,得516t 4+t 2-1=0, 解得t 2=45,∴t =255(∵y =t ≥0),x =54t 2=54·45=1,∴交点坐标为⎝⎛⎭⎪⎫1,255.9.对于椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数),如果把横坐标缩短为原来的1a,再把纵坐标缩短为原来的1b 即得到圆心在原点,半径为1的圆的参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).那么,若把圆看成椭圆的特殊情况,试讨论圆的离心率,并进一步探讨椭圆的离心率与椭圆形状的关系.解:设圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数),如果将该圆看成椭圆,那么在椭圆中对应的数值分别为a =b =r , 所以c =a 2-b 2=0, 则离心率e =ca=0.即把圆看成椭圆,其离心率为0,而椭圆的离心率的范围是(0,1),可见椭圆的离心率越小即越接近于0,形状就越接近于圆,离心率越大,椭圆越扁.10.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.解:(1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标, 得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝ ⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+2 2.由此得,当cos ⎝⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.。
人教A版高中同步学案数学选择性必修第三册精品课件 第6章 计数原理 培优课——排列与组合的综合应用
(2)由(1)可知,共有C52×AC3222×C11
+
C53×C21× A22
C11=25
种分组方法.
因为甲不能被保送到A大学,所以有同学甲的那组只有B大学和C大学两个
选择,剩下的两组无限制,一共有4种方法,所以不同的保送方案共有
25×4=100种.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
且小明必须选报“数学文化”课程,则两位同学不同的选课方案有( B )
A.24种
B.36种
C.48种
D.52种
解析 根据题意,分 2 步进行: 第 1 步,小明必须选报“数学文化”课程,则小明的选法有C41=4 种; 第 2 步,小明和小华两人所选的课程至多有一门相同,有C21 × C31 + C32=9 种选 法.
解析 可分三步:第 1 步,先从“医疗”“教育”“养老”“就业”这 4 个热点中选出 3 个,有C43种不同的选法;第 2 步,在调查时,“住房”安排的顺序有A13种可能情况; 第 3 步,其余 3 个热点调查的顺序有A33种排法.根据分步乘法计数原理可得, 不同调查顺序的种数为C43 × A13 × A33=72.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
9.某工程队有卡车、挖掘机、吊车、混凝土搅拌车4辆工程车,将它们全部 派往3个工地进行作业,每个工地至少派一辆工程车,共有多少种方式?下列 结论正确的是( C ) A.A33 B.C31 × C21 × C11 × C31 C.C31 × C42 × A22 D.C43 × A33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
人教A版高中同步学案数学选择性必修第一册精品课件 第3章 圆锥曲线的方程 抛物线及其标准方程
问题4我们不仅要学会把几何问题代数化,同时,也要能够识别代数式中蕴
含的几何意义,从中体会数形结合的思想方法.如何判断动点的轨迹?
【例3】 已知动点M(x,y)满足 5 (-1)2 + 2 =|3x-4y+2|,则动点M的轨迹
是(
)
A.椭圆
B.双曲线
2
解析 方程 5 (-1) +
2
(-1) +
与到定直线l的距离相等,故其轨迹是抛物线,且A是焦点,l是准线,并且有
p=4,故动圆圆心M的轨迹方程是y2=8x.
(4)焦点为直线3x-4y-12=0与坐标轴的交点.
解对于直线方程3x-4y-12=0,令x=0,得y=-3;令y=0,得x=4,
所以抛物线的焦点为(0,-3)或(4,0).
当焦点为(0,-3)时, 2=3,所以p=6,此时抛物线的标准方程为x2=-1程为x2=8y.
1 2 3 4 5
4.(例4对点题)抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,又已
知点A(2,2)是一个定点,则|PA|+|PF|的最小值是( B )
A.4
B.3
C.2
D.1
解析 根据抛物线方程y2=4x,可得F(1,0),则准线l的方程为x=-1.作PM⊥l,M
当焦点为(4,0)时, =4,所以p=8,此时抛物线的标准方程为y2=16x.
2
所以所求抛物线的标准方程为x2=-12y或y2=16x.
规律方法
1.抛物线标准方程的求法
(1)定义法:建立适当坐标系,利用抛物线的定义列出动点满足的条件,列出
方程,进行化简,根据定义求出p,最后写出标准方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节参数方程
知识体系
必备知识
1.参数方程与普通方程
参数方程普通方程
变量间
的关系
曲线上任意点的坐标x,y都是某个
变数t的函数,t简称参数
曲线上任意点坐标x,y
间的关系
方程
表达式
F错误!未找到引用源。
=0
曲线的
方程、方
程的曲
线
(1)曲线上任意点的坐标x,y都是
参数t的函数
(2)对于t的每一个允许值确定的
点错误!未找到引用源。
都在曲线
上
(1)曲线上点的坐标都
是方程的解
(2)以方程的解为坐标
的点都在曲线上
2.参数方程和普通方程的互化
(1)参数方程化普通方程:主要利用两个方程相加、减、乘、除或者代入法消去参数.
(2)普通方程化参数方程:如果x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),则得曲线的参数方程错误!未找到引用源。
3.直线、圆与椭圆的普通方程和参数方程
轨迹普通方程参数方程
直线
y-y0=tan α(x-x0)
(t为参数)
圆(x-a)2+(y-b)2=r2
(θ为参数)
椭圆错误!未找到引用
源。
+错误!未找到
引用源。
=1
(a>b>0)
(φ为参数)
基础小题
1.已知直线错误!未找到引用源。
(t为参数),下列说法中正确的有
( )
①直线经过点(7,-1);②直线的斜率为错误!未找到引用源。
;③直线不过第二象限;④|t|是定点M0(3,-4)到该直线上对应点M的距离.
A.①②
B.②③
C.①②④
D.①②③
【解析】选D.根据题意,直线错误!未找到引用源。
(t为参数),其普通方程为y+4=
错误!未找到引用源。
(x-3),对于①,(-1)+4=错误!未找到引用源。
(7-3),即直线经过点(7,-1),①正确;对于②,直线的普通方程为y+4=错误!未找到引用源。
(x-3),其斜率k=错误!未找到引用源。
,②正确;对于③,直线的普通方程为y+4=错误!未找到引用源。
(x-3),不经过第二象限,③正确;对于④,直线错误!未找到引用源。
(t为参数),|5t|表示定点M0(3,-4)到该直线上对应点M的距离,④错误.
2.过点A(2,3)的直线的参数方程为错误!未找到引用源。
(t为参数),若此直线与直线x-y+3=0相交于点B,则|AB|=________.
【解析】把错误!未找到引用源。
代入直线x-y+3=0得t=2,
则交点为(4,7),
所以|AB|=错误!未找到引用源。
=2错误!未找到引用源。
.
答案:2错误!未找到引用源。
3.直线l的参数方程为错误!未找到引用源。
(t为参数),求直线l的斜率.
【解析】将直线l的参数方程化为普通方程为
y-2=-3(x-1),因此直线l的斜率为-3.
4.已知直线l1:错误!未找到引用源。
(t为参数)与直线
l2:错误!未找到引用源。
(s为参数)垂直,求k的值.
【解析】直线l1的方程为y=-错误!未找到引用源。
x+错误!未找到引用源。
,斜率为-错误!未找到引用源。
;
直线l2的方程为y=-2x+1,斜率为-2.
因为l1与l2垂直,所以错误!未找到引用源。
×(-2)=-1⇒k=-1.
5.已知点P(3,m)在以点F为焦点的抛物线错误!未找到引用源。
(t为参数)上,求|PF|的值.
【解析】将抛物线的参数方程化为普通方程为y2=4x,则焦点F(1,0),准线方程为x=-1,又P(3,m)在抛物线上,由抛物线的定义知
|PF|=3-(-1)=4.。