北京中考数学专题复习旋转的综合题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、旋转真题与模拟题分类汇编(难题易错题)

1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.

(1)请问EG与CG存在怎样的数量关系,并证明你的结论;

(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)

【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立

【解析】

【分析】

(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.

(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明

△AMG≌△ENG,得出AG=EG;最后证出CG=EG.

(3)结论依然成立.

【详解】

(1)CG=EG.理由如下:

∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=1

2

FD,

同理.在Rt△DEF中,EG=1

2

FD,∴CG=EG.

(2)(1)中结论仍然成立,即EG=CG.

证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;

在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.

∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.

证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,

∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,

∴MF∥CD∥AB,∴EF⊥MF.

在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE

∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.

∵MG=CG,∴EG=1

MC,∴EG=CG.

2

(3)(1)中的结论仍然成立.理由如下:

过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.

由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证

∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC

∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG

【点睛】

本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.

2.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG.

(1) 求证:EG=CG;

(2) 将图①中△BEF 绕B 点逆时针旋转 45∘,如图②所示,取DF 中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

(3) 将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).

【答案】解:(1)CG=EG

(2)(1)中结论没有发生变化,即EG=CG.

证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

在△DAG与△DCG中,

∵ AD=CD,∠ADG=∠CDG,DG=DG,

∴△DAG≌△DCG.

∴ AG=CG.

在△DMG与△FNG中,

∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,

∴△DMG≌△FNG.

∴ MG=NG

在矩形AENM中,AM=EN.

在Rt△AMG 与Rt△ENG中,

∵ AM=EN, MG=NG,

∴△AMG≌△ENG.

∴ AG=EG

∴ EG=CG.

(3)(1)中的结论仍然成立.

【解析】

试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.

(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明

△AMG≌△ENG,得出AG=EG;最后证出CG=EG.

(3)结论依然成立.还知道EG⊥CG;

试题解析:

解:(1)证明:在Rt△FCD中,

∵G为DF的中点,

∴,

同理,在Rt△DEF中,,

∴CG=EG;

(2)(1)中结论仍然成立,即EG=CG;

连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:

在△DAG与△DCG中,

∵AD=CD,∠ADG=∠CDG,DC=DC,

∴△DAG≌△DCG,

∴AG=CG,

在△DMG与△FNG中,

∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,

∴△DMG≌△FNG,

∴MG=NG,

在矩形AENM中,AM=EN.,

在Rt△AMG与Rt△ENG中,

∵AM=EN,MG=NG,

∴△AMG≌△ENG,

∴AG=EG,

∴EG=CG,

(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。

过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N,如图所示:

相关文档
最新文档