2019年云南省中考数学试题(解析版)
2019年云南省初中学业水平考试数学试题卷(含答案解析)-
2019年云南省初中学业水平考试数学试卷一、填空题(本大题共6小题,每小题3分,共18分) 1.若零上8℃记作+8℃,则零下6℃记作 ℃. 2.分解因式:x 2﹣2x +1= . 3.如图,若AB ∥CD ,∠1=40度, 则∠2= 度.4.若点(3,5)在反比例函数xky(k ≠0)的图象上,则k = . 5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如图:乙班数学成绩扇形统计图甲班数学成绩频数分布直方图20%30%35%10%5%A B C D E E D A 人数等级O1312852根据以上统计图提供的信息,则D 等级这一组人数较多的班是 .6.在平行四边形ABCD 中,∠A =30°,AD =34,BD =4,则平行四边形ABCD 的面积等于 .二、选择题(本大题共8小题,每小题4分,共32分) 7.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( ) A .68.8×104B .0.688×106C .6.88×105D .6.88×1069.一个十二边形的内角和等于( ) A .2160°B .2080°C .1980°D .1800°21DA B C10.要使21+x 有意义,则x 的取值范围为( ) A .x ≤0B .x ≥﹣1C .x ≥0D .x ≤﹣111.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( ) A .48πB .45πC .36πD .32π12.按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1B .(﹣1)n x 2n ﹣1C .(﹣1)n ﹣1x2n +1D .(﹣1)n x2n +113.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是( )A .4B .6.25C .7.5D .914.若关于x 的不等式组2(1)2x a x ->⎧⎨-<⎩,的解集是x >a ,则a 的取值范围是( )A .a <2B .a ≤2C .a >2D .a ≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(π﹣5)0(﹣1)﹣1.16.(6分)如图,AB =AD ,CB =CD .求证:∠B =∠D .DABC17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位18.(6平均速度是甲校师生所乘大巴车的平均度的1.519.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x +y 为奇数,则甲获胜;若x +y 为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x ,y )所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且 ∠AOB =2∠OAD .(1)求证:四边形ABCD 是矩形;(2)若∠AOB :∠ODC =4:3,求∠ADO 的度数.21.(8分)已知k 是常数,抛物线y =x 2+(k 2+k ﹣6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值;(2)若点P 在物线y =x 2+(k 2+k ﹣6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标.DOA BCA22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示: (1)求y 与x 的函数解析式(也称关系式); (2)求这一天销售西瓜获得的利润W 的最大值.23.(12分)如图,AB 是⊙O 的直径,M 、D 两点AB 的延长线上,EDE 2=DB •DA ,延长AE 至F ,使得AE =EF ,设BF =10,cos ∠BED =45(1)求证:△DEB ∽△DAE ; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.2019年云南省初中学业水平考试数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)(2019•云南)若零上8℃记作+8℃,则零下6℃记作 ﹣6 ℃. 【考点】11:正数和负数. 【专题】511:实数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 【解答】解:根据正数和负数表示相反的意义,可知 如果零上8℃记作+8℃,那么零下6℃记作﹣6℃. 故答案为:﹣6.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)(2019•云南)分解因式:x 2﹣2x +1= (x ﹣1)2. 【考点】54:因式分解﹣运用公式法. 【分析】直接利用完全平方公式分解因式即可. 【解答】解:x 2﹣2x +1=(x ﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)(2019•云南)如图,若AB ∥CD ,∠1=40度,则∠2= 140 度. 【考点】JA :平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解. 【解答】解:∵AB ∥CD ,∠1=40°, ∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°. 故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键. 4.(3分)(2019•云南)若点(3,5)在反比例函数xky(k ≠0)的图象上,则k = 15 .21A C【考点】G6:反比例函数图象上点的坐标特征. 【专题】534:反比例函数及其应用.【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数xky =(k ≠0)即可. 【解答】解:把点(3,5)的纵横坐标代入反比例函数xky =得:k =3×5=15 故答案为:15【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k 的值;比较简单.5.(3分)(2019•云南)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如图:乙班数学成绩扇形统计图甲班数学成绩频数分布直方图20%30%35%10%5%A B C D E根据以上统计图提供的信息,则D 等级这一组人数较多的班是 甲班 . 【考点】V8:频数(率)分布直方图;VB :扇形统计图. 【专题】542:统计的应用.【分析】由频数分布直方图得出甲班D 等级的人数为13人,求出乙班D 等级的人数为40×30%=12人,即可得出答案.【解答】解:由题意得:甲班D 等级的有13人, 乙班D 等级的人数为40×30%=12(人), 13>12,所以D 等级这一组人数较多的班是甲班; 故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D 等级的人数是解本题的关键.4,BD=4,则平行四6.(3分)(2019•云南)在平行四边形ABCD中,∠A=30°,AD=316或83.边形ABCD的面积等于3【考点】L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,如图2,AB=4,∴平行四边形ABCD的面积=AB•DE=4×2=8,故答案为:16或8.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)(2019•云南)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【专题】558:平移、旋转与对称.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)(2019•云南)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(4分)(2019•云南)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【考点】L3:多边形内角与外角.【专题】555:多边形与平行四边形.【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4分)(2019•云南)要使21x有意义,则x的取值范围为()A.x≤0 B.x≥﹣1 C.x≥0 D.x≤﹣1【考点】72:二次根式有意义的条件.【专题】514:二次根式.【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.【点评】考查了二次根式的意义和性质.概念:式子a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)(2019•云南)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【考点】MP:圆锥的计算.【专题】55C:与圆有关的计算.【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)(2019•云南)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n 个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【考点】37:规律型:数字的变化类;42:单项式.【专题】2A:规律型.【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)(2019•云南)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.9【考点】KS:勾股定理的逆定理;MC:切线的性质;MI:三角形的内切圆与内心;MO:扇形面积的计算.【专题】55C:与圆有关的计算.【分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OFAE为正方形,设OE=AE=AF=r,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答】解:∵AB =5,BC =13,CA =12,∴AB 2+CA 2=BC 2,∴△ABC 为直角三角形,∠A =90°,∵AB 、AC 与⊙O 分别相切于点E 、F∴OF ⊥AB ,OE ⊥AC ,∴四边形OFAE 为正方形,设OE =r ,则AE =AF =r ,∵△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,∴BD =BF =5﹣r ,CD =CE =12﹣r ,∴5﹣r +12﹣r =13,∴r ==2, ∴阴影部分(即四边形AEOF )的面积是2×2=4.故选:A .【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.14.(4分)(2019•云南)若关于x 的不等式组⎩⎨⎧<->-0,2)1(2x a x 的解集是x >a ,则a 的取值范围是( )A .a <2B .a ≤2C .a >2D .a ≥2【考点】CB :解一元一次不等式组.【专题】524:一元一次不等式(组)及应用.【分析】根据不等式组的解集的概念即可求出a 的范围.【解答】解:解关于x的不等式组2(1)2xa x->⎧⎨-<⎩,得2xx a>⎧⎨>⎩∴a ≥2故选:D .【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型.三、解答题(本大共9小题,共70分)15.(6分)(2019•云南)计算:32+(π﹣5)04(﹣1)﹣1.【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂.【专题】511:实数.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有理数的加减运算便可.【解答】解:原式=9+1﹣2﹣1=10﹣3=7.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.16.(6分)(2019•云南)如图,AB =AD ,CB =CD .求证:∠B =∠D .【考点】KD :全等三角形的判定与性质.【专题】553:图形的全等.【分析】由SSS 证明△ABC ≌△ADC ,得出对应角相等即可. 【解答】证明:在△ABC 和△ADC 中,⎪⎩⎪⎨⎧===AC AC CD CB AD AB ,∴△ABC ≌△ADC (SSS ),∴∠B =∠D .【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)(2019•云南)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数 1770 480 220 180 120 90人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【考点】W2:加权平均数;W4:中位数;W5:众数. 【专题】542:统计的应用. 【分析】(1)根据平均数、众数和中位数的意义进行解答即可; (2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)(2019•云南)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.温馨提示:确定一个适当的月销售目标是一个关键问题,如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力.【考点】B7:分式方程的应用.【专题】522:分式方程及应用.【分析】设甲学校师生所乘大巴车的平均速度为x 千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x 千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时, 由题意得:15.1270240=-xx , 解得:x =60,经检验,x =60是所列方程的解,则1.5x =90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)(2019•云南)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x +y 为奇数,则甲获胜;若x +y 为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x ,y )所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【考点】X6:列表法与树状图法;X7:游戏公平性.【专题】543:概率及其应用.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,或者列表法如下:(1)共有16种等可能的结果数;(2)x +y 为奇数的结果数为8,x +y 为偶数的结果数为8, ∴甲获胜的概率=21168=,乙获胜的概率=21168=, ∴甲获胜的概率=乙获胜的概率, ∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 20.(8分)(2019•云南)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB =2∠OAD . (1)求证:四边形ABCD 是矩形;(2)若∠AOB :∠ODC =4:3,求∠ADO 的度数.【考点】KD :全等三角形的判定与性质;LD :矩形的判定与性质. 【专题】556:矩形 菱形 正方形.【分析】(1)根据平行四边形的判定定理得到四边形ABCD 是平行四边形,根据三角形的外角的性质得到∠AOB =∠DAO +∠ADO =2∠OAD ,求得∠DAO =∠ADO ,推出AC =BD ,于是得到四边形ABCD 是矩形;1 2 3 4 1 (1,1) (1,2) (1,3) (1,4) 2 (2,1) (2,2) (2,3) (2,4) 3 (3,1) (3,2) (3,3) (3,4) 4 (4,1)(4,2)(4,3)(4,4)yx(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)(2019•云南)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点.【专题】33:函数思想;535:二次函数图象及其性质.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x 轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,DOAB C求相应的y的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)(2019•云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);【考点】HE:二次函数的应用.【专题】536:二次函数的应用;68:模型思想.【分析】(1)数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)当6≤x ≤10时,设y 与x 的关系式为y =kx +b (k ≠0)根据题意得⎩⎨⎧=+=+2001010006b k b k ,解得⎩⎨⎧=-=2200200b k∴y =﹣200x +2200 当10<x ≤12时,y =200故y 与x 的函数解析式为:⎩⎨⎧≤<≤≤+-=)1210( 200)106( 2200200x x x y(2)由已知得:W =(x ﹣6)y 当6≤x ≤10时,W =(x ﹣6)(﹣200x +2200)=﹣200(x ﹣172)2+1250 ∵﹣200<0,抛物线的开口向下 ∴x =172时,取最大值, ∴W =1250当10<x ≤12时,W =(x ﹣6)•200=200x ﹣1200 ∵y 随x 的增大而增大∴x =12时取得最大值,W =200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)(2019•云南)如图,AB 是⊙O 的直径,M 、D 两点AB 的延长线上,E 是⊙C 上的点,且DE 2=DB •DA ,延长AE 至F ,使得AE =EF ,设BF =10,cos ∠BED =45. (1)求证:△DEB ∽△DAE ; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.MEDFABC【考点】MR :圆的综合题.【专题】16:压轴题;31:数形结合;55D :图形的相似;63:空间观念. 【分析】(1)∠D =∠D ,DE 2=DB •DA ,即可求解; (2)由,即:,即可求解;(3)在△BED 中,过点B 作HB ⊥ED 于点H ,36﹣(﹣x )2=()2﹣x 2,解得:x=,则cos β==,即可求解.【解答】解:(1)∵∠D =∠D ,DE 2=DB •DA , ∴△DEB ∽△DAE ; (2)∵△DEB ∽△DAE ,∴∠DEB =∠DAE =α,∵AB 是直径,∴∠AEB =90°,又AE =EF , ∴AB =BF =10,∴∠BFE =∠BAE =α,则BF ⊥ED 交于点H , ∵cos ∠BED =,则BE =6,AB =8 ∴,即:,解得:BD =,DE =,则AD =AB +BD =,ED =;(3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF , ∵BF ⊥ED ,∠BMF =90°,∴∠MFB =∠D =β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=10×=,DM=BD﹣MB=.【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.考点卡片1.正数和负数1、在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.2、0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.3、用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.2.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.3.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.4.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.5.单项式(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.(2)单项式的系数、次数单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或﹣a这样的式子的系数是1或﹣1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.6.因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2;2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)。
人教版数学八年级下册第18章 平行四边形 解答题—2019年中考真题汇编(解析版)
第18章平行四边形解答题—2019年中考真题汇编1.(2019•大庆)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.2.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.3.如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连结AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.4.(2019•吉林)如图,在▱ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.5.(2019•云南)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.6.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:7.(2019•湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.8.(2019•哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.9.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.10.(2019•淮安)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE =DF.11.(2019•荆门)如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.12.(2019•黄冈)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG ⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.13.(2019•天门)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.14.(2019•新疆)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.15.(2019•郴州)如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.16.(2019•福建)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.17.(2019•鄂州)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O 的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.18.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.19.(2019•岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.20.(2019•怀化)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.21.(2019•株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG的边长.22.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE =DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.23.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24.(2019•广安)如图,点E是▱ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.25.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.26.(2019•聊城)在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.27.(2019•遂宁)如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE 交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.28.(2019•凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.29.(2019•安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.30.(2019•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.31.(2019•重庆)在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED﹣AG=FC.32.(2019•衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF.求证:AE=AF.第18章平行四边形解答题—2019年中考真题汇编参考答案与试题解析1.【分析】(1)根据四边形的性质得到AB∥CD,求得∠MAB=∠NCD.根据全等三角形的判定定理得到结论;(2)连接EF,交AC于点O.根据全等三角形的性质得到EO=FO,AO=CO,于是得到结论.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴AC==5,∵E、F分别是AD、BC的中点,∴AE=BF,∴四边形ABFE是矩形,∴EF=AB=3,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.【点评】本题考查了矩形的性质,全等三角形的判定和性质,熟练正确全等三角形的判定和性质是解题的关键.2.【分析】(1)由“AAS”可证△AEB≌△BFC,可得AE=BF;(2)由线段垂直平分线的性质可得BD=AB=2.【解答】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=2【点评】本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质,熟练运用菱形的性质是本题的关键.3.【分析】(1)根据正方形的性质得到AB=AD,∠ABC=∠ADC=∠ADF=90°,利用SAS 定理证明结论;(2)根据全等三角形的性质得到AE=AF,∠BAE=∠DAF,得到△AEF为等腰直角三角形,根据勾股定理计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠ADF=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:∵△ABE≌△ADF,∴AE=AF,∠BAE=∠DAF,∵∠BAE+∠EAD=90°,∴∠DAF+∠EAD=90°,即∠EAF=90°,∴EF=AE=5.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、勾股定理,掌握全等三角形的判定定理和性质定理、正方形的性质整式解题的关键.4.【分析】直接利用已知作图方法结合全等三角形的判定方法分析得出答案.【解答】证明:由题意可得:AE=FC,在平行四边形ABCD中,AB=DC,∠A=∠C在△ABE和△CDF中,,所以,△ABE≌△CDF(SAS).【点评】此题主要考查了平行四边形的性质以及全等三角形的判定,正确掌握基本作图方法是解题关键.5.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.6.【分析】连接AC,由SSS证明△ABC≌△CDA得出∠BAC=∠DCA,∠ACB=∠CAD,证出AB∥CD,BC∥AD,即可得出结论.【解答】证明:连接AC,如图所示:在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定定理,证明三角形全等是解题的关键.7.【分析】(1)利用SAS即可证明;(2)用正方形面积减去两个全等三角形的面积即可.【解答】解:(1)在△ABF和△CBE中,∴△ABF≌△CBE(SAS);(2)由已知可得正方形ABCD面积为16,△ABF面积=△CBE面积=×4×1=2.所以四边形BEDF的面积为16﹣2×2=12.【点评】本题主要考查了全等三角形的判定和性质,难度较小,掌握全等三角形的判定方法是解题的关键.8.【分析】(1)由AAS证明△ABE≌△CDF,即可得出结论;(2)由平行线的性质得出∠CBD=∠ADB=30°,由直角三角形的性质得出BE=AB,AE=AD,得出△ABE的面积=AB×AD=矩形ABCD的面积,由全等三角形的性质得出△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,由直角三角形的性质得出EG =BE=×AB=AB,得出△BCE的面积=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∴∠ABE=∠CDF,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF;(2)解:△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=矩形ABCD面积的.理由如下:∵AD∥BC,∴∠CBD=∠ADB=30°,∵∠ABC=90°,∴∠ABE=60°,∵AE⊥BD,∴∠BAE=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=矩形ABCD的面积,∵△ABE≌△CDF,∴△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【点评】本题考查了矩形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质、平行线的性质、三角形面积公式等知识;熟练掌握矩形的性质和含30°角的直角三角形的性质,证明三角形全等是解题的关键.9.【分析】(1)由矩形的性质得出∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,由HL证明Rt△ABE≌Rt△CDF即可;(2)由全等三角形的性质得出BE=DF,得出CE=AF,由CE∥AF,证出四边形AECF是平行四边形,再由AC⊥EF,即可得出四边形AECF是菱形.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.10.【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是▱ABCD 边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD边AD、BC的中点,∴DE=AD,BF=BC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.【点评】此题考查了平行四边形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.11.【分析】(1)作CE⊥AB交AB的延长线于点E,设BE=x,由勾股定理列出关于x的方程,解方程求出平行四边形的高,进而即可求出其面积;(2)利用全等三角形的判定与性质得出AF=BE=,BF=5﹣=,DF=CE=,从而求出BD的长,在△BCD中利用勾股定理的逆定理即可证明两直线垂直.【解答】解:(1)作CE⊥AB交AB的延长线于点E,如图:设BE=x,CE=h在Rt△CEB中:x2+h2=9①在Rt△CEA中:(5+x)2+h2=52②联立①②解得:x=,h=∴平行四边形ABCD的面积=AB•h=12;(2)作DF⊥AB,垂足为F∴∠DFA=∠CEB=90°∵平行四边形ABCD∴AD=BC,AD∥BC∴∠DAF=∠CBE又∵∠DFA=∠CEB=90°,AD=BC∴△ADF≌△BCE(AAS)∴AF=BE=,BF=5﹣=,DF=CE=在Rt△DFB中:BD2=DF2+BF2=()2+()2=16∴BD=4∵BC=3,DC=5∴CD2=DB2+BC2∴BD⊥BC.【点评】本题主要考查了平行四边形的性质、勾股定理及其逆定理以及全等三角形的判定与性质,综合性较强.12.【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.13.【分析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE≌△ECG得出AE=EG,证出EG=BF,即可得出结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴AE⊥BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定、平行线的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.14.【分析】(1)根据两直线平行,内错角相等可得∠ODE=∠FCE,根据线段中点的定义可得CE=DE,然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据菱形的对角线互相垂直得出∠COD=90°,即可得出结论.【解答】证明:(1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形OCFD是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴四边形OCFD是矩形.【点评】本题考查了菱形的性质,全等三角形的判定与性质,矩形的判定,平行四边形的判定,熟练掌握菱形的性质,证明三角形全等是解题的关键.15.【分析】利用平行四边形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE(ASA),∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定和性质定理是解题的关键.16.【分析】由SAS证明△ADF≌△CBE,即可得出AF=CE.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴AF=CE.【点评】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.17.【分析】(1)根据矩形的性质得到AB∥CD,由平行线的性质得到∠DFO=∠BEO,根据全等三角形的性质得到DF=BE,于是得到四边形BEDF是平行四边形;(2)推出四边形BEDF是菱形,得到DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2 ﹣OD2=OE2,∴OE=,∴EF=2OE=.【点评】本题考查了矩形的性质,平行四边形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.18.【分析】(1)设出正方形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD和HG的长,即可证明结论成立.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.【点评】本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.19.【分析】由菱形的性质得出AD=CD,由SAS证明△ADF≌△CDE,即可得出结论.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.【点评】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.20.【分析】(1)由平行四边形的性质得出∠B=∠D,AB=CD,AD∥BC,由已知得出∠AEB =∠AEC=∠CFD=∠AFC=90°,由AAS证明△ABE≌△CDF即可;(2)证出∠EAF=∠AEC=∠AFC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)证明:∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.21.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC、BD,可得∠DOA=∠DOC=90°,∠GOE=90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH长,从而求得HO,即可求得MO,再通过MH∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2【点评】本题主要考查对正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,比例的性质,直角三角形的性质等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.22.【分析】(1)根据矩形的性质得到CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,求得CF=AE=4﹣=,根据勾股定理得到AF=CE==,于是得到结论;(2)过F作FH⊥AB于H,得到四边形AHFD是矩形,根据矩形的性质得到AH=DF=,FH=AD=2,根据勾股定理即可得到结论.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BC=2,CD∥AB,∠D=∠B=90°,∵BE=DF=,∴CF=AE=4﹣=,∴AF=CE==,∴AF=CF=CE=AE=,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=,FH=AD=2,∴EH=﹣=1,∴EF===.【点评】本题考查了矩形的性质,菱形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.23.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG =∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【点评】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.24.【分析】先证明△ADE≌△FCE,得到AD=CF=3,DE=CE=2,从而可求平行四边形的周长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∠D=∠ECF.又ED=EC,∴△ADE≌△FCE(AAS).∴AD=CF=3,DE=CE=2.∴DC=4.∴平行四边形ABCD的周长为2(AD+DC)=14.【点评】本题主要考查了平行四边形的性质、全等三角形的判定和性质,解题的关键是借助全等转化线段.25.【分析】(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA=AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.【点评】本题考查了平行四边形的性质和判定,菱形的判定和性质,直角三角形的斜边中线的性质,熟练掌握平行四边形的性质是解题的关键.26.【分析】(1)根据菱形的性质得到AB=AD,AD∥BC,由平行线的性质得到∠BOA=∠DAE,等量代换得到∠BAF=∠ADE,求得∠ABF=∠DAE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AE=BF,DE=AF,根据线段的和差即可得到结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BPA=∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);(2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.【点评】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键.27.【分析】(1)根据平行线的性质得到∠DAF=∠E,根据线段中点的定义得到DF=CF,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD=EC,等量代换得到AD=BC,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)∵AD∥BC,∴∠DAF=∠E,∵点F是CD的中点,∴DF=CF,在△ADF与△ECF中,,∴△ADF≌△ECF(AAS);(2)∵△ADF≌△ECF,∴AD=EC,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.28.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.29.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.30.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,证出EG=CF,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.31.【分析】(1)作BO⊥AD于O,由平行四边形的性质得出∠BAO=∠D=30°,由直角三角形的性质得出BO=AB=,证出∠ABE=∠AEB,得出AE=AB=,由三角形面积公式即可得出结果;(2)作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,证明△ABG≌△AFP得出AG=FP,再证明△BPC≌△PED得出PC=ED,即可得出结论.【解答】(1)解:作BO⊥AD于O,如图1所示:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∠ABC=∠D=30°,∴∠AEB=∠CBE,∠BAO=∠D=30°,∴BO=AB=,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=,∴△ABE的面积=AE×BO=××=;(2)证明:作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示:∵AB=AE,AQ⊥BE,∴∠ABE=∠AEB,BQ=EQ,∴PB=PE,∴∠PBE=∠PEB,∴∠ABP=∠AEP,∵AB∥CD,AF⊥CD,∴AF⊥AB,∴∠BAF=90°,∵AQ⊥BE,∴∠ABG=∠FAP,在△ABG和△FAP中,,∴△ABG≌△AFP(ASA),∴AG=FP,∵AB∥CD,AD∥BC,∴∠ABP+∠BPC=180°,∠BCP=∠D,∵∠AEP+∠PED=180°,∴∠BPC=∠PED,在△BPC和△PED中,,∴△BPC≌△PED(AAS),∴PC=ED,∴ED﹣AG=PC﹣AG=PC﹣FP=FC.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.32.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.。
2019年云南省中考数学试卷(解析版)
2019年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作℃.2.(3分)分解因式:x2﹣2x+1=.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=度.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD 的面积等于.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣111.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+113.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.914.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作﹣6℃.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=140度.【分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=15.【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数y=得:k=3×5=15故答案为:15【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k的值;比较简单.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.【分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD 的面积等于16或8.【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,如图2,AB=4,∴平行四边形ABCD的面积=AB•DE=4×2=8,故答案为:16或8.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:A.【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.9【分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OF AE为正方形,设OE=AE=AF=x,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OF AE为正方形,设OE=r,则AE=AF=x,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2【分析】根据不等式组的解集的概念即可求出a的范围.【解答】解:解关于x的不等式组得∴a≥2故选:D.【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.【解答】解:原式=9+1﹣2﹣1=10﹣3=7.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.【分析】由SSS证明△ABC≌△ADC,得出对应角相等即可.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC =BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x 轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+1200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+1200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【分析】(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.【解答】解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AB=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=10×=,DM=BD﹣MB=.【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。
2019年云南省中考数学试卷(word版,含答案解析)
2019年云南省中考数学试卷副标题题号一二三总分得分一、选择题(本大题共8小题,共32.0分)1.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A. 68.8×104B. 0.688×106C. 6.88×105D. 6.88×1063.一个十二边形的内角和等于()A. 2160°B. 2080°C. 1980°D. 1800°4.要使√x+1有意义,则x的取值范围为()2A. x≤0B. x≥−1C. x≥0D. x≤−15.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A. 48πB. 45πC. 36πD. 32π6.按一定规律排列的单项式:x3,−x5,x7,−x9,x11,……,第n个单项式是()A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+17.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A. 4B. 6.25C. 7.5D. 98.若关于x的不等式组{2(x−1)>2,a的取值范围是()a−x<0的解集是x>a,则A. a<2B. a≤2C. a>2D. a≥2二、填空题(本大题共6小题,共18.0分)9.若零上8℃记作+8℃,则零下6℃记作______℃.10.分解因式:x2−2x+1=______.11.如图,若AB//CD,∠1=40度,则∠2=______度.(k≠0)的图象上,则k=______.12.若点(3,5)在反比例函数y=kx13.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是______.14.在平行四边形ABCD中,∠A=30°,AD=4√3,BD=4,则平行四边形ABCD的面积等于______.三、解答题(本大题共9小题,共70.0分)15.计算:.16.如图,AB=AD,CB=CD.求证:∠B=∠D.17.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.已知k是常数,抛物线y=x2+(k2+k−6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在抛物线y=x2+(k2+k−6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB⋅DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=4.5(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.答案和解析1.【答案】B【解析】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.3.【答案】D【解析】解:十二边形的内角和等于:(12−2)⋅180°=1800°;故选:D.n边形的内角和是(n−2)⋅180°,把多边形的边数代入公式,就得到多边形的内角和.本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.4.【答案】B【解析】解:要使根式有意义则令x+1≥0,得x≥−1故选:B.要根式有意义,只要令x+1≥0即可考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.5.【答案】A【解析】解:侧面积是:12πr2=12×π×82=32π,底面圆半径为:2π×82÷2π=4,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.6.【答案】C【解析】【分析】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(−1)1+1x2×1+1,−x5=(−1)2+1x2×2+1,x7=(−1)3+1x2×3+1,−x9=(−1)4+1x2×4+1,x11=(−1)5+1x2×5+1,……由上可知,第n个单项式是:(−1)n+1x2n+1,故选C.7.【答案】A【解析】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OFAE为正方形,设OE=r,则AE=AF=x,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5−r,CD=CE=12−r,∴5−r+12−r=13,∴r=5+12−132=2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OFAE为正方形,设OE=AE=AF=x,利用切线长定理得到BD=BF=5−r,CD=CE=12−r,所以5−r+12−r=13,然后求出r 后可计算出阴影部分(即四边形AEOF)的面积.本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.8.【答案】D【解析】【分析】根据不等式组的解集的概念即可求出a 的范围.本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型. 解:解关于x 的不等式组{2(x −1)>2,a −x <0得{x >2x >a ,∵不等式组得解集为x >a ,∴a ≥2故选:D .9.【答案】−6【解析】解:根据正数和负数表示相反的意义,可知 如果零上8℃记作+8℃,那么零下6℃记作−6℃. 故答案为:−6.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 10.【答案】(x −1)2【解析】解:x 2−2x +1=(x −1)2, 故答案为(x −1)2.直接利用完全平方公式分解因式即可. 本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键. 11.【答案】140【解析】解:∵AB//CD ,∠1=40°, ∴∠3=∠1=40°,∴∠2=180°−∠3=180°−40°=140°. 故答案为:140.根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键. 12.【答案】15【解析】解:把点(3,5)的纵横坐标代入反比例函数y =kx 得:k =3×5=15 故答案为:15点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y =kx (k ≠0)即可.考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k 的值;比较简单.13.【答案】甲班【解析】解:由题意得:甲班D 等级的有13人, 乙班D 等级的人数为40×30%=12(人), 13>12,所以D 等级这一组人数较多的班是甲班;故答案为:甲班.由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.14.【答案】16√3或8√3【解析】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4√3,∴DE=12AD=2√3,AE=√32AD=6,在Rt△BDE中,∵BD=4,∴BE=√BD2−DE2=√42−(2√3)2=2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB⋅DE=8×2√3=16√3,如图2,AB=4,∴平行四边形ABCD的面积=AB⋅DE=4×2√3=8√3,故答案为:16√3或8√3.过D作DE⊥AB于E,解直角三角形得到AB,根据平行四边形的面积公式即可得到结论.本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.15.【答案】解:原式=9+1−2−1=10−3=7.【解析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有理数的加减运算便可.此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(−3)−2=(−3)×(−2)的错误.16.【答案】证明:在△ABC和△ADC中,{AB=ADCB=CDAC=AC,∴△ABC≌△ADC(SSS),∴∠B=∠D.【解析】由SSS证明△ABC≌△ADC,得出对应角相等即可.本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.【答案】解:(1)这15名营业员该月销售量数据的平均数=1770+480+220×3+180×3+120×3+90×415=278(件),数据从大到小排列后最中间的数是180,故中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【解析】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数的意义以及得出的数据进行分析即可得出答案.18.【答案】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:240x −2701.5x=1,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【解析】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.19.【答案】解:(1)画树状图如图所示,共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率=816=12,乙获胜的概率=816=12,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【解析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B 的概率.画树状图展示所有16种等可能的结果数,然后根据概率公式求解判断是否公平.20.【答案】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB =∠DAO +∠ADO =2∠OAD ,∴∠DAO =∠ADO ,∴AO =DO ,∴AC =BD ,∴四边形ABCD 是矩形;(2)解:∵四边形ABCD 是矩形,∴AB//CD ,∴∠ABO =∠CDO ,∵∠AOB :∠ODC =4:3,∴∠AOB :∠ABO =4:3,∵OA =OD =OB ,∴∠BAO :∠AOB :∠ABO =3:4:3,∵∠BAO +∠AOB +∠ABO =180°,∴∠ABO =54°,∵∠BAD =90°,∴∠ADO =90°−54°=36°.【解析】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.(1)根据平行四边形的判定定理得到四边形ABCD 是平行四边形,根据三角形的外角的性质得到∠AOB =∠DAO +∠ADO =2∠OAD ,求得∠DAO =∠ADO ,推出AC =BD ,于是得到四边形ABCD 是矩形;(2)根据矩形的性质得到AB//CD ,根据平行线的性质得到∠ABO =∠CDO ,根据三角形的内角和定理得到∠ABO =54°,于是得到结论.21.【答案】解:(1)∵抛物线y =x 2+(k 2+k −6)x +3k 的对称轴是y 轴, ∴k 2+k −6=0,解得k 1=−3,k 2=2;又∵抛物线y =x 2+(k 2+k −6)x +3k 与x 轴有两个交点.∴3k <0,∴k =−3.此时抛物线的关系式为y =x 2−9,因此k 的值为−3.(2)∵点P 在抛物线y =x 2−9上,且P 到y 轴的距离是2,∴点P 的横坐标为2或−2,当x =2时,y =−5当x =−2时,y =−5.∴P(2,−5)或P(−2,−5),因此点P 的坐标为:P(2,−5)或P(−2,−5).【解析】(1)根据抛物线的对称轴为y 轴,则b =0,可求出k 的值,再根据抛物线与x 轴有两个交点,进而确定k 的值和抛物线的关系式;(2)由于对称轴为y 轴,点P 到y 轴的距离为2,可以转化为点P 的横坐标为2或−2,求相应的y 的值,确定点P 的坐标.本题主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.【答案】解:(1)当6≤x ≤10时,设y 与x 的关系式为y =kx +b(k ≠0)根据题意得{1000=6k +b 200=10k +b ,解得{k =−200b =2200∴y =−200x +2200当10<x ≤12时,y =200故y 与x 的函数解析式为:y ={−200x +2200,(6≤x ≤10)200,(10<x ≤12)(2)由已知得:W =(x −6)y当6≤x ≤10时,W =(x −6)(−200x +2200)=−200(x −172)2+1250 ∵−200<0,抛物线的开口向下∴x =172时,取最大值,∴W =1250当10<x ≤12时,W =(x −6)⋅200=200x −1200∵y 随x 的增大而增大∴x =12时取得最大值,W =200×12−1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【解析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y 与x 的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.【答案】解:(1)∵∠D =∠D ,DE 2=DB ⋅DA ,∴△DEB∽△DAE ;(2)∵△DEB∽△DAE ,∴∠DEB =∠DAE =α,∵AB 是直径,∴∠AEB =90°,又AE =EF ,∴AB =BF =10,∴∠BFE =∠BAE =α,则BF ⊥ED 交于点H ,∵cos∠BED =45,则BE =6,AB =8∴ED DA =EB AE =DB ED,即:ED 10+BD =68=BD DE , 解得:BD =907,DE =1207, 则AD =AB +BD =1607, ED =1207;(3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF ,∵BF ⊥ED ,∠BMF =90°,∴∠MFB =∠D =β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=1207−x,则36−(1207−x)2=(907)2−x2,解得:x=43235,则cosβ=x907=2425,则sinβ=725,MB=BFsinβ=10×725=145,DM=BD−MB=35235.【解析】(1)∠D=∠D,DE2=DB⋅DA,即可求解;(2)由EDDA =EBAE=DBED,即:ED10+BD=68=BDDE,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36−(1207−x)2=(907)2−x2,解得:x=43235,则cosβ=x907=2425,即可求解.此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。
2019年云南省中考数学试卷以及解析版
2019年云南省中考数学试卷以及逐题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8C ︒记作8C ︒+,则零下6C ︒记作C ︒.2.(3分)分解因式:221x x -+= .3.(3分)如图,若//AB CD ,140∠=度,则2∠= 度.4.(3分)若点(3,5)在反比例函数(0)k y k x=≠的图象上,则k = . 5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 .6.(3分)在平行四边形ABCD 中,30A ∠=︒,AD =4BD =,则平行四边形ABCD 的面积等于 .二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .914.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( ) A .2a < B .2a … C .2a > D .2a …三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x y +为奇数,则甲获胜;若x y +为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y 所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO OC =,BO OD =,且2AOB OAD ∠=∠.(1)求证:四边形ABCD 是矩形;(2)若:4:3AOB ODC ∠∠=,求ADO ∠的度数.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=.(1)求证:DEB DAE∽;∆∆(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷答案与解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分).【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8C ︒记作8C ︒+,那么零下6C ︒记作6C ︒-.故答案为:6-.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分).【分析】直接利用完全平方公式分解因式即可.【解答】解:2221(1)x x x -+=-.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)【分析】根据两直线平行,同位角相等求出3∠,再根据邻补角的定义列式计算即可得解.【解答】解://AB CD ,140∠=︒,3140∴∠=∠=︒,2180318040140∴∠=︒-∠=︒-︒=︒.故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分) .【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数(0)k y k x=≠即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数k y x=得:3515k =⨯= 故答案为:15 【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k 的值;比较简单.5.(3分).【分析】由频数分布直方图得出甲班D 等级的人数为13人,求出乙班D 等级的人数为4030%12⨯=人,即可得出答案.【解答】解:由题意得:甲班D 等级的有13人,乙班D 等级的人数为4030%12⨯=(人),1312>,所以D 等级这一组人数较多的班是甲班;故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D 等级的人数是解本题的关键.6.(3分)【分析】过D 作DE AB ⊥于E ,解直角三角形得到8AB =,根据平行四边形的面积公式即可得到结论.【解答】解:过D 作DE AB ⊥于E ,在Rt ADE ∆中,30A ∠=︒,AD =12DE AD ∴==6AE AD ==, 在Rt BDE ∆中,4BD =,2BE ∴=,8AB ∴=,∴平行四边形ABCD 的面积8AB DE ==⨯,故答案为:.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30︒角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B 、此图形旋转180︒后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C 、此图形旋转180︒后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B .【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将688000用科学记数法表示为56.8810⨯.故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒【分析】n 边形的内角和是(2)180n -︒,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(122)1801800-︒=︒;故选:D .【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…【分析】要根式有意义,只要令10x +…即可【解答】解:要使根式有意义则令10x +…,得1x -…故选:B .【点评】0)a …叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:221183222r πππ=⨯⨯=, 底面圆半径为:28242ππ⨯÷=, 底面积2416ππ=⨯=,故圆锥的全面积是:321648πππ+=.故选:A .【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-【分析】观察指数规律与符号规律,进行解答便可.【解答】解:311211(1)x x -⨯+=-,521221(1)x x -⨯+-=-,731231(1)x x -⨯+=-,941241(1)x x -⨯+-=-,1151251(1)x x -⨯+=-,⋯⋯由上可知,第n 个单项式是:121(1)n n x -+-,故选:A .【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .9【分析】利用勾股定理的逆定理得到ABC ∆为直角三角形,90A ∠=︒,再利用切线的性质得到OF AB ⊥,OE AC ⊥,所以四边形OFAE 为正方形,设OE AE AF x ===,利用切线长定理得到5BD BF r ==-,12CD CE r ==-,所以51213r r -+-=,然后求出r 后可计算出阴影部分(即四边形)AEOF 的面积.【解答】解:5AB =,13BC =,12CA =,222AB CA BC ∴+=,ABC ∴∆为直角三角形,90A ∠=︒, AB 、AC 与O 分别相切于点E 、FOF AB ∴⊥,OE AC ⊥,∴四边形OFAE 为正方形,设OE r =,则AE AF x ==,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F , 5BD BF r ∴==-,12CD CE r ==-, 51213r r ∴-+-=, 5121322r +-∴==, ∴阴影部分(即四边形)AEOF 的面积是224⨯=.故选:A .【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质. 14.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( )A .2a <B .2a …C .2a >D .2a …【分析】根据不等式组的解集的概念即可求出a 的范围. 【解答】解:解关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩得2x x a >⎧⎨>⎩2a ∴…故选:D .【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型. 三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有 数的加减运算便可.【解答】解:原式91211037=+--=-=.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现2(3)(3)(2)--=-⨯-的错误. 16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.【分析】由SSS 证明ABC ADC ∆≅∆,得出对应角相等即可. 【解答】证明:在ABC ∆和ADC ∆中,AB ADCB CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆,B D ∴∠=∠.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可; (2)根据平均数、中位数和众数得出的数据进行分析即可得出答案. 【解答】解:(1)这15名营业员该月销售量数据的平均数177048022031803120390427815++⨯+⨯+⨯+⨯==(件),中位数为180件,90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多, 所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x 千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:24027011.5x x-=,解得:60x=,经检验,60x=是所列方程的解,则1.590x=,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x y+为奇数,则甲获胜;若x y+为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x y+为奇数的结果数为8,x y+为偶数的结果数为8,∴甲获胜的概率81162==,乙获胜的概率81162==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO OC=,BO OD=,且2∠=∠.AOB OAD(1)求证:四边形ABCD是矩形;(2)若:4:3∠的度数.AOB ODC∠∠=,求ADO【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到2∠=∠,推出AC BD=,∠=∠+∠=∠,求得DAO ADOAOB DAO ADO OAD于是得到四边形ABCD是矩形;(2)根据矩形的性质得到//AB CD,根据平行线的性质得到ABO CDO∠=∠,根据三角形的内角得到54∠=︒,于是得到结论.ABO【解答】(1)证明:AO OC=,=,BO OD∴四边形ABCD是平行四边形,∠=∠+∠=∠,AOB DAO ADO OAD2∴∠=∠,DAO ADO∴=,AO DO∴=,AC BD∴四边形ABCD是矩形;(2)解:四边形ABCD是矩形,∴,//AB CD∴∠=∠,ABO CDO∠∠=,:4:3AOB ODC∴∠∠=,:4:3AOB ABO∴∠∠∠=,BAO AOB ABO::3:4:3ABO∴∠=︒,54BAD∠=︒,90∴∠=︒-︒=︒.ADO905436【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标. 【分析】(1)根据抛物线的对称轴为y 轴,则0b =,可求出k 的值,再根据抛物线与x 轴有两个交点,进而确定k 的值和抛物线的关系式;(2)由于对称轴为y 轴,点P 到y 轴的距离为2,可以转化为点P 的横坐标为2或2-,求相应的y 的值,确定点P 的坐标.【解答】解:(1)抛物线22(6)3y x k k x k =++-+的对称轴是y 轴, 260k k ∴+-=,解得13k =-,22k =;又抛物线22(6)3y x k k x k =++-+与x 轴有两个交点. 30k ∴<3k ∴=-.此时抛物线的关系式为29y x =-,因此k 的值为3-.(2)点P 在物线29y x =-上,且P 到y 轴的距离是2,∴点P 的横坐标为2或2-,当2x =时,5y =- 当2x =-时,5y =-. (2,5)P ∴-或(2,5)P --因此点P 的坐标为:(2,5)P -或(2,5)P --.【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示: (1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y 与x 的函数解析式;(2),根据总利润=每千克利润⨯销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.【解答】解:(1)当610x 剟时,设y 与x 的关系式为(0)y kx b k =+≠ 根据题意得1000620010k b k b =+⎧⎨=+⎩,解得2002200k b =-⎧⎨=⎩2001200y x ∴=-+当1012x <…时,200y =故y 与x 的函数解析式为:2002200,(610)200,(1012)x x y x -+⎧=⎨<⎩剟…(2)由已知得:(6)W x y =- 当610x 剟时,217(6)(2001200)200()12502W x x x =--+=--+ 2000-<,抛物线的开口向下 172x ∴=时,取最大值, 1250W ∴=当1012x <…时,(6)2002001200W x x =-=-y 随x 的增大而增大12x ∴=时取得最大值,2001212001200W =⨯-=综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=. (1)求证:DEB DAE ∆∆∽; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.【分析】(1)D D ∠=∠,2DE DB DA =,即可求解; (2)由ED EB DB DA AE ED ==,即:6108ED BDBD DE==+,即可求解; (3)在BED ∆中,过点B 作HB ED ⊥于点H ,2221209036()()77x x --=-,解得:43235x =,则24cos 90257x β==,即可求解. 【解答】解:(1)D D ∠=∠,2DE DB DA =,DEB DAE ∴∆∆∽;(2)DEB DAE ∆∆∽, DEB DAE α∴∠=∠=,AB 是直径,90AEB ∴∠=︒,又AE EF =,10AB BF ∴==,BFE BAE α∴∠=∠=,则BF ED ⊥交于点H , 4cos 5BED ∠=,则6BE =,8AB = ∴ED EB DB DA AE ED ==,即:6108ED BDBD DE==+, 解得:907BD =,1207DE =, 则1607AD AB BD =+=,1207ED =; (3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF ,BF ED ⊥,90BMF ∠=︒,MFB D β∴∠=∠=,在BED ∆中,过点B 作HB ED ⊥于点H , 设HD x =,则1207EH x =-, 则2221209036()()77x x --=-,解得:43235x =, 则24cos 90257x β==,则7sin 25β=, 714sin 10255MB BF β==⨯=, 35235DM BD MB =-=. 【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来。
2019年云南省中考数学试卷(含解析)完美打印版
2019年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作℃.2.(3分)分解因式:x2﹣2x+1=.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=度.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣111.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+113.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.914.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(12分)如图,AB是⊙O的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作﹣6℃.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.2.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=140度.【分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=15.【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数y=得:k=3×5=15故答案为:155.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.【分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于16或8.【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,如图2,AB=4,∴平行四边形ABCD的面积=AB•DE=4×2=8,故答案为:16或8.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.9【分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OF AE为正方形,设OE=AE=AF=r,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OF AE为正方形,设OE=r,则AE=AF=r,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2【分析】根据不等式组的解集的概念即可求出a的范围.【解答】解:解关于x的不等式组得∴a≥2故选:D.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.【解答】解:原式=9+1﹣2﹣1=10﹣3=7.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.【分析】由SSS证明△ABC≌△ADC,得出对应角相等即可.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD 是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在抛物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+2200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+2200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.23.(12分)如图,AB是⊙O的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【分析】(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.【解答】解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AE=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=10×=,DM=BD﹣MB=.。
云南省2019年中考数学试题及答案(Word解析版)
2019年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2019年云南省)|﹣|=()A.﹣B.C.﹣7 D.7考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣|=,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年云南省)下列运算正确的是()A. 3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.(3分)(2019年云南省)不等式组的解集是()A. x>B.﹣1≤x<C.x<D.x≥﹣1考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(3分)(2019年云南省)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.(3分)(2019年云南省)一元二次方程x2﹣x﹣2=0的解是()A. x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.(3分)(2019年云南省)据统计,2019年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A. 1.394×107B.13.94×107C.1.394×106D.13.94×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2019年云南省)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A.B.2πC.3πD.12π考点:弧长的计算.分析:根据弧长公式l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选:C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.8.(3分)(2019年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A. 9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数.分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2019年云南省)计算:﹣= .考点:二次根式的加减法.分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式=2﹣=.故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.10.(3分)(2019年云南省)如图,直线a∥b,直线a,b被直线c所截,∠1=37°,则∠2= 143°.考点:平行线的性质.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠3=∠1=37°(对顶角相等),∵a∥b,∴∠2=180°﹣∠3=180°﹣37°=143°.故答案为:143°.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.11.(3分)(2019年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.12.(3分)(2019•天津)抛物线y=x2﹣2x+3的顶点坐标是(1,2).考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.13.(3分)(2019年云南省)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=18°.考点:等腰三角形的性质.分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.(3分)(2019年云南省)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)= .(用含n的代数式表示,n是正整数,且n≥2)考点:规律型:数字的变化类.分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.解答:解:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共9个小题,满分60分)15.(5分)(2019年云南省)化简求值:•(),其中x=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x 的值代入计算即可求出值.解答:解:原式=•=x+1,当x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(5分)(2019年云南省)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.(6分)(2019年云南省)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.分析:(1)将a=0.1,s=700代入到函数的关系S=中即可求得k的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得s的值.解答:解:(1)由题意得:a=0.1,s=700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.18.(9分)(2019年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解答:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2019年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:(1)根据题意列表得:1 23 41 234 52 345 63 456 74 567 8(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.(6分)(2019年云南省)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.(6分)(2019年云南省)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB 的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(7分)(2019年云南省)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC 的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质.专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.23.(9分)(2019年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.。
【附20套名校中考真题】云南省昆明市2019年中考数学试卷及答案解析(word版)
2019年云南省昆明市中考数学试卷一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是.2.(3.00分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到辆,数字用科学记数法表示为.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为.4.(3.00分)若m+=3,则m2+=.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和π).二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A. B.C.D.8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥39.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.(4.00分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90°B.95°C.100°D.120°12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C. D.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)20.(8.00分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.2019年云南省昆明市中考数学试卷参考答案与试题解析一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是1.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.【点评】此题主要考查了实数的大小,关键是掌握实数比较大小的方法.2.(3.00分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到辆,数字用科学记数法表示为 2.4×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将用科学记数法表示为:2.4×105.故答案为2.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为150°42′.【分析】直接利用度分秒计算方法得出答案.【解答】解:∵∠BOC=29°18′,∴∠AOC的度数为:180°﹣29°18′=150°42′.故答案为:150°42′.【点评】此题主要考查了角的计算,正确进行角的度分秒转化是解题关键.4.(3.00分)若m+=3,则m2+=7.【分析】把已知等式两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为y=﹣x.【分析】直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.【解答】解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(﹣3,4),设过点A′的正比例函数的解析式为:y=kx,则4=﹣3k,解得:k=﹣,则过点A′的正比例函数的解析式为:y=﹣x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A″,此时OA″与OA′在一条直线上,故则过点A′的正比例函数的解析式为:y=﹣x.【点评】此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为﹣(结果保留根号和π).【分析】正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,根据正多边形的中心角公式求出∠DOE,求出OH,得到正六边形ABCDEF的面积,求出∠A,利用扇形面积公式求出扇形ABF的面积,结合图形计算即可.【解答】解:正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,∠DOE==60°,∴OD=OE=DE=1,∴OH=,∴正六边形ABCDEF的面积=×1××6=,∠A==120°,∴扇形ABF的面积==,∴图中阴影部分的面积=﹣,故答案为:﹣.【点评】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A. B.C.D.【分析】找到个图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥3【分析】根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=(﹣2)2﹣4m>0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m>0,∴m<3,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【分析】根据≈2.236,可得答案.【解答】解:∵≈2.236,∴﹣1≈1.236,故选:B.【点评】本题考查了估算无理数的大小,利用≈2.236是解题关键.10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件【分析】直接利用样本容量以及方差的定义以及中位数的定义和必然事件的定义分别分析得出答案.【解答】解:A、甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐,故此选项错误;B、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误;C、在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.6,故此选项错误;D、有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件,正确.故选:D.【点评】此题主要考查了样本容量以及方差、中位数和必然事件的定义,正确把握相关定义是解题关键.11.(4.00分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90°B.95°C.100°D.120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.【点评】本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=【分析】直接利用二次根式以及单项式乘以单项式运算法则和实数的计算化简求出即可.【解答】解:A、,错误;B、,错误;C、3a3•2a﹣2=6a(a≠0),正确;D、,错误;故选:C.【点评】此题主要考查了二次根式以及单项式乘以单项式运算法则和实数的计算等知识,正确掌握运算法则是解题关键.13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案.【解答】解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C. D.【分析】如图,设OA交CF于.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于.由作图可知,CF垂直平分线段OA,∴OC=CA=1,O=A,在Rt△OFC中,CF==,∴A=O==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【分析】根据ASA证明△ADE≌△ABC;【解答】证明:(1)∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC(ASA)∴BC=DE,【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=tan60°﹣|﹣1|时,∴a=﹣1∴原式=•==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式运算法则,本题属于基础题型.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为108度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【分析】(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.【解答】解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.【分析】(1)列表得出所有等可能结果;(2)从表格中得出抽到B队和C队参加交流活动的结果数,利用概率公式求解可得.【解答】解:(1)列表如下:由表可知共有6种等可能的结果;(2)由表知共有6种等可能结果,其中抽到B队和C队参加交流活动的有2种结果,所以抽到B队和C队参加交流活动的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE、DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.20.(8.00分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.【分析】(1)连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;(2)OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.【解答】(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)将AB所在直线的解析式求出,利用直线AP与AB垂直的关系求出直线AP的斜率k,再求直线AP的解析式,求直线AP与x轴交点,求点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【解答】解:(1)由题意得,,解得,∴抛物线的解析式为y=x2﹣2x,令y=0,得x2﹣2x=0,解得x=0或2,结合图象知,A的坐标为(2,0),根据图象开口向上,则y≤0时,自变量x的取值范图是0≤x≤2;(2)设直线AB的解析式为y=mx+n,则,解得,∴y=3x﹣6,设直线AP的解析式为y=kx+c,∵PA⊥BA,∴k=,则有,解得c=,∴,解得或,∴点P的坐标为(),∴△PAB的面积=|﹣|×||﹣×||×﹣×|﹣|×||﹣×|2﹣1|×|0﹣(﹣3)|=.【点评】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.【分析】(1)过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC;(2)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得∴,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得==.【解答】解:(1)过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;(2)∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴==,∴,又易证:△PCE∽△MAE,AM=AB=∴===∴,∴EF=AF﹣AE=AC﹣=AC,∴==【点评】本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.2019年辽宁省抚顺市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣D.2.(3.00分)下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸3.(3.00分)下列运算正确的是()A.2x+3y=5xyB.(x+3)2=x2+9 C.(xy2)3=x3y6D.x10÷x5=x24.(3.00分)二次根式在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x<15.(3.00分)抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差6.(3.00分)一次函数y=﹣x﹣2的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三,四象限D.第二、三、四象限7.(3.00分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)8.(3.00分)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B.C.πD.2π9.(3.00分)如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4B.4 C.2D.210.(3.00分)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④≥2.其中,正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题(本题共8小题,每小题3分,共24分)11.(3.00分)第十三届全国人民代表大会政府工作报告中说到,五年来我国国内生产总值已增加到0000万元,将数据0000用科学计数法表示为.12.(3.00分)分解因式:xy2﹣4x=.13.(3.00分)甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中,的成绩更稳定.14.(3.00分)一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为.15.(3.00分)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=.16.(3.00分)如图,▱ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC 的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是.17.(3.00分)如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为.18.(3.00分)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为.三、解答题(第19题10分,第20题12分,共22分)19.(10.00分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.20.(12.00分)抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:。
2019年云南省初中学业水平考试数学试题卷(附答案解析)
2019年云南省初中学业水平考试数学试卷、填空题(本大题共6小题,每小题3分,共18分)1 .若零上8 C 记作+8 C,则零下6 C 记作 __________ C. 2. 分解因式:x 2- 2x +1 = __________ . 3. 如图,若 AB//CD ,/1 = 40 度,则Z2 = _____ 度.k4.若点(3, 5)在反比例函数 y ( k 丸)的图象上,则k =.x5. 某中学九年级甲、乙两个班参加了一次数学考试 ,考试人数每班都为 40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如图根据以上统计图提供的信息 ,则D 等级这一组人数较多的班是 __________ .6 .在平行四边形 ABCD 中,/ A = 30 °, AD = 4・.3,BD = 4,则平行四边形 ABCD 的面积等 于、选择题(本大题共8小题,每小题4分,共32分)8. 2019年 五一”期间,某景点接待海内外游客共 688000人次,688000这个数用科学记数法表示为甲班数学成绩频数分布直方图 乙班数学成绩扇形统计图7.下列图形既是轴对称图形B.13 .如图,△ ABC 的内切圆O O 与BC 、CA 、AB 分别相切于点 12 ,则阴影部分(即四边形AEOF )的面积是( A. 4 B. 6.25 C. 7.5["x —1)》2 ,的解集是x >a ,则a 的取值范围是a -x :0C . a >2D . a >2三、解答题(本大共9小题,共70分)15 . ( 6 分)计算:32+ (n - 5) ° - -4 + ( - 1 ) -1A . 68.8 X 104B . 0.688 X 1069. 一个十二边形的内角和等于 ()A. 2160 ° B . 2080 °10 .要使 _1有意义,则x 的取值范围为2A. xW0B . x >- 1C . 6.88 X 105D . 6.88 X 106C . 1980 °D .1800 °( )C . x >0D . x <- 111. 一个圆锥的侧面展开图是半径为 8的半圆,则该圆锥的全面积是()A . 48 nB . 45 nC . 36 nD . 32 n12 .按一定规律排列的单项式:x 3, - x 5, x 7, - x 9, x 11,……,第n 个单项式是(n - 1 x 2n - 1B .( - 1) n x 2n -1C .( - 1) n -1心+1D . ( - 1) n x 2n+114 .若关于x 的不等式组A . a v 2D 、E 、F ,且 AB = 5 , BC = 13 , CA =16.( 6 分)如图,AB = AD , CB = CD .求证:/B =/D .17 . ( 8分)某公司销售部有营业员 15人,该公司为了调动营业员的积极性据目标完成的情况对营业员进行适当的奖励 ,为了确定一个适当的月销售目标 ,公司有关部门统计了这15人某月的销售量,如下表所示月销售量/件数1770480220180120 90人数 1 1 3 3 3 4(1)直接写出这15名营业员该月销售量数据的平均数 、中位数、众数;温馨提示:确定一个适当的月销售目标是一个 关键问题,如果目标定得太高,多数 营业员完不成任务,会使营业员失去 信心;如果目标定得太低,不能发挥 营业员的潜力•18 .( 6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围 ,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地 240千米和270千米的两地同时出发,前往研学教育”基地开展扫黑除恶教育活动 •已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车 的平均度的1.5倍,甲校师生比乙校师生晚 1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度•,决定实行目标管理,根(2)如果想让一半左右的营业员都能达到月销售目标 中,哪个最适合作为月销售目标 ?请说明理由. ,你认为(1)中的平均数、中位数、众数19 • (7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1, 2, 3 , 4的四个小球(除标号外无其它差异)•从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示•若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x, y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由20 .( 8分)如图,四边形ABCD中,对角线AC、BD相交于点O, AO = OC, BO= OD,且/A0B=2ZOAD.(1)求证:四边形ABCD是矩形;(2)若ZA0B:/0DC = 4:3,求ZAD0 的度数.21 .( 8分)已知k是常数,抛物线y = x2+ (k2+k- 6) x+3k的对称轴是y轴,并且与x轴有两个交占八、、♦(1)求k的值;(2)若点P在物线y= x2+ (k2+k- 6) x+3 k上,且P到y轴的距离是2 ,求点P的坐标.22 .( 9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售•已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍•经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x(元/千克)的函数关系如图所示:|y(1) 求y与x的函数解析式(也称关系式);(2) 求这一天销售西瓜获得的利润W的最大值•23 •(12分)如图,AB是O O的直径,M、D两点AB的延长线上,E是O C上的点,且DE2= DB?DA,延长AE 至F,使得AE= EF,设BF= 10, cos ZBED= 4•5(1)求证:△ DEB s^DAE;(2)求DA, DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长•F2019年云南省初中学业水平考试数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1 .(3分)(2019?云南)若零上8 C记作+8 C,则零下6 C记作 -6 C.考点】11:正数和负数.专题1511 :实数.分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答】解:根据正数和负数表示相反的意义,可知如果零上8C记作+8 C,那么零下6 C记作-6 C.故答案为:-6 .点评】本题考查了正数和负数的知识,解题关键是理解正”和负”的相对性,确定一对具有相反意义的量•2 • (3 分)(2019?云南)分解因式:x2-2x+1 = (X- 1)2考点】54 :因式分解-运用公式法分析】直接利用完全平方公式分解因式即可分析】根据两直线平行,同位角相等求出Z3,再根据邻补角的定义列式计算即可得解解答】解:•••AB//CD,/1 = 40 ° ,B /•23=Z1 = 40 ° ,•••/2= 180 °- Z3= 180 °- 40 ° ^140故答案为:140 •点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键•k4 • (3分)(2019?云南)若点(3, 5)在反比例函数y (k#0)的图象上,则k= 15x考点】G6:反比例函数图象上点的坐标特征•专题】534 :反比例函数及其应用分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点k(3, 5)代入反比例函数y (k丸)即可.xk解答】解:把点(3, 5)的纵横坐标代入反比例函数y二一得:k = 3X5 = 15x故答案为:15点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k的值;比较简单.5. (3分)(2019?云南)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图甲班数学成绩频数分布直方图乙班数学成绩扇形统计图根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.考点】V8:频数(率)分布直方图;VB:扇形统计图.专题】542 :统计的应用.分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40 X30% = 12 人,即可得出答案.解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40 X30% = 12 (人),13 > 12 ,所以D等级这一组人数较多的班是甲班;故答案为:甲班.点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.6. (3分)(2019?云南)在平行四边形ABCD中,/A = 30 °,AD = 4.3 , BD= 4,则平行四边形ABCD的面积等于16 3或8 3.考点】L5:平行四边形的性质专题】555 :多边形与平行四边形.分析】过D作DE丄AB于E,解直角三角形得到AB = 8,根据平行四边形的面积公式即可得到结论.解答】解:过D作DE丄AB于E,在Rt△ ADE 中30 °,AD = 4 二,•••DE=-L A D = 2 乙AE=—AD = 6,2 2在Rt△ BDE 中,VBD= 4,••BE=2,如图1 ,.・.AB = 8,••平行四边形ABCD的面积=AB?DE= 8 X2 == 16如图2, AB= 4 ,••平行四边形ABCD的面积=AB?DE= 4 X2 = 8 :,故答案为:16「或8点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30。
2019年云南省中考数学真题(答案+解析)
2019年云南省初中学业水平考试数学试题卷一、填空题(本大题共6小题,每小题3分,共18分) 1.若零上8℃记作+8℃,则零下6℃记作℃. 【答案】-6【解析】零上记为正数,则零下记为负数,故答案为-6. 2.分解因式:x 2-2x +1=. 【答案】2)1(-x【解析】本题考查公式法因式分解,222)1(112-=+⋅⋅-x x x ,故答案为2)1(-x .3.如图,若AB ∥CD ,∠1=40度,则∠2=度.【答案】40【解析】∵AB ∥CD ,∴同位角相等,∴∠1与∠2互补,∴∠2=180°-40°=140°,故答案为40°.4.若点(3,5)在反比例函数)0(≠=k xky 的图象上,则k =. 【答案】15【解析】∵点(3,5)在反比例函数x k y =上,∴35k=,∴1553=⨯=k . 5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考 试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 . 【答案】甲班【解析】由频数分布直方图知D 等级的人数为13人,由扇形统计图知D 等级的人数为40×30%=12,∴D 等级较多的人数是甲班,故答案为甲班.6.在平行四边形ABCD 中,∠A =30°,AD =43,BD =4,则平行四边形ABCD 的面积等于 .【答案】312或34【解析】过点D 作DE ⊥AB 于E ,∵∠A =30°,∴DE =ADsin 30°=32,AE =ADcos 30°=4,在Rt △DBE 中,BE =222=-DE BD ,∴AB =AE +BE =6,或AB =AE -BE =2,∴平行四边形ABCD 的面积为312326=⨯或34322=⨯,故答案为312或34. 二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.下列图形既是轴对称图形,又是中心对称图形的是()【答案】D【解析】根据轴对称和中心对称定义可知,A 选项是轴对称,B 选项既是轴对称又是中心对称,C 选项是轴对称,D 选项是轴对称图形,故选D8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记 数法表示为() A.68.8×104B.0.688×106C.6.88×105D.6.88×106【答案】C【解析】本题考查科学记数法较大数Na 10⨯,其中101<≤a ,N 为小数点移动的位数. ∴5,88.6==N a ,故选C. 9.一个十二边形的内角和等于() A.2160° B.2080° C.1980° D.1800°【答案】D【解析】多边形内角和公式为︒⨯-180)2(n ,其中n 为多边形的边的条数.∴十二边形内角和为︒=︒⨯-1800180)212(,故选D.10.要使21+x 有意义,则x 的取值范围为() A.x≤0B.x ≥-1C.x ≥0D.x≤-1【答案】B 【解析】要使21+x 有意义,则被开方数1+x 要为非负数,即01≥+x ,∴1-≥x ,故选B.11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是() A.48π B.45π C.36π D.32π【答案】A【解析】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π, ∴2π8πr =,∴4=r ,圆锥的全面积等于2ππ16π32π48πS S rl r +=+=+=底, 故选A.12.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是() A.(-1)n -1x 2n -1B.(-1)n x 2n -1C.(-1)n -1x 2n+1D.(-1)n x 2n+1【答案】C【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1)1(--n 或1)1(+-n ,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为12+n ,故选C.13.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是()A.4B.6.25C.7.5D.9【答案】A【解析】∵AB =5,BC =13,CA =12,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形,且∠A =90°,∵⊙O 为△ABC 内切圆,∴∠AFO =∠AEO =90°,且AE =AF ,∴四边形AEOF 为正方形,设⊙O 的半径为r ,∴OE =OF =r ,∴S 四边形AEOF =r ²,连接AO ,BO ,CO ,∴S △ABC =S △AOB +S △AOC +S △BOC ,∴AC AB BC AC AB ⋅=++21)(21,∴r =2,∴S 四边形AEOF =r ²=4,故选A. 14.若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是()A.a <2B.a ≤2C.a >2D.a ≥2【答案】D【解析】解不等式组得2>x ,a x >,根据同大取大的求解集的原则,∴2>a ,当2=a 时,也满足不等式的解集为2>x ,∴2≥a ,故选D. 三、解答题(本大题共9小题,共70分)15.(本小题满分6分)计算:2013π51----()().解:原式=9+1-2-1=7.16.(本小题满分6分)如图,AB =AD ,CB =CD .求证:∠B =∠D .证明:在△ABC 和△ADC 中,⎪⎩⎪⎨⎧===AC AC DC BC AD AB ,∴△ABC ≌ADC (SSS ),∴∠B =∠D .17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解:(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90. (2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.解:设甲校师生所乘大巴车的平均速度为x km/h ,则乙校师生所乘大巴车的平均速度为1.5x km/h.根据题意得15.1270240=-xx , 解得x =60,经检验,x =60是原分式方程的解. 1.5x =90.答:甲、乙两校师生所乘大巴车的平均速度分别为60km/h 和90km/h.19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x +y 为奇数,则甲获胜;若x +y 为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x ,y )所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由. 解:(1)方法一:列表法如下:(x ,y )所有可能出现的结果共有16种. 方法二:树形图(树状图)法如下:(x ,y )所有可能出现的结果共有16种. (2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等.∵x +y 为奇数的有8种情况,∴P (甲获胜)=21168=, ∵x +y 为偶数的有8种情况,∴P (乙获胜)=21168=, ∴P (甲获胜)=P (乙获胜).∴这个游戏对双方公平.20.(本小题满分8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB =2∠OAD .(1)求证:四边形ABCD 是矩形;(2)若∠AOB ∶∠ODC =4∶3,求∠ADO 的度数.(1)证明:∵AO =OC ,BO =OD ,∴四边形ABCD 是平行四边形, 又∵∠AOB =2∠OAD ,∠AOB 是△AOD 的外角, ∴∠AOB =∠OAD +∠ADO . ∴∠OAD =∠ADO ,∴AO =OD .又∵AC =AO +OC =2AO ,BD =BO +OD =2OD ,∴AC =BD . ∴四边形ABCD 是矩形.(2)解:设∠AOB =4x ,∠ODC =3x ,则∠ODC =∠OCD =3x. 在△ODC 中,∠DOC +∠OCD +∠CDO =180°, ∴4x +3x +3x =180°,解得x =18.∴∠ODC =3×18°=54°, ∴∠ADO =90°-∠ODC =90°-54°=36°.21.(本小题满分8分)已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标.解:(1)∵抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,∴0262=-+=k k x ,即k 2+k -6=0.解得k =-3或k =2. 当k =2时,二次函数解析式为y =x 2+6,它的图象与x 轴无交点,不满足题意,舍去, 当k =-3时,二次函数解析式为y =x 2-9,它的图象与x 轴有两个交点,满足题意. ∴k =-3.(2)∵P 到y 轴的距离为2,∴点P 的横坐标为-2或2. 当x =2时,y =-5;当x =-2时,y =-5. ∴点P 的坐标为(2,-5)或(-2,-5).22.(本小题满分9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式); (2)求这一天销售西瓜获得的利润的最大值.解:(1)当6≦x ≤10时,由题意设y =x +b (k =0),它的图象经过点(6,1000)与点(10,200). ∴⎩⎨⎧+=+=b k b k 1020061000,解得⎩⎨⎧=-=2200200b k ,∴当10<x ≤12时,y =200.答:y 与x 的函数解析式为⎩⎨⎧≤≤≤≤+-=1210,200106,2200200x x x y .(2)当6≦x ≤10时,y =-200x +2200,W =(x -6)y =(x -6)(-200x +200)=-2002217)(-x +1250, ∵-200<0,6≦x ≤10, 当x =217时,即最大,且即W 的最大值为1250. 当10<x ≤12时,y =200,W =(x -6)y =200(x -6)=200x -1200. ∴200>0,∴W =200x -1200随x 增大而增大,又∵10<x ≤12,∴当x =12时,即最大,且W 的最大值为1200.1250>1200, ∴W 的最大值为1250.答:这一天销售西瓜获得利润的最大值为1250元.23.(本小题满分12分)如图,B 是⊙C 的直径,M 、D 两点在AB 的延长线上,E 是OC 上的点,且DE 2=DB · DA .延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED 54=(1)求证:△DEB ∽△DAE ; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长. (1)证明:DE 2=DB ·DA ,∴DEDBDA DE =, 又∵∠BDE =∠EDA ,∴△BED ∽△DAE . (2)解:∵AB 是⊙C 的直径,E 是⊙C 上的点,∴∠AEB =90°,即BE ⊥AF .又∵AE =EF ;BF =10,∴AB =BF =10,∴ADEB ∽△DAE ,cos ∠BED =54, ∴∠EAD =∠BED ,cos ∠EAD =cos ∠BED =54, 在Rt △ABE 中,由于AB =10,cos ∠EAD =54,得AE =AB cos ∠EAD =8,∴622=-=AE AB BE ,∴△DEB ∽△DAE ,∴4386====AE EB DE DB DA DE , ∵DB =DA -AB =DA -10,∴⎪⎪⎩⎪⎪⎨⎧=-=431043DE DA DA DE ,解得⎪⎪⎩⎪⎪⎨⎧==71207160DE DA.经检验,⎪⎪⎩⎪⎪⎨⎧==71207160DE DA 是⎪⎪⎩⎪⎪⎨⎧=-=431043DE DA DA DE 的解,∴⎪⎪⎩⎪⎪⎨⎧==71207160DE DA ,(3)解:连接FM .∵BE ⊥AF ,即∠BEF =90°,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上, ∴点M 在以BF 为直径的圆上,∴FM ⊥AB . 在Rt △AMF 中,由cos ∠F AM =AF AM,得AM =AF cos ∠F AM =2AE cos ∠EAB =2×8×54=564, ∴MD =DA -AM =353525647160=-,∴MD =35352.。
2019年云南中考数学试卷解析
2019年云南中考数学试卷解析A=180°-∠B-∠C=80°AD是△XXX的角平分线,∴∠CAD=∠BAD=40°故选A.点评:此题考查了三角形内角和定理和角平分线的性质,需要熟练掌握三角形内角和定理的求解方法和角平分线的性质.6.若a:b=3:5,b:c=5:7,则a:c=()A.9:35考点:比例的概念和性质。
xxxxxxx分析:根据比例的传递性,可以得到a:c的比例关系,然后进行化简即可.解答:解:由a:b=3:5,可得a=3b5由b:c=5:7,可得c=7b5a:c=3b57b53:35故选B.点评:此题考查了比例的传递性,需要掌握比例的概念和性质,熟练使用比例的计算方法.7.下列各组数中,互质的是()A.12,15B.14,25C.18,24D.16,20考点:互质的概念和判定方法。
xxxxxxx分析:判断两个数是否互质,需要求出它们的最大公因数,如果最大公因数为1,则两个数互质.解答:解:①12=2×2×3,15=3×5,最大公因数为3,不互质;②14=2×7,25=5×5,最大公因数为1,互质;③18=2×3×3,24=2×2×2×3,最大公因数为6,不互质;④16=2×2×2×2,20=2×2×5,最大公因数为4,不互质.故选B.点评:此题考查了互质的概念和判定方法,需要掌握求最大公因数的方法,理解互质的定义和判定方法.8.若x<3,则不等式2x﹣5>()A.1B.﹣1C.﹣2D.2考点:解一元一次不等式。
xxxxxxx分析:将x<3代入不等式2x﹣5>a中,求解a的取值范围,即可得到答案.解答:解:当x<3时,2x﹣5<2×3﹣5=1;2x﹣5>﹣1.故选B.点评:此题考查了一元一次不等式的解法,需要掌握解一元一次不等式的方法和技巧,注意代入法在解不等式中的应用.1.由已知条件,根据三角形内角和定理可得:∠BAC=180°-∠B-∠C=180°-67°-33°=80°。
云南省2019年中考数学试题(有答案)
2019年云南省初中学业水平考试数学试题(全卷三个大题,共23个小题,共8页;满分12019考试用时120分钟) 注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。
2.考试结束后,请将试题卷的答题卡一并交回。
一、填空题(本大题共6个小题,每小题3分,满分18分) 1. - 3 = .2.如图,直线a ∥b,直线c 与直线a 、b 分别相交于A 、B 两点,若∠1=60°则∠2= .3.因式分解:21x - = . 4.若一个多边形的边数为6,则这个多边形的内角和为 度5.如果关于x 的一元二次方程2 2 20x a x a +++=有两个相等的实数根,那么实数a 的值为 .6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于 .二、选择题(本大题共9小题,每小题只有一个正确选项,每小题3分,满分27分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为A . 2.5434×103B . 2.5434×104C . 2.5434×10-3D . 2.5434×10-4 8.函数12y x =- 的自变量x 的取值范围为 A . 2x > B . 2x < C . 2x ≤ D . 2x ≠9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是A . 圆柱B . 圆锥C . 球D . 正方体10.下列计算,正确的是( )A .2(-2)= 4- B . 2(2)2-=- C .664(2)64÷-= D . 826-= 11.位于第一象限的点 E 在反比例函数ky x=的图象上,点F 在x 轴的正半轴上,O 是坐标原点,若EO=EF ,△EOF 的面积等于2,则k = A . 4 B . 2 C . 1 D . —212.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如下表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是14. 如图, D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B,若果△ABD的面积为15,那么△ACD的面积为A.15B.10C.15 2D.5三.解答题(共9个小题,共70分)15.(本小题满分6分)解不等式组2(3)10 21xx x+>⎧⎨+>⎩16.(本小题满分6分)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D17.(本小题满分8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输,为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.(本小题满分6分)如图,菱形ABCD的对角线AC与BD交于点O,∠A BC:∠BAD=1:2,BE∥AC ,CE ∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.(本小题满分7分)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你在答题卡上补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.(本小题满分8分)如图, AB为⊙O的直径,C是⊙O 上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.(本小题满分8分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.(本小题满分9分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,下图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W得最大值。
云南省2019年中考数学模拟试卷(二)含答案解析+【精选五套中考模拟卷】
云南省2019年中考数学模拟试卷(二)含答案解析一.选择题(共8小题,满分32分,每小题4分)1.(4分)天安门广场是当今世界上最大的城市广场,面积达440 000平方米,将440 000用科学记数法表示应为()A.4.4×105B.4.4×104C.44×104D.0.44×1062.(4分)如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①② B.①③ C.②③ D.③3.(4分)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②③B.①③ C.②③ D.①②4.(4分)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.75.(4分)计算:tan60°+2sin45°﹣2cos30°的结果是()A.2 B.C.D.16.(4分)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法[来源:学科网ZXXK]B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,则甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖7.(4分)现在把一张正方形纸片按如图方式剪去一个半径为40厘米的圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为()厘米.(不计损耗、重叠,结果精确到1厘米,≈1.41,≈1.73)A.64 B.67 C.70 D.738.(4分)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30° B.29° C.28° D.20°二.填空题(共6小题,满分18分,每小题3分)9.(3分)﹣(﹣6)的相反数是.10.(3分)有一系列方程,第1个方程是x+=3,解为x=2;第2个方程是=5,解为x=6;第3个方程是=7,解为x=12;…根据规律第10个方程是=21,解为.11.(3分)如图,在四边形ABCD中,对角线AC、BD交于点F,AC⊥AB于点A,点E在边CD上,且满足DF•DB=DE•DC,FE=FB,BD平分∠ABE,若AB=6,CF=9,则OE的长为.12.(3分)若x,y为实数,y=,则4y﹣3x的平方根是.13.(3分)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.[来源:学科网]14.(3分)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为.三.解答题(共9小题,满分70分)15.(6分)情景观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE 交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是,并写出证明过程.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.16.(6分)已知下表内的各横行中,从第二个数起的数都比它左边相邻的数大a,各竖列中,从第二个数起的数都比它上边相邻的数大b.(1)求a,b以及表中x的值.(2)直接写出第m行n列所表示的数.(m≥1,n≥1,记表格中x为第3行第1列)17.(8分)为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?18.(6分)服装店10月份以每套500元的进价购进一批羽绒服,当月以标价销售,销售额14000元,进入11月份搞促销活动,每件降价50元,这样销售额比10月份增加了5500元,售出的件数是10月份的1.5倍.(1)求每件羽绒服的标价是多少元;(2)进入12月份,该服装店决定把剩余的羽绒服按10月份标价的八折销售,结果全部卖掉,而且这批羽绒服总获利不少于12700元,问这批羽绒服至少购进多少件?19.(7分)正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.(1)请用树状图或列表的方法表示可能出现的所有结果;(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.[来源:学科网ZXXK]20.(8分)已知,如图,△ABC中,AB=AC,点D、E、F分别为AB、AC、BC边的中点.求证:DE与AF互相垂直平分.21.(8分)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.(9分)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.23.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D 作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.【解答】解:440 000=4.4×105.故选:A.2.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.3.【解答】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a﹣b)2=(b﹣a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故a b+bc+ca是完全对称式,ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是③不是故选:D.4.【解答】解:设该多边形的边数为n则:(n﹣2)•180°=900°,解得:n=7.故选:D.5.【解答】解:原式=+﹣=.故选:C.6.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为表示每抽奖50次可能有一次中奖,故本选项错误.故选:A.7.【解答】解:设小圆半径为r,则:2πr=,解得:r=10,∴正方形的对角线长为:40+10+10×=50+20,∴正方形的边长为:50+10≈64,故选:A.8.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB==70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.二.填空题(共6小题,满分18分,每小题3分)【解答】解:﹣(﹣6)=6,∴6的相反数是﹣6.故答案为:﹣6.10.【解答】解:根据题意得到第n个方程为+=2n+1,解为:x=n(n+1)(n为正整数),则第10个方程是=21,解为x=110,故答案为:x=11011.【解答】解:∵DF•DB=DE•DC,∴=,∵∠EDF=∠BDC,∴△CDF∽△BDE,∴∠2=∠5,∵∠FOB=∠EOC,∴△BOF∽△COE,∴=,∴=,∴△EOF∽△COB,∴∠3=∠4,∵FB=FE,∴∠2=∠4,∵∠1=∠2,∴∠1=∠2=∠3,∵∠BAF=∠CAB,∴△BAF∽△CAB,∴AB2=AF•AC,设AF=x,则有36=x(x+9),解得x=3,∴AF=3,BF=EF==3,BC==6,∵△EOF∽△COB,∴===,设OF=a,OB=2a,在Rt△ABO中,∵AB2+AO2=OB2,∴36+(3+a)2=4a2,解得a=5,∴OF=5,OC=4,∴OE=2.故答案为2.12.【解答】解:∵与同时成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,故4y﹣3x的平方根是±.故答案:±.13.【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF==2则阴影部分面积=S⊙O+S△HGF=•π•22+×2×2=2π+4,故答案为:2π+4.14.【解答】解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,[来源:学*科*网Z*X*X*K]∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵双曲线y=(x>0)经过点B,∴(1+k)•(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(负值已舍去),故答案为:.三.解答题(共9小题,满分70分)15.【解答】解:①图1中所有的全等三角形为△ABE≌△ACE,△ADF≌△CDB;故答案为:△ABE≌△ACE,△ADF≌△CDB②线段AF与线段CE的数量关系是:AF=2CE;故答案为:AF=2CE.证明:线段AF与线段CE的数量关系是AF=2CE,∵△BCD≌△FAD,∴AF=BC,∵AB=AC,AE⊥B C,∴BC=2CE,∴AF=2CE;问题探究:证明:延长AB、CD交于点G,如图2所示:∵AD平分∠BAC,∴∠CAD=∠GAD,∵AD⊥CD,∴∠ADC=∠ADG=90°,[来源:学科网]在△ADC和△ADG中,,∴△ADC≌△ADG(ASA),∴CD=GD,即CG=2CD,∵∠BAC=45°,AB=BC,∴∠ABC=90°,∴∠CBG=90°,∴∠G+∠BCG=90°,∵∠G+∠BAE=90°,∴∠BAE=∠BCG,在△ABE和△CBG中,,∴△ABE≌△CBG中(ASA),∴AE=CG=2CD.故答案为:①△ABE≌△ACE,△ADF≌△CDB;②AF=2CE;16.【解答】解:(1)∵各横行中,从第二个数起的数都比它左边相邻的数大a,∴12+2a=18,解得:a=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大b,∴(12+a)+2b=30,将a=3代入上述方程得 15+3b=30,解得:b=5.此时x=12﹣2a+b=12﹣6+5=11;(2)由题意第一个数是1,由(1)可知第m行n列所表示的数为1+5(m﹣1)+3(n﹣1),即为5m+3n﹣7.17.【解答】解:(1)这次随机抽取的学生共有:20÷50%=40(人);(2)B等级的人数是:40×27.5%=11人,如图:(3)根据题意得:×1200=480(人),答:这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.18.【解答】解:(1)设每件羽绒服的标价为x元,则10月份售出件,根据题意得:,解得:x=700,经检验x=700是原方程的解.答:每件羽绒服的标价为700元.(2)设这批羽绒服购进a件,10月份售出14000÷700=20(件),11月份售出20×1.5=30(件),根据题意得:14000+(5500+14000)+700×0.8(a﹣20﹣30)﹣500a≥12700,解得:a≥120,所以a至少是120,答:这批羽绒服至少购进120件.19.【解答】解:(1)(2)共有24种情况,和为3的倍数的情况是8种,所以.20.【解答】证明:连接DF,EF,∵点D、E、F分别为AB、AC、BC边的中点,∴DF=AE=AC,EF=AD=AB,∵AB=AC,∴AD=DF=EF=AE,∴四边形ADFE是菱形,∴DE与AF互相垂直平分.21.【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M(m,n),由题意•3•|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+,﹣6)或(3﹣,﹣6).22.【解答】解:(1)设甲型服装x套,则乙型服装为(40﹣x)套,由题意得1536≤34x+42(40﹣x)≤1552,(1分)解得16≤x≤18,∵x是正整数,∴x=16或17或18.有以下生产三种方案:生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装18套,乙型服装22套;(3分)(2)设所获利润为y元,由题意有:y=(39﹣34)x+(50﹣42)(40﹣x)=﹣3x+320,∵y随x的增大而减小,∴x=18时,y最小值=266,∴至少可获得利润266元;(2分)(3)服装厂采用的方案是:生产甲型服装16套,乙型服装24套.(2分)23.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.中考数学模拟试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............) 1.-2的相反数是( )A .-2B .2C .21-D .212.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab23.如图1,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其主视图是( )4.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .5.已知一组数据x 1,x 2,x 3的平均数为8,方差为3.2,那么数据x 1-2, x 2-2,x 3-2的平均数和方差分别是( ) A .6,2 B .6,3.2 C .8,2 D .8,3.2 6.根据函数表达式21x y =,下列关于函数21xy =图像特征叙述错误..的是( ) A .图像位于第一、二象限 B .图像既没有最高点,也没有最低点C .图像与直线y=x+2有两个公共点D .图像关于y 轴对称二、填空题(本题共10小题,每题3分,计30分,请将答案写在答题卡上相应横线上)7.请你写出一个大于0且小于3的无理数为 ▲ .8.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为 ▲ .9.若二次函数y=x 2+2x+m 的图像与 x 轴有公共点,则m 的取值范围是 ▲ . 10.如图2,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是 ▲ .11.如图,已知l 1∥l 2,直线l 与l 1、l 2相交于C 、D 两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= ▲ . 12.如果α、β是方程x 2﹣2x ﹣1=0的两个实数根,那么代数式α2﹣3α-β的值是 ▲ .13.我们规定:当k ,b 为常数,k≠0,b≠0,k≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx-2与它的交换函数图象的交点横坐标为 ▲ .14.如图4,扇形AOB 中,OA=5,∠AOB=36°.若将此扇形绕点B 顺时针旋转,得一新扇形A′O′B,其中A 点在O′B 上,则点O 的运动路径长为 ▲ cm .(结果保留π)图215.如图5,在Rt△ABC 中,∠C=90°,∠A=α,分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,交点分别为M 、N ,过M 、N 作直线交AB 于点D ,交AC 于点E .若tan α=31,则tan2α= ▲ .16.如图6,在正方形ABCD 内有一条折线段,其中AE ⊥EF ,EF ⊥FC ,且AE=6,EF=6,FC=2,则正方形与其外接圆之间形成的阴影部分面积为 ▲ . 三、解答题(本题共11小题,共102分,请在答题卡上写出相应的解答过程) 17.(本题满分6分)计算:|﹣tan450|﹣38+(﹣2018)0.18.(本题满分6分)解不等式组⎪⎩⎪⎨⎧-≤+->+x x x x 237121)1(315,并写出所有的整数解.19.(本题满分8分)先化简,再求值:(x ﹣xy xy 22-)÷xyx y x +-222,其中x=23+,y=23-.20.(本题满分8分)如图7,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)若M 为EF 的中点,OM =3,∠OBC 和∠OCB 互余,求DG 的长度.M 图7C AM图4第16题21.(本题满分9分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案) 22.(本题满分9分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图8①和图8②,请根据相关信息,解答下列问题:(1)图1中a 的值为 ;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛. 23.(本题满分10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台? 24.(本题满分10分)如图9,直线y=k 1x (x ≥0)与双曲线y=22k (x >0)相交于点P (2,4).已知点A (4,0),B (0,3),连接AB ,将Rt △AOB 沿OP 方向平移,使点O 移动到点P ,得到△A'PB'.过点A'作A'C ∥y 轴交双曲线于点C . (1)求k 1与k 2的值;(2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.图8①图8②25.(本题满分10分)如图,在△ABC 中,AB=AC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆经过点M ,交BC 于点G ,交AB 于点F . (1)求证:AE 为⊙O 的切线;(2)当BC=4,AC=6时,求⊙O 的半径; (3)在(2)的条件下,求线段BG 的长.26.(本题满分12分)已知二次函数图像的顶点在原点O ,并且经过点M (2,-1).点A (0,-1)在y 轴上,直线y=1与y 轴交于点B .(1)求二次函数的解析式; (2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线y=1交于点C ,求证:AC 平分∠PAB ; (3)当△PAC 是等边三角形时,求点P 的坐标.27.(本题满分14分)如图,在平面直角坐标系中,点A 的坐标为(6,0),点B 的坐标为(0,2),点M 从点A 出发沿x 轴负方向以每秒3cm 的速度移动,同时点N 从原点出发沿y 轴正方向以每秒1cm 的速度移动.设移动的时间为t 秒.(1)若点M 在线段OA 上,试问当t 为何值时,△ABO 与以点O 、M 、N 为顶点的三角形相似?(2)是否存在这样的t 值,使得线段MN 将△ABO 的面积分成1:3的两个部分?若存在,求出t 的值;若不存在,请说明理由.(3)若直线y=x 与△OMN 外接圆的另一个交点是点C .①试说明:当0<t<2时,OM 、ON 、OC 在移动过程满足OM+ON=2OC ;②试探究:当t>2时,OM 、ON 、OC 之间的数量关系是否发生变化,并说明理由.图10y=1y xB A PC 图11 y xON MB A图12y xOBA 备用图y xOBA 备用图中考数学模拟试卷参考答案及评分标准一、选择题(共6小题,满分18分,每小题3分)二.填空题(共10小题,满分30分,每小题3分)三.解答题(共11小题,满分102分) 17.解:|﹣tan450|﹣38+(﹣2018)=1﹣2+1 …………………………………………………………3分 =0 …………………………………………………………6分18. 解:解不等式5x+1>3(x-1),得:x >﹣2, ……………………………2分 解不等式21x+1≤7﹣23x ,得:x≤3, ……………………………………4分 则不等式组的解集为﹣2<x≤3,……………………………………5分所有它的整数解是:-1,0,1,2,3. ……………………………6分(x ﹣xy xy 22-)÷xy x y x +-22219. 解:(x ﹣xy xy 22-)÷xyx y x +-222= ()()()y x y x y x x x y xy -+++-*2x 22 =()()()()y x y x y x x x-++*y -x 2……………………………………………4分=x ﹣y …………………………………………………………6分当x=23+,y=23-时,原式= (23+)-(23-)=22.…………………………………………………………8分20.解:(1)证明:∵点D 、E 、F 、G 分别为线段AB 、OB 、OC 、AC 的中点, ∴DG 为△ABC 的中位线,EF 为△OBC 的中位线, ……………………2分∴DG ∥BC 且DG=21BC ,EF ∥BC 且EF=21BC , ∴DG ∥EF ,DG=EF ,∴四边形DEFG 是平行四边形. ……………4分(2)解:∵∠OBC 和∠OCB 互余,∴△OBC 是直角三角形,∠BOC=90°. ∵M 为EF 的中点,∴OM 为Rt △OEF 斜边的中线, ……………………6分∴EF=2OM=2×3=6,∴DG=EF=6. ……………………8分 21.解:(1)第一道单选题有3个选项,小明不使用“求助”答对第一道题的概率是31; ……………………2分(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项, 画树状图得:……………………5分∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为91; ……………………7分 (3)∵如果在第一题使用“求助”小明顺利通关的概率为81;如果在第二题使用“求助”小明顺利通关的概率为91;∴建议小明在第一题使用“求助”. ……………………9分22.解:(1)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a 的值是25;……………………2分(2)观察条形统计图得:=36542370.1665.1560.1455.1250.1++++⨯+⨯+⨯+⨯+⨯=1.61; ……………………4分∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65;将这组数据从小到大排列,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60. ……………………6分 (3)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m >1.60m ,∴能进入复赛. ……………………9分23.解:(1)设该市这两年投入基础教育经费的年平均增长率为x ,根据题意得:5000(1+x )2=7200, ……………………3分 解得:x 1=0.2=20%,x 2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%. ……………………5分 (2)2018年投入基础教育经费为7200×(1+20%)=8640(万元), …………………6分 设购买电脑m 台,则购买实物投影仪(1500﹣m )台, 根据题意得:3500m+2000(1500﹣m )≤86400000×5%, 解得:m≤880.答:2018年最多可购买电脑880台. ……………………10分24.解:(1)把点P (2,4)代入直线y=k 1x ,可得4=2k 1,∴k 1=2,把点P (2,4)代入双曲线y=22k ,可得k 2=2×4=8; ……4分(2)∵A(4,0),B (0,3),∴AO=4,BO=3,如图,延长A'C 交x 轴于D ,由平移可得,A'P=AO=4, 又∵A'C∥y 轴,P (2,4),∴点C 的横坐标为2+4=6, 当x=6时,y=68=34,即C (6,34), 设直线PC 的解析式为y=kx+b , 把P (2,4),C (6,34)代入可得 ⎪⎩⎪⎨⎧+=+=b k b k 63424,解得⎪⎪⎩⎪⎪⎨⎧=-=31632b k ,∴直线PC 的表达式为y=﹣32x+316; ……………………6分(3)如图,延长A'C 交x 轴于D ,由平移可得,A'P ∥AO , 又∵A'C ∥y 轴,P (2,4),∴点A'的纵坐标为4,即A'D=4, 如图,过B'作B'E ⊥y 轴于E , ∵PB'∥y 轴,P (2,4),∴点B'的横坐标为2,即B'E=2, 又∵△AOB ≌△A'PB',∴线段AB 扫过的面积=平行四边形POBB'的面积+平行四边形AOPA'的面积=BO×B'E+AO×A'D=3×2+4×4=22. ……………………10分 25.(1)证明:连接OM ,如图1,∵BM 是∠ABC 的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE 是∠BAC 的平分线,∴AE⊥BC,∴OM⊥AE,∴AE 为⊙O 的切线;……………………3分(2)解:设⊙O 的半径为r ,∵AB=AC=6,AE 是∠BAC 的平分线,∴BE=CE=21BC=2, ∵OM∥BE,∴△AOM∽△ABE, ∴BE OM =AB AO ,即2r =66r -,解得r=23,即设⊙O 的半径为23; ……………………7分 (3)解:作OH⊥BE 于H ,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM 为矩形,∴HE=OM=23, ∴BH=BE﹣HE=2﹣23=21, ∵OH⊥BG,∴BH=HG=21,∴BG=2BH=1. ……………………10分26.(1)解:∵二次函数图象的顶点在原点O ,∴设二次函数的解析式为y=ax 2. 将点A (2,-1)代入y=ax 2得:a= 41-,∴二次函数的解析式为y= 241x -. ……………………3分(2)证明:∵点P 在抛物线y=241x -上,∴可设点P 的坐标为(x ,241x -). 过点P 作PD ⊥y 轴于点D ,则AD=|﹣1﹣(241x -)|=|1412-x |,PD=|x|,∴Rt△PAD 中,PA=222)141(x x +-=2411x +.……………………6分∵PC ⊥直线y=1,∴PC=2411x +.∴PA=PC . ∴∠PAC=∠PCA .又∵PC ∥y 轴,∴∠PCA=∠BAC .∴∠PAC=∠BAC . ∴AC 平分∠PAB . ……………………9分(3)解:当△PAC 是等边三角形时,∠PCA =60°,∴∠ACB =30°. 在Rt △ACB 中,AC=2AB =2×2=4.∵PC=PA=AC ,∴ PC =4,即∴2411x +=4. 解得:x=±23.∴241x -=1241⨯-= -3. ∴满足条件的点P 的坐标为(23,-3)或(﹣23,-3).……………………12分27.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6-3t ,ON=t . 若△AB O∽△MNO ,则ON OB OM OA =,即t t 2366=-.解得t=1.若△AB O∽△NMO ,则OM OB ON OA =,即tt 3626-=.解得t=1.8. ……………………3分综上,当t 为1或1.8时,△ABO 与以点O 、M 、N 为顶点的三角形相似.……………………4分(2)由题意得:111(63)26224t t -=⨯⨯⨯.∴2210t t -+=∴121t t ==或者113(63)26224t t -=⨯⨯⨯yx C∴23690t t -+=,此方程无解 综上,当t为1时,线段MN 将△ACB 的面积分成1∶3两部分. ……………………7分DNMCy xOBA y =x(3)①当0<t <2时,在ON 的延长线的截取ND=OM .∵直线y=x 与x 轴的夹角为450,∴OC 平分∠AOB .∴∠AOC=∠BOB . ∴⋂CN =⋂CM .∴CN=CM .又∵ 在⊙O 中∠CNO ∠CMO=180°,∠∠CNO =180°,∴∠CND=∠CMO . ∴△CND ≌△CMO . ∴CD=CO ,∠DCN=∠OCM . 又∵∠AOB =90°,∴MN 为⊙O 的直径. ∴∠MC N=90°. ∴∠OC ∠OC N=90°. ∴∠DCN ∠OCN =90°. ∴∠OCD =90°.又∵CD=CO ,∴OD=2OC .∴OND=2OC .∴OMON=2OC .……………………10分DNMCyxO BA y =x②当 t >2时,ON OM=2OC . 过点C 作CD ⊥OC 交ON 于点D . ∵∠COD =45°,∴△CDO 为等腰直角三角形∴OD=2OC . ……………………12分 连接MC ,NC .∵MN 为⊙O 的直径,∴∠MC N=90°.又∵在⊙O 中,∠CMN=∠CNM =45°,∴MC=NC . 又∵∠OCD=∠MCN =90°,∴∠DCN=∠OCM . ∴△CDN ≌△COM .∴DN=OM . 又∵OD=2OC .,∴O DN=2OC .∴ONOM=2OC . ……………………14分中考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
云南省2019年中考数学真题试题
2019 年云南省初中学业水平考试数学试题卷(全卷三个大题,共23 个小题,共8 页;满分120 分,考试用时120 分钟)注意事项:1.本卷为试题卷。
考生一定在答题卡上解题作答。
答案应书写在答题卡的相应地点上,在试题卷、底稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
y一、填空题(本大题共 6 小题,每题 3 分,共 18 分)1.若零上 8℃记作+ 8℃,则零下 6℃记作℃.2.分解因式: x2-2x+1=.3.如图,若 AB∥CD,∠ 1= 40 度,则∠ 2=度 .4.若点( 3, 5)在反比率函数yk(k 0) 的图象上,则k=.x5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40 人,每个班的考试成绩分为 A、 B、 C、 D、 E 五个等级,绘制的统计图以下:依据以上统计图供给的信息,则 D 等级这一组人数许多的班是.6. 在平行四边形ABCD中,∠ A=30°, AD=43 ,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8 小题,每题只有一个正确选项,每题 4 分,共 32 分)7.以下图形既是轴对称图形,又是中心对称图形的是8.2019 年“五一”时期,某景点招待国内外旅客共688000 人次, 688000 这个数用科学记数法表示为A.68.8 ×10 4B.0.688 ×10 6C.6.88 ×10 5D.6.88 ×10 69.一个十二边形的内角和等于A.2160°B.2080°C.1980°D.1800°10. 要使x 1存心义,则 x 的取值范围为2A. x≤0B. x≥- 1C. x≥0D. x≤- 111.一个圆锥的侧面睁开图是半径为8 的半圆,则该圆锥的全面积是A.48 πB.45πC.36 πD.32π12.按必定规律摆列的单项式: x3,- x5, x7,- x9, x11,第n个单项式是A. (- 1)n-1x2n-1B. (- 1)n x2n-1C.(- 1)n-1x2n+1D. (- 1)n x2n+113. 如图,△ ABC 的内切圆⊙O 与 BC、CA、AB分别相切于点D、E、F,且 AB= 5,BC= 13, CA =12,则暗影部分(即四边形 AEOF)的面积是A.4D.92(x1)>214. 若对于x的不等式组的解集为x> a,则 a 的取值范围是A. a< 2B.a≤2C. a> 2D. a≥2三、解答题(本大题共9 小题,共70 分)15.(本小题满分 6 分)计算: 32(4 (15)1)16.(本小题满分 6 分)如图, AB=AD, CB=CD.求证:∠ B=∠ D.17.(本小题满分 8 分)某企业销售部有营业员 15 人,该企业为了调换营业员的踊跃性,决定推行目标管理,依据目标达成的状况对营业员进行合适的奖赏,为了确立一个合适的月销售目标,企业相关部门统计了这15 人某月的销售量,以下表所示:月销售量 / 件数177048022018012090人数113334(1)直接写出这15 名营业员该月销售量数据的均匀数、中位数、众数;(2)假如想让一半左右的营业员都能达到月销售目标,你以为(1)中的均匀数、中位数、众数中,哪个最合适作为月销售目标?请说明原因.温馨提示:确立一个合适的月销售目标是一个重点问题,假如目标定得太高,多半营业员完不可任务,会使营业员失掉信心;假如目标定得太低,不可以发挥营业员的潜力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作℃.2.(3分)分解因式:x2﹣2x+1=.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=度.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.(4分)要使有意义,则x的取值范围为()A.x≤0 B.x≥﹣1 C.x≥0 D.x≤﹣111.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+113.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.914.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2 C.a>2 D.a≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数1770 480 220 180 120 90人数 1 1 3 3 3 4 (1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作﹣6 ℃.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=140 度.【分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=15 .【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数y=得:k=3×5=15故答案为:15【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k的值;比较简单.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.【分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于16.6.【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,故答案为:16.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4分)要使有意义,则x的取值范围为()A.x≤0 B.x≥﹣1 C.x≥0 D.x≤﹣1【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:A.【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.9【分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF ⊥AB,OE⊥AC,所以四边形OFAE为正方形,设OE=AE=AF=x,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OFAE为正方形,设OE=r,则AE=AF=x,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2 C.a>2 D.a≥2【分析】根据不等式组的解集的概念即可求出a的范围.【解答】解:解关于x的不等式组得∴a≥2故选:D.【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.【解答】解:原式=9+1﹣2﹣1=10﹣3=7.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.【分析】由SSS证明△ABC≌△ADC,得出对应角相等即可.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数1770 480 220 180 120 90人数 1 1 3 3 3 4 (1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y 的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+1200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+1200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【分析】(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.【解答】解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AB=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=10×=,DM=BD﹣MB=.【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.7、我们各种习气中再没有一种象克服骄傲那麽难的了。