2.2提公因式法(1)

合集下载

2.2提公因式法

2.2提公因式法

把下列各式分解因式: 比较2002×20032003与 ① a(x-3)+2b(x-3); 2003×20022002的大小。 解答:设2002=x ② 5(x-y)3+10(y-x)2。 ① a(x-3)+2b(x-3) ∵2002×200320032003×20022002=x·10001(x+1)=(x-3)(a+2b) (x+1)·10001 x=0 3 2 ② 5(x-y) +10(y-x) ∴2002×20032003=2003×20022002 =5(x-y)3+10[-(x-y)]2 已知a+b=13,ab=40, =5(x-y)3+10(x-y)2 求a2b+ab2的值; 2 =5(x-y) (x-y+2) 2 2
a
学校打算把操场重新规划一下,分为绿化带、运动 场、主席台三个部分,如下图,计算操场总面积。
b
c
m
方法一:S = m ( a + b + c ) 方法二:S = ma + mb + mc
下面两个式子中哪个是因式分解?
在式子ma + mb + mc中,m是这个 多项式中每一个项 都含有的因式,叫 做 公因式。
最大公因式的提取方法: 系数取分子和分母系数 的最大公约数,字母取分 子和分母共有的字母,指 数取公共字母的最小指 数,即 公因式,你有哪些找公因 式的方法? 定义说明:初中一 般研究两个因式乘 积,高中就会扩展 到多个因式乘积
探究新知
(2)2b2+4b-6b
(3)2x2+6x3
议一议
8a3b2-12ab3c 的公因式是什么?
公因式

2.2 提公因式法(含答案)-

2.2 提公因式法(含答案)-

2.2提公因式法一、选择题:1.多项式-4a2b2+12a2b2-8a3b2c的公因式是()A.-4a2b2c B.-a2b2 C.-4a2b2D.-4a3b2c2.若多项式-6mn+18mnx+24mny的一个因式是-6mn,那么另一个因式是()A.-1-3x-4y B.1-3x-4y C.-1-3x+4y D.1+3x-4y3.分解-3a2bc2+12a3b2c2+9a2bc3的结果是()A.-a2bc2(3-12ab-9c) B.a2bc2(-3+12ab+9c)C.-3(a2bc2-4a3b2c2-3a2bc3) D.-3a2bc2(1-4ab-3c)4.下列提公因式法分解因式正确的是()A.12abc-9a2b2=3abc(4-3ab) B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c) D.x2y+5xy-y=y(x2+5x)5.下列多项式中的公因式与多项式8x3+24x2+4x的公因式相同的有()①8y3+24y2+4y;②32x3y+16xy2+28x3;③4x4-12x3+16x2+20x;④-8x3+4x2-24x A.1个B.2个C.3个D.4个6.下列各组多项式中,提取公因式后的剩余因式相同的是( )A.3m2n+6mn2与2m2n+4mn2+mn B.a3+a2+a与b3+b2+bC.6x3+4x2+2x与6x2y+4xy+2y D.a(m-n)3-b(n-m)3与a(m-n)3-b(m-n)3二、填空题:1.单项式4a3,8a2b2,-30a2bc的公因式是_________;单项式8x m y n-1与–4x m+1y n的公因式是_________。

2.在下列各式右边的括号前填写“+”号或“-”号,使等式成立:(1)(b-a)2=_________(a-b)2; (2)(x-y)3=________(y-x)3(3)-a-b=___________(a+b); (4)(-x-y)2=________(x+y)23.-6m3n2+12m2n3-3m2n2的公因式是_________;5a(x-y)-10b(y-x)的公因式是________.4.在下列括号内填写适当的多项式,使等式成立:(1)14abx-8ab2x=2abx( ); (2)-7ab-14abx+49aby=-7ab( ) 5.分解因式:3a(m+n)-6(m+n)=___________.6.利用分解因式计算:(-2)2003+(-2)2004-22003=__________。

2.2提公因式法(1课时)

2.2提公因式法(1课时)

2.2提取公因式法(1课时)授课教师:张娟【教材分析】因式分解是进行代数恒等变形的重要手段之一,它是在学习有理数和整式四则运算的基础上进行的,因式分解不仅在多项式的除法、简便运算中有直接作用,也为以后学习分式运算、解方程、方程组及代数式的恒等变形提供了必要的基础。

进行因式分解的途径很多,技巧性强,逆向思维能力要求较高。

所以因式分解是发展学生智力、培养能力、深化学生的逆向思维能力的良好载体。

【教材背景】“提取公因式法”是北师大版初中八年级数学下册“因式分解”一章的重点内容之一,是学生学习因式分解的第一种分解因式的方法。

是最基本也是最重要的因式分解方法。

应该培养学生的观察、分析、判断能力和预见能力。

【教学方法】(一)教法分析1.为了调动学生的学习的积极性,充分肯定学生的主体地位,使学生变被动学习为主动的学习,应采用师生问答,启发诱导法和练习法,,及组织学生活动法。

2.教具准备:课件,多媒体(二)、学法分析为了培养学生的数学思维能力、自学能力,这节课主要采用指导学生通过讨论完成相应的学习过程:预习—听课(问答)—反馈巩固—系统小结—完成作业。

以达到巩固、熟练知识的目的,同时指导学生注意运用观察分析的学习方法。

【教学目标】知识技能目标:理解公因式的概念,会找出多项式的公因式,并能用提取公因式法因式分解过程方法目标:初步形成观察、分析、概括的能力和逆向思维方式情感态度目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。

【教学重难点】教学重点:掌握公因式的概念,会使用提取公因式法进行因式分解教学难点:准确找出公因式。

【教学过程】一.回顾旧知1. 多项式的分解因式的概念:把一个多项式__________________的形式,叫做把这个多项式分解因式.2. 分解因式与整式乘法是_____过程.3. 分解因式要注意以下几点:①分解的对象必须是_______.②分解的结果一定是几个整式的_____的形式.二.探究新知1.公因式的定义及确定方法下列各多项式的各项有没有共同的因式?(1)ma+mb+mc (2)8 a 3 b2 –12ab 3 + ab从上面的代数式中,大家注意观察每一个代数式有什么特点?各项之间有什么联系?由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.①首先找各项系数的最大公约数,如8和12的最大公约数是4.②其次找各项中含有的相同的字母,如(2)中相同的字母有ab,相同字母的指数取次数最低的.【注意】多项式各项的公因式可以是单项式,也可以是多项式。

因式分解和提公因式法

因式分解和提公因式法

因式分解和提公因式法因式分解是代数中的一种重要的运算方法,在解题过程中往往可以起到简化问题、求解方程、找出公因数等作用。

而提公因式法是因式分解的一种特殊形式,通过提取公因式来简化多项式的表达式。

本文将详细介绍因式分解和提公因式法的概念、原理以及应用。

一、因式分解的概念和原理1.1 因式分解的概念因式分解是将一个多项式拆解成若干个因式的乘积,其中每个因式都是多项式的一个因子。

通过因式分解,我们可以将复杂的多项式化简为简单的因子形式,便于进一步求解方程、计算和进行其他代数运算。

1.2 因式分解的原理因式分解的原理是根据多项式的特点和运算规律,将其拆解为不可再分解的因子相乘的形式。

常用的分解方法有提取公因式法、配方法、根据特殊公式和因式定理等。

二、提公因式法的概念和步骤2.1 提公因式法的概念提公因式法是一种较为常见且简便的因式分解方法,通过提取多项式中的公因式,将多项式拆解为公因式和剩余部分的乘积。

这样可以达到简化表达式的效果,从而便于求解方程或进行其他计算。

2.2 提公因式法的步骤步骤一:观察多项式中是否存在公因式;步骤二:提取出公因式,并在多项式外面加上括号,表示公因式;步骤三:将多项式中去掉公因式后的部分作为括号内的剩余部分;步骤四:将公因式和剩余部分用乘号连接起来,得到最终的因式分解式。

三、因式分解和提公因式法的应用3.1 解方程因式分解和提公因式法在解方程中经常被使用。

通过因式分解,可以将原方程化简为简单的因子形式,从而更容易求解。

例如,对于二次方程ax^2 + bx + c = 0,如果可以进行因式分解成(a'x + b')(c'x + d') = 0,那么可以根据方程因式乘积为零的性质,得到x的取值。

3.2 简化计算在进行复杂的数学计算时,因式分解和提公因式法可以起到简化计算的作用。

通过将多项式化简为因子形式,可以减少计算的复杂性。

特别是在涉及多次相同运算的情况下,将公因式提取出来可以减少重复计算。

提公因式法

提公因式法

提公因式法(一)●课题§2.2.1 提公因式法(一)●教学目标(一)教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求通过找公因式,培养学生的观察能力.(三)情感与价值观要求在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.●教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.●教学难点让学生识别多项式的公因式.●教学方法独立思考——合作交流法.●教学过程Ⅰ.创设问题情境,引入新课一块场地由三个矩形组成,这些矩形的长分别为,,,宽都是,求这块场地的面积.解法一:S=× + × + × =++=2解法二:S=× + × + × = ( ++)=×4=2[师]从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.Ⅱ.新课讲解1.公因式与提公因式法分解因式的概念.[师]若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.ma+mb+mc=m(a+b+c)从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?[生]等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式.[师]由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法.2.例题讲解3.议一议[师]通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.[生]首先找各项系数的最大公约数,如8和12的最大公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的.4.想一想[师]大家总结得非常棒.从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系?[生]提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.Ⅲ.课堂练习(一)随堂练习1.写出下列多项式各项的公因式.(1)ma+mb (m)(2)4kx-8ky (4k)(3)5y3+20y2 (5y2)(4)a2b-2ab2+ab (ab)2.把下列各式分解因式(1)8x-72=8(x-9)(2)a2b-5ab=ab(a-5)(3)4m3-6m2=2m2(2m-3)(4)a2b-5ab+9b=b(a2-5a+9)(5)-a2+ab-ac=-(a2-ab+ac)=-a(a-b+c)(6)-2x3+4x2-2x=-(2x3-4x2+2x)=-2x(x2-2x+1)(二)补充练习1.把3x2-6xy+x分解因式[生]解:3x2-6xy+x=x(3x-6y)[师]大家同意他的做法吗?[生]不同意.改正:3x2-6xy+x=x(3x-6y+1)[师]后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉.在分解因式时应如何减少上述错误呢?将x写成x·1,这样可知提出一个因式x后,另一个因式是1.2.Ⅳ.课时小结1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.提公因式法分解因式,关键在于观察、发现多项式的公因式.3.找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.5.公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题.Ⅴ.课后作业习题2.2(7)-2x2-12xy2+8xy3=-(2x2+12xy2-8xy3)=-2x(x+6y2-4y3);(8)-3ma3+6ma2-12ma=-(3ma3-6ma2+12ma)=-3ma(a2-2a+4);2.利用因式分解进行计算(1)121×0.13+12.1×0.9-12×1.21=12.1×1.3+12.1×0.9-1.2×12.1=12.1×(1.3+0.9-1.2)=12.1×1=12.1(2)2.34×13.2+0.66×13.2-26.4=13.2×(2.34+0.66-2)=13.2×1=13.2(3)Ⅳ.活动与探究利用分解因式计算:(1)32004-32003;(2)(-2)101+(-2)100.解:(1)32004-32003=32003×(3-1)=32003×2=2×32003(2)(-2)101+(-2)100=(-2)100×(-2+1)=(-2)100×(-1)=-(-2)100=-2100●板书设计§2.2.1 提公因式法(一)一、1.公因式与提公因式法分解因式的概念2.例题讲解(例1)3.议一议(找公因式的一般步骤)4.想一想二、课堂练习1.随堂练习2.补充练习三、课时小结四、课后作业●备课资料参考练习一、把下列各式分解因式:1.2a-4b;2.ax2+ax-4a;3.3ab2-3a2b;4.2x3+2x2-6x;5.7x2+7x+14;6.-12a2b+24ab2;7.xy-x2y2-x3y3;8.27x3+9x2y.参考答案:1.2(a-2b);2.a(x2+x-4);3.3ab(b-a);4.2x(x2+x-3);5.7(x2+x+2);6.-12ab(a-2b);7.xy(1-xy-x2y2);8.9x2(3x+y).提公因式法(二)●课题§2.2.2 提公因式法(二)●教学目标(一)教学知识点进一步让学生掌握用提公因式法分解因式的方法.(二)能力训练要求进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.●教学重点能观察出公因式是多项式的情况,并能合理地进行分解因式.●教学难点准确找出公因式,并能正确进行分解因式.●教学方法类比学习法●教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.Ⅱ.新课讲解一、例题讲解[例2]把a(x-3)+2b(x-3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x -3)作为公因式提出来.解:a(x-3)+2b(x-3)=(x-3)(a+2b)[师]从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢?[生]不是,是两个多项式的乘积.[例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此.解:(1)a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)(2)6(m-n)3-12(n-m)2=6(m-n)3-12[-(m-n)]2=6(m-n)3-12(m-n)2=6(m-n)2(m-n-2).二、做一做请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).解:(1)2-a=-(a-2);(2)y-x=-(x-y);(3)b+a=+(a+b);(4)(b-a)2=+(a-b)2;(5)-m-n=-(m+n);(6)-s2+t2=-(s2-t2).Ⅲ.课堂练习把下列各式分解因式:解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x-y)-(x-y)=(x-y)(3a-1);(3)6(p+q)2-12(q+p)=6(p+q)2-12(p+q)=6(p+q)(p+q-2);(4)a(m-2)+b(2-m)=a(m-2)-b(m-2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2=mn(m-n)-m(m-n)2=m(m-n)[n-(m-n)]=m(m-n)(2n-m).补充练习把下列各式分解因式解:1.5(x-y)3+10(y-x)2=5(x-y)3+10(x-y)2=5(x-y)2[(x-y)+2]=5(x-y)2(x-y+2);2. m(a-b)-n(b-a)=m(a-b)+n(a-b)=(a-b)(m+n);3. m(m-n)+n(n-m)=m(m-n)-n(m-n)=(m-n)(m-n)=(m-n)2;4. m(m-n)(p-q)-n(n-m)(p-q)= m(m-n)(p-q)+n(m-n)(p-q)=(m-n)(p-q)(m +n);5.(b-a)2+a(a-b)+b(b-a)=(b-a)2-a(b-a)+b(b-a)=(b-a)[(b-a)-a+b]=(b-a)(b-a-a+b)=(b-a)(2b-2a)=2(b-a)(b-a)=2(b-a)2Ⅳ.课时小结本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.Ⅴ.课后作业习题2.3Ⅵ.活动与探究把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式. 解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)]=(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)●板书设计§2.2.2 提公因式法(二)一、1.例题讲解2.做一做二、课堂练习三、课时小结四、课后作业●备课资料参考练习把下列各式分解因式:1.a(x-y)-b(y-x)+c(x-y);2.x2y-3xy2+y3;3.2(x-y)2+3(y-x);4.5(m-n)2+2(n-m)3.参考答案:解:1.a(x-y)-b(y-x)+c(x-y)=a(x-y)+b(x-y)+c(x-y)=(x-y)(a+b+c);2.x2y-3xy2+y3=y(x2-3xy+y2);3.2(x-y)2+3(y-x)=2(x-y)2-3(x-y)=(x-y)[2(x-y)-3]=(x-y)(2x-2y-3);4.5(m-n)2+2(n-m)3=5(m-n)2+2[-(m-n)]3=5(m-n)2-2(m-n)3=(m-n)2[5-2(m-n)]=(m-n)2(5-2m+2n).典型例题例题1 找出下列式子中的公因式:(1);(2);分析多项式中各项都含有的因式是公因式,公因式中的系数是各项系数的最小公倍数,各项中共同含有的字母的公因式是各项中这个字母次数最低的幂.解答(1)公因式是.(2)公因式是.说明字母的指数中含有字母时,要判断哪个指数是最小的.例题2.分解因式:解答说明观察到第一项的系数是负数,我们先把“-”号提出来,便于继续分解因式.例题3.分解因式: .分析观察题目结构特征:第一项系数是负数,且有因式,第二、三项有因式,这就启发我们只要把前面添上负号,就变成,这样三项中均有公因式了.解答说明对于与的符号有下面的关系:感兴趣的同学可以寻找其中的规律.例题4.解方程: .分析方程左边的第一项有因式,第二项有因式 . 所以我们应先提取公因式,再化简求解.解答原方程依次变形为:例题5.不解方程组求:的值.分析把所求的式子利用因式分解法转化为关于与的因式,再代入求解.解答∵∴原式 .说明在解题过程中,巧妙地运用了转化思想,用提公因式法分解因式作为桥梁,把题给方程组和所求多项式结合起来,体现了思维的广阔性.探究活动关灯问题一条长廊里依次装有100盏电灯,从头到尾编号为1,2,3…99,100.每盏灯由一个拉线开关控制.开始,电灯全部关着.有100个同学列队从长廊走过来.第一个同学把号码凡是1的倍数的电灯的开关拉一下;接着第二个同学把凡是2的倍数的电灯开关拉一下;接着第三个同学把凡是3的倍数的电灯的开关拉一下;如此继续下去,最后第一百个同学把号码凡是100的倍数的电灯的开关拉一下.当100个同学按此规定穿过长廊之后,长廊里还有几盏灯亮着?参考答案还有10盏灯亮着.即:编号为1,4,9,16,25,36,49,64,81,100的灯.思考·探索1.解方程.参考答案1.原方程可化为,即.解得.习题精选练习题一1.选择题(1)分解的结果是()A. B.C. D.(2)若多项式的一个因式是,那么另一个因式是()A. B. C. D.(3)多项式的公因式是()A. B. C. D.(4)下列用提公因式法因式分解正确的是()A. B.C. D.2.分解因式(1);(2);(3);(4);(5);(6)3.分解因式(1);(2);(3);(4);(5);(6);(7);(8);(9);(10).参考答案1.(1)D (2)D (3)C (4)C2.(1)(2)(3)(4)(5)(6)3.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)练习题二1.把下列各式分解因式(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11);(12).2.求满足下列等式的x的值(1);(2).3.若,求代数式的值.参考答案1.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)2.(1)(2)3.,∴,当时,上式.古老的代数在古希腊时代,代数还不是一门独立的学科,许多代数公式是通过几何方法来推导的.如①式就可通过下图推导出来:现在,请你用纸片剪一个边长为的正方形,在它的右上角挖去一个边长为的小正方形(下图中有阴影的正方形),剩下的图形.我们来计算它的面积.为此,请你沿虚线把图形剪开,把小长方形按箭头所指的方向搬到的位置(不动),拼成一个长方形.请你量一量、算一算,然后回答问题:(1)正方形的面积是_________,(2)正方形的面积是_________,(3)因此,图形的面积是__________.(4)剪开HF后拼成的新矩形与图形的面积是________的.(5)矩形的边长为_______,JC边长为________,所以,矩形IJCE的面积为___________.(6)将(3)(5)的结果加以比较,就得到我们熟知的代数公式____________.电费催收单C城居民的生活用电每度收费1.5元,小英家一季度用电的数据如下:元月85度,2月73度,3月90度.奶奶要小英计算一下,一季度家里应交多少电费.小英很快就列出了算式:可是,供电所发来的收费单却是按月份别计算的.他们的算式是:现在我们来思考几个问题:(1)小英的算法与供电所的算法,结果是相同的吗?(口答)(2)根据回答可以写出等式:(3)一般地,如果电价每度为m元,某用户一季度用电的数字分别为:1月a度,2月b度,3月c度.那么,根据刚才写出的答案,就可以得出收费的一个一般公式:①①式就是分解因式的提公因式法.利用提公因式的方法分解因式的具体方法是:(1)先确定多项式中各项的公因式,再把公因式提到括号外,把原多项式除以公因式所得的商式写在括号内.确定公因式的方法是:先取各项数字系数的最大公的数,再取各项相同字母的最低次幕,合起来就是这个多项式的公因式.(2)在提取公因式时,要特别注意出现下列情况的时候:如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的,并且注意括号内其它各项要变号.如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出.有时要对多项式的项进行适当的恒等变形之后(如将变成才能提公因式,这时要特别注意各项的符号.。

4.2.2提公因式法(教案)

4.2.2提公因式法(教案)
4.2.2提公因式法(教案)
一、教学内容
本节课选自教材第四章第二节,主要讲述4.2.2提公因式法。教学内容包括:
1.理解公因式的概念。
2.学会提取多项式的公因式。
3.应用提公因式法分解多项式。
具体内容包括:
(1)公因式的定义及寻找方法。
(2)提取公因式的基本步骤。
(3)通过例题学习提公因式法分解多项式。
-解决方法:通过展示不同类型的例题,引导学生观察和发现公因式的规律,采用直观的图示或实物模型帮助学生形象化理解。
-难点二:在提取公因式时,学生可能会忽略掉某些项,导致分解不彻底。
-解决方法:通过对比不同学生解题过程中的错误,分析错误原因,强调检查和验证的重要性,并教授学生如何通过代入法检验分解是否正确。
-难点三:对于复杂的多次多项式,如何选择合适的公因式进行提取。
-解决方法:提供多个层次的例题,从简单到复杂,逐步引导学生学会分解的技巧。同时,教授学生如何通过分解因式树或使用十字相乘法等方法辅助寻找公因式。
-难点四:在实际应用中,学生可能难以判断何时使用提公因式法。
-解决方法:通过实际问题的情境引入,让学生体会提公因式法在解决面积、体积等实际问题中的应用价值,增强学生的问题意识。
-难点ห้องสมุดไป่ตู้:学生在小组合作学习时,可能会出现责任分散,部分学生参与度不高的情况。
-解决方法:制定明确的合作学习规则,确保每个学生都能在小组讨论中发挥作用。教师应巡回指导,及时发现问题并提供个性化指导。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《提公因式法》这一章节。在开始之前,我想先问大家一个问题:“你们在解数学题时,是否遇到过需要将多项式分解的情况?”(如\(ax^2 + bx\)的分解)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索提公因式法的奥秘。

因式分解之提公因式和公式法

因式分解之提公因式和公式法

因式分解之提公因式和公式法因式分解是数学中的一种常见的运算方法,它可以把一个复杂的多项式表达式分解成更简单的因式乘积,从而更好地理解和运算。

一、因式分解的概念因式分解是指把一个多项式表达式写成因式的乘积形式的过程。

因式分解有两种主要的方法,一种是提公因式法,另一种是公式法。

1.1提公因式法提公因式法是指将多项式中的一个或多个公因式提取出来,使得多项式能够写成一个公因式乘以另外一个因式的形式。

提公因式法有以下几个步骤:步骤一:将多项式中的每一项按照公共因子进行分组。

步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。

步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。

步骤四:将每一组的结果再相乘,得到最终的结果。

例子1:将多项式4x^2-5x+2进行因式分解。

首先,我们观察多项式,发现每一项的系数都是正整数,所以可以将多项式因式分解为最简整数.步骤一:将多项式中的每一项按照公共因子进行分组。

4x^2-5x+2=(4x^2)+(-5x)+2步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。

=4x(x)+(-5x)+2步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。

=4x(x-5)+2步骤四:将每一组的结果再相乘,得到最终的结果。

=4x^2-20x+2例子2:将多项式2x^3+3x^2-4x-6进行因式分解。

步骤一:将多项式中的每一项按照公共因子进行分组。

2x^3+3x^2-4x-6=(2x^3)+(3x^2)+(-4x)+(-6)步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。

=2x(x^2)+3x(x)+(-4x)+(-6)步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。

=2x(x^2+1.5x-2-3)步骤四:将每一组的结果再相乘,得到最终的结果。

=2x^3+3x^2-4x-6通过这个例子我们可以看出,当多项式中存在公因子时,提公因式法能够帮助我们简化运算过程,从而更方便地处理多项式。

2.2 提公因式法(有答案)

2.2 提公因式法(有答案)

2.2 提公因式法A卷:基础题一、选择题1.下列各组代数式中,没有公因式的是()A.5m(a-b)和b-a B.(a+b)2和-a-bC.mx+y和x+y D.-a2+ab和a2b-ab22.下列多项式中,能用提公因式法分解因式的是()A.x2-y B.x2+2x C.x2+y2 D.x2-xy+y23.下列用提公因式法分解因式不正确的是()A.12abc-9a2b2c=3abc(4-3ab) B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c) D.x2y+5xy+y=y(x2+5x+1)4.(-2)2007+(-2)2008等于()A.2 B.22007 C.-22007 D.-220085.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9) B.x(y+3)2 C.x(y+3)(y-3) D.x(y+9)(y-9)二、填空题6.9x2y-3xy2的公因式是______.7.分解因式:-4a3+16a2b-26ab2=_______.8.多项式18x n+1-24x n的公因式是______,提取公因式后,另一个因式是______.9.a,b互为相反数,则a(x-2y)-b(2y-x)的值为________.10.分解因式:a3-a=______.三、解答题11.某中学有三块草坪,第一块草坪的面积为(a+b)2m2,第二块草坪的面积为a(•a+b)m2,第三块草坪的面积为(a+b)bm2,求这三块草坪的总面积.12.观察下列等式,你得出了什么结论?并说明你所得的结论是正确的.1×2+2=4=22;2×3+3=9=32;3×4+4=16=42;4×5+5=25=52;…B卷:提高题一、七彩题1.(巧题妙解题)计算:1233695101571421 13539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯.2.(多题一思路路)(1)将m2(a-2)+m(2-a)分解因式,正确的是() A.(a-2)(m2-m) B.m(a-2)(m+1)C.m(a-2)(m-1) D.m(2-a)(m-1)(2)若x+y=5,xy=10,则x2y+xy2=_______;(3)mn2(x-y)3+m2n(x-y)4分解因式后等于_______.二、知识交叉题3.(科内交叉题)你对分解因式的了解是不是多了一些?请你猜一猜:32005-4×32004+ 10×32003能被7整除吗?4.(科内交叉题)已知串联电路的电压U=IR1+IR2+IR3,当R1=12.9Ω,R2=18.5Ω,R3=18.6Ω,I=2.3A时,求U的值.三、实际应用题5.在美丽的海滨步行道上,整齐地排着十个花坛,栽种了蝴蝶兰等各种花奔,•每个花坛的形状都相同,中间是矩形,两头是两个半圆形,半圆的直径是中间矩形的宽,若每个花坛的宽都是6m,每个花坛中间矩形长分别为36m,25m,30m,28m,•25m,•32m,24m,24m,22m和32m,你能求出这些花坛的总面积吗?你用的方法简单吗?四、经典中考题6.(2008,重庆,3分)分解因式:ax-ay=______.7.(2007,上海,3分)分解因式:2a 2-2ab=_______.C 卷1.(规律探究题)观察下列等式:12+2×1=1×(1+2);22+2×2=2×(2+2);32+2×3=3×(3+2);…则第n 个等式可以表示为_______.2.(结论开放题)如图2-2-1,由一个边长为a 的小正方形与两个长,宽分别为a ,•b的小矩形组成图形ABCD ,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式.3.(阅读理解题)先阅读下面的例子,再解答问题.求满足4x (2x -1)-3(1-2x )=0的x 的值.解:原方程可变形为(2x -1)(4x+3)=0.所以2x -1=0或4x+3=0,所以x 1=12,x 2=-34. 注:我们知道两个因式相乘等于0,那么这两个因式中至少有一个因式等于0;•反过来,如果两个因式中有一个因式为0,它们的积一定为0,请仿照上面的例子,求满足5x (x -2)-4(2-x )=0的x 的值.3.先阅读下面的材料,再分解因式:要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出a;•把它的后两项分成一组,并提出b,从而得到a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)•又有公因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+•an+•bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.•如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.请用上面材料中提供的方法分解因式:(1)a2-ab+ac-bc;(2)m2+5n-mn-5m.参考答案A卷一、1.C 点拨:A中公因式是(a-b),B中公因式是(a+b),D中公因式是(a-b).2.B 点拨:x2+2x=x(x+2).3.B 点拨:3x2y-3xy+6y=3y(x2-x+2).4.B 点拨:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-1)×(-2)2007=22007.5.C 点拨:xy2-9x=x(y2-9)=x(y2-32)=x(y+3)(y-3).二、6.3xy 点拨:9x2y-3xy2=3xy·3x-3xy·y=3xy(3x-y).7.-2a(2a2-8ab+13b2)点拨:-4a3+16a2b-26ab2=-2a(2a2-8ab+13b).8.6x n;3x-4 点拨:18x n+1-24x n=6x n·3x-6x n·4=6x n(3x-4).9.0 点拨:因为a+b=0,所以a(x-2y)-b(2y-x)=a(x-2y)+b(x-2y)=(x-2y)(a+b)=0.10.a(a+1)(a-1)点拨:a3-a=a(a2-1)=a(a+1)(a-1).三、11.解:(a+b)2+a(a+b)+b(a+b)=(a+b)[(a+b)+a+b]=(a+b)(2a+2b)=2(a+b)2(m2)点拨:本题是整式的加法运算,利用提公因式法,很快得到运算结果.12.解:结论是:n(n+1)+(n+1)=(n+1)2.说明:n(n+1)+(n+1)=(n+1)(n+1)=(n+1)2.点拨:本题是规律探究题,把所给等式竖着排列,易于观察它们之间存在的规律.B卷一、1.解:原式=33333333123(1357)1232 135(1357)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯.点拨:本题的巧妙之处是利用提公因式法分解因式可使计算过程简化,且不易出错.2.(1)C (2)50 (3)mn(x-y)3(n+mx-my)点拨:(1)m2(a-2)+m(2-a)=m2(a-2)-m(a-2)=m(a-2)(m-1),故选C.(2)x2y+xy2=xy(x+y).因为x+y=5,xy=10,所以原式=10×5=50.(3)mn2(x-y)3+m2n(x-y)4=mn(x-y)3[n+m(x-y)]=mn(x-y)3(n+mx-my).以上三题的思路是一致的,都是利用提公因式法分解因式,其中第(2)•题分解因式后再代入求值.二、3.解:能,理由:32005-4×32004+10×32003=32003×(32-4×3+10)=32003×7,故能被7整除.点拨:对一个算式进行运算,运算的结果若有因数7,说明它能被7整除.4.解:U=IR1+IR2+IR3=I(R1+R2+R3)=2.3×(12.9+18.5+18.6)=2.3×50=115(V).点拨:遇到运算比较复杂的题目,可尝试用分解因工的方法把式子化简.三、5.解:S=(π·32+36×6)+(π·32+25×6)+(π·32+30×6)+…+(π·32+32×6)=10×π·32+6×(36+25+30+…+32)≈1951(m2).四、6.a(x-y) 7.2a(a-b)C卷1.n2+2n=n(n+2)2.解:a(a+b)+ab=a(a+2b);a(a+2b)-ab=a(a+b);a(a+2b)-a2=2ab;a2+2ab=a(a+2b);a(a+2b)-a·2b=a2;a(a+2b)-a(a+b)=ab.点拨:答案不唯一,从上述等式中任写三个即可.3.解:5x(x-2)-4(2-x)=0,5x(x-2)+4(x-2)=0,(x-2)(5x+4)=0,所以x-2=0•或5x+4=0,所以x1=2,x2=-45.点拨:观察以上解题特点发现等号左边为0,左边为因式乘积的形式,所以只要把5x(x-2)-4(2-x)=0左边因式分解即可.3.解:(1)a2-ab+ac-bc=(a2-ab)+(ac-bc)=a(a-b)+c(a-b)=(a-b)(a+c).(2)m2+5n-mn-5m=(m2-mn)+(5n-5m)=m(m-n)+5(n-m)=m(m-n)-5(m-n)=(m-n)(m-5).。

八年级下数学资源与评价答案

八年级下数学资源与评价答案

第二章 分解因式2.1分解因式1.整式,积;2.整式乘法;3.因式分解;4.C ;5.A ;6.D ;7.D ;8.B ;9.2,1-=-=n m ; 10.0; 11.C; 12.能;2.2提公因式法1.ab 2;2.3+x ;3.)43)(2(++a a ;4.(1)x+1;(2)b-c;5.22432y xy x +-;6.D;7.A;8.(1)3xy(x-2); (2))5(522x y y x -; (3))1382(22+--m m m ; (4))72)(3(--a a ;(5))223)((y x m y x +--; (6))25()(62a b b a --;(7) )413(522y xy y x -+;(8)2(x+y)(3x-2y); (9)))((c b a a x ---; (10))(2n m q +;9.C;10.10;21;11.)1(2n n a a a ++;12.)1(2+=+n n n n ;13.6-;14.6;2.4运用公式法(1)1.B;2.B;3.C;4.(1)))((x y x y -+;(2))3)(3(41y x y x -+; 5.(1)800;(2)3.98; 6.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b); (5)-3xy(y+3x)(y-3x); (6)4a 2(x+2y)(x-2y); (7)(a+4)(a-4); (8))3)(3)(9(22y x y x y x -++;(9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x m+1(x+1)(x-1); 8.A; 9.2008; 10.40162009; 2.3运用公式法(2)1.±8;2.1;3.2)121(-x ; 4.(1)5x+1;(2)b-1;(3)4;2;(4)±12mn;2m ±3n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12.(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9)22)3(n m n +; (10)-2ax n-1(1-3x)2; 13.x=2;y=-3; 14.(1)240000;(2)2500;15.7;16.31-;17.A;18.B;19.B;20.1; 单元综合评价1.C; 2.B; 3.B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3x 2y+2xy-1); 17.(a-b)2(a+b); 18.2)21(--x a ;19.(x+y)2(x-y)2; 20.45000; 21.14; 22.2)1(1)1(+=+++n n n n第三章 分式3.1分式(1)1.②和④,①和③;2.43;3.23+-m m ,-2;4.31,-5;5.为任意实数,1;6.32-,3±;7.⑴t s ,⑵)(a m b a m --,⑶ba bn am ++,⑷p n m -;8.B ;9.C ;10.C ;11.⑴3±≠x ,⑵a x 4±≠;12.⑴x=2,⑵x=1;13.a=6;14.2<x ;15.-3,-1,0,2,3,5;四.109=+b a . 1分式(2):1.⑴ab a +2,⑵x ,⑶4n ,⑷x-y ;2.1≠x 且0≠x ;3.①y x 32,②x x --112,③x x x -+-2122,④1312-++x x x ;4.①y x y x 560610+-,②15203012+-x y x ,③y x y x 20253940+-,④b a b a 1512810+-;5.B ;6.71-;7.①-6xyz ,②m m 2-,③42+-m ,④22+-a a ;8.5;9.53;10.-3,11;11.5642++x x ;四.1.M=N ;2.1.3.2分式的乘除法 1.⑴bc a 2,⑵22xy ;2.2-≠x 且3-≠x 且4-≠x ;3.ba x 265;4.515;5.D ;6.D ;7.C ;8.⑴y x 2-,⑵55b a -,⑶2-x x ,⑷11-+-m m ;9.⑴-1,⑵34-,⑶41.四.1. 3.3分式的加减法(1)1.⑴ab c -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1. 3.3分式的加减法(2)1.B;2.B;3.C;4.27;5.1;6.⑴11-x ,⑵2)2(4--x x x ,⑶y ,⑷3-x ;7.31或21;8.81;9.A=1,B=1;10.12;11.-3;四.解:由13ab a b =+,得3a b ab +=,即113a b +=……① 同理可得114b c +=……②,115a c+=……③,①+②+③得22212a b c ++=,∴1116a b c ++=,∴6bc ac ab abc ++=,∴abc ab bc ca ++=16 3.4分式方程(1)1.整式方程,检验;2.12-x ;3.D ;4.0;5.x=20;6.-1;7.5;8.x=2;9.3;10.C ;11.D ;12.3;13.4;14.-1;15.A ;16.⑴原方程无解,⑵x=2,⑶x=3,⑷3-=x ;四.221+-n n . 3.4分式方程(2)1.B ;2.C ;3.3;4.22;5.D ;6.⑴x 200,⑵5x ,(200-5x),⑶55200+-x x ,⑷1552005200++-+=x x x ;⑸20;7.3±;8.⑴x=4,⑵x=7;9.1>m 且9≠m ;10.解:设公共汽车的速度为x 千米/时,则小汽车速度为3x 千米/时,根据题意得xx x 38031380=+-解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x 元,则今年价格为1.25x 元,根据题意得,6181.2536=-xx ,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x 个,则需要横式3x 个,根据题意得,)3354x x ⨯+⨯(∶)325(x x ⨯+=29x ∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.单元综合评价1.D ;2.B ;3.D ;4.C ;5.B ;6.B ;7.C ;8.)1()1(2-+x x x ;9.21≠x 且43-≠x ;10.2;11.53;12.-3;13.av v a +25;14.x=2;15.1<m 且3-≠m ;16.1210222++-x x x ;17.x -22;18.21;19.56-=x ;20.5-=x ;21.解:设改进前每天加工x 个,则改进后每天加工2.5个,根据题意得155.210001000+=x x ,解得x=40,经检验x=40是所列方程的解,所以2.5x=100.答:改进后每天加工100个零件.22.解:设甲原来的速度为x 千米/时,则乙原来的速度为(x-2)千米/时,根据题意得240844-40-=-+x x x ,解得x=12,经检验x=12是所列方程的解,所以x-2=10.答:甲原来的速度为12千米/时,乙原来的速度为10千米/时.第四章 相似图形4. 1线段的比⑴1.2:5,57;2.58;3.269;4.5; 5.1:50000;6.45;7.1:2:2;8.D ;9.B ;10.C ;11.B ;12.D ;13.⑴√⑵×;14.BC=10cm .4.1线段的比⑵1.3;2.32;3.53;4.C ;5.B ;6.B ;7.D ;8.B ;9.PQ=24;10.⑴3;⑵54-;11.⑴38;⑵76-;(3)-5;12.a :b:c=4:8:7;13.分两种情况讨论:⑴a +b+c≠0时,值为2;⑵a +b+c=0时,值为-1. 4.2黄金分割1.AP 2=BP·AB 或PB 2=AP·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN·MN 即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形. 4.3形状相同的图形1.相同⑶⑸;不同(1)(2)(4)(6).2.(a )与⑷,(b)与⑹,(c)与⑸是形状相同的;3.略;4.⑴AB=13,BC=26,AC=5,⑵A /B /=213,B /C /=226,A /C /=10,⑶成比例,⑷相同.4.4相似多边形1.×2.√3.×4.√5.√6.①④⑤;7.B ;8.B ;9.C ;10.C ;11.A ;12.27;13.66;14.一定;15.不一定;16.2;17.都不相似,不符合相似定义;18.各角的度数依次为650,650,1150;1150.B 'C '=A 'D '=415cm ;19.BC·CF=1;20.相似;21.2;22.b 2=2a 2.4.5相似三角形1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.4.6探索三角形相似的条件⑴1.2;2.6;3.2;4.4;△CDF ,1:2,180;5.4:3;6.2.4;7.572;8.B ;9.B ;10.C ;11.C ;12D ;13.BF=10cm ;14.⑴略.⑵BM=3. 15.由已知可得:AE AF BE FG =, AEAF DE FC =,BE=DE ,所以,FG=FC . 16.由已知可得: AG AF CG BF =,AG AF GD EF =,所以GD EF CG BF =.17. 由已知得:BFDF CF GF =,BF DF EF CF =,可得EF CF CF GF =,即: CF 2=GF·EF . 18.由已知得: PB PD PA PQ =,PBPD PR PA =,可得: 22PB PD PR PQ =. 19.不变化,由已知得: BC CP AB PE =,BCBP CD PF =,得:1=+CD PF AB PE ,即PE+PF=3. 20.提示:过点C 作CG//AB 交DF 于G .21.23.22.⑴由已知得:21===CD OE FC OF GC EG ,所以32=CE GC ,即31=BC GC .问题得证.⑵连结DG 交AC 于M ,过M 作MH ⊥BC 交BC 于H ,点H 即为所求.23.⑴证△AEC ≌△AEF 即可.⑵EG=4.24.⑴过点E 作EG//BC 交AE 于G .可得: nn m EC BE +=.⑵由⑴与已知得:2=+n n m 解得:m=n ,即AF=BF .所以:CF ⊥AB .⑶不能,由⑴及已知可得:若E 为中点,则m=0与已知矛盾.4.6探索三角形相似的条件⑵1.三;2.22,26;3.6;4;15-55;5.310;6.2.4;7.A ;8.C ;9.B ;10.A ;11.B ;12.A ;13.⑴略.⑵相似,由⑴得∠AFE=∠BAC=600,∠AEF 公共.⑶由△BDF ∽△ABD 得: ADBD BD DF =,即BD 2=AD·DF . 14.⑴∠BAC=∠D 或∠CAD=∠ACB .⑵由△ABC ∽△ACD 得BC AC AC AD =,解得:AD= 4,所以中位线的长= 6.5.15.证: △ADF ∽△BDE 即可.16.AC = 43.17.提示:连结AC 交BD 于O .18.连结PM ,PN .证: △BPM ∽△CPN 即可.19.证△BOD ∽△EOC 即可.20.⑴连结AF .证; △ACF ∽△BAF 可得AF 2=FB·FC ,即FD 2=FB·FC .⑵由⑴相似可得: CF AF AC AB =,AF BF AC AB =,即CF BF ACAB =22. 21.⑴略.⑵作AF//CD 交BC 与F .可求得AB=4.⑶存在.设BP=x ,由⑴可得xx -⨯=74834,解得x 1=1, x 2= 6.所以BP 的长为1cm 或6cm .22.⑴由∠AFC=∠BCE=∠BCF+450,∠A=∠B=450可证得相似.⑵由⑴得AF·BE=AC·BC =2S .23. ⑴略. ⑵△ABP ∽△DPQ ,DQ PD AP AB =,x y x -+=522,得y =-21x 2+25x -2.(1<x <4).24. ⑴略. ⑵不相似.增加的条件为: ∠C=300或∠ABC=600.4.6探索三角形相似的条件⑶1.√;2.√;3.相似;4.90;5.相似;6.相似;7.D ;8.C ;9.C ;10.略;11.略;12.易得BCEF OC OF AC DF OA OD AB DE ====. 13.证: 22===AG AF CG AC AC CF 得△ACF ∽△ACG ,所以∠1=∠CAF ,即∠1+∠2+∠3=900. 14.A .15. ⑴略. ⑵AQ 平分∠DAP 或△ADQ ∽△AQP 等.4.6探索三角形相似的条件⑷1.相似;2.4.1;3.310;4.4;5.ABD ,CBA ,直角;6.D ;7.A ;8.C ;9.B ;10.C ;11.DE//BC ;12.证△AEF ∽△ACD ,得∠AFE=∠D ;13.易得△ABD ∽△CBE , ∠ACB=∠DEB .14.证△ABD ∽△ACE 得∠ADB=∠AEC 即可.15.略.16. ⑴CD 2=AC·BD .⑵∠APB=1200.17.分两种情况讨论: ⑴CM=55,⑵CM=552. 18. ⑴证明△ACD ∽△ABE , ⑵AD AC DE BC =或AE AB DE BC =.由⑴得: AD AE AC AB =,△ABC ∽△AED 问题即可得证.19.650或1150.20.易得2==CEDF CF AD ,△CEF ∽△DAF ,得2=EF AF 与∠AFE=900.即可得到. 21. ⑴证明△CDE ∽△ADE ,⑵由⑴得BC AD CE DM 212=,即BC AD CE DM =,又∠ADM=∠C .⑶由⑵得∠DBF=∠DAM ,所以AM ⊥BE . 22.易得:AC=6,AB=10.分两种情况讨论: 设时间为t 秒.⑴当AC CQ BC PC =时, 6828t t =-,解得t=512.⑵同理得8628t t =-,解得t=1132. 23. ⑴相似,提示可延长FE ,CD 交于点G . ⑵分两种情况:①∠BCF=∠AFE 时,产生矛盾,不成立.②当∠BCF=∠EFC 时,存在,此时k=23.由条件可得∠BCF=∠ECF=∠DCE=300,以下略.4.6探索三角形相似的条件⑸1.B ;2.C ;3.B ;4.C ;5.C ;6.C ;7.C ;8.A ;9.C ;10.B ;11.2等(答案不 唯一);12.DE//BC(答案不唯一);13. △ABF ∽△ACE , △BDE ∽△CDF 等;14.②③;15. ∠B=∠D(答案不 唯一);16.略;17.略(只要符合条件即可);18. ⑴七. ⑵△ABE ∽△DCA ∽△DAE ;19.利用相似可求得答案: x = 2cm .20. ⑴相似,证略.⑵BD=6.21.BF 是FG ,EF 的比例中项.证△BFG ∽△EFB 即可.22.证△ACF ∽△AEB .23. 2.24. ⑴AQ=AP ,6-t=2t 解得t=2.⑵S=12×6-21×12t -21×6(12-2t)=36.所以四边形的面积与点P ,Q 的位置无关.⑶分两种情况:①t=3.②t=56. 4.7测量旗杆的高度1.20;2.5;3.14;4.C ;5.C ;6.AB=25346米;7.MH=6m ;8. ⑴DE=310m ;⑵3.7m/s ;9.由相似可得: ⎪⎪⎩⎪⎪⎨⎧+==1284.37.18.17.1BC AB BC AB 解得AB=10.所以这棵松树的高为10m .10.略.4.8相似多边形的性质1.2:3;2.2:5,37.5;3.1:4,1:16;4.1:4;5.75;6.1:16;7.22;8.60;9.C ;10.C ;11.C ;12.D ;13.B ;14.B ;15.C ;16.B ;17.4.8cm ;18.25;19.16;20.⑴提示:延长AD ,BF 交于G .AE:EC=3:2.⑵4.21.⑴S 1:S=1:4.⑵141+-=x y (0<x <4).22.提示:延长BA ,CD 交于点F .面积=16217.23. ⑴可能,此时BD=72108180-.⑵不可能,当S FCE ∆的面积最大时,两面积之比=925<4. 24.⑴S AEF ∆=x x 512522+-.⑵存在.AE=266-. 25.略.26. ⑴640元.⑵选种茉莉花.⑶略.27. ⑴利用勾股定理问题即可解决.⑵答:无关.利用△MCG ∽△MDE 的周长比等于相似比可求得△MCG 的面积=4a .28. ⑴CP=22.⑵CP=724.⑶分两种情况①PQ=3760,②PQ=49120. 29.提示:作△ABC 的高AG . ⑴略.⑵DE=38.30. ⑴x =310s .⑵2:9.⑶AP=940或20. 31.⑴DE=AD ,AE=BE=CE . ⑵有: △ADE ∽△ACE 或△BCD ∽△ABC . ⑶2:1.4.9图形的放大与缩小1.点O ,3:2;2.68,40;3. △A 'B 'C ',7:4, △OA 'B ',7:4;4.一定;5.不一定;6.略;7.(-1,2)或(1, -2),(-2,1)或(1, -2);8.2:1;9.D ;10.C ;11.B ;12.D ;13.C ;14.D ;15.略;16.略;17.略;18.略;19. ⑴略; ⑵面积为445. 单元综合评价⑴ 1.C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.B ;8.C ;9.95;10.80;11.5;12.8;13.7.5;14.5;15.8:27;16.a 22;17.1:3; 18.相似.证明略.19.10:2.20.25:64.21.边长为6.22.y x :=3:2.23.略.24. △ABF ∽△ACE ,AB AF AC AE =得△AEF ∽△ACB . 25.菱形的边长为320cm . 26.证明略. 27. ⑴边长为48mm .⑵分两种情况讨论:①PN=2PQ 时,长是7480mm ,宽是7240mm .②PQ=2PN 时,长是60mm .宽是30mm . 单元综合评价⑵1.64cm ;2.4:9;3.30;4.三;5.72;6. △AEC ;7.1:4;8.②③④;9.8:5;10.7;11.C ;12.B ;13.B ;14.C ;15.C ;16.D ;17.D ;18.C ;19.B ;20.A ;21.略;22.EC= 4.5cm ;23.21. 6cm 2;24.略;25.边长是48mm . 26. ⑴AC AO BC OE =,DC DF BC OF =,DCDF AC AO =,所以:OE= OF . ⑵易得OE=712,EF=2OE=724. 27. ⑴PM=43厘米. ⑵相似比为2:3.⑶由已知可得:t=a a +66≤3,解得a ≤6,所以3<a ≤6.⑷存在.由条件可得:⎪⎪⎩⎪⎪⎨⎧-=-+=t t a at a a t 3)(66 解得: a 1=23,a 2=-23(不合题意,舍去).28. ⑴600,450.⑵900-21α.⑶900-21α,900+21α.证明略. 第五章 数据的收集与处理5.1 每周干家务活的时间1、(1)普查 (2)抽样调查 (3)抽样调查 (4)抽样调查2、(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10 (2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.3、D4、B5、(1)适合抽样调查 (2)适合普查 (3)适合抽样调查 (4)适合普查6、(1)缺乏代表性 (2)缺乏代表性 (3)有代表性7、8001512000=÷条8、估计该城市一年(以365天计)中空气质量达到良以上的天数为219天. 四、聚沙成塔(略)5.2 数据的收集1、抽样调查2、A3、C4、7万名学生的数学成绩、每名考生的数学成绩、1500名考生的数学成绩5、D6、(1)丘陵,平原,盆地,高原,山地;山地的面积最大(2)59%(3)丘陵和平原(4)各种地形的面积占总面积的百分比,100%(5)略(6)不能(7)96万平方千米,249.6万平方千米.7、原因可能是:样本的容量太小,或选区的样本不具有代表性、广泛性、随机性.8、(1)否(2)抽样调查(3)200(4)不一定,抽查的样本不具有代表性和广泛性.9、(1)平均质量为2.42千克. (2)900只可以出售.四、聚沙成塔能装电话或订阅《文学文摘》杂志的人在经济上相对富裕,而占人口比例多数、收入不高的选民却选择了罗斯福,因此抽样调查既要关注样本的大小,又要关注样本的代表性.5.3 频数与频率1、C2、0.323、0.54、0.185、D6、(1)48人(2)12人,0.257、0.258、(1)0.26 24 3 0.06(2)略 9、(1)8,12,0.2,0.24 (2)略 (3)900名学生竞赛成绩, 每名学生竞赛成绩, 50名学生竞赛成绩,50 (4)80.5~90.5 (5)216人四、聚沙成塔(1)89分(2)甲的综合得分=92(1-a )+87a 乙的综合得分=89(1-a )+88a 当0.5 ≤a < 0.75, 甲的综合得分高;当0.75 <a ≤0.8, 乙的综合得分高.5.4 数据的波动1、B2、A3、24、C5、B6、B7、D8、9 s ²9、2 10、4牛顿 11、(1)90分、70分、甲组(2)172、256、甲组成绩比较整齐. 12、甲x =8,乙x =8,x 丙=7.6,2甲s =4.4,2乙s =2.8,2s 丙=5.44;(2)乙 13、(1)8,7,8,2,60% (2)略四、聚沙成塔(1)701.6 699.3 (2)65.84 284.21 (3)甲稳定 (4)甲,乙单元综合评价1、 某校八年级学生的视力情况,每名八年级学生的视力情况,85八年级学生的视力情况.2、 (2), (1)、(3)3、3.2 、964、不可信,样本不具有代表性5、50,20、0.46、3,5,12克 7、(1)50,(2)60%(3)15 8、3,2.25,1.5 9、A 10、B 11、D 12、B 13、C 14、B 15、B 16、B 17、C 18、B 19、(1)102、113,106 (2)3180(3)y=53x 20\(1)21人 (2)0.96 (3)答题合理即可 21、(1)7、7、7.5、3(2)①甲的成绩较为稳定②乙的成绩较好③乙要比甲成绩好④尽管甲的成绩较为稳定,单从折线图的走势看,从第四次射击后,乙每次成绩都比甲高,并成上升趋势,乙的潜力比较大.第六章 证明(一)6.1 你能肯定吗?1、 观察可能得出的结论是(1)中的实线是弯曲的;(2)a 更长一些;(3)AB 与CD 不平 行.而我们用科学的方法验证可发现:(1)中的实线是直的;(2)a 与b 一样长;(3)AB 与CD 平行. 2、一样长.计算略. 3、(1)不正确;(2)不正确;(3)不正确. 4.A 5.B 6.能 7、原式=n 4,,所以一定为4的倍数.8、(1)正确的结论有①②③;(2)略 9.将此长方体从右到左数记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,由Ⅱ,Ⅳ可知,白颜色的面与红、黄两种颜色的面必相邻,又由Ⅰ知,白颜色的面应是蓝色的对面,恰为Ⅰ中的下底面,由Ⅲ知红与紫必相邻,再与Ⅰ相比较知,黄色的对面必为紫色了,从而红色的对面必为绿色了,通过上面的推理可以知道Ⅰ的下底面为白颜色,有4朵花,Ⅱ的下底面为绿色,有6朵花,Ⅲ的下底面为黄色,有2朵花,Ⅳ的下底面的紫色有5朵花,故这个长方体的下底面有(4+6+2+5)朵花,即共17朵花.聚沙成塔.m 4.107371000201.030≈÷⨯,比五层楼和电视塔都高.6.2 定义与命题1.(1)题设:两个角是对顶角;结论:这两个角相等(2)题设: 22b a =;结论:b a =(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等(4)题设:同旁内角互补;结论:两直线平行(5)题设:经过两点作直线;结论:有且只有一条直线.2.C3.C4.C5.B6.D7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知,,C B AC AB ∠=∠=求证:AD AE =是真命题.(只要答案合理即可)18.先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河.6.3 为什么它们平行1.C2. C3.B4.C5.B6. D7.A8.B9.(1)AD ∥BC (2) AD ∥BC (3)AB ∥CD 10.平行11.平行 12.平行,同位角相等,两直线平行. 13——16答案略 17.因为∠A=∠1,∠2+∠ACE+∠1=180º,又AC ⊥CE ,故∠ACE=90º,∴∠1+∠2=90º,∴∠A+∠2=90º,∴∠ABC=90º,同理∠EDC=90º,∴AB ∥DE. 18.提示:∠B+∠A=90º,∠AEF=∠B ,∴∠AEF+∠A=90º19.提示:∠A=90º,∠B=60º,∠C=30º ,∠A :∠B :∠C=3:2:16.4 如果两条直线平行1.C 2.C 3.C 4.B 5.A 6. 110º 7. 123º 8. 180º 9.南偏东70º 10. 证明:(1)∵AD ∥BC ,∴∠1=∠B ,∠2=∠C.又∠B=∠C ,∴∠1=∠2,即AD 平分∠EAC ;(2)由∠B+∠C+∠BAC=180º,且∠1+∠2+∠BAC=180º知,∠1+∠2=∠B+∠C ,又AD 平分∠EAC ,∴∠1=∠2,而∠B=∠C ,故∠1=∠B ,或∠2=∠C ,从而AD ∥BC. 11. 148º12.提示:过点C 做CP ∥AB 13. 121º49ˊ 14. (1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD , 故∠B+∠F=∠BCF.(2)过C 作CD ∥AB ,∴∠B+∠BCD=180º,又AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180º,故∠B+∠F+∠BCF=360º.6.5 三角形内角和定理的证明1.B2.D3.C4.D5.B6. 90º7. 50º, 100º8. 40º9. 63º 10. 100º 11. 50º12.略13.略 14.连CE ,记∠AEC=∠1,∠ACE=∠2,∴∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+21∠DEA+21∠BCD=180º 由 ∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º. ∴21(∠D+∠B )+∠1+∠2+21∠BCA+21∠DEA=180º ∴∠1+∠2+21∠BCA+21∠DEA=180º-21(∠D+∠B ), 即∠F+180º-21(∠D+∠B )=180º,∴∠F=21(∠B+∠D ); ( 2)设∠B=2α,则∠D=4α,∴∠F= 21(∠B+∠D )=3α, 又∠B :∠D :∠F=2:4:x ,∴x=3.2.略. 15.略6.6 关注三角形的外角1.C 2.C 3.C 4.B 5C 6. 35° 7. 37.5° 8. 260° 9. 55°或70° 10. 120°或115°或125°11.AF ⊥DE 12. ∠D=70° ∠D=90°12A +∠ 13. 证法一:延长CD 交AB 于点E ; 证法二:过点B 做BF ⊥AD ,交AD 的延长线于点F.14.证法1: 360BDC BDA CDA∠=-∠-∠o Q 又180BDA B BAD ∠=-∠-∠o Q 180CDA C CAD ∠=-∠-∠o 360(180)BDC B BAD ∴∠=--∠-∠-o o (180)C CAD BAD CAD B C -∠-∠=∠+∠+∠+∠o 即BDC BAC B C ∠=∠+∠+∠;证法2略. 15.略 16.延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A .证明略.提示:单元综合评价一、1.A 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.略12.80° 13.60° 14.115° 15.88° 16.45°>∠B>30°17.360 ° 18.118° 19.3 20.68°三、21.100o22.证明: ∵∠ADE=∠B ,∴ED ∥BC . ∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD ∥FG .∵FG ⊥AB , ∴CD ⊥AB .23. ∵L 1∥L 2, ∴∠ECB+∠CBF=180°. ∴∠ECA+∠ACB+∠CBA+∠ABF=180°. ∵∠A=90°, ∴∠ACB+∠CBA=90°. 又∠ABF=25°, ∴∠ECA=180°-90°-25°=65°.24.解:分两种情况(1)当ABC ∆为锐角三角形时,70B ∠=o (2) 当ABC ∆为钝角三角形时,20B ∠=o25.略 33.FD EC ⊥Q 90EFD FEC ∴∠=-∠o 而FEC B BAE ∴∠=∠+∠又AE Q 平分BAC ∠ 11(180)22BAE BAC B C ∴∠=∠=-∠-∠o =190()2B C -∠+∠o 则19090()2EFD B B C ⎡⎤∠=-∠+-∠+∠⎢⎥⎣⎦o o =1()2C B ∠-∠ (2)成立。

《提公因式法》分解因式3 最新小学精品公开课件

《提公因式法》分解因式3 最新小学精品公开课件

(2) 2x3 4x2 2x.
(2)防止漏项;
(3) 2x2 12xy2 8xy3. (3)首相为负先提出。
巩固练习
6、下列分解因式是否正确?为什么? (1) 2n2 mn n 2n(n m 1); (2) ab2 2ab 3b b(ab 2a 3); (3) x(x y) y(x y) (x y)2; (4) a2 a 2 a(a 1) 2.
(2) 7x(x 3) 7x2 21x
(3) 4x(6x2 3x 7) 24x3 12x2 28x
(4) ab(8a2b 12b2c 1) 8a3b2 12ab3c ab
观察下列各式的结构有什么共同特点?
① ax -ay ② ma + mb + mc ③ 2πR + 2πr
观察上述举例,分析并猜想: 确定一个多项式的公因式时,要
从 数字系数 和 字母及其指分数别进行考虑。
1.定系数:公因式的系数应取各项系数的最大公约数。 2.定字母:公因式中的字母取各项相同的字母, 3.定指数: 相同字母的指数取其次数最低的。
例: 找 3x2y2– 6xy3 的公因式。
因为
系数:最大公约数 3
多项式中各项都含有的相同因式,叫做 这个多项式各项的公因式.
小组探究过关武器:
(1)确定下列各多项式中的公因式?
1) a c+ b c
c
2)3 x2 +9xy
3x
3) a2 b – 2a b2 + ab
ab
4) 4xy2-6xy+8x3y
2xy
(2)多项式中的公因式是如何确定的? (交流探索)

2.2一元二次方程的解法(提公因式)

2.2一元二次方程的解法(提公因式)
方程 的方法叫做因式分解法(square root
extraction)。它的基本步骤是:
1.若方程的右边不是零,则先移项,使方程的右边为零;
2、将方程的左边分解因式; 3、根据若A·B=0,则A=0或B=0,将解一元二次方程转 化为解两个一元一次方程。
简记歌诀:
右化零 左分解 两因式 各求解
试做 课内练习(4)(5)(6)
例3 解方程 x 2 2 x 2
2
解 移项,得 x 2 2 x 2 0
2
即 x 2 2x ( 2) 0
2 2
∴ ( x 2) 0
2
∴ x 1= x 2=
2
练习2:用因式分解的方法解下列方程:
x 2 3x 3;
2
试做课内练习(3)
请利用因式分解解下列方程: (1)x2-3x=0;
解:(1)x(x-3)=0 ∴ x=0或x-3=0 ∴ x1=0, x2=3
(2)
25x2=16
(2)25x2-16=0 (5x+4)(5x-4)=0
∴ 5x+4=0或5x-4=0
∴ 5x=-4或5x=4
∴x1=-0.8, x2=0.8
试做:P31 课内练习 (1)--(2)
1、一元二次方程的定义
②只含有一个未知数 ③未知数的最高次数是2次
2、一元二次方程的一般式:
ax bx c 0 (a≠0)
2
3、一元二次方程的根的含义
D 请选择: 若A· B=0则


(A)A=0; (B)B=0; (C)A=0且B=0;(D)A=0或B=0 你能用上面的结论解方程(2x+3)(2x-3)=0吗?

提公因式法(一)说课稿

提公因式法(一)说课稿

第四章因式分解2.提公因式法(一)说课稿泾源高级中学闫聪大家好!今天我说课的题目是提公因式法(一),所选用的教材为北师大版义务教育课程标准实验教科书。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教法和学法分析,教学过程分析,板书设计六个方面展开说课。

一、教材的地位和作用本节是因式分解的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法的分配律的逆运算到提取公因式的过程,让学生体会数学的主要思想——类比思想,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.从而使得学生接受新的概念时显得轻松自然,容易理解,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系.一方面,这是在学习了因数分解、整式乘法运算的基础上,对如何进行因式分解的进一步深入和拓展;另一方面,又为学习分式化简与运算,解一元二次方程等知识奠定了基础,鉴于这种认识,我认为,本节课不仅有着实际的价值,而且起着承前启后的作用。

二、学情分析学生的技能基础:从认知状况来说,在上一节课的基础上,学生基本上了解了分解因式与整式的乘法运算之间的互逆关系,能通过观察、类比等手段,寻求因式分解与因数分解之间的关系,这为今天的深入学习提供了必要的基础.学生活动经验基础:学生有了上一节课的活动基础,由于本节课采用的活动方法与上节课很相似,依然是观察、对比等,学生对于这些活动方法较熟悉,有较好的活动经验.三、教学目标分析根据学生在上一节课的经验,学生只是对因式分解有了一个初步的印象和判断,而对于怎样把一个多项式进行因式分解还很茫然,相应的数学能力还有待于进一步加强和巩固.因此,本课时的教学目标是:1.经历探索、认识多项式各项公因式的过程,并在具体的问题中,能确定多项式各项的公因式。

2.会用提公因式法对多项式进行因式分解。

3.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想,加深对从特殊到一般、类比与转化等数学思想的认识。

§2.2.1 提公因式法(一)导学案

§2.2.1  提公因式法(一)导学案
三、合作探究:
(1)怎么样确定一个多项式的公因式?确定公因式的步骤有哪些?
答:①、②
(2)提公因式要注意些什么?
答:①、②
(3)提公因式法分解因式与单项式乘多项式有什么关系?
四、当堂检测:
将下列各式分解因式
1. ;2. ;
3. ;4. ;
5. ;6. ;
7. ( 是自然数);
8. ( , 是自然数).
独立完成,教材的随堂练习、知识技能P48~49
五、总结升华:
1.提公因式 法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).
2.提公因式法分解因式,关键在于观察、发现多项式的公因式.
3.找公因式的一般步骤
(1 )若各项系数是整系数,取系数的;
(2)取相同的,的指数取的;
4.特别注意级(数学)学科导学案
课题:§2.2.1提公因式法(一)主备:刘晓东备课组长审核:高宏伟教务处审核:李诚
一、展示目标:
学习重 点:能观察出多项式的公因式 ,并根据分配律把公因式提出来.
学习难点:让学生识别多 项式的公因式.
二、自主学习:
自主回顾:
1、分解因式的概念. 2、分解因式概念应注意什么?3、分解因式与整式乘法的关系
自主学习
1.公因式与提 公因式法分解因式的概念.
自主学习教材p47,然后回答以下问题:
⑴公因式:多项式的各项中都含有叫做这个多项式各项的公因式
⑵提公因式法:把多项式中的提取出来的分解因式方法叫做提公因式法.
2.独立将下列各式分解因式
(1)3ab2-3a2b;(2)2x3+2x2-6x;
(3)-12a2b+24ab2;(4)xy-x2y2-x3y3;

八下 第二章2.2.1提取公因式法 教学设计(于海峰)

八下 第二章2.2.1提取公因式法 教学设计(于海峰)

第二章 分解因式§2.2提取公因式法【有效学习】学习目标1、了解因式分解的概念,以及因式分解与整式乘法的关系.2、了解公因式概念和提取公因式的方法.3、会用提取公因式法分解因式.学习重点:会用提公因式法分解因式; 学习难点:如何确定公因式以及提出公因式后的另外一个因式.【复习检测】把一个多项式化成 的形式,叫做因式分解。

情境应用:看谁算得又准又快(1)20×(-3)2+60×(-3) (2)1012-992 (3)572+2×57×43+432【预习检测】叫做公因式。

情境应用:1、2x 2y +6x 3y 2中各项的公因式是什么?学习反思——自我总结:运用提公因式法分解因式的关键是确定多项式各项的公因式,•公因式是指各项系数的最大公约数、各项共有字母的最低次幂的乘积.公因式可以是单项式也可以是多项式.2、找出下列各式的公因式,运用提公因式法分解因式(1)=+bc ab (2)=+x x 23 (3)=-+b nb mb 2 (4)=+3262x x(5)3x +6= (6)7x 2–21x = (7)8a 3b 2–12ab 3c +ab =(8)–24x 3–12x 2+28x =学习反思——分解因式步骤:(1)找公因式; (2)提公因式.学习反思——易错点总结:1、第(7)题中的最后一项提出ab 后,注意: ;2、如果多项式的第一项带“–”,则先提取“–”号,然后提取其它公因式; 第(8)题提出“–”时,注意: .技巧的点拨:怎么才能保证做的题不会错呢?将分解因式后的式子再进行单项式与多项式相乘,检验其积是否与原式相等.学以致用:1、找出下列各多项式的公因式:(1)4x +8y (2)am+an (3)48mn –24m 2n 3 (4)a 2b –2ab 2+ab2、将下列多项式进行分解因式:(1)8x–72 (2)a2b–5ab (3)4m3–8m2(4)a2b–2ab2+ab(5)–48mn–24m2n3(6)–2x2y+4xy2–2xy3、分解因式下列各题:(1)8m2n+2mn (2)12xyz-9x2y2(4)12a2b3-8a3b2-16ab4 (3)-4a3+16a2-18a4、简便计算(1)14.3×9.6+14.3×10.4 (2)5.8×4.7+5.8×12.1-5.8×6.8(3)5×109-1010 (4)6.2×7.8+6.2×2.1+3.8×4.5+3.8×5.4提取公因式法口诀:各项有“公”先提“公”;首项有负常提负;某项提出莫漏1;括号里面分到“底”.思考:下面两个式子如何用提取公因式法分解因式(1)4a2(x+7)-3(x+7) (2)2a(y-z)-3b(z-y)。

提公因式法(一)

提公因式法(一)

●课题§2.2.1 提公因式法(一)张家口市二十一中学孙德林●教学目标(一)教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求通过找公因式,培养学生的观察能力.(三)情感与价值观要求在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.●教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.●教学难点让学生识别多项式的公因式.●教学方法独立思考——合作交流法.●教具准备:多媒体●教学过程一、回顾与思考1、多项式的分解因式的概念:把一个多项式__________________的形式,叫做把这个多项式分解因式。

2、下面由左到右的变形,哪些是分解因式(1)(a+3)(a–3) =a2-9 (2)m2-4=(m+2)(m-2)(3) a2-b2+1=(a+b)(a-b)+1(4)10x2-5x=5x(2x-1)二、新知引入1、下列各多项式有没有共同的因式?(1)a c+ b c (2)3 x2 +x(3)30 m b2 + 5n b (4)3x+6(5)a2 b–2a b2 + ab (6)( a–3 )–b ( a–3)导出公因式:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式。

2、《练一练》说出下列各式的公因式:(1)b2 +n b (2)7x2-21x m(3)8 a 3 b2–12ab 3+ab (4)7x 3y2–42x2y 3(5)2(x-y)2+(x–y) (6)2(x-y)2+6(x–y)3、怎样确定多项式的公因式?系数:公因式的系数是多项式各项系数的最大公约数;字母:字母取多项式各项中都含有的相同的字母;指数:相同字母的指数取各项中最小的一个,即字母最低次幂;注:多项式各项的公因式可以是单项式,也可以是多项式。

八下 2.2.2提取公因式法 教学设计(于海峰)

八下 2.2.2提取公因式法 教学设计(于海峰)

第二章 分解因式§2.2.2提公因式法本节知识点:1、 能观察出公因式是多项式的情况,并能合理地进行分解因式知识点1公因式公因式的定义:多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

如(a+b )就是多项式(a+b)d+(a+b)c 各项的公因式。

笔记:公因式是多项式中每一项都含有的公共因式,可以是数字、也可以是字母,也可以是多项式。

[例题1] 多项式32)(6)(2y x y x +++中各项的公因式是什么?[针对性训练1] 写出下列多项式各项的公因式.(1)a (x -5)+2b (x -5) ( )(2) 6(m -n )3-12(n -m )2. ( )(3) 9(p +q )2-12(q +p ) ( )(4)5(m -2)+9(2-m ) ( )知识点1提公因式法[例题2 ]把a (x -3)+2b (x -3)分解因式.分析:这个多项式整体而言可分为两大项,即a (x -3)与2b (x -3),每项中都含有(x -3),因此可以把(x -3)作为公因式提出来.[针对性训练2] 把下列各式分解因式:(1)a (x -y )+b (y -x ); (2)6(m -n )3-12(n -m )2.分析:虽然a (x -y )与b (y -x )看上去没有公因式,但仔细观察可以看出(x -y )与(y -x )是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y -x =-(x -y ).(m -n )3与(n -m )2也是如此.[针对性训练3] 请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=__________(a-2); (2)y-x=__________(x-y);(3)b+a=__________(a+b); (4)(b-a)2=__________(a-b)2; (5)-m-n=__________-(m+n)(6)-s2+t2=__________(s2-t2).[针对性训练4]把下列各式分解因式(1)x(a+b)+y(a+b)(2)3a(x-y)-(x-y)(3)6(p+q)2-12(q+p)(4)a(m-2)+b(2-m)(5)2(y-x)2+3(x-y)(6)mn(m-n)-m(n-m)2[针对性训练5]把下列各式分解因式(1)5(x-y)3+10(y-x)2 (2)(b-a)2+a(a-b)+b(b-a)(3)m(a-b)-n(b-a)(4)m(m-n)(p-q)-n(n-m)(p-q)[活动与探究]把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)定系数 2)定字母 3)定指数
3、提公因式法分解因式步骤:
第一步,找出公因式;
第二步,提公因式( 把多项式化为两个因式的乘积
4、用提公因式法分解因式应注意的问题: (1)公因式要提尽; (2)小心漏掉 (3)多项式的首项取正号
课堂操练
一、填空

(1) 5x-5y+5z =( (2) 7x2-21x= ( (3) 2m2n-6mn2= ( (4) 24x3-12x2+28x= (
3( x 2) (提取公因式)
(2)
7 x 2 21x 7 x x 7 x 3 (找公因式) 7 x( x 3) (提取公因式)
(3)
(提取公因式) 8a 3b 2 12ab3c ab ab 8a 2b ab 12b 2c ab 1 ab(8a 2b 12b 2c 1) (找公因式)
各项的公因式是
尝试,把上式分解因式为:
ax+2bx-mx=x(a+2b-m)
如果一个多项式的各项含有公因式,那么 就可以把这个公因式提出来,从而将多项式 化成两个因式乘积的形式,这种分解因式的 方法叫做提公因式法。
寻找过关武器
小组探究过关武器:
(1)确定下3; b c 3x 2
探究与交流

试一试
(1)ab+ac = a(b+c)
填一填
(1)a(b+c) = ab+ac
(2)m(a+b+c)= ma+mb+mc
(3)3(a-b)= 3a-3b (4)ab(c+d)= abc-abd
(2)ma+mb+mc = m(a+b+c)
(3)3a-3b= 3(a-b) (4)abc-abd= ab(c+d)
合作与探究

把一个多项式化为几个整式的乘 积的形式叫因式分解. 因式分解的结果必定是乘积的形式. 因式分解与整式乘法互为逆运算 因式分解方法:1、找公因式 2、提公因式
ma mb m a b
公因式
多项式中各项都含有的相同因式,叫 做这个多项式各项的公因式。
例如:
ax 2bx mx
2)3 x +9xy
3) a2 b – 2a b2 + ab
4) 4xy2-6xy+8x3y
ab
2xy
(2)多项式中的公因式是如何确定的? (交流探索)
过关秘密武器:
正确找出多项式各项公因式的关键是:
公因式的系数是多项式各项系数的 定系数: 最大公约数。 字母取多项式各项中都含有的相同 定字母: 的字母。 相同字母的指数取各项中最小的 定指数: 一个,即字母最低次幂
当多项式第一项系 数是负数,通常先 提出“-”号,使 括号内第一项系数 变为正数,注意括 号内各项都要变号。
2.把下列各多项式因式分解
1)-4a3b3+6a2b-2ab
2)-9a2b3-12ab4+15ab5 3)-4x3y+2x2y2+xy3
4 ) -x4y2-2x2y-xy
把下列多项式分解因式: (1)12x2y+18xy2; (2)-x2+xy-xz; (3)2x3+6x2+2x
2
9ab 3a 3b
分两步 第一步,找出公因式; 第二步,提取公因式 , (即将多项式化为两个因式的 乘积)
例1. 将下列各式分解因式:
(2) 7 x 2 21x 3x 6 3 2 3 (3) 8a b 12ab c ab (4) 24 x 3 12 x 2 28 x (1) 解: 3x 6 3x 3 2(找公因式:把各项写成公因式与一个单项式 (1) 的乘积的形式。)
(4)
24 x3 12 x 2 28x (24 x3 12 x 2 28x) (先提出“—”号) (4 x 6 x 2 4 x 3x 4 x 7) 4 x(6 x 2 3x 7)
3x 6 3( x 2)
7 x 2 21x 7 x( x 3) 8a 3b 2 12ab3c ab ab(8a 2b 12b 2c 1) 24 x 3 12 x 2 28 x 4 x(6 x 2 3x 7)
练习
1. 因式分解
1)3a2-9ab 2)3x+6y 3)24xm2-16xm3 4)3x3-9x2+3x
思考:把 -24x3 –12x2 +28x 分解因式.
(2)把 -24x3 –12x2 +28x 分解因式. 2 3 解:原式= ( 24x 12 x 28x ) 2 ( 4 x 6x 4 x 3x 4 x 7) = 4 x( 6x 2 3x 7)
) ) )


把下列各式分解因式
(1)-am2-an (2)x4y2-4x2y-xy (3)8a3b2-12ab3c+abc (4) a2b-2ab2+ab
思考

把下列各式分解因式
(1)x(x+y)-y(x+y) (2)am+an+bm+bn
1、分解因式计算(-2)101+(-2)100
2、某建筑工地需绕制半径分别为0.24米, 0.37米,0.39米的三个钢筋环,问需钢筋多长? 3、已知a+b=5,ab=3,求a2b+ab2的值.
(1) 用提公因式法分解因式后,括号里的多项式中有没有公因式? ( 不能再有公因式 )
(2) 用提公因式法分解因式后,括号里多项式的项数与原多项式的项数相 比,有没有什么变化?
( 项数相等,常利用这一点检验提公因式时是否出现“漏项”的错 误) (3) 以上4个式子从左向右的变形过程是提公因式分解因式 , 那从右向左的 变形过程是 单项式乘多项式 ,所以它们之间的关系是 互逆的 ; 因式的结果是否正确,我们可以采用什么方法呢? ( 利用单项式乘多项式的法则乘回去,进行验证 )
例: 找 3 x
2
– 6 xy 的公因式。
定系数
3
定字母
x
1 定指数
所以,公因式是3 x 。 思考:如何确定各项提公因式后剩余的因式?
用公因式去除这个多项式,所得的商作为另一个因式
例1
(1)把 3a2-9ab分解因式.
解:原式 =3a•a-3a•3b
=3a(a-3b)
温馨提示
3a 3a a
现有甲、乙、丙三位同学各做一题,他们的解法如下: 甲同学: 乙同学: 丙同学:
解:12x2y+18xy2 解:-x2+xy-xz 解:2x3+6x2+2x =-x(x+y-z) =3xy(4x+6y) =2x(x2+3x) 你认为他们的解法正确吗?试说明理由。
小结与反思
1、什么叫因式分解?
2、确定公因式的方法:
相关文档
最新文档