X射线荧光光谱仪介绍
X射线荧光光谱仪的两种分析方法
X射线荧光光谱仪的两种分析方法X射线荧光光谱仪(X-ray fluorescence spectrometer,XRF)是一种常见的化学分析仪器,可以在不破坏样品的情况下进行非破坏性的化学分析。
在XRF分析中,通过照射样品并测量样品辐射出的荧光X射线,可以确定样品中各种元素的含量。
本文介绍XRF的两种常见分析方法:定量分析和定性分析。
定量分析定量分析是通过测量样品辐射出的荧光X射线的强度,并根据已知标准样品的荧光强度与元素含量的关系,来计算样品中某种元素的含量。
在定量分析中,需要用到标准样品,这些样品已知各种元素的含量,例如NIST(美国国家标准技术研究所)的SRM(标准参考材料)。
定量分析的具体步骤如下:1.样品制备样品需要制备成薄片或颗粒状,通常需要使用磨片机或压片机进行制备。
为了获得准确的分析结果,样品制备时需要注意不要引入其他元素。
2.样品照射将样品放置在X射线荧光光谱仪中,使其受到射线照射,激发出元素的荧光X 射线。
3.测量荧光X射线利用荧光X射线探测器测量样品辐射出的荧光X射线的强度。
4.标准样品校准用标准样品进行校准,建立荧光强度与元素含量之间的关系。
对于每种元素,建立一个标准曲线。
5.计算元素含量利用标准曲线和样品荧光强度计算样品中某种元素的含量。
定性分析定性分析是通过比较样品荧光X射线的能量和强度与已知标准样品的对比,来确定样品中各种元素的类型和含量。
与定量分析不同,定性分析不需要对荧光强度进行精确的量化测量。
定性分析的具体步骤如下:1.样品制备和照射与定量分析相同。
2.测量荧光X射线与定量分析相同。
3.谱图比较将样品荧光X射线的能量和强度与标准样品进行比较,确定样品中含有哪些元素。
4.确定元素类型和含量通过谱图比较确定元素类型,通过谱峰强度的相对大小和谱图形状确定元素含量。
总结定量分析和定性分析是X射线荧光光谱仪中常用的分析方法,在各自的分析领域中都有广泛的应用。
定量分析需要进行精确的荧光强度测量和标准曲线建立,适用于需要准确测量各种元素含量的分析场合,例如矿石、环境样品等。
(完整版)XRF-X-射线荧光光谱仪
( X-ray Fluorescence Spectrometry, XRF )
目录
一、XRF的基本原理 二、XRF的构造和部件 三、XRF的应用 四、XRF的优缺点
一、XRF基本原理
1.1基本原理
图1 电磁波谱图
X-射线是介于紫外线和γ射线之间的一种电磁辐射,波 长 范 围 为 0.001~10nm 。 对 于 元 素分析来说,主要应用的是 0.05~10nm范围的波长。波长大 于0.1nm的X-射线称为“软”X-射 线 , 而 较 短 波 长 的 X- 射 线 称 为 “硬”X-射线,如图1所示。X-射 线与晶体相互作用产生衍射现 象 , 这 是 X- 射 线 作 为 电 磁 波 谱 的 特 征 , 所 有 X- 射 线 可 以 用 波 长 来 描 述 。 X- 射 线 也 可 以 看 做 是具有一定能量的光子。
原子在X-射线激发下,发射荧光还是Auger是相互竞争的过程,原子序 数小于11的元素,以发射Auger为主,重元素主要发射X-射线荧光。故 X-射线射线荧光对轻元素的灵敏度很低。
1.1.1基础理论
利用X-射线荧光进行元素定性、定 量分析工作,需要以下三方面的理 论基础知识:
1
莫斯莱定律 Moseley
1 K Z S
K和S是线性有关的常数,λ是波长,Z是元素原子序数。
莫斯莱认识到这些X-射线特征光谱是由于内层电子的跃 迁产生的,表明X-射线的特征光谱与原子序数是一一对应 的,使X荧光分析技术成为定性分析方法中最可靠的方法 之一。
布拉格定律(Bragg's law)是反映晶体衍射基本关系的理 论推导定律。1912年英国物理学家布拉格父子(W.H. Bragg 和W.L. Bragg)推导出了形式简单,能够说明晶体衍射基本 关系的布拉格定律。
帕纳科xrf原理-概述说明以及解释
帕纳科xrf原理-概述说明以及解释1.引言1.1 概述帕纳科XRF原理(即帕纳科X射线荧光光谱仪原理)是一种非常重要的分析技术,它利用X射线荧光光谱仪进行物质的分析与检测。
X射线荧光光谱仪(XRF)是一种基于X射线的分析技术,能够快速、无损地分析样品的元素成分及其含量。
帕纳科XRF原理通过将样品暴露在高能量的X射线辐射下,激发样品中的原子发生内层电子跃迁,从而产生特定能量的特征X射线。
这些特征X射线与样品中元素的种类和含量密切相关。
X射线荧光分析原理基于这个原理,通过测量样品中发射出的特征X射线的能量和强度来确定样品的元素成分。
帕纳科XRF原理在许多领域都有广泛的应用。
在材料分析方面,它可以用于合金分析、陶瓷成分分析、矿石成分分析等。
在环境监测方面,它可以用于土壤中重金属含量的检测、水中有害物质的检测等。
在文物保护方面,它可以用于非破坏性地分析文物的元素成分,以了解其制作材料和年代等信息。
帕纳科XRF原理具有许多优点。
首先,它非常快速和高效,能够在几分钟内完成样品的分析。
其次,它是一种无损检测技术,不需要破坏样品,适用于各种形态的样品。
此外,它还具有高准确性和重复性,并且可以同时分析多个元素。
然而,帕纳科XRF原理也存在一些局限性。
首先,它对于低能量X射线不敏感,因此无法检测低原子序数元素。
其次,样品的尺寸和形态对分析结果可能产生影响。
最后,它对于元素的定量分析相对有限,通常只能得到元素的相对含量。
随着科学技术的不断发展,帕纳科XRF原理也在不断进步和完善。
未来,我们可以期待更加精确和灵敏的X射线荧光光谱仪的研发,以及更加全面和准确的元素分析方法的开发。
综上所述,帕纳科XRF原理是一种重要的分析技术,具有广泛的应用领域和许多优点。
随着技术的不断进步,帕纳科XRF原理将在各个领域发挥更大的作用。
文章结构部分的内容如下所示:1.2 文章结构本篇长文主要围绕帕纳科XRF原理展开,文章的主要部分分为引言、正文和结论三个部分。
波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别
波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别一.X射线荧光分析仪简介X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。
在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。
波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。
波长色散型X射线荧光光谱仪(WD-XRF)。
是用晶体分光而后由探测器接受经过衍射的特征X射线信号。
如果分光晶体和控测器做同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行特定分析和定量分析。
该种仪器产生于50年代,由于可以对复杂体进行多组同事测定,受到关注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。
随着科学技术的进步在60年代初发明了半导体探测仪器后,对X荧光进行能谱分析成为可能。
能谱色散型X射线荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)这节进入SI(LI)探测器,便可以据此进行定性分析和定量分析,第一胎ED-XRF是1969年问世的。
近几年来,由于商品ED-XRF仪器及仪表计算机软件的发展,功能完善,应用领域拓宽,其特点,优越性日益搜到认识,发展迅猛。
二.波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别虽然光波色散型(ED-XRF)X射线荧光光谱仪与能量色散型(ED-XRF)X射线荧光光谱仪同属于X射线荧光分析仪,它产生信号的方法相同,最后得到的波谱也极为相似,单由于采集数据的方式不同,WD-XRF(波谱)与WD-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。
(一)原理区别X射线荧光光谱法,是用X射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。
波长色散型荧光光仪(WD-XRF)是用分光近体将荧光光束色散后,测定各种元素的特征X射线波长和强度,从而测定各种元素的含量。
X射线荧光光谱仪的特点及应用介绍
X射线荧光光谱仪的特点及应用介绍X射线荧光光谱仪应用领域:冶金、铸造、机械、科研、商检、汽车、石化、造船、电力、航空、核电、金属和有色金属冶炼、加工和回收工业中的各种分析。
X射线荧光光谱仪主要特点:1、电子系统采用国际标准机笼、高集成化设计。
2、专利技术的入缝及整体出射狭缝制造技术,确保光学系统稳定可靠。
3、光电倍增管检测器,光谱分析范围:160nm-850nm。
4、全数字化智能复合光源DDD技术,可以根据不同材料的激发特点自动调节光源激发参数,真正实现全数字化控制。
5、集成气路模块,优化氩气流向、降低氩气消耗,粉尘通道流畅。
主要配置1、光学系统结构:优化的帕邢-龙格架构、动态安装技术、整体铝合金铸造、局部恒温光栅:曲率半径:750mm入射狭缝:20u出射狭缝:高精度光刻蚀整体狭缝,根据不同元素设立30u-75u缝宽检测器:光电倍增管(PMT)检测器2、全数字激发光源全数字化智能复合光源DDD技术,可以根据不同材料的激发特点自动调节光源激发参数,真正实现全数字化控制。
采用全数字控制模式,高能预燃技术(HEPS),超稳定的能量释放在氩气环境中激发样品。
全数字光源的应用,提高了样品的测量精度和相似性,提高了样品激发速度,-提高火花稳定性,使样品有更好的重现性。
放电频率100Hz-1000Hz可调放电电流达到400A。
3、开放式样品激发台装置激发台直接将激发光导入光学系统。
优化氩气流向设计及粉尘收集清理装置。
开放式样品台可适应各种大小和形状的分析样品。
压杆高度、左右自由调节和移动,接驳安全电路设计。
可装入不同的样品夹具进行分析小样品、细丝和薄片。
4、真空测量和控制真空系统程控,在保证真空度的同时减少真空泵的运行时间,有效延长真空泵的使用寿命。
双级真空隔离措施,很好减少油蒸气以光室的污染。
PMT高压开启和真空系统联动,防止产生辉光放电。
5、信号采集系统信号采集直接与计算机进行数据交换,同时处理来自光电倍增管的信号。
波长色散x射线荧光光谱仪工作原理
波长色散x射线荧光光谱仪工作原理波长色散X射线荧光光谱仪(WDXRF)是一种常用的分析仪器,广泛应用于材料科学、地质学、环境保护等领域,用于元素分析和组分分析。
它的工作原理基于X射线与样品相互作用后产生的荧光辐射,通过波长色散技术实现光谱分析。
WDXRF光谱仪主要由射线源、样品支架、能谱仪(色散器)、荧光探测器组成。
其中射线源是由X射线管产生的,通常采用连续或称为白线辐射的X射线。
样品支架用于固定样品,并确保样品与射线之间的准直关系。
当射线源照射在样品上时,样品中的原子会吸收射线并激发到高能级,随后通过荧光放射回到基态。
这些荧光辐射的能量与样品中的元素类型相关,因此通过测量荧光辐射的能谱可以确定样品中的元素组成。
能谱仪(色散器)是WDXRF光谱仪关键的部分,它用于将不同波长的荧光辐射分离开来。
在能谱仪中,通常采用一系列的晶体或多层衍射片来实现波长色散。
这些晶体或衍射片的入射面和出射面都有倾角,使得入射的X射线和出射的荧光辐射有不同的入射角度和出射角度,从而实现波长分离。
具体来说,当荧光辐射通过能谱仪时,不同波长的荧光辐射由于经过晶体或衍射片后入射角度不同,会在晶体或衍射片中发生不同程度的衍射,进而出射角度和波长也会有差别。
通过调整晶体或衍射片的角度,可以选择不同的入射角度和出射角度,从而实现波长的选择性分散。
最后,荧光辐射被聚焦到荧光探测器上进行测量和分析。
荧光探测器通常采用多道光电二极管(PMT)或半导体探测器,可以高效地测量荧光辐射的强度。
将荧光辐射的能谱与已知元素的荧光辐射能谱进行比较,可以确定样品中含有的元素种类和浓度。
总之,波长色散X射线荧光光谱仪通过射线源产生X射线,并将其照射在样品上,样品中的元素吸收射线并发出荧光辐射。
通过波长色散技术将荧光辐射进行分散,最后荧光辐射被探测器测量并分析,从而实现元素分析和组分分析。
波长色散x射线荧光光谱仪缩写
波长色散x射线荧光光谱仪缩写一、简介在物理学中,波长色散X射线荧光光谱仪是一种用于分析物质成分的仪器。
其原理是利用物质能级间跃迁所辐射出来的X射线来确定物质的元素组成。
本文将介绍波长色散X射线荧光光谱仪的缩写、工作原理、优缺点以及应用领域。
二、缩写波长色散X射线荧光光谱仪的缩写为WDXRF(Wavelength Dispersive X-ray Fluorescence Spectrometer)。
三、工作原理波长色散X射线荧光光谱仪中,样品表面受到X射线照射后,其中的原子会被激发到高能级状态。
随后,这些原子会从高能级状态跃迁回到低能级状态,释放出X射线。
这些X射线的波长是由被激发的原子所决定的。
通过检测和记录这些X射线的波长,仪器可以确定样品中所存在的元素类型以及其相对含量。
WDXRF仪器采用单晶体谱仪进行波长分散,能够提供高分辨率和能量分辨率的光谱。
四、优缺点优点:1. WDXRF仪器的分辨率很高,能够对元素在样品中的分布进行检测和测量。
2. 测量结果能够准确、稳定,精度高。
3. 具有高样品通量,能够进行快速、高效的样品分析。
缺点:1. 商用的WDXRF仪器往往比较昂贵。
2. 需要对样品进行制备和处理,样品的准备过程比较复杂。
3. 在进行分析的过程中,由于样品表面受到的X射线照射强度很大,有可能会对样品造成伤害。
五、应用领域WDXRF仪器广泛应用于各个领域,例如地质、环境、化工、宝石、金属、钢铁、半导体、制药等行业。
在这些行业中,WDXRF仪器被用于分析样品中的元素成分、杂质含量、化合物组成以及晶体学分析等方面。
在地球科学研究中,WDXRF仪器可以用于矿物研究和研究矿床的形成过程。
在环境领域中,WDXRF仪器可以用于土壤和水样品的分析。
在钢铁、金属和半导体制造行业中,WDXRF仪器可以用于对材料的成分进行分析和检测。
总之,波长色散X射线荧光光谱仪具有广泛的应用领域和优越的性能,为人们的生产和科研带来了很大的帮助。
X射线荧光光谱仪原理及应用
将样品置于仪器分析台上,通过X射线照射样品得到荧光谱。
3
谱线分析
对荧光X射线谱进行逐峰分析,定量和定性分析各种元素。
案例研究
测定金属材料中碳含量
利用X射线荧光光谱仪可以对金 属材料中的碳含量进行分析。
矿物元素分析
矿物中元素含量及其分布在地质 勘探过程中起着重要作用。
地下水铅污染
对地下水铅污染进行了分析评价, 为水环境保护和铅中毒防治提供 依据。
探索X射线荧光光谱仪
X射线荧光光谱仪是一种高精度的分析仪器,广泛用于材料、生物等众多领域 的研究和实验。本文将深入探讨该仪器的原理及其应用。
原理与工作原理
1
激发原子核
通过给样品提供高能量的X射线来激发样品原子核中的自由电子。
2
发射特征光
通过脱离自由电子来释放出特有的荧光X射线。
3
测量分析
根据不同化学元素的荧光X射线谱线和强度分析样品的成分及含量。
分析技术
质量分析技术
通过检测样品中化学元素的含量 和种类来进行质量分析。
成分分析线的峰位和峰强度 分析样品中各成分的含量和种类。
通过对样品中钼的Kα线荧光谱分 析,可以推断分子结构。
应用领域
材料科学
分析材料成分、构造、形态及其内部微观结构, 比如金属、半导体、陶瓷材料等。
总结
原理及工作原理
利用X射线的特性进行元素分析。
应用领域
广泛应用于材料分析、环境保 护、考古文物、医药生物等领 域。
优点与限制
优点为非破坏性、灵敏度高、 适用性广泛,限制为仅用于最 上层表面的分析。
2 灵敏度高
能够实现以ppm为数量级的元素定量和定性 分析。
3 适用性广泛
X射线荧光光谱仪使用方法说明书
X射线荧光光谱仪使用方法说明书一、引言X射线荧光光谱仪是一种常用的分析工具,广泛应用于材料科学、地质学、环境监测等领域。
本说明书旨在详细介绍X射线荧光光谱仪的使用方法,以帮助操作人员正确地进行实验操作和数据分析。
二、X射线荧光光谱仪的基本原理X射线荧光光谱仪通过照射样品,利用样品中原子的X射线荧光信号进行元素分析。
当样品受到X射线的照射时,样品中的原子吸收X 射线能量并转化为内层电子的激发能量,随后这些电子会跃迁到低能级的壳层,释放出特定的能量。
光谱仪收集并分析这些荧光信号,得出样品中各种元素的含量和种类。
三、仪器的准备工作1. 确保X射线荧光光谱仪处于稳定的电源供应下;2. 清洁检查样品台面,确保无任何污染物;3. 放置待测样品,并确保其处于稳定的位置;4. 确保X射线管、样品间的距离适当。
四、实验步骤1. 打开X射线荧光光谱仪的电源,并预热10分钟;2. 校准仪器,包括峰位校准、能量刻度等,以保证实验结果的准确性;3. 设置工作模式和参数,如选择连续测量模式或单元素测量模式,并设置相应的参数;4. 确定测量范围和时间,根据待测样品的特性进行相应设置,以保证测量结果的准确性和稳定性;5. 点击开始测量按钮,启动测量程序;6. 测量完成后,关闭X射线荧光光谱仪的电源。
五、数据处理和分析1. 根据测量结果生成相应的光谱图,观察各峰位的位置和强度;2. 利用光谱软件进行数据分析,包括计算元素含量、元素比例等;3. 对数据进行统计和比对,与相关标准进行对比,以确定样品的性质和成分;4. 进行结果的解读和报告,提供详细的分析结果和结论。
六、安全注意事项1. 在实验操作中,严禁直接观察或照射X射线,以免对人体产生伤害;2. 使用符合规定的防护装备,如防护眼镜、防护服等;3. 严禁将样品与裸露的皮肤直接接触,以免造成污染或伤害;4. 遵守实验室安全操作规范,注意仪器的正常使用和维护;5. 定期检查X射线荧光光谱仪的安全性能,确保仪器正常工作。
x射线荧光光谱仪结构
x射线荧光光谱仪结构x射线荧光光谱仪,也称为x射线荧光分析仪,是一种高精度、高灵敏度的物质成分分析仪器。
它能够利用x射线的特性,将物质中的元素分析出来,被广泛应用于材料分析、环境监测、地质勘探、药品研究等领域。
下面是x射线荧光光谱仪的结构和原理。
一、x射线荧光光谱仪的结构1.主控制台:主控制台是x射线荧光光谱仪的核心部分,它包括检测、控制、数据处理等功能模块,负责整个分析仪器的运行和数据处理。
2.激发源:激发源是x射线荧光光谱仪的重要组成部分,是产生x射线的装置。
通常采用的激发源包括射线管、放射性同位素等。
3.样品台:样品台是用于放置样品的平台,通常采用的是旋转式样品台。
样品台的旋转能够确保样品均匀地受到x射线的激发。
4.探测器:探测器是x射线荧光光谱仪的另一个重要组成部分。
探测器采用固态半导体探测器,对x射线的荧光进行自动检测,并将检测结果发送到主控制台进行数据处理。
5.过滤器:过滤器是用于筛选x射线的装置,通常采用的过滤器有铝片、钽片、铬片等。
6.电子学模块:电子学模块是用于探测器信号放大、滤波、数字化处理等的电路模块。
二、x射线荧光光谱仪的原理利用x射线荧光光谱仪进行分析,主要是通过对样品进行x射线激发,然后利用探测器检测样品中产生的荧光x射线的能量和强度,再通过数据处理得到样品中各元素的含量和分布情况。
1.样品的激发和荧光当x射线照射到样品表面时,样品会发出一系列电子束,这些电子束将导致样品原子中的一些电子被激发或瞬时轰出。
当电子回到原子内部时,将会产生x射线荧光。
2.荧光的检测探测器位于样品与激发源之间,能够检测到样品中产生的x射线荧光。
荧光信号被探测器接收并被发送到电子学模块进行信号放大、滤波和数字化处理。
3.数据处理在电子学模块中得到的荧光信号,通过计算机进行数字化处理,得到不同元素的荧光峰强度和位置,再将这些数据与标准样品库相比较,计算出样品中各元素的含量和分布情况。
以上就是x射线荧光光谱仪的结构和原理的详细介绍。
X荧光光谱仪(XRF)的基本原理
X荧光光谱仪是根据X射线荧光光谱的分析方法配置的多通道X射线荧光光谱仪,它能够分析固体或粉状样品中各种元素的成分含量。
X射线荧光(XRF)能够测定周期表中多达83个元素所组成的各种形式和性质的导体或非导体固体材料,其中典型的样品有玻璃、塑料、金属、矿石、耐火材料、水泥和地质物料等。
凡是能和x射线发生激烈作用的样品都不能分析,而且要分析的样品必须是在真空(4~5pa)环境下才能测定。
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。
X射线管通过产生入射X射线(一次X射线),来激发被测样品。
受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。
探测系统测量这些放射出来的二次X射线的能量及数量。
然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。
元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,因此,只要测出荧光X射线的波长或者能量,就可以知道元素的种类,这就是荧光X 射线定性分析的基础。
此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。
近年来,X荧光光谱分析在各行业应用范围不断拓展,广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域,特别是在RoHS检测领域应用得zui多也zui广泛,是一种中型、经济、高性能的波长色散X射线光谱仪。
X荧光光谱仪具有以下优点:a)分析速度高。
测定用的时间与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。
b)X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。
大多数分析元素均可用其进行分析,可分析固体、粉末、熔珠、液体等样品,分析范围为Be到U。
(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。
特别是在超软X射线范围内,这种效应更为显著。
x射线荧光光谱仪的原理
x射线荧光光谱仪的原理
X射线荧光光谱仪是一种利用X射线荧光原理测定元素含量的仪器。
X射线荧光光谱仪的原理是:当高能X射线照射到物体表面时,可以将X射线能量转换成其他波长的能量,这种能量转换的过程就是X射线荧光的原理。
X射线荧光光谱仪是通过利用X射线荧光原理来测定不同元素的原子核化学成分的仪器。
X射线荧光光谱仪的工作原理如下:在X射线荧光光谱仪中,利用一个高能X射线源(例如氘氟射线灯)将物体表面的X射线照射出来,当X射线照射到物体表面时,与物体表面相互作用,表面上的原子核会产生X射线荧光,也就是说,原子核会将X射线的能量转换成一定波长的能量,这种能量转换的过程就是X射线荧光的原理。
X射线荧光光谱仪通过检测X射线荧光中的不同波长的荧光,可以得到不同元素的原子核化学成分,从而判断出物体中各元素的含量。
X射线荧光光谱仪的检测能力范围广,检测灵敏度高,可以检测出超低浓度的元素,是一种有效的元素分析仪器。
X射线荧光光谱仪通过X射线荧光技术,可以检测出物体中不同元素的原子核化学成分,从而判断出物体中各元素的含量,从而实现对物体的元素分析功能。
X射线荧光
光谱仪的检测范围很广,可以检测出超低浓度的元素,而且检测结果准确可靠,对物体中各种元素的检测都具有较高的精度。
X射线荧光光谱仪是一种先进的元素分析手段,其工作原理是利用X射线能量转换成另一种波长的能量,即X 射线荧光的原理,通过检测X射线荧光中的不同波长的荧光,可以得到不同元素的原子核化学成分,从而判断出物体中各元素的含量。
X射线荧光光谱仪的检测能力范围广、检测灵敏度高,可以检测出超低浓度的元素,是一种有效的元素分析仪器。
X射线荧光光谱仪的结构和性能
λmin(nm)=1.2398/V(kV)
4、特征X射线谱
产生X射线需要的最小能量等于相应壳层电子的结合能,也 称为吸收边能量Eabs.当用X射线光管激发时,达到激发出特 征X射线的最小电压与吸收边能量Eabs相对应,故也称此时 所需的电压为临界激发能。光管只有在超出临界激发电压的 情况下,靶的特征线才会出现。 I=Ki(V-VC)n 式中,I为特征谱线强度;V为管压;i为管电流;VC为临界 激发电压。
§1.2 探测器
探测器的作用: 是将X射线荧光光量子转变为一定形状和数量的电 脉冲,表征X射线荧光的能量和强度。 X射线光谱分析中常用的三种探测器 : 正比计数器(流气式或封闭式) 闪烁计数器 半导体计数器
§1.2 探测器
用作测量X射线的探测器具有如下特点:
(1)在所测量的能量范围内具有较高的探测效率; (2)具有良好的能量线性和能量分辩率; (3)具有较高的信噪比; (4)具有良好的高计数率特性,死时间较短; (5)输出信号便于处理、寿命长、使用方便、价 格便宜;
§1.1 激发源
激发元素产生特征X射线的机理是必须使原子内层 电子轨道产生电子空位。可使内层轨道电子形式空 穴的激发方式主要有以下几种:带电粒子激发、电 磁辐射激发、内转换现象和核衰变等。 商用的X射线荧光光谱仪中,目前最常用的激发源 是电磁辐射激发。电磁辐射激发源主要用X射线管 产生的原级X射线谱、诱发性核素衰变时产生的γ射 线、电子俘获和内转换所产生X射线和同步辐射光 源。
3、连续X射线谱
X射线光管利用由高压产生的X射线束作为激发源。高能入 射粒子或电子与靶元素中束缚力较弱的电子发生随机碰撞后, 电子减速,动能损失,损失的能量将以光子发射的形式出现, 从而产生连续的X射线谱,称为韧致辐射。 受入射电子能量的限制,产生的光子能量不可能超过入射电 子能量,故连续谱存在一最小值,称为短波限。
X射线荧光光谱仪原理及应用
无标样分析方法,即不需要标准样品,给出大概 的浓度值,包括了定性分析;
定量分析:使用校准曲线,给出高准确度的浓度 值,适合较大量的日常分析。
如何建立工作曲线: 见建立定量分析方法工作曲
线的操作说明。
6
半定量分析
半定量分析又叫做无标样分析,其基 本思路为:由仪器制造商测量校准样品, 储存强度和校准曲线,然后将数据转到用 户的X射线荧光分析系统中;无标样分析 不是不需要标样,而是标准样品设备本身 带着。其优点是采用了制造商的标样、经 验与知识,包括测量条件,自动谱线识辩, 背景扣除,谱线重叠校正等。
之一、光管老化
4、这时,加在光管上的高压会从 20kV 逐渐升到 50kV(S4 Explorer)或60kV(S4 Pioneer),整个 升压过程约需1 个小时。1
个小时后,加在光管上的电压回到20kV 5mA,表 明光管老化已完成。
5、再 在 菜 单 中 , 选 择 “Utilities”, →“XRay Utilities”→“Tube
Conditioning ON/OFF”,结束光管老化过程。
之二 、光谱仪对光 (Spectrometer Alignment)
在以下情况下,仪器需要再次对光: 情况一、仪器的光路部分经过维修,如光谱室内
的分光晶体或计数器的位置被移动了。 情况二、P10 气体更换。一般一瓶10Mpa 的P10
4、仪器的日常保养与维护
之一 光管老化 光管的保护主要来自二个方面:1、当仪
器在测量时,不要突然断电;2、光管老 化,当仪器关机一个星期以上时,在测样 品前,请先做光管老化。光管老化工作由 仪器根据设定的条件自动进行,其具体步 骤如下:
x射线荧光光谱仪原理
x射线荧光光谱仪原理x射线荧光光谱仪是一种用于分析物质成分的仪器。
它利用物质在受到x射线激发后产生的荧光来获取物质的元素组成和含量。
该仪器主要由以下几个部分组成:1. X射线源:通常使用x射线管作为光源。
X射线管内部有一个阴极和一个阳极,通过加电压使阴极释放出电子,从而形成电子流。
当电子流与阳极相碰撞时,会产生x射线。
2. 样品室:样品室是一个盛放待分析样品的空间。
在进行分析时,样品被放置在样品室中。
3. 准直系统:准直系统用于将x射线束聚焦到样品上,以使样品吸收更多的x射线。
4. 荧光探测器:荧光探测器用于测量样品受到激发后产生的荧光。
它通常由一个固态探测器和一个电子学系统组成。
探测器可以将荧光转换成电信号,并通过电子学系统进行放大和处理。
5. 数据处理系统:数据处理系统用于接收电子学系统输出的信号,并将其转换为荧光强度与能量之间的关系。
然后,根据已知的元素荧光谱,可以通过比对样品荧光强度与能量的特征来确定样品的元素组成和含量。
使用x射线荧光光谱仪进行分析的具体步骤如下:1. 将待测样品放置在样品室中,确保样品与光束垂直。
2. 打开x射线源,通过适当的参数设置,产生合适的x射线谱。
3. 调整准直系统,使x射线束聚焦在样品上,使样品吸收更多的x射线。
4. 荧光探测器接收样品产生的荧光,并将其转换成电信号。
5. 电子学系统对荧光信号进行放大和处理,产生对应的荧光强度与能量之间的关系。
6. 数据处理系统根据已知的元素荧光谱进行分析,确定样品的元素组成和含量。
x射线荧光光谱仪具有分析快速、准确度高、非破坏性等优点,被广泛应用于许多领域,如材料科学、地质学、环境监测等。
XRF-X-射线荧光光谱仪
2.1.2 晶体分光器和准直器
晶体分光器的基本原理是当晶体中离子间的距离近似等于 X- 射线的 波长时,晶体本身就是一个反射衍射光栅。它的作用是通过晶体衍射现 象把不同波长的X-射线分开。根据布拉格衍射定律: 2dsinθ=nλ 改变θ角,可以观测到另外波长的X-射线,因而使不同波长的X-射线 可以分开。
图1 电磁波谱图
X- 射线的能量与原子能级差 的数量级相当,待测元素经 X射线照射后,发生 X- 射线吸收, 产生光电转换效应。初级 X- 射 线光子的能量稍大于待测元素原 子内层电子的能量时,才能击出 相应电子。光子与原子作用后, 在原子内层中形成空穴,使原子 处于不稳定的高激发态,在随后 的 10-14~10-7s 内,较外层轨道上 的电子发生跃迁来填充空穴,原 子恢复稳定的电子组态,并发射 出待测元素的特征 X- 射线荧光。图2
2.1 波长色散型X-射线荧光光谱仪(WD-XRF)
图4 波长色散型X-射线荧光光谱仪示意图
由图3所示,WD-XRF由X-射线源、分光晶体和检测器三个主要部分组 成。X-射线照射在试样上,产生的荧光将向各个方向发射,其中的一部分 通过准直器之后产生平行光束,照射在分光晶体上,晶体将入射光束按 Bragg方程进行色散,测量其强度最大的一级光谱(n=1 )检测器位于与平 行光束成2θ角度的位置上,正好对准入射角为θ的光线。将分光晶体与检测 器同步转动进行扫描,可获得光强与2θ表示的荧光光谱图,
脉冲幅度与X光子的能量成正比。在一段时间内,来自试样的荧光X-射线
依次被半导体探测器检测,得到一系列幅度与光子能量成正比的脉冲, 经放大器放大后送到多道脉冲分析器(通常要1000道以上)。从而得到
计数率随光子能量变化的分布曲线,即X光能谱图。能谱图经计算机进行
x射线荧光光谱仪原理
x射线荧光光谱仪原理
X射线荧光光谱仪是一种用于分析样品中元素组成的仪器。
它的原理基于样品在受到高能X射线照射时,元素原子内部的电子被激发到高能级,然后回到基态时会发射出特定能量的X 射线。
荧光光谱仪通过测量这些发射的特定能量的X射线的强度和能谱,从而确定样品中元素的种类和含量。
具体原理如下:
1. 激发:荧光光谱仪使用高能X射线源照射样品,X射线的能量足够高,能够激发样品中元素原子的内层电子到高能级。
2. 发射:被激发的电子在回到基态时,会发射出特定能量的X 射线。
3. 分析:荧光光谱仪使用X射线谱仪来测量发射的X射线的强度和能谱。
X射线谱仪由一个能量分辨较高的探测器和一个多道分析仪组成。
探测器可以将接收到的X射线转化为电信号,而多道分析仪则可以将电信号根据能量进行分离和记录。
4. 鉴定:通过与已知标准样品进行对比,可以确定样品中元素的种类和含量。
值得注意的是,由于每个元素的电子结构是唯一的,因此发射的X射线的能量也是特定的,对应于元素的特征峰。
通过测量这些特征峰的能量和强度,可以准确地鉴定样品中的元素。
X射线荧光光谱仪测试方法和要点详细介绍
X射线荧光光谱仪测试方法和要点详细介绍X射线荧光光谱仪是光谱仪一种常用类型,具有重现性好、测量速度快、灵敏度高、稳定性好等优点。
用户在使用x荧光光谱仪时对于测试方法和要点是需要掌握的,对于用户的使用有帮助。
下面介绍一下x荧光光谱仪测试方法和要点,希望可以帮助到大家。
一、X射线荧光光谱仪测试方法:1、X射线荧光光谱仪样品制备进行x射线荧光光谱分析的样品,( 东仪精工)可以是固态,也可以是水溶液。
无论什么样品,样品制备的情况对测定误差影响很大。
对金属样品要注意成份偏析产生的误筹;化学组成相同,热处理过程不同的样品,得到的计数率也不同;成份不均匀的金属试样要重熔,快速冷却后车成圆片;对表面不平的样品要打磨抛光;对于粉末样品,要研磨至300目一400目,然后压成圆片,也可以放人样品槽中测定。
对于固体样品如果不能得到均匀平整的表面,则可以把试样用酸溶解,再沉淀成盐类进行测定。
对于液态样品可以滴在滤纸上,用红外灯蒸干水份后测定,也可以密封在样品槽中。
总之,所测样品不能含有水、油和挥发性成份,更不能含有腐蚀性溶剂。
2、X射线荧光光谱仪定性分析不同元素的荧光x射线具有各自的特定波长或能量,因此根据荧光x射线的波长或能量可以确定元素的组成。
如果是波长色散型光谱仪,对于一定晶面间距的晶体,由检测器转动的2e角可以求出x射线的波长入,从而确定元素成份。
对于能量色散型光谱仪,可以由通道来判别能量,从而确定是何种元素及成份。
但是如果元素含量过低或存在元素间的谱线干扰时,仍需人工鉴别。
首先识别出x光管靶材的特征x射线和强峰的伴随线,然后根据能量标注剩余谱线。
在分析未知谱线时,要同时考虑到样品的来源、性质等元素,以便综合判断。
3、X射线荧光光谱仪定量分析x射线荧光光谱法进行定量分析的根据是元素的荧光x射线强度ii与试样中该元素的含量ci成正比:ii=is×ci式中is为ci=100%时,该元素的荧光x射线的强度。
根据上式,可以采用标准曲线法、增量法、内标法等进行定量分析。
X射线荧光光谱仪的优点
X射线荧光光谱仪的优点X射线荧光光谱仪是一种利用X射线激发样品,测量样品发射出的荧光X射线谱线,从而分析样品化学成分的分析技术。
在现代分析学中,X射线荧光光谱仪是一种非常重要的仪器,具有广泛的应用领域。
它在化学、材料、地质、环保、制药、冶金等领域都有广泛应用。
本文将讨论X射线荧光光谱仪的优点。
1. 非破坏性分析X射线荧光光谱仪采用的是非破坏性分析技术。
它不需要对样品进行物理或化学处理,只需将样品置于光路中进行分析即可。
并且样品不会被分解或改变其结构,因此可以保留原本的形态和特性。
这是一项非常重要的优点,因为有些样品是非常珍贵的,或者是对生物体有影响的,不宜经过破坏性分析。
2. 快速分析速度X射线荧光光谱仪对样品的分析速度非常快,可以在短时间内完成分析。
这是由于它是一种非破坏性分析技术,并且可以同时对多个元素进行分析。
这对于高效分析和质量控制非常重要。
对于制药厂、冶金厂等工业生产领域,快速分析速度是非常重要的,可以提高工作效率,减少浪费。
3. 准确度高X射线荧光光谱仪的准确度非常高。
X射线激发能量可以非常精准地控制,并且各种元素的谱线是具有独特的特征,因此可以很容易地确定元素的存在和含量。
此外,荧光峰强度可以直接转化为元素的浓度,从而提高分析结果的精度。
4. 适用范围广X射线荧光光谱仪适用范围非常广。
它可以对任何样品进行分析,不论是固体、液体、粉末还是薄膜等形态。
同时,它还可以分析所有化学元素,包括难以分析的微量元素。
这使得其在科学研究、产品开发、生产质量控制和环境保护等方面都有应用。
5. 易于操作X射线荧光光谱仪的操作相对简单,不需要任何高级技能。
通常只需按照使用说明进行操作,即可完成分析。
并且其分析软件也比较容易学习,只需少量的培训即可掌握。
这大大方便了用户的使用,并且可以让更多人受益于X射线荧光光谱仪的分析技术。
6. 经济实惠X射线荧光光谱仪的使用成本相对较低。
它不需要使用昂贵的试剂或仪器,并且可以在短时间内提供准确的分析结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X-射线荧光光谱仪(XRF)
1、仪器介绍
X-射线荧光光谱仪(XRF),现有日本Rigaku公司生产的ZSX primus波长色散型XRF一台,及配套所必须的电源设备、冷循环水设备和前处理熔样机等。
X射线荧光光谱分析技术制样简单、分析快速方便、应用广泛,可用于测定包括岩石、土壤、沉积物等在内的各种地质样品的化学组成。
分析元素范围从Be(4)到U(92),最常见的是用于主量元素分析,如SiO2、Al2O3、CaO、Fe2O3T、K2O、MgO、MnO、Na2O、P2O5、TiO2、LOI等元素。
2、仪器功能和技术参数:
(1) 功能:定性分析、半定量分析和定量分析;
(2) X射线管:4KW超薄端窗型(30μm)、铑靶X射线管;
(3) 分光晶体:LiF(200)、Ge(111)、PET、RX25、LiF(220);
(4) 进样器:48位自动样品交换器;
(5) 测角仪:SC:5-118度(2θ);PC:13-148度(2θ);
(6) 分析元素范围:Be4-U92;
(7) 线性范围:10-2 - 10-6;
(8) 仪器稳定度:≤0.05%;
(9) 测量误差:<5%。
3、应用和优势:
XRF应用广泛,可用于岩石、矿物、土壤、植物、沉积物、冶金、矿业、钢铁、化工产品等样品中常量和痕量的定量分析。
具有快速方便、制样简单、无损测量、分析元素宽、灵敏度高等优点。
X-ray Fluorescence Spectrometer (XRF)
1、I nstrument Introducation:
The wavelength dispersion X-ray fluorescence spectrometer (XRF) is ZSX primus, made by Rigaku, Japan, with a set of instruments of electrical power unit, cold circulating water equipment and automatic fusion machine. XRF is widely used for geological element analysis, including rocks, soils, sediments, etc, which is simplicity and convenience of operation. Its analyzable elements range is from Be (4) to U (92). XRF is most common for the analysis of major elements, such as SiO2, Al2O3, CaO, Fe2O3T, K2O, MgO, MnO, Na2O, P2O5, TiO2 and LOI.
2、Instrument Technical Parameters:
(1) Fucation: qualitative analysis, semi-quantitative analysis and quantitative analysis;
(2) X-ray tube: 4KW ultrathin end-window (30μm) Rh target X-ray tube;
(3) Analyzing crystals: LiF(200), Ge(111), PET, RX25, LiF(220);
(4) Sample injector: 48-bit automatic sample changement;
(5) Angular instrument: SC: 5-118°(2θ); PC: 13-148°(2θ).
(6) Analyzable elements range: Be4-U92;
(7) Linear range: 10-2 - 10-6;
(8) Stability: ≤0.05%;
(9) Analysis error: <5%.
3、Application and advantage
XRF is widely used to analy major elements and trace elements in geological rocks, minerals, soils, plants, sediments, metallurgy, mining industry, steel, chemical products, etc. It is fast, convenient, simple, nondestructive, widely used and high sensitivity.。