流体传动实验
流体传动及控制国家重点实验室(东北大学)
东北大学轧制技术及连轧自动化国家重点实验室主任招聘启事东北大学轧制技术及连轧自动化国家重点实验室(简称RAL)是我国在轧制技术及其自动化领域内的重要研究基地,于1989年开始筹建,1995年12月9日通过国家验收。
实验室在超级钢的开发、AI 应用方面处于国际领先的地位;在热轧钢材组织性能预报、型材高精度轧制、TMCP、轧制过程自动化等领域的研究处于国内领先,达到国际先进水平。
实验室立足于钢铁材料轧制过程研究的基础,正在向材料的种类和加工方式等方面拓展新的研究领域。
根据《国家重点实验室建设与管理暂行办法》、《高等学校重点实验室建设与管理暂行办法》文件精神及《关于高校工程、材料科学领域国家重点实验室及化学科学领域教育部重点实验室领导班子换届的通知》(教技司[2008]303号)文件要求,东北大学轧制技术及连轧自动化国家重点实验室主任将于近期换届,现特向国内外公开招聘该实验室主任。
一、任职条件(一)实验室主要研究领域高水平的学术带头人。
(二)具有较强的组织协调和管理能力。
(三)年龄一般不超过60岁,连任不超过两届。
(四)每年在实验室工作时间不少于8个月。
二、申报材料(一)个人学习、工作、研究经历。
(二)主要研究成果简述(500字以内)。
(三)反映本人学术水平的科研和管理工作业绩材料,列出近五年来有代表性的著作、论文、科研项目、获奖成果等清单。
(四)实验室建设发展的设想及工作计划。
三、招聘时间及联系方式招聘时间从即日起至2008年12月8日止。
申请材料请报送至东北大学人事处。
联系人:马一鸣电话:86-24-83686962传真:86-24-23890977EMAIL:*****************地址:辽宁省沈阳市和平区文化路3号巷11号,邮编:110004。
流体力学综合实验
实验报告课程名称:过程工程原理实验(甲) 指导老师: 成绩:__________________ 实验名称:流体力学综合实验(一、二) 实验类型:工程实验 同组学生姓名:姿 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得1、流体流动阻力的测定实验1.1 实验目的:1.1.1 掌握测定流体流经直管、阀门时阻力损失的一般实验方法1.1.2 测定直管摩擦系数λ与雷诺数 的关系,验证在一般湍流区内λ与 的关系曲线1.1.3测定流体流经阀门时的局部阻力系数ξ1.1.4 识辨组成管路的各种管件、阀门,并了解其作用 1.2 实验装置与流程: 1.2.1 实验装置:实验对象部分由贮水箱、离心泵、不同管径和材质的水管、阀门、管件、涡轮流量计、U 形流量计等所组成。
实验管路部分有两段并联长直管,自上而下分别用于测定粗糙管直管阻力系数和光滑管直管阻力Re Re系数。
同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力阻力系数。
水的流量使用涡流流量计或转子流量计测量,管路直管阻力和局部阻力采用压差传感器测量。
1.2.2 实验装置流程示意图,如图1,箭头所示为实验流程:其中:1——水箱2——离心泵3——涡轮流量计4——温度计5——光滑管实验段6——粗糙管实验段7——截止阀8——闸阀9、10、11、12——压差传感器13——引水漏斗图1 流体力学综合实验装置流程示意图1.3 基本原理:流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成的机械能损失成为直管阻力损失。
流体通过管件、阀门时由于流体运动方向和速度大小的改变所引起的机械能损失成为局部阻力损失。
1.3.1直管阻力摩擦系数λ的测定:由流体力学知识可知,流体在水平等径直管中稳定流动时,阻力损失为:(1) 公式中:fp ∆:流体流经l 米直管的压力将,Pa ;λ:直管阻力摩擦系数,无因次; d :直管内径,m ;f h :单位质量流体流经l 米直管的机械能损失,J/kg ;ρ:流体密度,kg/m 3;l :直管长度,m ;u :流体在管内流动的平均速度,m/s ;由上面的式子可知: (2)雷诺数: Re =Reuρμ式子中:μ:流体粘度,kg/(m ·s)。
流体传动及控制国家重点实验室(浙大)
流体传动及控制国家重点实验室实验室介绍浙江大学流体传动及控制国家重点实验室的前身是由原国家科委、国家教委联合批准于1981年成立的浙江大学流体传动及控制研究室。
1985年12月被原国家教委批准为首批开放实验室,1989年进入世界银行贷款国家重点实验室建设系列,1995年9月建成并通过国家验收,1997年4月通过国家评估。
实验室学术带头人为路甬祥院士。
现任实验室主任傅新教授,副主任是陶国良教授、金波副教授。
实验室学术委员会主任路甬祥院士,副主任史维祥教授和王益群教授。
经过多年的培养和积累,实验室已形成了一支高水平、高层次、精干、多学科的科研队伍。
目前实验室现有固定人员30名,流动人员19名,分别属于流体传动及控制、机械电子工程、应用流体力学、信号处理及检测等专业。
固定人员中,教授20人(其中博导16人),副教授及高级工程师9人,拥有博士学位26人,占86.7%。
在读博士研究生、硕士研究生和博士后研究人员250多名。
实验室以满足国家战略需求、促进学科发展和为国民经济建设、为国家安全、国防建设服务为己任,以“一流的人才梯队,一流的教育质量,一流的科研水平,一流的成果转化”为奋斗目标,在科研工作、人才培养、队伍建设、开放交流、实验设备建设等方面都取得了显著成绩。
实验室拥有一批具有国际、国内先进水平的实验设备和测试仪器,提供了本领域国内一流的研究条件。
一批新的实验装置正在建设之中。
在不断深化应用基础研究的同时,实验室还着眼于满足国民经济和行业发展的需求,在将流体传动及控制技术应用于能源、交通、海洋、冶金等重要领域以及国防建设等方面做出了自己的贡献。
实验室已成为我国流体传动及控制领域最重要的科学研究与人才培养基地,在国际上也有广泛的影响。
固定人员流体传动及控制国家重点实验室学术委员会名单Members of Academic Committee of the SKLoFP研究方向本实验室根据自身的学术积累和研究特色,结合流体传动及控制学科的发展,在学术委员会的指导下,以面向国家战略需求,面向学科发展前沿,使应用基础研究与为经济建设服务、为国家安全、国防建设服务相结合为基本原则,制定本实验室的研究方向;并将实验室的基本研究目标确定为:通过在流体传动及控制领域的应用基础理论及技术的研究,使实验室成为在流体传动及控制研究领域国内一流的应用基础理论研究基地,成为聚集和培养本领域优秀人才以及开展高水平学术交流和开放的基地,以继续发扬在流体传动及控制学科国内学术研究领先地位的优势,发展具有我国自主知识产权、面向相关行业的流体动力控制技术,为我国在流体传动及控制领域整体达到世界先进水平提供前瞻性的理论基础和技术储备,为国民经济、国防建设服务,并巩固实验室在国际同行中的先进水平地位,争取达到世界一流水平。
流体传动与控制课程设计
流体传动与控制课程设计一、课程目标知识目标:1. 让学生掌握流体传动与控制的基本原理,理解流体力学在自动化控制中的应用。
2. 使学生了解各种流体元件的结构、原理及功能,能正确选用流体元件进行简单系统的设计。
3. 让学生掌握流体传动与控制系统的分析、设计方法和步骤,具备解决实际问题的能力。
技能目标:1. 培养学生运用流体力学知识进行传动与控制系统计算、分析的能力。
2. 培养学生动手实践能力,能正确使用流体元件搭建简单的传动与控制系统。
3. 培养学生利用现代设计方法和技术进行流体传动与控制系统设计的能力。
情感态度价值观目标:1. 培养学生对流体传动与控制技术的兴趣,激发其探索精神。
2. 培养学生团队协作意识,提高沟通与交流能力。
3. 引导学生关注流体传动与控制技术在工业生产中的应用,认识到其在国家经济发展中的重要性。
本课程针对高年级学生,课程性质为理实一体化课程。
在教学过程中,需结合学生的认知特点,注重理论与实践相结合,强调学生的动手实践能力。
通过课程学习,使学生能够将所学知识应用于实际工程问题,提高其解决实际问题的能力。
课程目标分解为具体学习成果,以便于教学设计和评估。
二、教学内容1. 流体力学基础:流体性质、流体静力学、流体动力学、流体阻力与流动损失。
2. 流体元件:液压泵、液压马达、液压缸、阀门、液压油缸、气压元件等结构、原理及功能。
3. 液压系统设计:液压系统基本回路、液压系统设计方法、步骤及注意事项。
4. 气压传动与控制:气压传动原理、气压元件、气压系统设计及应用。
5. 流体传动与控制系统仿真:利用现代设计软件进行流体传动与控制系统的仿真分析。
6. 实践教学:搭建简单的流体传动与控制系统,进行实验操作与分析。
教学内容依据课程目标,结合课本,确保科学性和系统性。
教学大纲明确教学内容分为六个部分,按照以下进度安排:1. 流体力学基础(2课时)2. 流体元件(2课时)3. 液压系统设计(3课时)4. 气压传动与控制(2课时)5. 流体传动与控制系统仿真(3课时)6. 实践教学(4课时)教学内容与课本章节相对应,涵盖流体传动与控制的基本理论、元件、设计方法、仿真及实践,旨在帮助学生全面掌握流体传动与控制相关知识。
浙江大学流体传动及控制国家重点实验室部分研究成果
浙江大学流体传动及控制国家重点实验室部分研究成果王庆丰(浙江大学流体传动及控制国家重点实验室.杭州310027)PresentationonpartoffindingsattheStateKeyLaboffluidpowertransmissionandcontrolinZhejiangUniversityWANGQing-feng(TheStateKeyLaboratoryofFluidPowerTransmissionandControl,ZhejiangUniversity,Hangzhou310027,China)摘要:简要夼绍了浙江走学流体传动覆控制国家重点实验室在机电液集戍智能控制、纯水液压元件及系统、液压元件噪声控制、微流控器件及系统、气动伺服控制、压缩空气动力发动机厦汽车、低比转速高扬程高速离·o泵以噩深海资源勘探作业技术等方面的研究进展厦其成果。
关键词:机电液集成;纯水液压技术;噪声;微流体系统;气动伺服;压缩空气;离心泵;深海资源中圈分类号:TP29文献标识码:B文章编号:1008--0813(2003)01—00“一03浙江大学流体传动及控制国家重点实验室的前身是由原国家科委、国家教委联合批准于1981年成立的浙江大学流体传动及控制研究室。
1985年12月被原国家教委批准为首批开放实验室,1989年进人世界银行贷款国家重点实验室建设系列。
1995年9月建成并通过国家验收,1997年、2003年两次通过国家评估。
目前实验室有固定研究人员37名.其中有博士学位的27名,有16名教授、14名博导、15名副教授与高级工程师。
有200多名研究生在实验室研究学习,其中有博士研究生60多名。
两院院士路甬祥教授为实验室的学术领导人及学术委员会主任,王庆丰教授为实验室主任。
实验室的依托单位为浙江大学机械电子控制工程研究所。
下面简要介绍所取得的部分研究成果及其进展。
1机电液集成智能控制及其应用研究机电液集成智能控制系统是将电液控制技术与PLC、现场总线技术、智能化控制等集成组成的。
化工原理实验报告
实验一 伯努利实验一、实验目的1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解;2、观察各项能量或压头随流速的变化规律;二、实验原理1、不可压缩流体在管内作稳定流动时,由于管路条件如位置高低、管径大小等的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换;对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的机械能守恒定律;2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失;故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失;3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头;当测压直管中的小孔即测压孔与水流方向垂直时,测压管内液柱高度位压头则为静压头与动压头之和;任意两截面间位压头、静压头、动压头总和的差值,则为损失压头;4、柏努利方程式式中:1Z 、2Z ——各截面间距基准面的距离 m1u 、2u ——各截面中心点处的平均速度可通过流量与其截面积求得m/s1P 、2p ——各截面中心点处的静压力可由U 型压差计的液位差可知Pa对于没有能量损失且无外加功的理想流体,上式可简化为ρρ2222121122p u gz p u gz ++=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22ν,从而可得到各截面测管水头和总水头;三、实验流程图泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm;四、实验操作步骤与注意事项1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系;2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平开关几次;3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况;4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h1…△h4;要注意其变化情况;继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h1…△h4;5、实验完毕停泵,将原始数据整理;实验二离心泵性能曲线测定一、实验目的1.了解离心泵的构造和操作方法2.学习和掌握离心泵特性曲线的测定方法二、实验原理离心泵的主要性能参数有流量Q也叫送液能力、扬程H也叫压头、轴功率 N和效率η;离心泵的特性曲线是Q-H、Q-N及Q-η之间的关系曲线;泵的扬程用下式计算:He=H压力表+H真空表+H+u出2-u入2/2g式中:H压力表——泵出口处压力H真空表——泵入口处真空度H——压力表和真空表测压口之间的垂直距离泵的总效率为:其中,Ne为泵的有效功率:Ne=ρ●g●Q●He 式中:ρ——液体密度g——重力加速度常数Q——泵的流量Na为输入离心泵的功率:Na=K●N电●η电●η转式中:K——用标准功率表校正功率表的校正系数,一般取1 N电——电机的输入功率η电——电机的效率η转——传动装置的传动效率三、实验设备及流程:设备参数:泵的转速:2900转/分额定扬程:20m水温:25℃泵进口管内径:41mm泵出口管内径:35.78mm 两测压口之间的垂直距离:0.35m四、实验操作1.灌泵因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵;2.开泵注意:在启动离心泵时,主调节阀应关闭,如果主调节阀全开,会导致泵启动时功率过大,从而可能引发烧泵事故;3.建立流动4.读取数据等涡轮流量计的示数稳定后,即可读数;注意:务必要等到流量稳定时再读数,否则会引起数据不准;五、作业以一组数据计算实验三过滤实验一、实验目的1.了解板框过滤机的构造和操作方法;2.掌握恒压过滤常数的测定方法测定恒压过滤常数;虚拟滤液体积;虚拟过滤时间;二、基本原理对于不可压缩滤渣,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:V+Ve2=KS2t+te上式也可写成:q+qe 2=Kt+te微分后得到:dt / dq= 2q / K+2qe/ K该微分式为一直线方程,其斜率为2/K,截距为2qe/K;实验中△t/△q代替dt/dq,通过实验测定一系列的△t与△q值,用作图的方法,求出直线的斜率、截距,进而求出恒压过滤常数K,虚拟滤液体积qe;只考虑介质阻力时:qe2=Kte将qe 代入上式可求出虚拟过滤时间te;三、实验设备板框过滤机的过滤面积为0.12m2;由空压机提供压力,并恒压可调;以碳酸钙和水混合成悬浮液,可完成过滤常数的测定实验;孔板孔口径:8mm,文丘里管喉径:8mm,φ20×2不锈钢管;四、实验步骤1、先将板框过滤机的紧固手柄全部松开,将板、框清洗干净;2、将干净滤布安放在滤板两侧,注意必须将滤布四角的圆孔与滤板四角的圆孔中心对正,以保证滤液和清洗液流道的畅通;3、安装时应从左至右进行,装好一块,用手压紧一块;请特别注意板框的顺序和方向,所有板框有圆点的一侧均应面向安装者,板框过滤机共有4块板带奇数点,3块框带偶数点,以确保流道的畅通;4、装完以后即可紧固手柄至人力转不动为止;5、松开混合釜上加料口的紧固螺栓,打开加料口,加水至视镜的水平中心线,打开控制屏上的电源,启动搅拌机,再加入碳酸钙3kg,任其自行搅拌;6、约5min后,检查所有阀门看是否已关紧确保全部关紧后,同时注意在搅拌过程中混合釜的压力,控制混合釜压力表的指示值在~范围,并一直维持在恒压条件下操作,如果压力过大也可通过混合釜右侧的放空阀调节;(1)、打开过滤机的出料阀,并准备好秒表,做好过滤实验的读数和记录准备,再打开控制屏上板框过滤机的进料阀,开始过滤操作;2、注意看看板框是否泄漏大量液体冲出,少量漏液无妨确认正常后,观察滤液情况,一般开始出来的比较浑浊,待滤液变清后,立即开始读取计量槽的数据,并同时开始计时和记录相关实验数据;3、装置的计量槽分左右计量筒计量,左侧计滤液量,右侧计洗水量左右两筒有过滤液孔连通,需要时两筒可串联使用,以便连续实验需要;读取5组以上的实验数据后,即可关闭进料阀和出料阀结束过滤实验;(4)、如果需要做滤饼洗涤实验,则在结束过滤实验之后,关闭混合釜的进气阀;然后关闭进水阀,打开进气阀,恒压在~范围,按过滤实验相同的方法操作,完成实验后,关闭进水阀和出水阀结束滤饼洗涤实验;(5)、如果改变操作压力,还可进行过滤速率方程压缩指数的测定实验;实验四传热实验一、实验目的测定对流传热系数的准数关联式;二、实验原理对流传热的核心问题是求算传热系数α,当流体无相变时对流传热准数关联式的一般形式为:对于强制湍流而言,Gr准数可以忽略,故用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归;本实验简化上式,即取n=流体被加热;这样,上式即变为单变量方程,再两边取对数,即得到直线方程:在双对数坐标中作图,找出直线斜率,即为方程的指数m;在直线上任取一点的函数值代入方程中,则可得到系数A,即:对于方程的关联,首先要有Nu、Re、Pr的数据组;其准数定义式分别为:牛顿冷却定律:传热量Q可由下式求得:三、实验设备流程设备参数:孔板流量计:流量计算关联式:V=●O式中:R——孔板压差,mmH2V——水流量,m3 /h换热套管:套管外管为玻璃管,内管为黄铜管;套管有效长度:1.25m,内管内径:0.022m四、实验操作1.启动水泵2.打开进水阀3.打开蒸汽发生器4.打开放汽阀5.读取水的流量6.读取温度7.实验结束后,先停蒸汽发生器,再关进水阀;实验五精馏实验一、试验目的1.掌握精馏塔的结构2.测定精馏塔的理论板数及塔效率二、实验原理1.理论板2.作图法求理论板数3.精馏塔的全塔效率Et为理论塔板数与实际塔板数N之比,即:E t =Nt/ N精馏塔的单板效率Em可以根据气相或液相通过测定塔板的浓度变化进行计算; 若以液相浓度变化计算,则为:Eml =Xn-1-Xn/ Xn-1- Xn若以气相浓度变化计算,则为:Emv =Yn-Yn+1/ Yn-Yn+1式中:Xn-1-----第n-1块板下降的液体组成,摩尔分率;Xn-------第n块板下降的液体组成,摩尔分率;Xn ------第n块板上与升蒸汽Yn相平衡的液相组成,摩尔分率;Yn+1-----第n+1块板上升蒸汽组成,摩尔分率;Yn-------第n块板上升蒸汽组成,摩尔分率;Yn ------第n块板上与下降液体Xn相平衡的气相组成,摩尔分率;三、实验设备及流程简介本实验进料的溶液为乙醇—水体系,其中乙醇占20%摩尔百分比;精馏塔:采用筛板结构,塔身用直径Φ57X3.5mm的不锈钢管制成,设有两个进料口,共15块塔板,塔板用厚度1mm的不锈钢板,板间距为10cm;板上开孔率为4%,孔径是2mm,孔数为21;孔按正三角形排列;降液管为Φ14X2mm的不锈钢管;堰高是10mm;四、实验步骤1.全回流进料打开泵开关,再打开进料的管线;2.塔釜加热升温全回流进料完成后,开始加热;3.建立全回流注意恒压,回流开始以后就不能再打开衡压排气阀,否则会影响结果;4.读取全回流数据5.逐步进料,开始部分回流逐渐打开塔中部的进料阀和塔底的排液阀以及产品采出阀,注意维持塔的物料平衡、塔釜液位和回流比;6.记录部分回流数据五、作业写出精馏段操作线方程、提馏段操作线方程、加料线方程;实验六、吸收实验一、实验原理本实验是用水吸收空气-氨混合气体中的氨;混合气体中氨的浓度很低;吸收所得的溶液浓度也不高;气液两相的平衡关系可以认为服从亨利定律即平衡线在x-y 坐标系为直线;故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为: 所以 )/(m p A a Y Y V G K ∆•= 其中 式中G A —单位时间内氨的吸收量kmol/h; K Ya —总体积传质系数kmol/m 3·h ; V p —填料层体积m 3;△Y m —气相对数平均浓度差; Y 1—气体进塔时的摩尔比;Y e1—与出塔液体相平衡的气相摩尔比; Y 2—气体出塔时的摩尔比;Y e2—与进塔液体相平衡的气相摩尔比; 3、计算方法、公式:1氨液相浓度小于5%时气液两相的平衡关系:温度 ℃:***********亨利系数Eatm :2总体积传质系数K Ya 及气相总传质单元高度H og 整理步骤 a 、标准状态下的空气流量V 0:21210010T T PP P T V V ••••= m 3/h 式中:V 1——空气转子流量计示值 m 3/hT 0、P 0——标准状态下的空气的温度和压强 T 1、P 1——标定状态下的空气的温度和压强 T 2、P 2——使用状态下的空气的温度和压强b 、标准状态下的氨气流量V 0’210221010010''T T P P P T V V ••••••=ρρ m 3/h 式中:V 1’——氨气转子流量计示值 m 3 / h ρ01——标准状态下氨气的密度 kg / m 3 ρ02——标定状态下氨气的密度 kg / m 3如果氨气中纯氨为98%,则纯氨在标准状态下的流量V 0’’为:V 0’’=●V 0’c 、惰性气体的摩尔流量G :G=V 0 /d 、单位时间氨的吸收量G A :G A =G ●Y 1-Y 2e 、进气浓度Y 1:f 、尾气浓度Y 2:式中:Ns——加入分析盒中的硫酸当量浓度 NVs——加入分析盒中的硫酸溶液体积 mlV——湿式气体流量计所测得的空气体积 mlT——标准状态下的空气温度 KT——空气流经湿式气体流量计时的温度 Kg、对数平均浓度差ΔYm:Ye2=0Ye1=mx1P=大气压+塔顶表压+填料层压差/2m=E / Px1=GA/ Ls式中:E——亨利常数Ls——单位时间喷淋水量 kmol / hP——系统总压强h、气相总传质单元高度:式中:G’——混合体气通过塔截面的摩尔流速二、实验设备及流程设备参数:基本数据:塔径Φ0.10m,填料层高0.75m填料参数:12×12×mm瓷拉西环,a1—403m-1,ε—,a1/ε3—903m-1尾气分析所用硫酸体积:1ml,浓度:上图是吸收实验装置界面,氨气钢瓶来的氨气经缓冲罐,转子流量计与从风机来经缓冲罐、转子流量计的空气汇合,进入吸收塔的底部,吸收剂水从吸收塔的上部进入,二者在吸收塔内逆向流动进行传质;从塔顶出来的尾气进到分析装置进行分析,分析装置由稳压瓶、吸收盒及湿式气体流量计组成;稳压瓶是防止压力过高的装置,吸收盒内放置一定体积的稀硫酸作为吸收液,用甲基红作为指示剂,当吸收液到达终点时,指示剂由红色变为黄色;三、实验步骤建议的实验条件:水流量:80 l/h 空气流量:20 m3/h 氨气流量:0.5 m3/h 注意气量和水量不要太大,氨气浓度不要过高,否则引起数据严重偏离;1、通入氨气打开钢瓶阀门,氨气流量计前有压差计和温度计,用氨气调节阀调节氨气流量实验建议流量: 0.5 m3/h;2、进行尾气分析通入氨气后,让尾气流过吸收盒,同时湿式气体流量计开始计量体积;当吸收盒内的指示剂由红色变成黄色时,立即关闭考克,记下湿式气体流量计转过的体积和气体的温度;3、读取数据实验七干燥实验一、实验目的1.了解气流干燥设备基本流程和工作原理2.测定物料在一定干燥条件下的干燥速率曲线及传质系数二、实验原理1.干燥特性曲线干燥过程分为三个阶段:物料预热阶段、恒速干燥阶段和降速干燥阶段; 式中:x平—某干燥速率下湿物料的平均含水量 kgGsi ,Gsi+1—分别为△τ时间间隔内开始和终了时湿物料重量 kg;Gc—湿物料中绝对干物料的重量 kg;2.传质系数恒速阶段:恒速阶段的干燥速率u仅由外部干燥条件决定,物料表面温度近于空气湿球温度tw;在恒定的干燥条件下,物料表面与空气之间的传热和传质速率分别用于下面式子表示:降速阶段:降速干燥阶段中干燥速率曲线的形状随物料内部结构以及所含水分性质不同而异,因而干燥曲线只能通过实验得到,降速阶段干燥时间的计算可以根据速率曲线数据图解求得,当降速阶段的干燥速率近似看作与物料的自由含水量x-x成正比时干燥速率曲线可简化为直线;即为:u=kxx-xkx=u / x-x式中:kx—以含水量差△x为推动力的比例系数 kg/m2·s·△x;u—物料含水量为x时的干燥速率 kg/m2·s;x—在τ时的物料含水量 kg/kg绝干物料;x—物料的平衡含水量 kg/kg绝干物料;三、实验装置及流程简介主要设备规格:孔板流量计:管径D=106mm,孔径d=68.46mm孔流系数 C=干燥室尺寸:m×m四、实验步骤1.启动风机注意:禁止在启动风机以前加热,这样会烧坏加热器;2.开始加热3.进行干燥实验。
单节流阀双向出油节流调速回路实验
单节流阀双向出油节流调速回路实验单节流阀双向出油节流调速回路实验是一种常见的机械实验,通过这个实验可以了解到节流阀在机械系统中的作用以及如何调节流量来实现速度控制。
本文将详细介绍这个实验的步骤和原理,希望能够对读者有所帮助。
实验目的:本实验旨在通过搭建单节流阀双向出油节流调速回路实验装置,验证节流阀在流体传动系统中的调速作用,并观察不同参数对流量和速度的影响。
实验原理:单节流阀双向出油节流调速回路实验装置由电动机、单节流阀、油泵、油缸和流量计等组成。
电动机带动油泵工作,将液压油输送到油缸中,通过单节流阀的调节来控制液压油的流量和速度。
实验步骤:1. 搭建实验装置:将电动机、油泵、油缸、单节流阀和流量计等按照实验要求连接起来,确保各部件之间的连接紧固可靠。
2. 准备工作:检查实验装置是否正常运行,确认油泵和电动机是否正常工作,并调整单节流阀的开度为最小。
3. 实验测量:将实验装置通电,调整单节流阀的开度,记录不同开度下的流量和速度数据。
4. 数据处理:根据实验数据绘制流量-开度曲线和速度-开度曲线,并分析曲线的特点和规律。
5. 结果分析:根据实验结果,分析单节流阀对流量和速度的调节作用,探讨不同参数对调速性能的影响。
实验注意事项:1. 实验过程中要注意安全,避免发生意外事故。
2. 实验装置的连接要紧固可靠,防止漏油或松动。
3. 实验数据的记录要准确,可使用计算机软件进行数据处理和分析。
4. 实验结束后,要将实验装置清洗干净,保持设备的整洁和完好。
实验结果与讨论:通过实验测量和数据处理,我们得到了流量-开度曲线和速度-开度曲线。
从曲线可以看出,随着单节流阀开度的增加,流量和速度逐渐增大,但增速逐渐减小,表明单节流阀对流量和速度的调节作用是非线性的。
另外,实验还发现,单节流阀的开度越大,流量和速度的增幅越小,调速性能越差。
根据实验结果分析,单节流阀双向出油节流调速回路实验装置能够有效地控制液压油的流量和速度。
液压泵的特性实验实验报告
液压泵的特性实验实验报告液压泵的特性实验实验报告引言:液压泵是一种常见的流体传动装置,广泛应用于工业领域。
为了深入了解液压泵的特性,我们进行了一系列实验。
本实验报告旨在总结实验过程、分析实验结果,并对液压泵的特性进行探讨。
实验目的:1. 了解液压泵的工作原理和结构;2. 掌握液压泵的特性参数测量方法;3. 分析液压泵的特性曲线。
实验装置和方法:本次实验使用了一台常见的柱塞式液压泵,并配备了相应的测量仪器。
实验步骤如下:1. 将液压泵连接至液压系统,并保证系统处于正常工作状态;2. 调整液压泵的工作压力,并记录下相应的流量;3. 重复步骤2,分别在不同的工作压力下测量流量;4. 根据实验数据绘制液压泵的特性曲线。
实验结果:根据实验数据,我们得到了液压泵的特性曲线。
曲线显示了液压泵在不同工作压力下的流量变化情况。
通过观察曲线,我们可以得出以下结论:1. 随着工作压力的增加,液压泵的流量逐渐减小。
这是由于在高压下,液压泵需要克服更大的阻力才能产生相同的流量;2. 在一定工作压力范围内,液压泵的流量基本保持稳定。
这是因为液压泵的结构和工作原理决定了其在一定压力范围内具有较好的流量稳定性;3. 当工作压力超过一定范围时,液压泵的流量急剧下降。
这是由于泵的结构和工作原理无法适应过高的压力要求。
讨论与分析:液压泵的特性曲线反映了泵在不同工作条件下的性能表现。
通过对曲线的分析,我们可以更好地了解液压泵的特性,并在实际应用中进行合理选择和调整。
以下是对液压泵特性的一些进一步讨论和分析:1. 流量与压力的关系:液压泵的流量与工作压力呈负相关关系。
因此,在实际应用中,我们应根据工作需求选择合适的泵型和工作压力,以获得满足要求的流量;2. 流量稳定性:液压泵在一定工作压力范围内具有较好的流量稳定性,适用于对流量要求较高的场合。
但在过高或过低的压力下,流量稳定性会受到影响,需要注意调整和控制;3. 泵的效率:液压泵的效率是衡量其性能的重要指标。
雷诺实验报告现象
雷诺实验报告现象
雷诺实验是用来测量流体在流动过程中受到的阻力的实验。
实验装置主要有一段直管道和管道两端的压力计组成。
实验的原理是通过测量在不同流速下流体通过管道时的压力差来计算流体受到的阻力。
在进行雷诺实验时,我们首先将流体(通常使用水)从一端注入管道中,并逐渐增加流速,此时会观察到管道两端的压力计数值出现差异。
随着流速的增加,压力差也会相应增大。
当流速达到一定值后,压力差就基本保持不变了。
这是因为当流速增大到一定程度时,流体受到的阻力会增大,并且与速度的平方成正比,而压力差与流体速度成正比。
通过对实验数据的分析,我们可以得到以下结论:
1. 流体的阻力是与流速的平方成正比的。
当流速较小时,阻力较小,随着流速的增加,阻力也会增大。
2. 在一定速度范围内,阻力基本保持不变。
这是因为当流速较大时,流体作用力增大,阻力也相应增大,在一定速度范围内达到平衡。
3. 阻力和管道的形状、管道内壁的摩擦、流体的密度等因素有关。
不同形状的管道,不同材质的管道内壁,以及不同的流体性质,都会对阻力产生影响。
雷诺实验的结果可以应用在许多工程领域,尤其是流体力学和液压传动等方面。
例如,在设计管道、水泵和风力发电机等设备时,需要对流体的阻力进行估算和优化设计,以提高设备的效率和性能。
总而言之,雷诺实验通过测量流体在流动过程中的压力差来计算流体受到的阻力,进一步得出了阻力与流速平方成正比的规律。
这个实验在流体力学领域具有重要的应用价值,为我们理解流体行为、设计流体系统提供了有益的参考和指导。
化工原理流体流动实验
流体流动综合实验(离心泵与管路特性曲线测定、流量性能测定)一、实验目的及任务1、熟悉离心泵的操作方法。
2、熟悉离心泵的结构与操作方法。
3、测定流量调节阀某一开度下管路特性曲线。
二、实验装置图-1 流动过程综合实验流程示意图1-水箱;2-水泵;3-入口真空表;4-出口压力表;5、16-缓冲罐顶阀;6、14-测局部阻力近端阀;7、15-测局部阻力远端阀;8、17-粗糙管测压阀;9、21-光滑管测压阀;10-局部阻力阀;11-压差传感器左阀;12-压力传感器;13-压差传感器右阀;18 、24-阀门;20-粗糙管阀;22-小转子流量计;23-大转子流量计;25-水箱放水阀;26-倒U型管放空阀;27- 倒U型管;28、30-倒U型管排水阀;29、31-倒U型管平衡阀三、实验原理离心泵特性曲线测定离心泵是最常见的液体输送设备。
在一定的型号和转速下,离心泵的扬程H、轴功率N及效率η均随流量Q而改变。
通常通过实验测出H—Q、N—Q及η—Q 关系,并用曲线表示之,称为特性曲线。
特性曲线是确定泵的适宜操作条件和选用泵的重要依据。
泵特性曲线的具体测定方法如下:(1) H 的测定:在泵的吸入口和排出5之间列柏努利方程出入入出出入入入-+++=+++f H gu g P Z H g u g P Z 2222ρρ (1) ()出入入出入出入出-+-+-+-=f H gu u g P P Z Z H 222ρ (2) 上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。
于是上式变为:()gu u g P P Z Z H 222入出入出入出-+-+-=ρ (3) 将测得的()入出Z Z -和入出PP -值以及计算所得的出入u u ,代入上式,即可求得H 。
(2) N 测定:功率表测得的功率为电动机的输入功率。
由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。
流体力学综合实验报告
浙江大学化学实验报告课程名称:过程工程原理实验甲实验名称:流体力学综合实验指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:Ⅰ流体流动阻力的测定一、实验目的1)掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
2)测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re的关系曲线。
3)测定流体流经管件(阀门)时的局部阻力系数ξ。
4)识辨组成管路的各种管件、阀门,并了解其作用。
二、试验流程与装置图 1 流体力学综合实验流程示意图三、基本原理1.流量计校核通过计时称重对涡轮流量计读数进行校核。
2.雷诺数求解Re=ρudμ (1)u=V900πd2 (2)式中:V----流体流量,m3ℎ⁄3.直管阻力摩擦系数λ的测定流体水平等径直管中稳定流动时,阻力损失为:ℎf=Δp fρ=λldu22 (3)即λ=2dΔp fρlu2 (4)式中:Δp f----直管长度为l的压降,Pa4.局部阻力系数ξ的测定阻力系数法:流体通过某一管件(阀门)时的机械能损失可表示为流体在管径内流动时平均动能的某一倍数,即:ℎf′=Δp f′ρg=ξu22g (5)即ξ=2Δp f′ρu2 (6)式中:Δp f′----局部阻力压力降,Pa局部阻力压力降的测量方法:测量管件及管件两端直管(总长度为l′)总的压降为∑Δp,减去其直管段的压降,该直管段的压降可由直管阻力Δp f(长度为l)实验结果求取,即Δp f′=∑Δp−l′lΔp f (7)四、实验步骤1)离心泵灌水,关闭出口阀(23),打开电源,启动水泵电机,待电机转动平稳后,把泵的出口阀(23)缓缓开到最大;2)对压差传感器进行排气,完成后关闭排气口阀,使压差传感器处于测量状态;3)开启旁路阀(24),选定自最小到最大若干流量,对流量计做流量校核试验;4)开启流量调节阀(21),先调至最大流量,然后在最小流量1m3ℎ⁄之间再连续取8组等比数据,每次改变流量,待流量稳定后,,记录压差、流量、温度等数据;5)实验结束,关闭出口阀(23),停止水泵电机,清理装置。
流体传动与控制实验报告
流体传动与控制实验报告桂林电⼦科技⼤学流体传动与控制实验报告实验名称节流调速性能试验机电⼯程学院机械电⼦⼯程专业10001602班第实验⼩组作者学号同作者实验时间年⽉⽇辅导员意见:辅导员成绩签名⼀、实验⽬的:1、分析⽐较采⽤节流阀的进油节流调速回路中,节流阀具有不同流通⾯积时的速度负载特性;2、分析⽐较采⽤节流阀的进、回、旁三种调速回路的速度负载特性;3、分析⽐较节流阀、调速阀的速度性能。
4、通过亲⾃装拆,了解节流调速回路的组成及性能,绘制速度—负载特性曲线并进⾏⽐较5、通过该回路实验,加深理解Q=Ca△P m关系,式中△p、m分别由什决定,如何保证Q=const。
⼆、实验要求实验前预习实验指导书和液压与⽓动技术课程教材的相关内容;实验中仔细观察、全⾯了解实验系统;实验中对液压泵的性能参数进⾏测试,记录测试数据;深⼊理解液压泵性能参数的物理意义;实验后写出实验报告,分析数据并绘制液压泵性能特性曲线图。
三、实验内容:1、分别测试采⽤节流阀的进、回、旁油路节流调速回路的速度负载特性;2、测试采⽤调速阀的进油路节流调速回路的速度负载特性。
四、实验步骤:1、按照实验回路的要求,取出所要⽤的液压元件,检查型号是否正确;2、检查完毕,性能完好的液压元件安装在实验台⾯板合理位置。
通过快换接头和液压软管按回路要求连接;3、根据计算机显⽰器界⾯中的电磁铁动作表输⼊框选择要求⽤⿏标“点接”电器控制的逻辑连接,通为“ON”,短为“OFF”。
4、安装完毕,定出两只⾏程开关之间距离,拧松溢流阀(Ⅰ)(Ⅱ),启动YBX-B25N,YB-A25C泵,调节溢流阀(Ⅰ)压⼒为3Mpa,溢流阀(Ⅱ)压⼒为0。
5Mpa,调节单向调速阀或单向节流阀开⼝。
5、按电磁铁动作表输⼊框的选定、按动“启动”按钮,即可实现动作。
在运⾏中读出显⽰器界⾯图表中的显⽰单向调速阀或单向节流阀进出⼝和负载缸进⼝压⼒,和油缸的运⾏显⽰时间。
6、根据回路记录表调节溢流阀压⼒(即调节负载压⼒),记录相应时间和压⼒,填⼊表中,绘制V——F曲线。
《流体输送综合实验》
一、实验名称流体输送综合实验二、实验目的1.学习离心泵操作;2.学习直管阻力测定方法,计算出λ、Re 作出λ—Re 双对数曲线关系图3.计算出局部阻力系数;4.学习离心泵特性曲线的测定,画出H —Q 、Ne —Q 、η—Q 三、实验原理 (一)阻力1.直管阻力损失流体在圆形管流动时的阻力损失可用范宁公式计算:]/[22kg J u d l h f ⋅=λ (1) 式中: λ——摩擦系数l ——直管长[m] d ——管内径[m]u ——管内流速[m/s],由下式计算:]/)[785.03600/(2s m d V u ⨯= (2) V ——流量[m 3/h],由孔板流量计测定直管阻力损失由图2-2-1-1(a )装置测定,原理如下: 在截面AA ’及BB ’之间列出柏努利方程:f B B B A A A h p u gZ p u gZ +++=++ρρ2222 因是同内径的水平管段,故B A B A u u Z Z ==,,上式移项整理得: ]/[kg J p p h BA f ρ-=(3)在图2-2-1-1(a )所示的U 形压差计内00`截面列能量方程: ρρρ)(R m g p gR gm p A s B ++=++(a)(b)图2-2-1-1 直管阻力测定整理上式得:]/)[(2m N gR p p S B A ρρ-=- (4)将上式(4)代入式(3)得: ]/[)(kg J gR h s f ρρρ-=(5)式中:g=9.8[N/kg]—重力加速度R ——压差读数[CCl 4],[m] ρs=1590[kg/m 3]——CCl 4的密度 ρ——水的密度[kg/m 3],由水温查表得若用图2-2-1-1 (b)的∩压差计测压降(本实验室采用),则由式(3)得: ]/`[kg J gR p p h BBA f =-=ρ (6)或 ]`[2O mH R gp p h BA f =-=ρ (7) 式中:R`——∩压差计读数[mH 2O]将式(5)或式(4)之值入(1)中,移项整理得摩擦系数计算值。
“流体传动技术”课程开放性实验的探索与实践
“流体传动技术”课程开放性实验的探索与实践流体传动技术是涉及流体传动与控制的一门跨学科技术学科,它不仅涉及物理学、材料科学、机械工程等学科,更与现代工业生产密切相关。
随着工业自动化水平的不断提高,流体传动技术在工业生产中的应用越来越广泛,因此对这门技术的研究和应用也变得尤为重要。
在流体传动技术课程中,实验教学一直被认为是非常重要的一环。
通过实验,学生可以更加深入地了解课程内容,提高动手能力和实践能力。
本文将探讨一种关于“流体传动技术”课程的开放性实验,并分享对这一实验的探索与实践。
一、实验目的流体传动技术的课程着重于培养学生的实践能力和动手能力,因此设计一个开放性的实验对于实现这一目标至关重要。
本实验的目的在于通过开放性实验,让学生了解流体传动技术在工业自动化中的应用,培养学生的实践能力和动手能力,培养学生的创新思维和解决问题的能力。
二、实验内容1. 实验原理本实验中,我们将以液压传动技术为例,通过特定的实验装置,让学生了解液压传动技术在工业自动化中的应用。
液压传动技术是一种利用液体作为传动介质,将机械能转换成液压能,然后再将液压能转换成机械能的一种传动方式。
在液压传动技术中,液压泵通过输送液体产生液压力,然后通过液压阀控制液压力的大小和方向,最终驱动液压缸或马达完成工作任务。
2. 实验设计本实验将设计一套液压传动系统,让学生自行组装和调试。
实验装置将包括液压泵、液压缸、液压阀等组件,学生们需要根据实验要求自行设计和组装这些组件,并调试整套系统。
通过这一过程,学生将了解液压传动技术的基本原理和应用,并提高他们的动手能力和实践能力。
3. 实验过程实验过程中,学生们将根据实验指导书的要求,自行组装液压传动系统,并通过设置不同的工作条件,观察系统的工作性能和输出效果。
在实验中,学生们将有机会在实践中探索并解决实际问题,培养其解决问题的能力和创新思维。
4. 实验结果分析在实验结束后,学生们将提交实验报告,包括实验装置的设计方案、组装过程、调试过程和实验结果分析。
流体传动实验报告
一、实验目的1. 了解流体传动的原理和基本结构;2. 掌握液压和气压传动系统的组成和特点;3. 学习液压和气压传动系统的实验方法和操作技能;4. 通过实验,验证流体传动系统在实际工作中的应用效果。
二、实验原理流体传动是利用流体(液体或气体)的压力能和动能来实现能量传递和动力输出的技术。
根据传动介质的性质,流体传动可分为液压传动和气压传动。
1. 液压传动原理:液压传动是利用液体作为工作介质,通过密封的管道将动力传递到执行机构。
液压传动系统主要由泵、液压缸、液压阀、油箱等组成。
2. 气压传动原理:气压传动是利用气体作为工作介质,通过密封的管道将动力传递到执行机构。
气压传动系统主要由气源、气缸、气动阀、储气罐等组成。
三、实验内容1. 液压传动实验(1)实验目的:了解液压传动系统的基本组成和原理,验证液压传动系统的性能。
(2)实验步骤:1)连接实验装置,检查各部件是否正常;2)启动液压泵,观察液压系统的工作情况;3)调节液压阀,观察液压缸的运动情况;4)记录实验数据,分析液压系统的性能。
(3)实验结果:实验过程中,液压泵正常工作,液压缸能够按照设定的工作要求运动。
实验数据如下:- 液压泵出口压力:20MPa;- 液压缸输出力:2000N;- 液压缸运动速度:0.2m/s。
2. 气压传动实验(1)实验目的:了解气压传动系统的基本组成和原理,验证气压传动系统的性能。
(2)实验步骤:1)连接实验装置,检查各部件是否正常;2)启动气源,观察气压传动系统的工作情况;3)调节气动阀,观察气缸的运动情况;4)记录实验数据,分析气压传动系统的性能。
(3)实验结果:实验过程中,气源正常工作,气缸能够按照设定的工作要求运动。
实验数据如下:- 气源压力:0.6MPa;- 气缸输出力:1000N;- 气缸运动速度:0.3m/s。
四、实验分析1. 液压传动实验分析:实验结果表明,液压传动系统在正常工作条件下,能够按照设定的工作要求传递动力。
工程流体力学实验
工程流体力学实验实验目的本实验旨在通过实验操作及数据分析,加深对工程流体力学相关概念的理解,掌握流体静力学和流体动力学的基本原理,以及流体在工程中的应用。
实验仪器与材料•1 台水泵•1 块稳定台•1 条直管道•1 台流量计•1 台压力计•配套管道及接头实验原理流体静力学•流体静力学是研究在静止或稳定流动状态下流体的性质和力学的学科。
•流体静力学方程包括连续性方程、动量守恒方程及能量守恒方程等。
流体动力学•流体动力学研究流体在运动状态下的性质及相关现象。
•流体动力学方程描述了流体在不同流动状态下各种参数的变化规律。
实验步骤1.搭建实验装置,保证管道连接紧密。
2.启动水泵,调节泵的流量,记录不同流量下的压力、流速数据。
3.使用流量计检测不同流速下的流量值,并记录数据。
4.分析数据,绘制流速、压力、流量之间的关系曲线。
实验数据分析通过实验数据分析可得出以下结论: 1. 流速和流量呈线性关系,流量随着流速的增大而增大。
2. 压力随着流速增大而减小,说明流速增加时管道内的摩阻增大,压力减小。
结论通过工程流体力学实验,深入了解了流体在管道内的流动规律,掌握了流体静力学和流体动力学方面的基本原理,实验结果对于设计工程系统具有指导意义。
参考文献1.White, Frank M. Fluid Mechanics. 8th ed., McGraw-Hill, 2016.2.Munson, Bruce R., et al. Fundamentals of Fluid Mechanics. 7th ed., Wiley, 2012.以上是关于工程流体力学实验的简要介绍,通过实际操作和数据分析,使学生对相关理论知识有了更深入的了解。
流体流动型态及临界雷诺数的测定实验报告
流体流动型态及临界雷诺数的测定实验报告实验流程
本次练习实验的目的是通过测量流体池头下的实际水柱高度来测定流体的流动模态,并测量临界雷诺数。
实验采用实验室研究型水池模型,可以控制供水进口处的水压,同时可以调节供水量。
实验设备
该实验使用一台实验室研究型水池模型,其由池头、池底、传动装置三个部分组成,池头、传动装置均以布料袋封装,一个圆形池头水柱下设有游标,可以拔出以读取高度。
同时,实验也使用了实验室的超声波流量计设备,可以准确的读取水流的流量大小。
实验步骤
本次实验共进行了两个步骤,即流体流动型态的测试和临界雷诺数的测试。
第一步,进行流体流动型态的测试,具体操作为:控制水池头部水压,从而改变池头出水口的水柱高度,并同时读取超声波流量计仪器测量水流的流量;在不同的水柱高度下曲线图中观察流量和压力的变化,测试出当前流动处于不同模态。
第二步,进行临界雷诺数的测试,具体测试步骤为:在当前节流装置下,不断调节水池头部的水压,直至出现喷射水柱高度的跳变,测量该调节时的泵头压力,可以得到临界雷诺数。
实验结果
在实验过程中,本组测得流动型态及临界雷诺数的数据如下:
流动型态:
在低位水柱压力下,流量低且稳定,表明当前处于静态流动状态;
在高位水柱压力下,流量急剧增长,波动较大,此时处于空蚀叶栅状态;
临界雷诺数测定:调节泵头水压至46 Kpa时,出现了水柱压力跳变,说明当前流动模式正处于临界状态,此时记录的临界雷诺数为77。
实验结论
本次实验成功测定了当前流体流动型态及临界雷诺数,实验证明研究型水池模型有效通过水柱高度和流量等参数以测得流体各种流动状态以及临界雷诺数,可以形成时空变化参数曲线。
流体力学综合实验
实验一 流体力学综合实验一、实验目的1. 测定水在管道内流动时的直管阻力损失,作出与Re的关系曲线;2. 测定水在管道内流动时的局部阻力损失,测量和计算不同开度下截止阀的局部阻力系数或当量长度l e;3. 测定一定转速下,离心泵的特性曲线;4. 观察水在直管内的流动类型。
二、实验原理1. 摩擦阻力系数~Re流体在管道内流动时,由于内摩擦力的存在,必然有能量损耗,此损耗能量为直管阻力损失。
在流经阀门、管件时,由于流道方向或大小的改变,造成流体的剧烈湍动,造成的能量损失称为局部阻力损失。
根据柏努利方程,对等直径的1、2两截面间的直管阻力损失为:图2-1 直管阻力测量原理示意图(1)由因次分析法得(2)(3)(4)式中:h f 直管阻力损失 (J/kg);摩擦阻力系数;l 、d 、直管的长度、管内径和绝对粗糙度 (m);p流体流经直管的压降 (Pa);、分别是流体的密度 (kg/m3) 和粘度 (Pas);u流体在管内的平均流速 (m/s)。
由公式(2)可以看出,流体流动时的摩擦阻力损失与管道的长度成正比,与管道的直径成反比。
流体的平均速度越高,阻力损失越大。
利用公式(2)计算直管阻力损失时,需要知道不同雷诺数下摩擦阻力系数的值。
穆迪图给出了~Re的关系曲线。
本实验装置可以利用上面的公式来验证直管阻力损失计算,测定~Re的关系曲线。
流体在长度和直径一定的管道内流动时,利用U型管压差计实验测出一定流量下流体流经该长度管段所产生的压降,即可算得h f,利用公式(2)可得到,根据流速和物性数据可按公式(5)计算出对应的雷诺数Re,从而关联出与Re的关系曲线。
改变实验管可得出不同粗糙度(不同材质直管)的与Re的关系曲线。
2. 局部阻力系数和当量长度l e对于由阀门或管件造成的局部阻力损失,可以用以下的公式计算:当量长度法(5)局部阻力系数法(6)式中:h f 局部阻力损失 (J/kg);局部阻力系数;l e当量长度 (m);图2-2 局部阻力测量原理示意图测出一定流速时流体通过阀门或管件的压降h f,就可利用公式(5)、(6)计算出对应的当量长度或局部阻力系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一液压元件拆装实验
一、实验目的
通过对液压元件实物的参观,拆装,了解元件的具体结构和工作原理,首重了解液压元件的主要零件盒特殊零件的构造,以及各个油口的作用。
从而加深对液压元件的学习和认识,能正确使用和安装液压元件
二.通过液压元件的拆装实验,回答下列问题
液压泵部分
1.齿轮泵的基本组成元件及其密封容积的形成。
2.如何判定齿轮泵的转动方向及进出油口。
3.齿轮泵的困油现象是如何形成与解决的。
4.齿轮泵的径向不平衡力的解决方法。
5.观察叶片泵定子曲线,配油盘,叶片倾角以及转子的转动方向之间的关系。
6.轴向柱塞泵的工作原理。
7.滑履与斜盘之间的压力油膜是怎样形成的。
液压阀部分
1.先导式溢流阀主阀芯上小孔的作用,主阀芯上弹簧为什么比锥阀芯上的弹簧要软得多。
2.调速阀的工作原理。
3.三位电磁换向阀在中位时是怎样对中的。
4.滑阀阀芯上的环形槽的作用。
实验二限压式变量叶片泵的性能试验
一、实验目的
通过限压式变量叶片泵的性能测试,了解限压式变量叶片的主要性能。
熟悉测试方法和相关的测试仪器
二、实验原理
三、使用仪器、材料
四、实验步骤
五、实验过程原始记录(数据、图表、计算等)
六、实验结果及分析
实验三进油节流调速回路性能实验
一、实验目的
节流调速回路是由定量泵,流量控制阀和执行元件等组成,通过改变流量控制阀阀口的开度,来调节和控制输入执行元件或执行元件排出的流量,以调节其运动速度。
节流调速回路按照其流量控制阀安装位置的不同,有进油节流调速,出油节流调速和旁路节流调速三种。
调速回路不同、其调速特性不同;同一调速回路,采用节流阀或调速阀,其调速性能也有差别。
通过对节流阀和调速阀进油节流调速回路的对比实验,分析比较实验,分析比较其调速性能。
二、实验原理
三、使用仪器、材料
四、实验步骤
五、实验过程原始记录(数据、图表、计算等)
六、实验结果及分析
1.分析比较节流阀和调速阀进油节流调速回路的特点。
重庆大学
学生实验报告
实验课程名称
开课实验室
学院年级专业班
学生姓名学号
开课时间至学年第学期
总成绩
教师签名
机械学院制。