第一章:复数与复变函数
第一章复变函数
为闭区域
(三)复变函数例 1. 多项式
a 0 a1 z a 2 z a n z
2
n
( n 为整数 )
2. 有理分式
a 0 a1 z a 2 z b 0 b1 z b 2 z
2
anz bm z
n m
2
( m 和 n 为整数 )
(e
z
iz
e
z
),
cos z ch z 1 2
1 2
(e
z
iz
e
z
iz
)
(e e
),
(e e
)
ln z ln(| z | e z
s
i Arg z
) ln | z | i Arg z
e
s ln z
( s 为复数 )
sh同sinh,双曲正弦 (hyperbolic sine) ch同cosh, 双曲余弦 (hyperbolic cosine)
全体复数与平面上的点一一对应
y
cos =|z|
•
z=x+iy (x,y) (,)
/2-
复数平面
sin cos(/2-) x
o
z1=x1+i y1 ,z2=x2+i y2,如z1=z2,则x1=x2, y1 = y2
2) 极坐标表示 利用坐标变换:
y arctan 2 2 x 0 2
例5. 指数函数
2 i sin e
i
sin
e 2i
- i
5
3. 辐角主值: 辐角 = Arg
复数与复变函数
非零复数z的整数n次根式 为:
n
z
=n
iϕ +2kπ
ρe n
=n
ρ (cos ϕ + 2kπ
+ i sin ϕ + 2kπ )
n
n
(k = 0,1,2....n −1)
2. 无穷远点
复平面上一点与球面上的点 一一对应 ,复平面上∝ 点与 球面上N相对应,点的幅角无 意义。复平面+ ∝为闭平面。
(全平面扩充平面)。
ii) 复数“零”的幅角无定义,其模为零.
iii) 当ρ=1时, z = cosϕ + isinϕ = eiϕ称为单位复数.
利用复数的指数形式作乘除法比较简单,如:
z1 z2
=
ρ1 ρ 2 [cos(ϕ1
+ ϕ2 ) + i sin(ϕ1
+ ϕ2 )] =
ρ ρ ei(ϕ1 +ϕ2 ) 12
z1 z2
上却有很大的区别,这是因为实变函数Δx 只沿实轴逼近零
,而复变函数Δz却可以沿复平面上的任一曲线逼近零,因此
复变函数可导的要求比实变函数可导的要求要严格得多.
z x
例: f (z) = z = x − iy 在复平面上处处不可导
∵ z + ∆z − z = ∆z
∆z
∆z
当 Δz→0 沿实轴
∆z = ∆x, ∆z = ∆x → 1 ∆x ∆x
立。
4. 复变函数
例 : 初等单值函数
幂函数: w=zn n=1,2, - - - - -
多项式: a0+a1z1+a2z2+- - - - +anzn n 为整数
复变函数-复数的概念与定义
乘积的几何意义 :
y
z1 z2
1 2
z2
1
2Leabharlann z1x商:
z2 r2e i 2 r2 i ( 2 1 ) e i 1 z1 r1e r1
2. 乘幂与方根
n 个相同复数 z 的乘积 , 称为z 的 n 次幂, 记为z n
n z n z z ...z
2 i 2i ( 2 i )( i ) 2i (1 i ) 解: z i 1 i i (i ) (1 i )(1 i )
2i (1 i ) 2i 1 2 i 1 i 1 2 3 i 2
所以 Re z 2,
Im z 3
设 z1 , z2 , z3 , z C , 则有
(1) 交换律: z1 z2 z2 z1 , z1 z2 z2 z1
(2) 结合律: z1 z2 z3 z1 z2 z3 , ( z1 z2 )z3 z1 ( z2 z3 )
(3) 分配律: z1 z2 z3 z1 z2 z1 z3
5
3
z 的方根:
当 z 0 时, 若满足 wn z,则称 w 为 z 的 n 次方根, 记为 w n z
令 w e 有
i
ne in re i
于是 n r , n 2k (k 0,1,2,)
n r, 2k
n , ( k 0,1,2,)
x1 x2 y1 y2 i x1 y2 x2 y1
3. 商
z1 (x1 iy1 ) z z2 x2 iy2
( z2 0)
x1 x2 y1 y2 x2 y1 x1 y2 i 2 2 2 2 x 2 y2 x 2 y2
《复变函数》第一章 复数与复变函数
的定义域, w 值的全体组成的集合称为函数 w = f ( z ) 的值域. 及 w = z +1
z 1
( z ≠ 1)
均为单值函数,w = n z
均为多值函数.
今后如无特别说明,所提到的函数均为单值函数.
设 w = f ( z ) 是定义在点集 则
容易验证复数的四则运算满足与实数的四则运算相应的运算规律. 全体复数并引进上述运算后称为复数域,必须特别提出的是,在复数域 中,复数是不能比较大小的.
2.复平面
从上述复数的定义中可以看出,一个复数 z = x + iy 实际上是由一对有 序实数 ( x, y ) 唯一确定.因此,如果我们把平面上的点 ( x, y )与复数 z = x + iy 对应,就建立了平面上全部的点和全体复数间的一一对应关系. 由于 x 轴上的点和 y 轴上非原点的点分别对应着实数和纯虚数,因而 通常称
对应相等,即 x1 = x2 且 y1 = y2 虚部为零的复数可看作实数,即x + ii0 = x ,
0 特别地, + ii0 = 0 ,因此,全体实数是全体复数的一部分.
实数为零但虚部不为零的复数称为纯虚数,复数 x + iy 为互为共轭复数,记为
( x + iy ) = x iy
和 x iy
2.区域与约当(Jordan)曲线
定义1.5 若非空点集 D 满足下列两个条件: (1) D 为开集. (2) D 中任意两点均可用全在 D 中的折线连接起来,则称 D 为区域 (图) 定义1.6 若 z0 为区域 D 的聚点且 z0 不是 D 的内点,则称 z0 为 D 的界点, D 的所有界点组成的点集称为 D 的边界,记为 D , 若 r > 0 ,使得 N r ( z0 ) ∩ D = ,则称 z 0 为 D 的外点 定义1.7 区域 D 加上它的边界 C 称为闭区域,记为 D = D + C
复变函数 第1章 复数与复变函数
6
1 cos
2 k
6
i sin
2 k
6
( k 0 , 1, 2 , 3 , 4 , 5 )
可求出6个根,它们是
z0 3 2 1 2 i, z 1 i, z2 3 2 1 2 i
z3
3 2
1 2
i,
z 4 i,
z5
3 2
0
}
为 z 0 的去心 —邻域,
开集 如果点集 D 的每一个点都是 D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称 D 为 闭集. 连通集 设是 D开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集. 区域(或开区域) 连通的开集称为区域或 开区域. 闭区域 开区域 D 连同它的边界一起,称为 闭区域,记为 D .
1.3.2 单连通域与多(复)连通域
1. 简单曲线、简单闭曲线 若存在满足 t , t 且 t t 的 t 1 与 t 2,使 z ( t ) z ( t ) ,则称此曲线C有重点, 无重点的连续曲线称为简单曲线或约当 (Jordan)曲线;除 z ( ) z ( ) 外无其它重 点的连续曲线称为简单闭曲线,例如,
n
z z z
n个
若
z r ( cos i sin ,则有 )
z r ( cos i sin )
当 r 1 时,得到著名的棣莫弗(De Moivre) 公式
(cos i sin )
n
cos n i sin n
3
z 1 i 3 2 (c o s
复变函数-第一章-复数与复变函数
y
28
1 i
2
q
4
w0
r 2
q 2k
n i sin
w2
q 2k
n )
o
w3
x
wk n r (cos
16
例 2. 求
4
-1
解 : 1 cos i sin
4
1 cos
2k
4
i sin
2k
4
, (k 0,1,2,3).
z1
z2
z0 内点
P
D-区域
(6) 连通 D中任意两点可用一条全在D
中的曲线连接起来。
21
外点
z1
z2
z0 内点
P
(7) 区域
连通的开集.
D-区域
区域D与它的边界一起构成闭区域, 或闭域. D
22
(8) 有界区域 如果存在正数M,使得对于一切D中的点z, z M, 有 则称 D为有界区域,否则称为无界区域。 例如
设 w e , 由w z , 有 ne in re iq ,
i n
则 n r , n q 2k
(k为整数 ).
即 w = n z = n re
r (cos
n
i
θ + 2 kπ n
,
q 2k
n )
q 2k
n
i sin
(k为整数).
14
当k=0,1,2,…,n-1时,得到n个相异的根:
z. 共轭 x iy为x iy的共轭复数,记为
注:(1)两个复数相等,是指二者实部、虚部分别相同; (2)两个复数之间无法比较大小,除非都是实数; (3)实部为0,虚部不为0,为纯虚数。
第1章复数与复变函数资料
arc
tan
y x
,
arg
z
arc tan
y x
,
arc
tan
y x
,
,
arc
tan
y x
,
当x在第一象限 当x在第二象限 当x在第三象限 当x在第四象限
2
arg
z
2
0,
,
当z在正y轴上
当z在负y轴上 当z在正x轴上 当z在负x轴上
4.复球面
扩充复平面的 一个几何模型就是 复球面。
对满足α<t1<β, α≤t2≤β, t1≠ t2的t1及t2,当 z(t1)=z2(t)成立时,点z(t1)称为此曲线C的重点;凡 无重点的连续曲线,称为简单曲线或Jordan
目录
第一章 复数与复变函数
§1 复数及其代数运算
§2 复数几何表示 §3 复数的乘幂与方根 §4 区 域 §5 复变函数 §6 复变函数的极限和连续性
第一章 复数与复变函数
§1 复数及其代数运算
1.复数的概念 复数 形如
z=x+iy 或 z=x+yi
的数,称为复数 虚部为零的复数就可看作实数,即 x+i·0=x
点z0为G的边界点,点集G的全部边界点称为G的边 界(如图1.4.1)
注意 区域的边界可能是由几条曲线和一些孤
立的点所组成的(如图1.4.2)
定义1.4.3 若点集G的点皆为内点,则称G为
开集
定义1.4.4 点集G称为一个区域,如果 它满足:
(1)G是一个开集; (2)G是连通的,就是说G中任何两点z1 和z2都可以用完全属于G的一条折线连接起 来(图1.4.1)
(6) z z 2 Re z, z-z 2i Im z.
高等数学复变函数与积分变换第一章 复数与复变函数
第一章 复数与复变函数第一节 复数1.复数域每个复数z 具有x iy +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,分别记作z x Re =,z y Im =。
复数111iy x z +=和222iy x z +=相等是指它们的实部与虚部分别相等。
如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。
复数的四则运算定义为:)21()21()22()11(b b i a a ib a ib a ±+±=+±+)1221()2121()22)(11(b a b a i b b a a ib a ib a ++-=++ ()()11121221122222()222222a ib a a b b a b a b i a ib a b a b ++-=++++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。
2.复平面C 也可以看成平面2R ,我们称为复平面。
作映射:),(:2y x iy x z R C +=→,则在复数集与平面2R 之建立了一个1-1对应。
横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一般称为z -平面,w -平面等。
3.复数的模与辐角复数z x iy =+可以等同于平面中的向量。
向量的长度称为复数的模,定(,)x y义为:||z向量与正实轴之间的夹角称为复数的辐角,定义为:Arg arctan 2y z i xπ=+(k Z ∈)。
复数的共轭定义为:z x iy =-;复数的三角表示定义为:||(cos sin )z z Argz i Argz =+;复数加法的几何表示:设1z 、2z 是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图:关于两个复数的和与差的模,有以下不等式:(1)、||||||1212z z z z +≤+;(2)、||||||||1212z z z z +≥-; (3)、||||||1212z z z z -≤+;(4)、||||||||1212z z z z -≥-; (5)、|Re |||,|Im |||z z z z ≤≤;(6)、2||z zz =;例1.1试用复数表示圆的方程:22()0a x y bx cy d ++++= (0a ≠)其中a,b,c,d 是实常数。
明德 第一章 复数与复变函数
P x, y
复数z x iy可用xoy平面上 坐标为( x,y )的点p表示.此时,
x轴 — 实 轴 y轴 — 虚 轴 平 面— 复 平 面 或 z平 面
0
z x iy
x 实轴
数z与点z同义
2. 向量表示法
z x iy 点P ( x,y ) oP { x , y } 显然下列各式成立 可 用 向 量 oP表 示z x iy。 x z, y z, 称向量的长度为复数z=x+iy 的模或绝对值; 2 以x轴正方向为始边,OP 为终边的的夹角 θ 称为复数 2 z z z z . z x y, z=x+iy的辐角. y 虚轴 uu r
2 2
法 2. 将 z x iy 代入得: x y 1 i 2
x y 1 i 4 即 x y 1 4
2 2 2
2
z 2i z 2
解: 由几何意义, z 2i z 2 即 z 2i z 2
0
特别的,以z0为圆点?
z z0 Re i 0 2 , 为参数
x
0 2 , 为参数
例5 指出下列方程表示的曲线
1
解:法 1.
zi 2
由几何意义 z i 2 即 z i 2 表示到 i
距离为2的点的轨迹, 即圆 x y 1 4
n
k 0,1,,n 1
(1) 当k=0,1,…,n-1时,可得n个不同的根, 而k取其它整数时,这些根又会重复出现。
n n (2)几何上, z 的n个值是以原点为中心, r 为半 径的圆周上n个等分点,即它们是内接于该圆周 的正n边形的n个顶点。
复变函数第一章
1.1.4.复数四则运算的几何意义 .1.4.复数四则运算的几何意义 , θ θ 设有两个复数 z1 = r1(cos 1 + i sinθ1) z2 = r2 (cos 2 + i sinθ2)
则,z1 z 2 = r1 (cos θ 1 + i sin θ 1 )r2 (cos θ 2 + i sin θ 2 )
例1:下列复数化为三角表示式与指数表示式
2i ( 1 ) z = − 12 − 2i, ( 2 ) z = , ( 3 ) z = −3 + 4i −1+ i
例3:求下列方程所表示的曲线
(1) |z + i| = 2, ( 2) |z − 2i| = |z + 2|, ( 3 ) Im(i + z) = 4
________
7 1 z1 ∴ ( )=− + i z2 5 5
__ 1 3i 例2: z = - − 求 Re (z),Im (z)与z z i 1-i
− ( 1 − i) − 3i(i) − 1 + i + 3 2 + i ( 2 + i)( 1 − i) = = 解: z = = i( 1 − i) i +1 1+ i 2
x
(3)幅角主值的求法 (3)幅角主值的求法 y arctan x , ( x > 0 , y > 0 ) arctan y + π ( x < 0 , y > 0 ) , x arg z = arctan y − π , ( x < 0 , y < 0 ) x y arctan , ( x > 0, y < 0) x
第一章 复数和复变函数
ei1 ei2 (cos1 i sin 1 )(cos 2 i sin 2 ) cos(1 2 ) i sin(1 2 ) ei (1 2 ) ,
可得
z1z 2 r1r2ei (1 2 ) .
于是有如下等式
(1.13)
| z1 z2 || z1 || z2 |, Arg ( z1z 2 ) Arg ( z1 ) Arg ( z 2 ).
(1.14)
式(1.14)表明: 两个复数乘积的模等于它们模的乘积, 两个复数乘积的辐角等于它们辐角的 和。值得注意的是,由于辐角的多值性,式(1.14)的第二式应理解为对于左端 Arg ( z1 z2 ) 的
上海交通大学数学系 王健
任一值, 必有由右端 Argz1 与 Argz2 的各一值相加得出的 和与之对应;反之亦然。以后,凡遇到多值等式时,都 按此约定理解。 由式(1.14)可得复数乘法的几何意义,即: z1 z2 所 对应的向量是把 z1 所对应的向量伸缩 r2 | z2 | 倍, 然后再 旋转一个角度 2 argz 2 所得(见图 1.2)。
a 2 b 2 ( a b)( a b), a3 b3 ( a b)(a 2 ab b 2 ),
等等仍然成立。实数域和复数域都是代数学中所研究的“域”的实例。 由于一个复数与平面上的一个向量所对应, 因此, 复数的加法运算与平面上向量加法运 算一致,从而以下两个不等式成立。
z2 x2 iy2 相等,是指它们的实部与实部相等,虚部与虚部相等, 即 x1 iy1 x2 iy2
当且仅当 x1 x2 , y1 y2 。 1.1.2 复数的表示 1.1.2.1 代数表示 由式(1.1)所给出的即为复数的代数表示。 1.1.2.2 几何表示 由复数的定义可知,复数 z x iy 与有序数对 ( x, y ) 建立了一一对应关系。在平面上建立直角坐标 系 xOy ,用 xOy 平面上的点 P ( x , y ) 表示复数 z ,这 样复数与平面上的点一一对应,称这样的平面为复平 面。若用向量 OP 表示复数 z ,如图 1.1 所示。该向
第一章复数与复变函数
n 次幂,
cos i sin
n
cosn i sinn
此式称为棣莫佛(De Moivre)公式。
2、复数的开方 开方是乘方的逆运算,设 w z 则称复数 z的n次方根记作: n z . w w为复数
n
容易得
1 1 w z | z |[cos( 2k ) i sin( 2k )] n n
2 2 2 2
2
2
三、复数的表示方法
1. 点的表示法 2. 向量表示法
3. 三角表示法 4. 指数表示法
1. 点的表示法
复数z x iy 一对有序实数x, y), (
在平面直角坐标系中, 任 意 点 ( x , y ) 一 对 有 序 实 数x , y ) P ( z x iy 平 面 上 的 点 ( x , y ) P
则有 z1z2 | z1 || z2 | [cos( 1 2 ) i sin( 1 2 )]
于是得到:1z2 || z1 || z2 | |z
Arg( z1z2 ) Argz1 Argz2
后一个式子应理解为集合相等。
几何意义 : 将复数 z 1 按逆时针方向旋转一个 角度2 ,再将其伸缩 z2 倍。
内接于该圆周的正 n 边形的 n 个顶点。
如 wk 4 1 i
2k 2k 8 2 (cos 4 i sin 4 ) ( k 0,1,2,3) 4 4
(见下图)
w1
y
1 i
2
28
w0
w2
o
w3
x
例5 求解方程 z 3 2 0
解:z 2
故得
1 3
复变函数
z1 z1 (3) z z 2 2
(5)
2
(z2 0); (4) z z;
2 2
z z (Re z ) (Im z ) z ;
(6) z z 2 Re z, z- z 2i Im z.
利用共轭复数的概念,还可以得到 两个关于复数模的重要公式:
n
w1 r (cos
1 n
………………………………………
wn 1 r (cos
n
i sin
n
)
2(n 1)
n
i sin
2(n 1)
n
)
5.复数的共轭运算 根据共轭复数的定义,不难证明共 轭复数具有如下性质
(1) z1 z2 z1 z2 ;
(分配律)
注意 一般说来,任意两个复数不 能比较大小
2 复平面
(1).复数的点表示法 (2).复数的向量表示
(3).复数的极坐标表示 x cos , y sin i z cos i sin e 复数的这种表示 称为复数的极坐标形 式,亦称为三角形式 和指数形式 关于复数的模、辐角,应当作如下 的说明:
z1 ( z2 z3 ) ( z1 z2 z1 z3 )
(分配律)
注意 一般说来,任意两个复数不 能比较大小
2 复平面
(1).复数的点表示法 (2).复数的向量表示
(3).复数的极坐标表示 x cos , y sin i z cos i sin e 复数的这种表示 称为复数的极坐标形 式,亦称为三角形式 和指数形式 关于复数的模、辐角,应当作如下 的说明:
复变函数1.pdf
2⎢⎣⎡cos
π 4
+
i
sin
π⎤ 4 ⎥⎦
4
1+
i
=
8
⎡π
⎢ 2⎢cos
4
⎢⎣
+ 2kπ 4
+
π i sin 4
+
2kπ
⎤ ⎥
4
⎥ ⎥⎦
即
w0
=8
2
⎣⎡⎢cos
π 16
+
i
sin
1π6⎥⎦⎤,
(k = 0,1,2,3).
w1
=
8
2⎣⎡⎢cos
9π 16
+
i sin 916π⎥⎦⎤,
w2
=
8
2⎣⎡⎢cos
当 z 的模 r = 1,即 z = cosθ + i sinθ ,
(cosθ + i sinθ )n = cos nθ + i sin nθ .棣莫佛公式
例 计算( 12-2i)3
解 由于 12-2i = 4[cos(−π / 6) + i sin(−π / 6)]
因此( 12-2i)3 = 43 (cos(−π / 6) + i sin(−π / 6))3
例如,设 z1 = −1, z2 = i, 则 z1 ⋅ z2 = −i,
Argz1 = π + 2nπ, (n = 0, ± 1, ± 2,"),
A故Arrgg3(zπz21+z=22)π2(=m+−2+πm2n+π)π,2k=π(m−, π=(+k02,=k±π01,,,
± 2,"), ± 1, ± 2,"),
第一章 复数与复变函数
z 对应,就建立了
平面上全部的点和全体复数间的一一对应关系.同时,复 Z也能用向量 OP 来表示。
从上述复数的定义中可以看出,一个复数z x iy 实际 唯一确定.因此,如果我们把 ( x, y ) 平面上的点 ( x, y ) 与复数 z 对应,就建立了平面上全部 上是由一对有序实数 的点和全体复数间的一一对应关系.
x2 iy2 ,则复数四则运算规定:
z1 z2 ( x1 x2 ) i( y1 y2 )
z1 z2 ( x1x2 y1 y2 ) i( x1 y2 x2 y1 )
z1 x1 x2 y1 y2 x2 y1 x1 y2 i 2 ( z2 0) 2 2 2 z2 x2 y2 x2 y2
y x x y
2 2
例 将复数
1 sin1 i cos1
2
化为三角形式和指数形式
z 1 sin1
2
1 4cos 4 2
2
cos 1 21 sin1 2 1 cos 1 2
2
又
i 4 1 i 2 cos 4 i sin 4 2e
例1.4
1 1
cos0 i sin0 e i 2 2 cos i sin 2e
0i
cos i sin i 1 2 2
式
z1 z2 z1 z2
(三角形两边之和第三边,图1-2)
(1.2)
z1 z2 z1 z2
(三角形两边之差第三边,图1-3)
(1.3)
(1.2)与(1.3)两式中等号成立的几何意义是:复数 z1 , z2 分别 与 z1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球面上任意一个异于 的 点P, 用一直线段把P与 相连, 则这条直线段的延长线 就交复平面上一点z. 即球面上的点除去北极 外, 与复平面内的点一 一对应.
北极 对应哪一点? 对应哪一点? 在复平面上引进一个 “无穷远点”(∞ )与N对应, 对应, 对应的复数称为“无穷大” 扩充复平面 C = C ∪ {∞} .
2 2 2
2
2
= z1 + z2 +2 z1 z2 = ( z1 + z 2 ) 2
2
2
两边开方即得所要得不等式. 两边开方即得所要得不等式.
4. 复平面上点的轨迹方程 例2 将通过两点 z1=x1+iy1和 z2=x2+iy2 的直线用复数 形式的方程表示. 解 过两点(x1,y1) 和(x2,y2) 的直线方程为 x − x1 y − y1 = t x 2 − x1 y 2 − y1 则其参数方程为
2
则
z1 z2 = r1r 2 (cosθ1 + isinθ1 )(cosθ 2 + isinθ 2 )
= r1r 2 [cos(θ 1 +θ 2 ) + isin(θ 1 +θ 2 )] = r1r 2 ei (θ 1 +θ2 )
于是, z1 z2 = z1 ⋅ z2 , Arg( z1 z2 ) = Arg( z1 ) + Arg( z2 )
i4m = 1, i4m+1 = i, i4m+2 = −1, i4m+3 =−i, (m∈Z)
例1. 对任何z, 是否有z = z ? 如果是,给出证明, 如果不是,对哪些z值才成立?
[书P31题5]
2
2
例2. 证明若z是实系数方程 a n x + a n-1 x
n n −1
+
+ a1 x + a 0 = 0
z1 − z2 ≤ z1 ± z2 ≤ z1 + z2 ,
3. 复数的三角表示和指数表示 x = r cos θ 其中r = z , θ 为z的一个辐角(一般取 y = r sin θ 辐角主值) 则 z = r(cosθ + i sinθ ) ——复数的三角表示.
= re iθ ——复数的指数表示.
2) ∵r = z =1,
sin
π
3 π 3 π π π π = cos − = cos π , cos = sin − = sin π, 5 10 5 10 2 5 2 5
3 πi 10
3 3 ∴z = cos π + isin π = e 10 10
.
例2 设z1,z2为任意两个复数, 为任意两个复数,求证 z1 + z2 ≤ z1 + z2 证明 ∵ z1 + z 2
十九世纪: ----复变函数论的创立 世纪: ----复变函数论的创立 柯西 (Cauchy: 1789-1857): 复积分 黎曼 (Riemann: 1826-1866): 保形映射等 Cauchy-Riemann方程 维尔斯特拉斯 (Weierstrass: 1815-1897): 复级数
研究内容
复变函数: 自变量为复数的函数 主要内容:
复数与复变函数 复变函数的极限和连续 解析函数( 可导函数 ) 复变函数的积分 复级数 留数
学习方法
复变函数中许多概念、 复变函数中许多概念 、 理论和方法是实 变函数在复数域内的推广和发展, 变函数在复数域内的推广和发展 , 它们 之间有许多相似之处。但又有不同之 处 , 在学习中要善于比较、 在学习中要善于比较 、 区别、 区别 、 特别 要注意复数域上特有的那些性质与结果.
即 Argz = arg z + 2kπ , k ∈ Z 辐角主值 arg z ( z ≠ 0 ) 的确定
y
θ0
P (x,y)
2. 复数的向量运算: 平行四边形法则或三角形法则
y y
z2
z1
O
z1 +z2
O x
z2
z1
x
z1 − z 2 为
线段 z 1 z 2的长度
−z2
z1 −z2
有关系式: 有关系式:
a ∞ a = 0, =∞ (a ≠∞), =∞ (a ≠ 0, 但可为 ∞) ∞ a 0
在本书以后各处, 如无特殊声明, 所谓“平面”, 一 般扔指有限复平面,“点”仍指有限复平面上的点.
第三节 复数的乘幂与开方
乘积与商 幂与根
一、乘积与商
1、乘积 iθ1 设 z1 = r1 (cosθ1 + isinθ1 ) = r1e , z2 = r 2 (cosθ 2 + isinθ 2 ) = r 2 eiθ
例1 将下列复数化为三角形式与指数形式. 将下列复数化为三角形式与指数形式.
1) z = −1 + 3i,
解 1)
∵r = z = 2,
2) z = sin + icos 5 5
π
π
3 2π = , θ = arctan( ) + π 3 −1 2 πi 2 2 ∴z = 2cos π +isin π = 2e3 . 3 3
在 z ( ≠ 0) 的幅角中, 把满足 − π < θ0 ≤ π 的幅角θ 0 定义 y 为z的辐角主值, 的辐角主值,记作 θ 0 = argz
y x x > 0,y ≥ 0或y ≤ 0 ; O x arctan x , 注意: 注意:当z=0时, x = 0, y > 0 ; π/2, 辐角不确定. − π/2, x = 0, y < 0 ; argz = − arg z ? argz = y arctan x + π , x < 0,y > 0 ; (第二象限) arctan y − π , x < 0,y < 0 ; (第三象限) x x < 0,y = 0. π ,
z1 z1 (1)z1 ± z2 = z1 ± z2 , z1z2 = z1 ⋅ z2 , = ( z2 ≠ 0); z2 z2
(2) z = z ;
2 2 z z = z = [Re( z )] + [Im( z )] ; (3) 2
(4) z + z = 2Re(z), z − z = 2iIm(z). 5.
x = x1 + t ( x2 − x1 ), y = y1 + t ( y2 − y1 ). ( −∞ < t < +∞)
因此,它的复数形式的参数方程为
z = z1 + t ( z2 − z1 ). ( −∞ < t < +∞)
过两点 z1和 z2的直线方程为 的直线方程为
z (t ) = z1 + t (z2 − z1 ). ( − ∞ < t < +∞)
x = Re( z ), y = Im( z )
实数 ( y =0) 复 数 (C) 虚数 ( y ≠ 0 ) 纯虚数 ( x=0) 非纯虚数 ( x ≠ 0 )
简单性质: 简单性质:
(1) 设 z1 = x 1 +iy1 ,
z 2 = x2 + iy2 ,则
z1 = z2 ⇔ x1 = x2且y1 = y2
的根, 则 z也是其根. (实系数方程的复根成对出现)
[书P32题12(3)]
第二节 复数的几何表示 复平面 复球面
y
一、复平面
→ P(x , y ) ← 设 z = x + iy ← → OP
x轴↔实轴, y轴 ↔虚轴 1. 模 、辐角 模:z =r = OP = x2 +y2 ; 则有
x≤ z, y ≤ z,
特别地, 特别地,从z1到z2的直线段的参数方程为: 的直线段的参数方程为:
z(t ) = z1 + t (z2 − z1 ). (0 ≤ t ≤ 1)
z1 + z 2 线段 z 1 z 2 的中点为: 的中点为: 2
例3 求下列方程所表示的曲线或图形: 求下列方程所表示的曲线或图形: 1) z − z0 = R, 表示以z0为圆心, 为圆心,以R为半径的圆周; 为半径的圆周; 2) z − 2i = z + 2 表示直线 y= -x
arg(z1 z2 ) ≠ arg(z1 ) + arg(z2 )
z1 z2 = r1r 2[cos(θ 1 +θ 2 ) + isin(θ 1 +θ 2 )] = r1r 2 e
浙江工业大学理学院
任课教师: 任课教师:潘永娟 panyongjuan@
背景
十六世纪: 十六世纪:复数——“虚数”
十八世纪: 十八世纪: 达朗贝尔(Alembert: 1717-1783) 欧拉 (Euler: 1707-1783) 复数的几何意义和物理意义 流体力学等
背景
考核与成绩
闭卷, 闭卷, 平时(作业,到课,练习): 20%, 期末: 80%
第一章 复数与复变函数
第一节 复数及其代数运算 复数的概念 复数的代数运算
一、复数的概念
规定: i = −1, 称 引进虚数单位i,规定:
2
z = x + iy ( x , y ∈ R )
实部和虚部, 虚部,记为 为复数. 为复数. x, y 分别称为 z 的实部和
x 1 x2 + y1 y2 x 2 y1 − x1 y2 = +i , 2 2 2 2 x2 + y2 x2 + y2
复数的加法与乘法满足交换律, 复数的加法与乘法满足交换律,结合律; 结合律;乘法还满 足分配律。 足分配律。