《振动》习题解答

合集下载

《振动力学》习题集(含问题详解)

《振动力学》习题集(含问题详解)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

第5章振动和波动习题解答

第5章振动和波动习题解答

第5章 振动和波动5-1 一个弹簧振子 m=:0.5kg , k=50N ;'m ,振幅 A = 0.04m ,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为 x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。

频率、周期和初相。

A=0.04(m) 二 0.7(rad/s) 二-0.3(rad)⑷10.11(Hz) T 8.98(s)2 n、5-3证明:如图所示的振动系统的振动频率为1 R +k 2式中k 1,k 2分别为两个弹簧的劲度系数,m 为物体的质量V max 二 A =10 0.04 = 0.4(m/s) a max 二 2A =102 0.04 =4(m/s 2) ⑵设 x =Acos(,t :;;■『),贝Ud x vA sin(,t 「)dtd 2xa一 dt 2--2Acos(「t 亠 ^ ) - - 2x当 x=0.02m 时,COS (;:, t :忙)=1/ 2, sin( t 「)= _、一3/2,所以 v ==0.2、.3 ==0.346(m/s) 2a = -2(m/s )F 二 ma = -1(N)n(3)作旋转矢量图,可知:2x =0. 0 4 c o st(1 0)25-2弹簧振子的运动方程为 x =0.04cos(0.7t -0.3)(SI),写出此简谐振动的振幅、角频率、严...U ・」|1岛解:以平衡位置为坐标原点,水平向右为 x 轴正方向。

设物体处在平衡位置时,弹簧 1的伸长量为Xg ,弹簧2的伸长量为x 20,则应有_ k ] X ]0 ■木2乂20 = 0当物体运动到平衡位置的位移为 X 处时,弹簧1的伸长量就为x 10 X ,弹簧2的伸长量就为X 20 -X ,所以物体所受的合外力为F - -k i (X io X )k 2(X 20 -x)- -(匕 k 2)x2d x (k i k 2)dt 2 m上式表明此振动系统的振动为简谐振动,且振动的圆频率为5-4如图所示,U 形管直径为d ,管内水银质量为 m ,密度为p 现使水银面作无阻尼 自由振动,求振动周期。

振动习题答案

振动习题答案

振动习题答案振动习题答案振动是物体在固定轴线附近做往复运动的现象。

它在我们的日常生活中随处可见,比如钟摆的摆动、弹簧的振动等等。

振动习题是学习振动理论的重要一环,通过解答习题可以加深对振动原理的理解和应用。

下面是一些常见的振动习题及其答案,希望对大家的学习有所帮助。

1. 一个质点沿直线做简谐振动,振幅为2cm,周期为4s,求该质点的速度和加速度。

解答:简谐振动的速度和加速度与位置的关系可以通过振动的位移方程得到。

位移方程为:x = A * sin(ωt + φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。

根据周期和角频率的关系,可知ω = 2π / T,其中T为周期。

根据题目中的数据,振幅A = 2cm,周期T = 4s。

代入上述公式可得ω = 2π /4 = π / 2。

因此,位移方程可写为:x = 2 * sin(π/2 * t + φ)。

速度v = dx / dt,加速度a = dv / dt。

对位移方程求一次导数得到速度和加速度的表达式:v = d(2 * sin(π/2 * t + φ)) / dt = 2 * (π/2) * cos(π/2 * t + φ) = π * cos(π/2 * t + φ),a = d(π * cos(π/2 * t + φ)) / dt = - (π/2)^2 * sin(π/2 * t + φ) = - (π^2 / 4) *sin(π/2 * t + φ)。

2. 一个弹簧的振动周期为2s,振幅为5cm,求该弹簧的角频率和振动频率。

解答:角频率ω = 2π / T,振动频率f = 1 / T,其中T为周期。

根据题目中的数据,周期T = 2s。

代入上述公式可得角频率ω = 2π / 2 = π,振动频率f = 1 / 2 = 0.5Hz。

3. 一个质点的振动方程为x = 3sin(2πt + π/4),求该质点的振幅、周期、角频率、初相位、速度和加速度。

大学物理学振动与波动习题答案

大学物理学振动与波动习题答案

大学物理学(上)第四,第五章习题答案第4章振动P174.4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x= 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式;(2)t = T/4时物体的位置、速度和加速度;(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m,角频率ω = 2π/T = π.当t = 0时,x = 0.06m,所以cosφ = 0.5,因此φ = ±π/3.物体的速度为v = d x/d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sinφ,由于v > 0,所以sinφ < 0,因此φ = -π/3.简谐振动的表达式为x = 0.12cos(πt –π/3).(2)当t = T/4时物体的位置为x = 0.12cos(π/2–π/3)= 0.12cosπ/6 = 0.104(m).速度为v = -πA sin(π/2–π/3)= -0.12πsinπ/6 = -0.188(m·s-1).加速度为a = d v/d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s-2).(3)方法一:求时间差.当x= -0.06m 时,可得cos(πt1 - π/3) = -0.5,因此πt1 - π/3 = ±2π/3.由于物体向x轴负方向运动,即v < 0,所以sin(πt1 - π/3) > 0,因此πt1 - π/3 = 2π/3,得t1 = 1s.当物体从x = -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt2 - π/3) = 0,可得πt2 - π/3 = -π/2或3π/2等.由于t2 > 0,所以πt2 - π/3 = 3π/2,可得t2 = 11/6 = 1.83(s).所需要的时间为Δt = t2 - t1 = 0.83(s).方法二:反向运动.物体从x= -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x0/A),(-π < φ≦π),初位相的取值由速度决定.由于v = d x/d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sinφ,当v > 0时,sinφ < 0,因此φ = -arccos(x0/A);当v < 0时,sinφ > 0,因此φ = arccos(x0/A).可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ = 0;当初位置x0 = -A时,φ = π.4.2 已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T;(2)振动表达式;(3)画出旋转矢量图.[解答]方法一:由位相求时间.(1)设曲线方程为x = A cosΦ,其中A表示振幅,Φ = ωt + φ表示相位.由于x a = A,所以cosΦa = 1,因此Φa = 0.由于x b = A/2,所以cosΦb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此Φb = π/3.由于x c = 0,所以cosΦc = 0,又由于c点位相大于b位相,因此Φc = π/2.同理可得其他两点位相为Φd = 2π/3,Φe = π.c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为t a = T/6.到达b点的时刻为t b = 2t a = T/3.到达c点的时刻为t c = t a + T/4 = 5T/12.到达d点的时刻为t d = t c + T/12 = T/2.到达e点的时刻为t e = t a + T/2 = 2T/3.(2)设振动表达式为x = A cos(ωt + φ),当t = 0时,x = A/2时,所以cosφ = 0.5,因此φ =±π/3;由于零时刻的位相小于a点的位相,所以φ = -π/3,因此振动表达式为cos(2)3tx ATπ=π-.另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于x f = 0,根据运动方程,可得cos(2)03tTππ-=所以232ftTπππ-=±.图6.2显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为t a = T /4 + t f = T /6,其位相为203a a t T Φπ=π-=.由图可以确定其他点的时刻,同理可得各点的位相.4.3如图所示,质量为10g 的子弹以速度v = 103m ·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N ·m -1,木块的质量为 4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0.解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m ·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m + M ) v 02/2 = kA 2/2,所以振幅为A v =×10-2(m). (2)振动的圆频率为ω=·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为x = 5×10-2cos(40t - π/2)(m). 4.4 如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+这也是它们振动的初速度. 设振动方程为x = A cos(ωt + φ),其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k . 因此振幅为A ==图4.3图4.4= 初位相为00arctanv x ϕω-==4.5重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)可以证明:当两根弹簧串联时,总倔强系数为k = k 1k 2/(k 1 + k 2),因此固有频率为2πων===.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为2πων===4.6 一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为 I c = mR 2. 根据平行轴定理,环绕过O点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为M = -mgR sin θ,方向与角度θ增加的方向相反.根据转动定理得I β = M ,即 22d sin 0d I mgR tθθ+=,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程22d 0d mgRt Iθθ+=. 摆动的圆频率为ω=周期为2πT ω=22==方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为E p = mg (R - R cos θ), 绕O 点的转动动能为212k E I =ω, 总机械能为21(cos )2E I mg R R =+-ωθ. 环在转动时机械能守恒,即E 为常量,将上式对时间求导,利用ω = d θ/d t ,β = d ω/d t ,得0 = I ωβ + mgR (sin θ) ω,由于ω ≠ 0,当θ很小有sin θ≈θ,可得振动的微分方程22d 0d mgRt Iθθ+=, 从而可求角频率和周期.[注意]角速度和圆频率使用同一字母ω,不要将两者混淆.(b)图4.54.7 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的频率。

大学物理第九章振动学基础习题答案

大学物理第九章振动学基础习题答案

第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。

解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。

设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。

(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。

解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。

(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。

现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。

(1)证明此质点的运动是谐振动;(2)计算其振动周期。

解:以球心为原点建立坐标轴Ox 。

质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。

(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。

当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。

求以上各种情况的振动方程。

解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。

(完整版)大学机械振动课后习题和答案(1~4章总汇)

(完整版)大学机械振动课后习题和答案(1~4章总汇)

1.1 试举出振动设计、系统识别和环境预测的实例。

1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。

两个串联的轴的扭转刚度分别为1t k ,2t k 。

解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。

解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。

大学物理第九章振动学基础习题答案

大学物理第九章振动学基础习题答案

第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。

解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。

设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。

(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。

解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。

(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。

现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。

(1)证明此质点的运动是谐振动;(2)计算其振动周期。

解:以球心为原点建立坐标轴Ox 。

质点距球心x 时所受力为324433x m F G G mx x πρπρ=-=- 令43k G m πρ=,则有F kx =-,即质点做谐振动。

(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s 。

当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。

求以上各种情况的振动方程。

解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭ (3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭ (4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。

振动、波动练习题及答案

振动、波动练习题及答案

振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm。

周期T=2s。

其平衡位置取作坐标原点。

若t=0 时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为()。

A 1sB 2sC 4sD 2s332.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0 时刻的波形如图所示,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图示一简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平面简谐波,波线上两 点振动的相位差为 3 ,则这两点相距( )A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中, ( )。

A 它的动能转换成势能B它的势能转换成动C 它从相邻的一段质元获得能量其能量逐渐增大Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:()。

A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为()。

A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。

A λB 3 λ/4C λ/2D λ /49.在同一媒质中两列相干的平面简谐波的强度之比I1I 4是,则两列波的振幅之比是:()A A1 4 BA1 2 CA1 16 DA11A2 A2 A2 A2 410.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。

燕山大学振动理论习题答案

燕山大学振动理论习题答案

k123
k1k23 k1 k23
2k 3
k1234
k123k4 k123 k4
1k 2
(1) mg
k1234 x0 , x0
2mg k
(2)
xt
x0
cosnt

xm a x
2x0
4mg k
2-7 图 2-7 所示系统,质量为 m2 的均质圆盘在水平面上作无滑动的滚动,鼓轮 绕轴的转动惯量为 I,忽略绳子的弹性、质量及各轴承间的摩擦力。试求此系统 的固有频率。
2π l a
h 3g
2-3 一半圆薄壁筒,平均半径为 R, 置于粗糙平面上做微幅摆动,如图 2-3 所示。 试求
其摆动的固有频率。
图 2-3
图 2-4
2-4 如图 2-4 所示,一质量 m 连接在一刚性杆上,杆的质量忽略不计,试求下 列情况
系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅垂平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。
n
ke m
2-5 试求图 2-5 所示系统中均质刚性杆 AB 在 A 点的等效质量。已知杆的质量为 m,A
端弹簧的刚度为 k。并问铰链支座 C 放在何处时使系统的固有频率最高?
图 2-5
图 2-6
2-6 在图 2-6 所示的系统中,四个弹簧均未受力。已知 m=50kg,k1 9800 N m , k2 k3 4900 N m , k4 19600 N m 。试问: (1)若将支撑缓慢撤去,质量块将下落多少距离?
E P02
2
k (1 2 )2 (2)2
证明
E T c2B2 cos(t )dt cB2 0

振动 大学物理习题答案

振动 大学物理习题答案

,x

A12

A22
cos( t

tan 1
A1 ) A2
11-10 质量为 0.4kg 的质点同时参与相互垂直的两个谐振动:
x1

0.08 cos( 3
t

) 6

x2

0.06 cos( 3
t

) 3
求:(1)质点的轨迹方程;(2)质点在任一位置所受的力。
解:(1)设 x A1 cos( t 1 ) , y A2 cos( t 2 ) ,消去 t 得
0.05sin 3

4 3
0.05 cos
0.06sin 4
0.06 cos
11.00 , 84.8 1.48rad
4
4
(2)

3
1

2k
,3

2k

3 4
,k

0,1,2;


3
2

(2k
1)
,3

2k

5 4
,k
解:(1)由旋转矢量法知 , 2 2 , x 0.12 cos( t )
3
T2
3
(2) v d x 0.12 sin( t ) , a d v 0.12 2 cos( t )
dt
3
dt
3
t 0.5s , x 0.1039 m , v 0.1885 m/s , a 1.03m/s 2
dt2 m J / R2
(2)
k
,T 2 2 m J / R2

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

振动力学习题集

振动力学习题集

《振动力学》习题集(含答案)质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。

求系统的固有频率。

图解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图所示。

求系统的固有频率。

图解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn = 和U T =可得:()mkR a R mR a R k n 343422+=+=ω转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图所示。

求系统的固有频率。

图解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn = 和U T =可得:()()3232132k k J k k k k k n +++=ω在图所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

振动习题完整版本

振动习题完整版本

机械振动习题集同济大学机械设计研究所2004.91_简谐运动及其运算1-1 求下列简谐函数的单边复振幅和双边复振幅(1) x 2sin( t )(2) x 4 cos(10 t ) ( 3) x 3 cos(2 t 45 )341-2 通过简谐函数的复数表示,求下列简谐函数之和。

(1)x12sin( t 3)x23sin( t3)(2)x15sin 10 tx 24 cos(10 t4)(3) x 1 4 sin(2 t 30 ) x 2 5 sin( 2 t 60 )x 3 3cos(2 t 45 )x 47cos(2 t38 )x 5 2 cos(2 t 72 )答案:(1) x 124.359 cos( t 6.6)(2) x 12 3.566 cos(10 t 47.52 )(3) x 12345 14.776 cos(2 t9.22 )1-3试计算题 1中 x(t)的一阶对数和二阶导数对应的复振幅,并给出它们的时间历程。

1-4 设 x(t)、 f(t) 为同频简谐函数,并且满足 ax bx cx f(t) 。

试计算下列问题 (1)已知 a 1.5,b 6,c 25,x(t) 10 sin(12 37 ) ,求 f(t)(2)已知 a 3,b 7,c 30, f (t) 25 sin(7 64 ),求 x(t)1-5 简述同向异频简谐振动在不同频率和幅值下合成的不同特点。

1-6 利用“振动计算实用工具” ,通过变换频率和相位总结垂直方向振动合成的特点。

2_单自由度系统振动2-1 请解释有阻尼衰减振动时的固有圆频率d为什么总比自由振动时的固有圆频率n小?答案:因为 d 1 2 n , <12-2 在欠阻尼自由振动中,把 改成 0.9 的时候,有人说曲线不过 X 轴了,这种说法正确么,请说明理由?答案: <1 为小阻尼的衰减振动,当然过 X 轴2-3 在单自由度自由振动时候,给定自由振动时的固有圆频率n ,阻尼系数 ,初始位移 x 0,以及初始速度 v 0 ,利用本计算工具 ,请计算有阻尼衰减振动时的固有圆频率d .答案:如n =3rad/s, =0.01, x 0 =-1, v 0=0;则 d =2.9985rad/s 2-4 如图 2-1 所示,一小车(重 P )自高 h 处沿斜面滑下,与缓冲器相撞后,随同缓冲器一 起作自由振动。

大学物理振动波动例题习题

大学物理振动波动例题习题

大学物理振动波动例题习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN振动波动一、例题(一)振动1.证明单摆是简谐振动,给出振动周期及圆频率。

2.一质点沿x轴作简谐运动,振幅为12cm,周期为2s。

当t = 0时, 位移为6cm,且向x轴正方向运动。

求: (1) 振动表达式;(2) t = 0.5s时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x=-0.6cm,且向x轴负方向运动,求从该位置回到平衡位置所需要的时间。

3. 已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π)20.06cos(100.25)(SI)x tπ=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时x 1 + x3的振幅最大又ϕ 3为多少时 x 2 + x 3的振幅最小(二)波动1. 平面简谐波沿x轴正方向传播,振幅为2 cm,频率为 50 Hz,波速为 200 m/s。

在t = 0时,x = 0处的质点正在平衡位置向y轴正方向运动,求:(1)波动方程(2)x = 4 m处媒质质点振动的表达式及该点在t = 2 s时的振动速度。

2. 一平面简谐波以速度m/s8.0=u沿x轴负方向传播。

已知原点的振动曲线如图所示。

求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m1的两点之间的位相差。

3. 两相干波源S1和S2的振动方程分别是1cosy A tω=和2cos(/2)y A tωπ=+。

S1距P点3个波长,S2距P点21/4个波长。

求:两波在P点引起的合振动振幅。

x tO A/2 -Ax 1x 2 4.沿X 轴传播的平面简谐波方程为:310cos[200(t )]200xy π-=-,隔开两种媒质的反射界面A 与坐标原点O 相距2.25m ,反射波振幅无变化,反射处为固定端,求反射波的方程。

振动理论习题答案汇总

振动理论习题答案汇总

《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。

试求2W 下降的最大距离和两物体碰撞后的运动规律。

解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。

试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。

解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理:ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。

试求其摆动的固有频率。

图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。

图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'mglll2121+=k2k1ml1l2()()()()()()()()()mgk k l l k l k l mgk k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mgk l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+=故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。

大学物理习题及解答(振动与波、波动光学)

大学物理习题及解答(振动与波、波动光学)

1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯ 10-2 m 。

若使物体上下振动,且规定向下为正方向。

(1)t =0时,物体在平衡位置上方8.0 ⨯ 10-2 m处,由静止开始向下运动,求运动方程。

(2)t = 0时,物体在平衡位置并以0.60 m/s 的速度向上运动,求运动方程。

题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。

其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。

解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。

而此时弹簧的伸长量m l 2108.9-⨯=∆。

则弹簧的劲度系数l mg l F k ∆=∆=//。

系统作简谐运动的角频率为1s 10//-=∆==l g m k ω(1)设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。

由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。

则运动方程为])s 10cos[()m 100.8(121π+⨯=--t x(2)t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;则运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如图所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需要的时间。

题2分析:由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。

本题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。

《振动力学》习题集(含答案解析)

《振动力学》习题集(含答案解析)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

第九章 振动 习题册解答 (1)

第九章 振动 习题册解答 (1)

分析:总能量: E = 1 k A2 2
势能:
E P1
=
1 2
k
(A)2 3
=
1 9
E;
动能:
E k1
=
E
-
E P1
=
8 9
E;
E P2
=
1 2
k
(A)2 2
=
1 4
E
E k2
=
E - EP2
=
3 4
E
9.8 把单摆小球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ,然后 由静止释放,使其摆动。从放手时开始计时,若用余弦函数表示运动方程,则该单摆振动的初 相位为:[ B ]
(m)
§9.3~9.7
9.6 一个弹簧振子,作简谐振动,已知此振子势能的最大值为 100J。当振子处于最大位移
的一半处时其动能瞬时值为:[ C ]
(A) 25J; (B) 50J; (C) 75J; (D) 100J。
分析:总能量 E = 1 k A2 = 100J 2
振子处于最大位移一半时,势能为 EP
2π m
分析:
T = 2π = 2π ω
m ν=1 k, T
k m
α

k
m
mg.sinα α
mg
平衡位置:kl=mg.sin α 任意位置:k(l-x)- mg.sinα =ma
a = − k x ,令ω = k ,则T = 2π m
m
m
k
9.3 一弹簧振子,振动方程为 x=0.1cos(πt-π/3)·m,若振子从 t=0 时刻的位置到达 x=-0.05m 处,且向 X 轴负向运动,则所需的最短时间为:[ D ]

《大学物理》振动练习题及答案解析

《大学物理》振动练习题及答案解析

《大学物理》振动练习题及答案解析一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。

2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。

3、简述符合什么规律的运动是简谐运动答案:当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数()ϕω+=t A x cos 时,该质点的运动便是简谐振动。

或:位移x 与加速度a 的关系为正比反向关系。

4、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。

答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dtxd 222ω-=或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x 5、分别从运动学和动力学两个方面说明什么是简谐振动?答案:运动学方面:运动方程中位移与时间满足正弦或余弦函数关系)cos(φω+=t A x 动力学方面:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足 6、简谐运动的三要素是什么? 答案: 振幅、周期、初相位。

7、弹簧振子所做的简谐振动的周期与什么物理量有关?答案: 仅与振动系统的本身物理性质:振子质量m 和弹簧弹性系数k 有关。

8、如果弹簧的质量不像轻弹簧那样可以忽略,那么该弹簧的周期与轻弹簧的周期相比,是否有变化,试定性说明之。

答案:该振子周期会变大,作用在物体上的力要小于单纯由弹簧形变而产生的力,因为单纯由形变而产生的弹力中有一部分是用于使弹簧产生加速度的,所以总体的效果相当于物体质量不变,但弹簧劲度系数减小,因此周期会变大。

9、伽利略曾提出和解决了这样一个问题:一根线挂在又高又暗的城堡中,看不见它的上端而只能看见其下端,那么如何测量此线的长度?答案:在线下端挂一质量远大于线的物体,拉开一小角度,让其自由振动,测出周期T ,便可依据单摆周期公式glT π2=计算摆长。

大学物理振动习题含答案

大学物理振动习题含答案

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为: (A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ]6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章《振动》习题解答9.2.1 一刚体可绕水平轴摆动.已知刚体质量为m ,其重心C 和轴O 间的距离为h ,刚体对转动轴线的转动惯量为I.问刚体围绕平衡位置的微小摆动是否是简谐运动?如果是,求固有频率,不计一切阻力.【解】刚体受力如图所示,规定逆时针为转动正方向,φ为与OC 铅垂线(为平衡位置)的夹角,由对O 的转动定理; 因φ很小故sin φφ=9.2.2 轻弹簧与物体的连接如图所示,物体质量为m ,轻弹簧的劲度系数为1k 和2k ,支承面是理想光滑面,求系统振动的固有频率.【解】以物体m 为隔离体,水平方向受12,k k 的弹性力12,,F F 以平衡位置为原点建立坐标系O x -,水平向右为x 轴正方向。

设m 处于O 点对两弹簧的伸长量为0,即两个弹簧都处于原长状态。

m 发生一小位移x 之后,弹簧1k 的伸长量为x ,弹簧2k 被压缩长也为x 。

故物体受力为:1212---()x F k x k x k k x ==+ (线性恢复力) m 相当于受到刚度系数为12k k k =+的单一弹簧的作用 由牛顿第二定律:9.2.3 一垂直悬挂的弹簧振子,振子质量为m ,弹簧的劲度系数为1k .若在振子和弹簧1k 之间串联另一弹簧,使系统的频率减少一半.串联上的弹簧的劲度系数2k 应是1k 的多少倍?【解】未串时:平衡位置 1mg k=串联另一刚度系数为2k 的弹簧:此时弹簧组的劲度系数为?k = 已知:2ωω='解得:2113k k =9.2.4 单摆周期的研究.(1)单摆悬挂于以加速度a 沿水平方向直线行驶的车厢内.(2)单摆悬挂于以加速度a 上升的电梯内.(3)单摆悬挂于以加速度a (<g)下降的电梯内.求此三种情况下单摆的周期.摆长为.【解】(1)以车为参照系,摆锤为隔离体,受重力W ,摆线张力T ,惯性力f ma *=-。

平衡位置处有:0T mg f *++= 由此可得平衡位置时摆线铅直夹角atg gα=(1) 由平衡位置发生小角位移θ由牛顿第二定律:在切线方向的分量式即 (sin cos cos sin )(cos cos sin sin )g a a ταθαθαθαθ-++-=θ角很小,故sin ,cos 1θθθ==.于是得: 利用(1)式,sin cos ,g a αα=则 22(cos sin )d g a a dt τθααθ-+== 即 22cos sin 0d g a dtθααθ++=因为sin αα==所以 0ω==(2)以电梯为参照系,惯性力与重力沿铅垂方向,同于的分析摆线为铅垂位置时为平衡态.(3) 同(2)的分析得:9.2.5 在通常温度下,固体内原子振动的频率数量级为310/s .设想各原子之间彼此以弹簧连结.一摩尔银的质量为108g 且包含236.02?10个原子.现仅考虑一列原子,且假设只有一个原子以上述频率振动,其它原子皆处于静止,计算一根弹簧的劲度系数.【解】 由9.2.2知0ω=这里 12k k k ==9.2.6 一弹簧振子,弹簧的劲度系数为=9.8N/m k ,物体质量为20g 现将弹簧自平衡位置拉长并给物体一远离平衡位置的速度,其大小为7.0m/s ,求该振子的运动学方程(SI).【解】以平衡位置为原点建立坐标系O-x,水平向右为正方向。

弹簧振子的运动方程为:故07(/)rad s ω== 0t =时,00),7.0(/)x x cm cm s νν====0t =时,000cos sin x A A ανωα=⎫⎬=-⎭→0.34()rad α=-弹簧振子的运动方程:9.2.7 质量为31.010g ⨯的物体悬挂在劲度系数为61.010dyn/cm ⨯的弹簧下面.(1)求其振动的周期.(2)在=0t 时,物体距平衡位置的位移为+0.5cm ,速度为+15cm/s ,求其运动学方程.【解】以平衡位置为原点,建立坐标系O-x ,竖直向下为正方向。

(1)0220.199()T s πω=== (2)设运动方程为:即 000cos 0.726sin 0.688x A A αναω⎧==⎪⎪⎨⎪=-=--⎪⎩ 故 0.759()43.49rad α=-=- 所以运动学方程为:9.2.8 (1)一简谐振动的运动规律为π=5cos(8+)4x t ,若计时起点提前0.5s ,其运动学方程如何表示?欲使其初相为零,计时起点应提前或推迟若干? (2)一简谐振动的运动学方程为=8sin(3-)x t π.若计时起点推迟1s ,它的初相是多少?欲使其初相为零,应怎样调整计时起点?(3)画出上面两种简谐振动在计时起点改变前后=0t 时旋转矢量的位置.【解】(1) 5cos(8)4x t π=+ (1)计时起点提前0.5,则0.5t t '=+,代入(1)式,运动方程为: 设计时起点提前0t 秒,可使初相为零,即0t t t ''=+,代入(1)式得:有 0080,432t t ππ-+==即,即提前32π秒时计时可使其初相为零。

(2) 38sin(3)8cos(3)2x t t ππ=-=-(2) 计时起点提前0t 秒时0t t t '=+代入 038cos(33)2x t t π'=--若计时起点推迟一秒,则01t =-,此时初相为若要 03302t απ=--=,需02t π=-,即推迟2π秒计时时,可使初相为零。

(3) 见图a,b(a) (b)9.2.9 画出某简谐振动的位移——时间曲线,其运动规律为1=2cos2π(+)4x t (SI 制)【解】12cos 2()4x t π=+(SI 制)令14t t '=+ 则有2cos2x t π'=为周期引的余弦曲线。

画出 x t '- 曲线,再根据14t t '=-的关系。

将ox 轴右移14周期。

半径为R 的薄圆环静止于刀口O 上,令其在自身平面内作微小摆动.(1)求其振动的周期.(2)求与其振动周期相等的单摆的长度.(3)将圆环去掉23而刀口支于剩余圆弧的中央,求其周期与整圆环摆动周期之比.【解】(1)该装置为物理摆,利用9.2.1对一般刚体得到的公式02T ω==为薄圆球质量。

h R = 根据平行轴定理: (2)根据单摆公式02T=由0,T T = 可得 2R =(3)该装置为物理摆,仍利用公式2T '= 由对称性可知,质心位于oo '上。

m '为剩余圆弧的质量,h oc '=。

根据平衡轴定理。

2220()C C I m R I m oc I m R h '''''''==+=+- 故22 1.T T T''=== 即T T '=可知不管圆环去掉多少,只要刀口高于剩余圆弧中央,其振动周期均不变。

1m 长的杆绕过其一端的水平轴作微小摆动而成为物理摆.另一线度极小的物体与杆的质量相等.固定于杆上离转轴为h 的地方.用0T 表示未加小物体时杆子的周期,用T 表示加上小物体以后的周期.(1)求当=50cm h 和=100cm h 时的比值TT .(2)是否存在某一h 值,可令0T =T ,若有可能,求出h 值并解释为什么h 取此值时周期不变.【解】(1)利用9.2.1得到的物理摆公式2T = 设0m 为杆质量,为杆长,未加小物体时,加小物体后,(2)由1TT =,即22232h h +=+可得:122,03h h == 讨论:由02T =,此物理摆的等效单摆长度为23。

在123h =处加另一物体,相当于使等效单摆的摆锤质量增加而摆长不变,故周期不变。

20h =,即小物体置于转动轴上,对运动无影响。

故周期不变。

天花板下以0.9m 长的轻线悬挂一个质量为0.9kg 的小球.最初小球静止,后另有一质量为0.1kg 的小球沿水平方向以1.0m/s 的速度与它发生完全非弹性碰撞。

求两小球碰撞后的运动学方程.【解】以小球12,m m 为物体系。

碰撞前后的过程始末,在过程中认为12,m m 仍在原小球2m 静止处。

水平方向动量守恒:碰撞后成为一个单摆作简谐运动,设其运动方程为以碰后小球12,m m 获得速度0.1(m/s),而0θ=时为计时起点,即由cos 0α=,00sin 1,2A θπααω=-=-=- 故运动方程0.0337cos(3.3)2t πθ=-在θ很小的条件下,x θ=,所以用线量描述的运动方程为0.03cos(3.3)2x t θ=-。

求第四章习题4.6.5题中铅块落入框架后的运动学方程. 【解】以物体2m 为隔离体,根据自由落体的运动规律可知:2m 落至盘上的速度为00.30m x h ν==在以框架1m ,物体2m 为物体系。

完全非弹性碰撞前后为过程始末,因外力(弹簧弹性力,重力)内力,故可用动量守恒定律求近似解:设弹簧自由伸展的位置为a ,挂框架后平衡位置为b,碰后平衡位置为O ,O即为坐标系O-x 之原点.依题意00.10ab m ==因01012, ()()km g k bo m m g =+=+碰撞后系统为一数值悬挂的弹簧振子,舍弃运动方程为以碰撞之后1m ,2m 的共同速度x ν运动,而处于b 处时为计时起点,即: 由00cos 0.5,sin 0.866, 4.19(rad)A A ναααω--==-==-= 运动方程为:0.2cos(7 4.19)x t ==+可选择适当的计时起点使初项为零,则运动方程可表示为0.2cos7x t = 第四章习题 4.6.5题中的框架若与一个由框架下方沿铅垂方向飞来的小球发生完全弹性碰撞,碰后框架的运动学方程是怎样的?已知小球20g ,碰框架前的速度为10m/s.【解】以框架1m ,小球2m 为物体系。

以框架平衡位置为原点建立坐标系O-x ,竖直向下为正方向:以完全弹性碰撞前后为过程始末,设小球的碰撞前速度为2x ν,小球框架碰后速度为2,x x νν',因外力内力,故可用动量守恒定律近似求解。

又因碰撞为完全弹性碰撞,碰撞前后总动能相等。

可以求得:20(m /s)11x ν=-在一框架为隔离体。

碰撞之后平衡位置不变,仍未O 点。

系统为一竖直悬挂的弹簧振子,设其运动方程为:以碰撞后,框架获得速度x ν,而处于O 点时为计时起点,即: 根据题意,弹簧刚性系数0,0.1mgk ==故009.9(rad/s)0.1ω==== 由000cos 0,sin 0x A A νααω===->知 1.57(rad)2πα==所以运动方程为0.184cos(9.9)2x t π=+质量为m 的物体自倾角为θ的光滑斜面顶点处由静止而滑下,滑行了远后与一质量为m '的物体发生完全非弹性碰撞.m '与劲度系数为k 的弹簧相连.碰撞前m '静止于斜面上,如图所示.问两物体碰撞后作何种运动,并解出其运动方程.已知o =5kg,=490N/m,=30,=0.2m m =m k θl '.【解】a 为弹簧自由伸展位置,b 为加m '后平衡位置,O 为,m m '发生完全非弹性碰撞后的平衡位置,以O 为原点建立坐标系O-x 如图:故1sin bo mg ab kθ== 以物体m 为隔离体,物体m 由斜面顶滑下,做匀加速运动滑行远后速度为0x ν再以,m m '为物体系。

相关文档
最新文档