2.3.4平面向量共线的坐标表示

合集下载

平面向量共线的坐标表示解析

平面向量共线的坐标表示解析

由平面几何知A识G得 2:AD
B
3
2(x1 x3 2x1 , y1 y3 2y1)
3
2
2
OGOA AG
D
A
G
(x1,
y1)
(
x2
x3 3
2x1
,
y2
y3 3
2y1
)
C
(x2 x3 x1 , y2 y3 y1 )
O
X
3
3
G (x1x2x3,y1y2y3)
3
3
rr a 2b
1.已知a (2,4),b (1,2),则a与b的关系是(.D...).
(1)当点P是线段P1P2的中点时,求点P的坐标; (2)当点P是线段P1P2的一个三等分点时,求点P的坐标。
解:(2)
法二:设Px, y
y P2
x P1 Px1,y 12 Py P1 2,1 2x2x,y2y
P1
P

x y
x1 y1
1 2 1 2
x2 y2
x y
O
解P 有 点坐 2x1标 x2,2y1y2
A.30...............B.60............C.45..............D.75
4.设向量a32、b不13平行s,in求证co:s向量a b和向量a b不平行。
4.向量a,b不平行,求证:向量 a – b 与a + b不平行。
证明:设向量 a – b 与a + b平行。
rr rr
设 ab r( ab )r r
( 1 ) a ( 1 ) b 0
1 1
0 0
显然,上述方程没有实数解。
∴ 向量 a – b 与a + b平行。

2.3.4平面向量共线的坐标表示

2.3.4平面向量共线的坐标表示

新授课:平面向量共线的坐标表示
探究 问题: 如果向量 a b 共线(其中 b≠ 0 , ), 那么a, 满足什么关系? b
r r a = λb
思考: 设 a=(x1,y1), b =(x2,y2),若向量 0, b 共线(其中a ≠b),则这两个向量的坐标应满 足什么关系?
a // b(b ≠ 0) ⇔ x1 y2 − x2 y1 = 0
2.3.4平面向量共线的 2.3.4平面向量共线的 坐标表示
1、平面向量基本定理
r 量, 那么对这一平面内的任一向量 a , 有且只 r r r 有一对实数 λ1 , λ2 ,使 a = λ1e1 + λ2 e2
2.根据平面向量基本定理实现了向量由“几何” 到“代数”的过渡,建立了向量的坐标表达式, 这样,平面向量的线性运算就能通过坐标来 实现。
例2 设点P是线段P1 P2 上的一点, P1 , P2 的坐 标分别是 ( x1 , y1 ), ( x 2 , y2 ) . (1)当点P是线段 P1 P2 的中点时,求点P的坐标. (2)当点P是线段 P1 P2 的一个三等分点时,求 点P的坐标. y P2 结论:中点坐标公式:
x1 + x 2 x= 2 y1 + y2 y= 2
x1 y2 − x 2 y1 = 0 (2) a ∥ b (b ≠ 0) 二.中点坐标公式: 三.线段定比分点坐标公式:
x1 + x 2 x= 2 P1 ( x1 , y1 ) x1 + λx 2 x= 1+ λ y1 + λy2 y= 1+ λ
y1 + y2 y= 2
P2 ( x 2 , y2 )
r r 如果 e1 , e2 是同一平面内的两个不共线向

人教A版2019高中数学必修4讲义:第二章 2.3 2.3.4 平面向量共线的坐标表示_含答案

人教A版2019高中数学必修4讲义:第二章 2.3 2.3.4 平面向量共线的坐标表示_含答案

2.3.4 平面向量共线的坐标表示预习课本P98~100,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线?[新知初探]平面向量共线的坐标表示[点睛] (1)平面向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有:x 1y 2-x 2y 1=0⇔a ∥b .[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( )(2)向量(2,3)与向量(-4,-6)反向.( )答案:(1)√ (2)√2.若向量a =(1,2),b =(2,3),则与a +b 共线的向量可以是( )A .(2,1)B .(-1,2)C .(6,10)D .(-6,10)答案:C3.已知a =(1,2),b =(x,4),若a ∥b ,则x 等于( )A .-12 B.12C .-2D .2 答案:D4.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在x 轴上,则点B 的坐标为________.答案:⎝⎛⎭⎫73,0[典例] (1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13C .1D .2 (2)已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB 与CD 是否共线?如果共线,它们的方向相同还是相反?[解析] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12. 法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12. [答案] A(2)[解] AB =(0,4)-(2,1)=(-2,3),CD =(5,-3)-(1,3)=(4,-6), ∵(-2)×(-6)-3×4=0,∴AB ,CD 共线. 又CD =-2AB ,∴AB ,CD 方向相反.综上,AB 与CD 共线且方向相反.已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行,平行时它们的方向相同还是相反?解:ka +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),若ka +b 与a -3b 平行,则-4(k -3)-10(2k +2)=0,解得k =-13,此时ka +b =-13a +b =-13(a -3b ),故ka +b 与a -3b 反向. ∴k =-13时,ka +b 与a -3b 平行且方向相反.[典例] (1)已知OA =(3,4),OB =(7,12),OC =(9,16),求证:A ,B ,C 三点共线;(2)设向量OA =(k,12),OB =(4,5),OC =(10,k ),当k 为何值时,A ,B ,C 三点 共线?[解] (1)证明:∵AB =OB -OA =(4,8),AC =OC -OA =(6,12), ∴AC =32AB ,即AB 与AC 共线. 又∵AB 与AC 有公共点A ,∴A ,B ,C 三点共线.(2)若A ,B ,C 三点共线,则AB ,AC 共线, ∵AB =OB -OA =(4-k ,-7),AC =OC -OA =(10-k ,k -12),∴(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.一般是看AB 与BC AB 与AC AC BC AC BC AB λBC ,或AB =λAC 设点A (x,1),B (2x,2),C (1,2x ),D (5,3x ),当x 为何值时,AB 与CD 共线且方向相同,此时,A ,B ,C ,D 能否在同一条直线上?解:AB =(2x,2)-(x,1)=(x,1),BC =(1,2x )-(2x,2)=(1-2x,2x -2),CD =(5,3x )-(1,2x )=(4,x ).由AB 与CD 共线,所以x 2=1×4,所以x =±2.又AB 与CD 方向相同,所以x =2.此时,AB =(2,1),BC =(-3,2),而2×2≠-3×1,所以AB 与BC 不共线,所以A ,B ,C 三点不在同一条直线上.所以A ,B ,C ,D 不在同一条直线上.题点一:两直线平行判断1. 如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设|AD|=1,则|DC|=1,|AB|=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形,∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).∵ED=(-1,1)-(0,0)=(-1,1),BC=(0,1)-(1,0)=(-1,1),∴ED=BC,∴ED∥BC,即DE∥BC.题点二:几何形状的判断2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.证明:由已知得,AB=(4,3)-(1,0)=(3,3),CD=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB与CD共线.AD=(-1,2),BC=(2,4)-(4,3)=(-2,1),∵(-1)×1-2×(-2)≠0,∴AD与BC不共线.∴四边形ABCD是梯形.∵BC=(-2,1),AD=(-1,2),∴|BC|=5=|AD|,即BC=AD.故四边形ABCD是等腰梯形.题点三:求交点坐标3. 如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.解:法一:设OP=t OB=t(4,4)=(4t,4t),则AP=OP-OA=(4t,4t)-(4,0)=(4t-4,4t),AC=OC-OA=(2,6)-(4,0)=(-2,6).由AP ,AC 共线的条件知(4t -4)×6-4t ×(-2)=0,解得t =34.∴OP =(3,3). ∴P 点坐标为(3,3).法二:设P (x ,y ), 则OP =(x ,y ),OB =(4,4). ∵OP ,OB 共线,∴4x -4y =0.① 又CP =(x -2,y -6),CA =(2,-6), 且向量CP ,CA 共线,∴-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3,∴点P 的坐标为(3,3).应用向量共线的坐标表示求解几何问题的步骤层级一 学业水平达标1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ,则实数λ的值为( )A .-23B.32C.23 D .-32解析:选C 根据A ,B 两点的坐标,可得AB =(3,1),∵a ∥AB ,∴2×1-3λ=0,解得λ=23,故选C. 3.已知A (2,-1),B (3,1),则与AB 平行且方向相反的向量a 是( )A .(2,1)B .(-6,-3)C .(-1,2)D .(-4,-8)解析:选D AB =(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( )A .-3B .2C .4D .-6解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.5.设a =⎝⎛⎭⎫32,tan α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30°B .60°C .45°D .75° 解析:选A ∵a ∥b ,∴32×13-tan α cos α=0, 即sin α=12,α=30°. 6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:∵向量a =(3x -1,4)与b =(1,2)共线,∴2(3x -1)-4×1=0,解得x =1.答案:17.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________. 解析:AB =(x +1,-6),AC =(4,-1), ∵AB ∥AC ,∴-(x +1)+24=0,∴x =23.答案:238.已知向量a =(1,2),b =(-2,3),若λa +μb 与a +b 共线,则λ与μ的关系是________.解析:∵a =(1,2),b =(-2,3),∴a +b =(1,2)+(-2,3)=(-1,5),λa +μb =λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),又∵(λa +μb )∥(a +b ),∴-1×(2λ+3μ)-5(λ-2μ)=0,∴λ=μ.答案:λ=μ9.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB .证明:设E ,F 的坐标分别为(x 1,y 1)、(x 2,y 2), 依题意有AC =(2,2),BC =(-2,3),AB =(4,-1). ∵AE =13AC ,∴(x 1+1,y 1)=13(2,2). ∴点E 的坐标为⎝⎛⎭⎫-13,23. 同理点F 的坐标为⎝⎛⎭⎫73,0,EF =⎝⎛⎭⎫83,-23. 又83×(-1)-4×⎝⎛⎭⎫-23=0,∴EF ∥AB . 10.已知向量a =(2,1),b =(1,1),c =(5,2),m =λb +c (λ为常数).(1)求a +b ;(2)若a 与m 平行,求实数λ的值.解:(1)因为a =(2,1),b =(1,1),所以a +b =(2,1)+(1,1)=(3,2).(2)因为b =(1,1),c =(5,2),所以m =λb +c =λ(1,1)+(5,2)=(λ+5,λ+2).又因为a =(2,1),且a 与m 平行,所以2(λ+2)=λ+5,解得λ=1.层级二 应试能力达标1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析:选C 因为a +b =(0,1+x 2),所以a +b 平行于y 轴.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A.13B.-13C.9 D.-9解析:选D A,B,C三点共线,∴AB∥AC,而AB=(-8,8),AC=(3,y+6),∴-8(y+6)-8×3=0,即y=-9.3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么() A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()A.(1,5)或(5,5)B.(1,5)或(-3,-5)C.(5,-5)或(-3,-5)D.(1,5)或(5,-5)或(-3,-5)解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,①若这个平行四边形为▱ABCD,则AB=DC,∴D(-3,-5);②若这个平行四边形为▱ACDB,则AC=BD,∴D(5,-5);③若这个平行四边形为▱ACBD,则AC=DB,∴D(1,5).综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).5.已知AB=(6,1),BC=(x,y),CD=(-2,-3),BC∥DA,则x+2y的值为________.解析:∵AD=AB+BC+CD=(6,1)+(x,y)+(-2,-3)=(x+4,y-2),∴DA=-AD=-(x+4,y-2)=(-x-4,-y+2).∵BC∥DA,∴x(-y+2)-(-x-4)y=0,即x+2y=0.答案:06.已知向量OA =(3,-4),OB =(6,-3),OC =(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线. ∵AB =OB -OA =(3,1),AC =OC -OA =(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12.答案:m ≠127.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;(2)若AC =2AB ,求点C 的坐标.解:(1)若A ,B ,C 三点共线,则AB 与AC 共线.AB =(3,-1)-(1,1)=(2,-2),AC =(a -1,b -1),∴2(b -1)-(-2)(a -1)=0,∴a +b =2.(2)若AC =2AB ,则(a -1,b -1)=(4,-4),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,∴⎩⎪⎨⎪⎧ a =5,b =-3,∴点C 的坐标为(5,-3).8.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),求直线AC 与BD 交点P 的坐标.解:设P (x ,y ),则DP =(x -1,y ),DB =(5,4),CA =(-3,6),DC =(4,0).由B ,P ,D 三点共线可得DP =λDB =(5λ,4λ). 又∵CP =DP -DC =(5λ-4,4λ), 由于CP 与CA 共线得,(5λ-4)×6+12λ=0.解得λ=47, ∴DP =47DB =⎝⎛⎭⎫207,167,∴P 的坐标为⎝⎛⎭⎫277,167.。

平面向量共线的坐标表示

平面向量共线的坐标表示

解:∵a=(1,0),b=(2,1), ∴ka-b=k(1,0)-(2,1)=(k-2,-1), a+3b=(1,0)+3(2,1)=(7,3). 由两向量平行得 3(k-2)-7×(-1)=0. 1 ∴k=-3.
7 此时,ka-b=- ,-1 3
1 1 =-3(7,3)=-3(a+3b). ∴它们是反向的.
• 2.3.4 平面向量共线的坐标表示
• 1.通过实例了解如何用坐标表示两个共线向量,以及两直 线平行和两向量共线的判定的区别.(易混点) • 2.理解用坐标表示的平面向量共线的条件 ,并能会应 用.(重点) • 3.会根据平面向量的坐标判断向量是否共线.(难点)
• 两向量平行的条件

如果两个非零向量共线,你能通过它们的坐标判断它们 同向还是反向吗? • 提示:当两个向量的对应坐标同号或同为零时,同向.当 两个向量的对应坐标异号或同为零时,反向. • 例如:向量(1,2)与(-1,-2)反向;向量(1,0)与(3,0)同向; • 向量(-1,2)与(-3,6)同向;向量(-1,0)与(3,0)反向等.
→ → → 【典例】 已知向量AB=(6,1),BC=(x,y),CD=(-2, → → -3),当BC∥DA时,求实数 x,y 应满足的关系.
→ → → → → 【错误解答】DA=-AD=-(AB+BC+CD) =-[(6,1)+(x,y)+(-2,-3)]=(-x-4,-y+2). → → → BC=(x,y),当BC∥DA时,x(-x-4)-y(-y+2)=0 即 x2-y2+4x+2y=0.
→ BC=(1,0)+m(0,1)=(1,m). → → 而AB、BC共线,∴1×m-1×(-2)=0. ∴m=-2,∴当 m=-2 时, A、B、C 三点共线.

平面向量共线的坐标表示

平面向量共线的坐标表示
对于两个向量a和b,如果a=(x1,y1),b=(x2,y2),则向量a和b共线的条件是 x1/x2=y1/y2。
向量共线的应用
向量共线可以用于解决一些实际问题,例如物理 学中的力合成、物理学中的速度合成等。
向量共线也可以用于解析几何中的图形变换、线 性变换等。
在向量研究中,向量共线还可以用于证明一些定 理和推导一些公式。
向量共线的坐标表示
向量共线定理
如果两个向量$\overrightarrow{AB}$和 $\overrightarrow{CD}$共线,那么存在实数 $\lambda$使得 $\overrightarrow{AB}=\lambda\overrightarrow{C D}$。
坐标表示
设$\overrightarrow{AB}=(x_1,y_1)$, $\overrightarrow{CD}=(x_2,y_2)$,如果 $\overrightarrow{AB}=\lambda\overrightarrow{C D}$,则有$\left\{\begin{matrix} x_1=\lambda x_2 \\ y_1=\lambda y_2 \end{matrix}\right.$。
向量共线的代数表示
总结词
如果两个向量$\overset{\longrightarrow}{a}$和 $\overset{\longrightarrow}{b}$共线,那么存在一个 非零实数$\lambda$,使得 $\overset{\longrightarrow}{b} = \lambda\overset{\longrightarrow}{a}$。

向量共线的性质
要点一
向量共线的性质包括
交换律、结合律、分配律等。这些性质可以用来简化向 量的运算,并用于解决实际问题。

2.3.4平面向量共线的坐标表示

2.3.4平面向量共线的坐标表示

本节课到此结束,请同学们课后再 做好复习与作业。谢谢!
作业:课本P101习题2.3.4:6、7 B组1~4
《聚焦课堂》
再见!
聚焦作业手册P80: 8T
已知A(2,3)、B(5,4)、C(7,10),若AP=AB+λAC (λ∈R),试求λ为何值时,点P在第三象限内? 解:设P(x,y). AP =(x-2,y-3), AB =(3, 1), x-2=3+5λ y-3=1+7λ AC =(5, 7), (x-2, y-3) =(3, 1)+λ(5, 7) =(3+5λ, 1+7λ) x=5+5λ <0 y=4+7λ <0
∴只能有:
(1)k 1 : ke1 e2 e 1 ke2 ,同向共线. (2)k 1 : ke1 e2 (e 1 ke2 ) ,反向共线.
{ k 1 0
k 0
λ 1 k 1.
a ( x1 , y1 ), b ( x2 , y2 ).
B( x 2 , y 2 )
x1=x2,且y1=y2
( x2 x1 , y2 y1 )
A( x1 , y1 )
探究:
向量平行的坐标表示
向量平行的向量表示
设a=(x1,y1), b=(x2,y2), 其中a≠0, b // a b = λa (x2,y2) =λ(x1,y1) = (λx1,λy1)
(x , y ) λa 3.两个结论 AB ( x2 x1 , y2 y1 ) a b x1=x2,且y1=y2 4.共线向量的充要条件:(a≠0) x1y2-x2y1=0 向量a与b共线 b=λa
a b ( x 1 x 2 , y1 y2 ), a b ( x 1 x 2 , y1 y2 ),

2.3.4 平面向量共线的坐标表示

2.3.4 平面向量共线的坐标表示

这两种表示本质上是一样, 解题时根据具体 情况适当选用.
如果 a // b ,那么 x1 y2 x2 y1 0 。
反之如果 x1 y2 x2 y1 0 ,那么 a // b 。
例1 : 已知a (4,2), (6, y ), 且a // b, 求y. b
例2 : (1)已知A(1,1), B (1,3), C (2,5), 求证 : A, B, C三点共线.
例 4:如图,已知点A(4,0),B(4,4),C(2,6),求 直线AC、OB交点P的坐标.
[例5] 已知A(-1,2),B(1,4). (1)求AB的中点M的坐标; (2)求AB的三等分点P、Q的坐标;
例6: P1 P PP2 ( 1), 点P1 , P , P2坐标分别为(x1 , y1 ), ( x , y ), 设
问1:向量共线定理是什么? b 对于向量 a , (a 0) , a // b存在唯一实数λ,使得 b a -4) 8) 向量a (1 , 与b (2 , 是否平行? 问2:向量 a ( x1 , y1 ), b ( x2 , y2 ) 其中 a 0 如果 a // b x1、x2、y1、y2 之间有怎样的关系呢? 已知 a ( x1 , y1 ), b ( x2 , y2 ) ,其中 a 0 ,
x ( x 2 , y2 )求证: y
x1 x 2 1 y1 y2 1
小结:
两向量平行的条件:
1.b // a(a 0) 存在唯一实数 , 使b a.
2.若a ( x1 , y1 ), b ( x2 , y2 ), 则a // b(b 0) x1 y2 x2 y1 0, 即x1 y2 x2 y1

2.3.3 平面向量的坐标运算 2.3.4 平面向量共线的坐标表示

2.3.3 平面向量的坐标运算  2.3.4 平面向量共线的坐标表示

2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示 ●温故知新1.(1)式子12(2)如果基底的两个向量1e 、2e ________,则这个基底为正交基底.2.在直角坐标系中建立一个________{},i j ,对于平面内任一向量a 可分解为x y =+a i j ,则有序 实数对______叫做向量a 的坐标,记作_________.3.设OA x y =+i j ,则向量OA 的坐标______就是_________的坐标;反过来,_________的坐标______也就是向量OA 的坐标.4.向量的加法法则:两向量首尾相接,则和向量为首向量的______指向末向量的______. ●课题引入在直角坐标平面中,(1)画出()2,4OA =,如何画()2,4=a ?(2)若()2,4=a ,()3,1=b ,画出+a b ,如何求+a b 的坐标?●教材新知1.2.(1)若向量的起点是坐标原点,则向量的坐标等于___________; (2)设()11,A x y ,()22,B x y ,则AB =_________.即一个向量的坐标等于表示此有向线段的___________减去___________.3.将一个向量的始点平移到坐标原点,则向量的坐标和平移后向量的______是相同的.4.设()11,x y =a ,()22,x y =b ,其中≠0b ,则a ‖b ⇔________1212,x x y y λλ=⎧⇔⇔⎨=⎩___________. 5.设()11,A x y ,()22,B x y ,()33,C x y ,只要证明________,便可证得A、B 、C 三点共线. 6.设()111,P x y ,()222,P x y ,(),P x y ,()121PP PP λλ=≠-时,x =_______,y =_______. (1)当1λ=,即点P 为12P P 的______,此时x =_______,y =_______.(2)ABC ∆中,()11,A x y ,()22,B x y ,()33,C x y ,重心(),G x y ,则x =_______,y =_______.●题组集训(1)若点P 的坐标为()11,x y ,向量PQ 的坐标为()22,x y ,则点Q 的坐标为( )A.()1212,x x y y --B.()2121,x x y y --C.()1212,x x y y ++D.()1212,x x y y -+ (2)()3,2=a ,()0,1=-b ,则向量2-b a 的坐标是( )A.()3,4-B.()3,4-C.()3,4D.()3,4-- (3)设()2,3AB =,(),BC m n =,()1,4CD =-,则DA =( )A.()1,7m n ++B.()1,7m n ----C.()1,7m n --D.()1,7m n -+-+ (4)若()0,0O ,()1,1A 且'2OA OA =,则点'A 的坐标为_______.(5)已知点()3,2M -,()5,1N --,若12MP MN =,则点P 的坐标是_______.●课堂精讲【例1】已知点A 、B 、C 的坐标分别为()2,4A -、()0,6B 、()8,10C -.求向量122AB BC AC +-的坐标.【例2】已知()1,2=a ,()3,2=-b ,当k 为何值时,k +a b 与3-a b 平行?平行时它们是同向还是反向?【变式训练】已知点()4,0A ,()5,5B ,()2,6C ,O 为坐标原点,求直线AC 与OB 的交点P 的坐 标.【例3】已知点()6,3A ,O 为坐标原点,点P 在直线OA 上,且12OP PA =,若P 是线段OB 的中点,求点B 的坐标.【变式训练1】在ABC ∆中,已知点()3,7A 、()2,5B -.若线段AC 、BC 的中点都在坐标轴上,求点C 的坐标.【变式训练2】如图,已知三点()0,8A ,()4,0B -,()5,3C -,D 点在线段AB 上,且13AD DB=, E 点在线段BC 上,若BDE ∆的面积是ABC ∆面积的一半,求向量AE 的坐标.●课后反馈(1)若三点()1,1P ,()2,4A -,(),9B x -共线,则( )A.1x =-B.3x =C.92x =D.51x = (2)在平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则BD =( )A.()2,4--B.()3,5--C.()3,5D.()2,4 (3)已知两点()2,1A -,()3,1B ,与AB 平行且方向相反的向量a 是( )A.()1,2=-aB.()9,3=aC.()1,2=-aD.()4,8=--a (4)已知()5,2=-a ,()4,3=--b ,(),x y =c ,若23-+=0a b c ,则c 等于( ) A.81,3⎛⎫ ⎪⎝⎭ B.138,33⎛⎫ ⎪⎝⎭ C.134,33⎛⎫ ⎪⎝⎭ D.134,33⎛⎫-- ⎪⎝⎭(5)设1,tan 3α⎛⎫= ⎪⎝⎭a ,3cos ,2α⎛⎫= ⎪⎝⎭b ,且a 与b 共线,则锐角α的值为( )A.12πB.6πC.4πD.3π(6)若ABC ∆的三条边得中点分别为()2,1和()3,4-,()1,1--,则ABC ∆的重心坐标为______.(7)设向量()1,2=a ,()2,3=b ,若向量λ+a b 与向量()4,7=--c 共线,则λ=______. (8)若()3,4=a ,b ‖a 且b 的起点为()1,2,终点为(),3x x ,则=b ________. (9)若()4,3=-a ,(),5x =b ,()1,y =-c ,若+=a b c ,则(),x y =_______.(10)已知()5,1A ,()1,3B ,113OA OA =,113OB OB =,求11A B .(11)设向量()1,3=-a ,()2,4=-b ,()1,2=--c .若表示向量4a 、42-b c 、()2-a c 、d 的有向线段首尾相接能构成四边形,求向量d .(12)已知O 是坐标原点,()2,1A -,()4,8B -,且3AB BC +=0,求OC 的坐标.(13)平面内给定三个向量()3,2=a ,()1,2=-b ,()4,1=c ,回答下列问题: ①求32+-a b c ;②求满足m n =+a b c 的实数m ,n ; ③若()k +a c ‖()2-b a ,求实数k .(14)如图所示,已知()4,5A ,()1,2B ,()12,1C ,()11,6D ,AC 与BD 相交于点P ,求BP 的坐 标及点P 的坐标.(15)已知平行四边形ABCD 的一个顶点坐标为()2,1A -,一组对边AB 、 CD 的中点分别为()3,0M 、()1,2N --,求平行四边形的各个顶点的坐标.。

平面向量共线的坐标表示

平面向量共线的坐标表示
向量的坐标
向量$\overset{\longrightarrow}{AB}$的坐标是$(x_2 - x_1,y_2 - y_1)$,其中 $(x_1,y_1)$和$(x_2,y_2)$分别是点A和点B的坐标。
坐标表示法的应用
向量加法
向量数乘
对于两个向量 $\overset{\longrightarrow}{AB}$和 $\overset{\longrightarrow}{CD}$
向量$\overset{\longrightarrow}{AB}$的长度称为向量的模,用符号 $|\overset{\longrightarrow}{AB}|$表示,其大小是线段$MN$的长度。
向量的方向
向量$\overset{\longrightarrow}{AB}$的方向是从点A指向点B,与线段AB的方向一致。
详细描述
设$\overset{\longrightarrow}{a} = (x_1, y_1)$和 $\overset{\longrightarrow}{b} = (x_2, y_2)$是同一 直线上的两个向量。$t$为任意实数
向量的分解与合成
总结词
平面向量的分解与合成是指将一个向量分解为若干个 向量的和,或将若干个向量的和合成一个向量。
03
向量共线定理的证明
向量共线的定义
两个向量共线
两个向量共线是指它们的方向相同或相反,即它们的角度为0 度或180度。
坐标表示
平面向量的坐标表示是利用两个实数来表示向量的起点和终 点,即$(x_{1}, y_{1})$和$(x_{2}, y_{2})$。
向量共线定理的证明方法
方法一
利用向量的坐标表示证明
对于一个实数$\lambda$和一个向量 $\overset{\longrightarrow}{AB}$

高中数学必修四(人教新A版)教案20共面向量共线的坐标表示

高中数学必修四(人教新A版)教案20共面向量共线的坐标表示







问题与情境及教师活动
学生活动
(一)创设情景,揭示课题
1.平面向量的坐标运算公式
2.向量的数乘运算
3.平面向量的共线定理
4.请说出下列各组中两向量的位置关系(共线或不共线),并指出它们的特点.
(二)研探新知
1.向量共线定理的坐标形式
学生回忆概念
学生完成
高中数学必修四课时教案







问题与情境及教师活动
学生活动
如果用坐标表示,可写为
消去 可得
思考:若 ,能得到 与 共线吗?
(三)质疑答辩,排难解惑
例1.பைடு நூலகம்
例2.已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系
例3.设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),
(x2,y2).⑴当点P是线段P1P2的中点时,求点P的坐标;
是什么?
(三) 巩固练习:
4. 4、5
在充分独立思考的基础上,进行小组讨论.




(1)根据向量的坐标,判断向量是否共线
(2)能用平面向量共线解决平面几何问题.
课后
反思
高中数学必修四课时教案
备课人
授课时间
课题
§2.3.4平面向量共线的坐标表示
课标要求
平面向量共线的坐标表示




知识目标
会用坐标表示平面向量共线条件
技能目标
通过本节学习,使学生能够解决具体问题,知道学有所用
情感态度价值观

第二章23234平面向量共线的坐标表示

第二章23234平面向量共线的坐标表示
返回
[活学活用] 已知 a=(1,2),b=(-3,2),当实数 k 为何值时,(ka+b)∥(a- 3b)?这两个向量的方向是相同还是相反? 解:∵a=(1,2),b=(-3,2), ∴ka+b=(k-3,2k+2),a-3b=(10,-4). 由题意得(k-3)×(-4)-10(2k+2)=0,解得 k=-13. 此时 ka+b=-13a+b=-13(a-3b), ∴当 k=-13时,(ka+b)∥(a-3b),并且它们的方向相反.
A.3
B.-3
1 C.3 解析:选 C
D.-13 ∵a∥b,∴(-1)×(-1)=3x,∴x=13.
返回
2.已知 A(2,-1),B(3,1),则与 AB平行且方向相反的向量 a

()
A.(2,1) C.(-1,2)
B.(-6,-3) D.(-4,-8)
解析:选 D AB=(1,2),向量(2,1)、(-6,-3)、(-1,2) 与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.
返回
3.已知向量 a=(1,2),b=(-2,3),若 λa+μb 与 a+b 共线,则 λ 与 μ 的关系是________. 解析:∵a=(1,2),b=(-2,3),∴a+b=(1,2)+(-2,3)=(- 1,5),λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ), 又∵(λa+μb)∥(a+b), ∴-1×(2λ+3μ)-5(λ-2μ)=0, ∴λ=μ. 答案:λ=μ
返回
∴yx==-2+11+231+×+2323×23-31,,
即xy==3545.,
故 P 点坐标为54,35.
(2)当 P1P 与 PP2 反向时,则有 P1P =-23 PP2 ,设 P 点坐

2014年人教A版必修四课件 2.3 平面向量的基本定理及坐标表示

2014年人教A版必修四课件 2.3  平面向量的基本定理及坐标表示

1. 设非零向量 a, b, c, 满足 |a||b||c|, abc, 则 a 与 b 的夹角等于 ( B ) (A) 150 (B) 120 (C) 60 (D) 30
解: 由三角形法则作 abc,
由 |a||b||c| 得三角形是等边三角形. 得 a 与 b 的夹角应是 120.
练习: (补充) 1. 如图, 已知向量 e1、e2, 求作下列向量: (1) 3e12e2; (2) 4e1-e2; e1 e2 (3) - 2e1 1 e2 . 2
习题 2.3 B组 第 3 题.
练习: (补充) 1. 如图, 已知向量 e1、e2, 求作下列向量: (1) 3e12e2; (2) 4e1-e2; e1 e2 1 2 e e2 . (3) 1 2
问题2: 下面标注的角中, 哪些角等于向量 a 与 b 的夹角? a a b a a b a b b b b b b b a ① ② ③ ④ ⑤ 标注的角等于向量 a 与 b 的夹角的有 ① ④ ②③⑤中, 标注的角与向量 a 与 b 的夹角互补.
问题3. 在等边三角形ABC中, D是BC的中点. (1) 向量 AB与 AC 的夹角是多少? 60 (2) 向量 AB与 AD的夹角是多少? 30 (3) 向量 AD与 BC 的夹角是多少? 90 (4) 向量 AB与 BC 的夹角是多少? 120
A a (1) 作OA a, O E e (2) 作OB e1 , 2 C e1 (3) 作CA e2 , B (4) 作 EA 2CA 2e2 , 使点E在OB上, (5) 取一个实数1, 使 OE 1OB 1e1, 则 a OE EA 1e1 2e2 .
(二) 向量的夹角
设两非零向量 OA a, OB b , 则∠AOBq 叫向量 a 与 b 的夹角.

【高中数学必修四】2.3.4平面向量共线的坐标表示

【高中数学必修四】2.3.4平面向量共线的坐标表示

( x1, y1 ),( x2 , y2 )
(1)当点P是线段P1P2的中点时,求点P的坐标; (2)当点P是线段P1P2的一个三等分点时,求点P的坐标。
y

解:(2)
若 P1 P 2 PP2 ,同理可得, x1 2 x 2 y1 2 y 2 P , 3 3

P P1
P2
O
x
例4.设点P是线段P1P2上的一点,P1、P2的坐标分别是
( x1, y1 ),( x2 , y2 )
(1)当点P是线段P1P2的中点时,求点P的坐标; (2)当点P是线段P1P2的一个三等分点时,求点P的坐标。
y
思考.
若P1P:PP2=如何 求点P的坐标?
P1
P
P2
O
x
课堂小结
向量共线的两个等价条件

y P
P2
1 P1 OP OP P 1 P 1 P OP 1 1P 2 3 1 OP OP2 OP 1 1 3 2 x1 x2 2 y1 y2 2 1 , OP1 OP2 3 3 3 3

复习
平面向量的坐标运算
若A( x1 , y1 ), B( x2 , y2 ), 则
AB ( x2 x1 , y2 y1 ).
一个向量的坐标等于表示此向量的 有向线段的终点坐标减去始点的坐标.
复习 两个向量共线的充要条件是什么?
设 a x1 , y1 , b x2 , y2 , 其中 b 0 . a 与 b 共线, 当且仅当存在实数 ,使 a b .
a b a // b (b 0) x1 y2 x2 y1 0 .

2.3.4 平面向量共线的坐标表示(A3)

2.3.4 平面向量共线的坐标表示(A3)
鸡西市第十九中学学案
2015 年( )月( )日 班级 姓名
在坐标系中以原点为始点,画出向量 a=(2,3),终点为 A;b=(6,4),终点为 B. 则线段 AB 的中点 P 的坐标 问题 1 设 P1、P2 的坐标分别是(x1,y1)、(x2,y2),求线段 P1P2 的中点 P 的坐标.
2.3.4
问题 2 设 P1(x1,y1),P2(x2,y2),试用 λ 及 P1,P2 点的坐标表示 P(x,y)点的坐标.
例3
已知点 A(3,-4)与点 B(-1,2),点 P 在直线 AB 上,且| AP |=2| PB |,求点 P 的坐标.
【小结】若 P 2 ,则 P 与 P1、P2 三点共线. 1 P =λ PP 当 λ∈ 时,P 位于线段 P1P2 的内部,特别地 λ=1 时,P 为线段 P1P2 的中点; 当 λ∈ 时,P 位于线段 P1P2 的延长线上; 当 λ∈ 时,P 位于线段 P1P2 的反向延长线上. 例 1 已知 a=(1,2),b=(-3,2),当 k 为何值时,ka+b 与 a-3b 平行?平行时它们是同向还是 反向?
1 2 3
4 5 6
x
a 与非零向量 b 为共线向量的充要条件是有且只有一个实数 λ 使得 a=λb.那么这个共线向量定理 如何用坐标来表示? 【平面向量共线的坐标表示】 问题 1 设向量 a=(x1,y1),b=(x2,y2)(b≠0),如果 a∥b,那么 x1y2-x2y1=0,写出证明过程.
问题 3 已知△ABC 的三个顶点坐标依次为 A(x1,y1),B(x2,y2),C(x3,y3).求△ABC 的重心 G 的 坐标.
问题 2 设向量 a=(x1,y1),b=(x2,y2),b≠0,如果 x1y2-x2y1=0,那么 a∥b.请你写出证明过 程.

平面向量共线

平面向量共线
答案:D
人教A版必修四·新课标·数学
版块导航
4.已知向量 a,b 不共线,c=ka+b(k∈R),d=a-b, 如果 c∥d,那么( )
A.k=1 且 c 与 d 同向 B.k=1 且 c 与 d 反向 C.k=-1 且 c 与 d 同向 D.k=-1 且 c 与 d 反向
解析:∵c∥d,∴存在实数 λ,使 c=λd,即 ka+b=λ(a -b),
答案:C
人教A版必修四·新课标·数学
版块导航
3.已知向量 a=(1,1),b=(2,x),若 a+b 与 4b-2a 平
行,则实数 x 的值是( )
A.-2
B.0
C.1
D.2
解析:因为 a=(1,1),b=(2,x),所以 a+b=(3,x+1), 4b-2a=(6,4x-2),因为 a+b 与 4b-2a 平行,所以 3(4x- 2)-6(x+1)=0,解得 x=2.故选 D.
2.证明三点共线的方法 设 A(x1,y1)、B(x2,y2)、C(x3,y3), 只要证明 向量共线 ,便可证得 A、B、C 三点 共线.
3.线段的中点坐标 设 P1(x1,y1),P2(x2,y2),则 P1P2 的中点 P 的坐标为 x1+2 x2,y1+2 y2.
想一想
人教A版必修四·新课标·数学
版块导航
解:∵a=(1,1),b=(x,1), ∴u=(1,1)+2(x,1)=(1,1)+(2x,2)=(2x+1,3); v=2(1,1)-(x,1)=(2-x,1). (1)u=3v⇔(2x+1,3)=3(2-x,1)⇔(2x+1,3)=(6-3x,3) ⇔2x+1=6-3x. 解之,得 x=1.
A.x=-1 C.x=92
B.x=3 D.x=51

《2.3.4平面向量的基本定理及坐标表示》课件3

《2.3.4平面向量的基本定理及坐标表示》课件3

误区警示 考虑不全面而出错 【示例】 若向量 a=(-1,x)与 b=(-x,2)共线,求 x. [错解] ∵a, b 共线,∴(-1)×2-x(-x)=0,得 x=- 2(舍去) 或 x= 2,故 x= 2为所求. 舍去 x=- 2没有道理. [正解] ∵a,b 共线,∴(-1)×2-x(-x)=0,得 x=± 2, 而 x= 2时,a=(-1, 2),b=(- 2,2)= 2(-1, 2)= 2 a,此时 a、b 同向共线; x=- 2时,b=- 2a,此时 a、b 异向共线. 故 x=± 2为所求.
5 → 而CM=x,y-4,
(8 分)
5 7 → CB=4-0,3-4=4,4.
∵C,M,B 三点共线, → → ∴CM与CB共线.
5 7 ∴4x-4y-4=0,即 7x-16y=-20.
(10 分) ②
12 由①②得 x= 7 ,y=2.
规律方法
此类题目应充分利用向量共线定理或向量共线坐标
的条件进行判断, 特别是利用向量共线坐标的条件进行判断时, 要注意坐标之间的搭配.
→ → → 【变式 1】 若OA=(-1,2),OB=(1,0),OC=(5,-4). 求证:A、B、C、三点共线. 证明 → =OB → -OA → =(2,-2), AB
2.3.4 平面向量共线的坐标表示
【课标要求】 1.通过实例了解如何用坐标表示两个共线向量. 2.理解用坐标表示的平面向量共线的条件. 3.会根据平面向量的坐标判断向量是否共线. 【核心扫描】 1.用坐标表示两向量共线.(重点) 2.根据平面向量的坐标判断向量共线.(难点) 3.两直线平行与两向量共线的判定.(易混点)
共线的两个向量可以是同向共线,也可以是反向共 线.解答这类试题时,要认真审题,对求得的参数需进行讨论, 舍去不合题意的参数值.

高中数学必修四 第2章 平面向量课件 2.3.4 平面向量共线的坐标表示

高中数学必修四 第2章 平面向量课件 2.3.4 平面向量共线的坐标表示

类型二 利用向量共线求参数 【例2】 已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b 平行?平行时它们是同向还是反向? [思路探索] 先求ka+b,a-3b的坐标,再由向量共线的充要条件 列方程组求k. 解 法一 ka+b=k(1,2)+(-3,2)=(k-3,2k+2), a-3b=(1,2)-3(-3,2)=(10,-4). 当ka+b与a-3b平行时,存在唯一的实数λ, 使ka+b=λ(a-3b), 即(k-3,2k+2)=λ(10,-4),
∴-6(x-2)+2(6-y)=0.② 解①②组成的方程组,得x=3,y=3, ∴点P的坐标为(3,3). [规律方法] 求解直线或线段的交点问题,常规方法为写出直线 或线段对应的直线方程,建立方程组求解,而利用向量方法借助 共线向量的充要条件可减少运算量,且思路简单明快.
【活学活用3】 平面上有A(-2,1),B(1,4),D(4,-3)三点,
新知导学 平面向量共线的坐标表示
前提条件
a=(x1,y1),b=(x2,y2),其中b≠0
结论 当且仅当 x1y2-x2y1=0 时,向量a,b(b≠0)共线
温馨提示:平面向量共线的坐标表示的记忆策略
互动探究 探究点1 如果两个非零向量共线,你能通过它们的坐标判断它们 同向还是反向吗? 提示 当两个向量的对应坐标同号或同为零时,同向;当两个向 量的对应坐标异号或同为零时,反向.例如,向量(1,2)与(-1, -2)反向;向量(1,0)与(3,0)同向;向量(-1,2)与(-3,6)同向;向 量(-1,0)与(3,0)反向等. 探究点2 若a∥b,a=(x1,y1),b=(x2,y2),则必有yx11=xy22吗? 提示 不一定,两个向量中,若有与坐标轴(x轴)平行的向量或 零向量,则不能写成比例式.

高一数学必修4课件:2-3-4平面向量共线的坐标表示

高一数学必修4课件:2-3-4平面向量共线的坐标表示
[答案] D
)
第二章 2.3.4
成才之路 ·数学 ·人教A版 · 必修4
[拓展]三点共线问题 剖析:(1)若A(x1,y1),B(x2,y2),C(x3,y3),则A,B,C 三点共线的条件为(x2-x1)(y3-y1)-(x3-x1)(y2-y1)=0. (2)若已知三点的坐标,判断其是否共线可采用以下两种 方法: ①直接利用上述条件,计算(x2-x1)(y3-y1)-(x3-x1)(y2- y1)是否为0. → → ②任取两点构成向量,计算出两向量如 AB 、 AC ,再通过 两向量共线的条件进行判断.
[分析]
方法一:由O,B,P三点共线,可设
→ OP

→ → → λOB,利用AP与AC共线求λ. 方法二:设P(x,y),由O、P、B三点共线及A、P、C三 点共线建立x,y的方程组,解方程组求P(x,y).
第二章 2.3.4
成才之路 ·数学 ·人教A版 · 必修4
[解析]
→ → → 方法一:设 OP =λ OB =(4λ,4λ),则 AP =(4λ-
λ+2=-4k ∴ 2λ+3=-7k
,∴λ=2.
第二章 2.3.4
成才之路 ·数学 ·人教A版 · 必修4
命题方向
三点共线问题
[例2]
→ → → O是坐标原点, OA =(k,12), OB =(4,5), OC =
(10,k).当k为何值时,A、B、C三点共线? [分析] → → → 由A、B、C三点共线可知, AB , AC , BC 中任
[分析]
→ → 可转化为证明AB∥AC.
第二章 2.3.4
成才之路 ·数学 ·人教A版 · 必修4
[证明]
1 由A(1,5)、B2,4、C(0,3),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的坐标运算平面向量共线的坐标表示一、教学分析1.前面学习了平面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律.3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢前面已经找出两个向量共线的条件(如果存在实数λ,使得a=λb,那么a与b共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的.二、教学目标1、知识与技能:掌握平面向量的坐标运算;会根据向量的坐标,判断向量是否共线。

2、过程与方法:通过对共线向量坐标关系的探究,提高分析问题、解决问题的能力。

3情感态度与价值观:学会用坐标进行向量的相关运算,理解数学内容之间的内在联系。

三、教学重点与难点教学重点:平面向量的坐标运算。

教学难点:向量的坐标表示的理解及运算的准确.四、教学设想(一)导入新课思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y的二元一次方程Ax+By+C=0(A、B 不同时为零)何时所体现的两条直线平行向量的共线用代数运算如何体现思路2.对于平面内的任意向量a,过定点O作向量=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢(二)推进新课、新知探究、提出问题①我们研究了平面向量的坐标表示,现在已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标表示吗②如图1,已知A(x1,y1),B(x2,y2),怎样表示的坐标你能在图中标出坐标为(x2-x1,y2-y1)的P点吗标出点P 后,你能总结出什么结论活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:图1a +b =(x 1i+y 1j )+(x 2i+y 2j )=(x 1+x 2)i+(y 1+y 2)j ,即a +b =(x 1+x 2,y 1+y 2).同理a -b =(x 1-x 2,y 1-y 2).又λa =λ(x 1i+y 1j )=λx 1i+λy 1j .∴λa =(λx 1,λy 1).教师和学生一起总结,把上述结论用文字叙述分别为:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量平移,使得点A 与坐标原点O 重合,则平移后的B 点位置就是P 点.向量AB 的坐标与以原点为始点,点P 为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系.学生通过平移也可以发现:向量的模与向量OP 的模是相等的.由此,我们可以得出平面内两点间的距离公式:|AB |=|OP |=221221)()(y y x x -+-.教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能.②=-=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.提出问题①如何用坐标表示两个共线向量②若a =(x 1,y 1),b =(x 2,y 2),那么2211x y x y =是向量a 、b 共线的什么条件 活动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.我们知道,a 、b 共线,当且仅当存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),即⎪⎩⎪⎨⎧==.,2121y y x x λλ消去λ后得x 1y 2-x 2y 1=0. 这就是说,当且仅当x 1y 2-x 2y 1=0时向量a 、b (b ≠0)共线.又我们知道x 1y 2-x 2y 1=0与x 1y 2=x 2y 1是等价的,但这与2211x y x y =是不等价的.因为当x 1=x 2=0时,x 1y 2-x 2y 1=0成立,但2211x y x y =均无意义.因此2211x y x y =是向量a 、b 共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.讨论结果:①x 1y 2-x 2y 1=0时,向量a 、b (b ≠0)共线.②充分不必要条件.提出问题a 与非零向量b 为共线向量的充要条件是有且只有一个实数λ使得a =λb ,那么这个充要条件如何用坐标来表示呢活动:教师引导推证:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠a ,由a =λb ,(x 1,y 1)=λ(x 2,y 2)⎪⎩⎪⎨⎧==⇒.,2121y y x x λλ消去λ,得x 1y 2-x 2y 1=0. 讨论结果:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0.教师应向学生特别提醒感悟:1°消去λ时不能两式相除,∵y 1、y 2有可能为0,而b ≠0,∴x 2、y 2中至少有一个不为0.2°充要条件不能写成2211x y x y =(∵x 1、x 2有可能为0). 3°从而向量共线的充要条件有两种形式:a ∥b (b ≠0)⎩⎨⎧===⇔.01221y x y x ba λ(三)应用示例思路1例1 已知a =(2,1),b =(-3,4),求a +b ,a -b ,3a +4b 的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出的结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a +b =(2,1)+(-3,4)=(-1,5);a -b =(2,1)-(-3,4)=(5,-3);3a +4b =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式.变式训练1.(2007海南高考,4) 已知平面向量a =(1,1),b =(1,-1),则向量21a 23-b 等于( ) A.(-2,-1) B.(-2,1) C.(-1,0) D.(-1,2)答案:D2.(2007全国高考,3) 已知向量a =(-5,6),b =(6,5),则a 与b …( )A.垂直B.不垂直也不平行C.平行且同向D.平行且反向答案:A图2 例2 如图2,已知ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D 的坐标.活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种解法:解法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;解法二利用向量加法的平行四边形法则求得向量OD 的坐标,进而得到点D 的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D 的坐标表示为已知点的坐标.解:方法一:如图2,设顶点D 的坐标为(x,y).∵AB =(-1-(-2),3-1)=(1,2),DC =(3-x,4-y).由AB =DC ,得(1,2)=(3-x,4-y).∴⎩⎨⎧-=-=.42,31x x ∴⎩⎨⎧==.2,2y x ∴顶点D 的坐标为(2,2).方法二:如图2,由向量加法的平行四边形法则,可知BC BA AD BA BD +=+==(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1),而OD =OB +BD =(-1,3)+(3,-1)=(2,2),∴顶点D 的坐标为(2,2).点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.变式训练图3如图3,已知平面上三点的坐标分别为A(-2,1),B(-1,3),C(3,4),求点D 的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD 时,仿例二得:D 1=(2,2);当平行四边形为ACDB 时,仿例二得:D 2=(4,6);当平行四边形为DACB 时,仿上得:D 3=(-6,0).例3 已知A(-1,-1),B(1,3),C(2,5),试判断A 、B 、C 三点之间的位置关系.活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A 、B 、C 三点,观察图形,我们猜想A 、B 、C 三点共线.下面给出证明.∵AB =(1-(-1),3-(-1))=(2,4), AC =(2-(-1),5-(-1))=(3,6),又2×6-3×4=0,∴∥,且直线AB 、直线AC 有公共点A,∴A 、B 、C 三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.变式训练已知a=(4,2),b=(6,y),且a∥b,求y.解:∵a∥b,∴4y-2×6=0.∴y=3.思路2例2 设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1)、(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗即当21PPPP=λ时,点P的坐标是什么师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有学生可能提出如下推理方法:由PP1=λ2PP,知(x-x1,y-y1)=λ(x2-x,y2-y),即⎪⎪⎩⎪⎪⎨⎧++=++=⇒⎪⎩⎪⎨⎧-=--=-.1,1)()(21212121λλλλλλyyyxxxyyyyxxxx这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P点位置的影响,也可鼓励学生课后探索.图4解:(1)如图4,由向量的线性运算可知OP=21(OP1+OP2)=(.2,22121yyxx++).所以点P的坐标是(.2,22121yyxx++)(2)如图5,当点P是线段P1P2的一个三等分点时,有两种情况,即21PPPP=21或21PPPP=2.如果21PPPP=21,那么图5=1+P P 1=1+3121P P =1+31(2OP -1) =321OP +312OP =(32,322121y y x x ++). 即点P 的坐标是(32,322121y y x x ++). 同理,如果21PP P P =2,那么点P 的坐标是.32,322121y y x x ++ 点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.变式训练在△ABC 中,已知点A(3,7)、B(-2,5).若线段AC 、BC 的中点都在坐标轴上,求点C 的坐标.解:(1)若AC 的中点在y 轴上,则BC 的中点在x 轴上,设点C 的坐标为(x,y),由中点坐标公式,得,025,023=+=+y x ∴x=-3,y=-5,即C 点坐标为(-3,-5).(2)若AC 的中点在x 轴上,则BC 的中点在y 轴上,则同理可得C 点坐标为(2,-7).综合(1)(2),知C 点坐标为(-3,-5)或(2,-7).例2 已知点A(1,2),B(4,5),O 为坐标原点,=+t .若点P 在第二象限,求实数t 的取值范围.活动:教师引导学生利用向量的坐标运算以及向量的相等,把已知条件转化为含参数的方程(组)或不等式(组)再进行求解.教师以提问的方式来了解学生组织步骤的能力,或者让学生到黑板上去板书解题过程,并对思路清晰过程正确的同学进行表扬,同时也要对组织步骤不完全的同学给与提示和鼓励.教师要让学生明白“化归”思想的利用.不等式求变量取值范围的基本观点是,将已知条件转化为关于变量的不等式(组),那么变量的取值范围就是这个不等式(组)的解集.解:由已知=(4,5)-(1,2)=(3,3).∴=(1,2)+t(3,3)=(3t+1,3t+2).若点P 在第二象限,则3132023013-<<-⇒⎩⎨⎧>+<+t t t 故t 的取值范围是(32-,31-). 点评:此题通过向量的坐标运算,将点P 的坐标用t 表示,由点P 在第二象限可得到一个关于t 的不等式组,这个不等式组的解集就是t 的取值范围.变式训练已知=(cosθ,sinθ),=(1+sinθ,1+cosθ),其中0≤θ≤π,求||的取值范围.解:∵=-=(1+sinθ,1+cosθ)-(cosθ,sinθ)=(1+sinθ-cosθ,1+cosθ-sinθ).∴|AB|2=(1+sinθ-cosθ)2+(1+cosθ-sinθ)2=[1+(sinθ-cosθ)]2+[1-(sinθ-cosθ)]2=2+2(sinθ-cosθ)2=2+2(1-2sinθcosθ)=4-4sinθcosθ=4-2sin2θ.∵0≤θ≤π,∴0≤2θ≤2π.从而-1≤sin2θ≤1.∴4-2sin2θ∈[2,6].故|AB|的取值范围是[2,6].(四)课堂小结1.先由学生回顾本节都学习了哪些数学知识:平面向量的和、差、数乘的坐标运算,两个向量共线的坐标表示.2.教师与学生一起总结本节学习的数学方法,定义法、归纳、整理、概括的思想,强调在今后的学习中,要善于培养自己不断探索、善于发现、勇于创新的科学态度和求实开拓的精神,为将来的发展打下良好基础.(五)作业。

相关文档
最新文档