第1部分 专题二 第2讲 专题限时集训(七)

合集下载

高考生物二轮复习限时集训:第2讲 细胞的结构和功能(解析版)

高考生物二轮复习限时集训:第2讲 细胞的结构和功能(解析版)

高考生物二轮复习限时集训第2讲细胞的结构和功能、物质出入细胞的方式1.相邻动物细胞膜上的通道蛋白彼此对齐可形成细胞间信息交流的通道,下列信息交流方式与之最为相似的是( A )A.植物细胞间的胞间连丝B.动物神经元之间的突触C.精子与卵细胞的识别D.T细胞对B细胞的作用[解析] 结合题意可知,“相邻动物细胞膜上的通道蛋白彼此对齐可形成细胞间信息交流的通道”,本质是相邻两个细胞之间形成通道,携带信息的物质通过通道从一个细胞进入另一个细胞,与该方式相似的是高等植物细胞间的胞间连丝相互连接,形成通道,交流信息,A正确;动物神经元之间的突触是通过神经递质发挥作用传递信息的,与题意不符,B错误;精子与卵细胞的识别是相邻细胞通过直接接触交流信息,与题意不符,C错误;T细胞对B细胞的作用是通过T细胞分泌的淋巴因子发挥的,与题意不符,D错误。

2.下列有关生物膜的叙述,错误的是( B )A.各种生物膜的化学组成和结构相似B.线粒体内膜上分布着催化丙酮酸分解的酶C.生物膜的选择透过性与载体蛋白的种类密切相关D.叶绿体类囊体膜上分布着催化NADPH合成的酶[解析] 各种生物膜的化学组成和结构相似,A正确;丙酮酸分解发生在线粒体基质,故催化丙酮酸分解的酶分布在线粒体基质中,B错误;载体蛋白具有特异性,生物膜的选择透过性与载体蛋白的种类密切相关,C正确;叶绿体中,NADPH的生成发生在光反应阶段,场所是类囊体膜,故叶绿体类囊体膜上分布着催化NADPH合成的酶,D正确。

3.下列有关人体线粒体与细胞核的叙述,错误的是( B )A.都具有双层膜结构,都含有DNA、RNA和蛋白质B.都能进行遗传物质的复制、转录和翻译C.经过染色等处理后,都能在光学显微镜下观察到D.有些细胞既没有线粒体,也没有细胞核[解析] 线粒体和细胞核均为具有双层膜的细胞结构,都含有DNA和RNA,且都含有蛋白质(如细胞核中含有主要由DNA和蛋白质组成的染色体、线粒体中含有多种化学本质为蛋白质的酶),A正确;细胞核中不进行翻译过程,翻译的场所是细胞质中的核糖体,B错误;线粒体经健那绿染色,细胞核中的DNA经甲基绿等染色后,都能在光学显微镜下观察到,C正确;有些细胞既没有线粒体,也没有细胞核,如哺乳动物成熟的红细胞,D正确。

专题02 数列-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题02 数列-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题02数列题型简介数列一般作为全国卷第17题或第18题或者是19题,主要考查数列对应的求和运算以及相应的性质考察题型一般为:1错位相减求和2裂项相消求和3(并项)分组求和4数列插项问题5不良结构问题6数列与其他知识点交叉问题;在新高考改革情况下,对于数列的思辨能力有进一步的加强,务必要重视典例在线题型一:数列错位错位相减求和1.已知{}n a 为首项112a =的等比数列,且n a ,12n a +,24n a +成等差数列;又{}n b 为首项11b =的单调递增的等差数列,{}n b 的前n 项和为n S ,且1S ,2S,4S 成等比数列.(1)分别求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求证:3n T <.变式训练1.若等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,并且0n b >,11334223,1,19,2a b b S a b a ==+=-=.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T ;(3)若()11N *·n n n c n a a +=∈,求数列{}n c 的前n 项和nM 题型二:裂项相消求和1已知数列{}n a 的前n 项的积记为n T ,且满足112n n na T a -=.(1)证明:数列{}n T 为等差数列;(2)设()()111nnn n n b T T +-+=,求数列{}nb 的前n 项和nS.1.已知正项数列{}n a 的前n 项和为n S,且1n a =+.(1)证明:{}n a 是等差数列.(2)设数列1n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若满足不等式n T m<的正整数n 的个数为3,求m 的取值范围.题型三:(并项)分组求和1.设{}n a 是首项为1的等比数列,且满足123,3,9a a a 成等差数列:数列{}n b 各项均为正数,n S 为其前n 项和,且满足()21n n n S b b =+,则(1)求数列{}n a 和{}n b 的通项公式;(2)记n T 为数列{}n n a b 的前n 项的和,证明:121412318n n n T --+≤⋅;(3)任意()()254,N ,,n n n n nb b a n nc a n +⎧--∈=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项的和.变式训练1.已知数列{}n a 满足11a =,11,2,n n na n a a n ++⎧=⎨⎩为奇数为偶数.(1)记2n n b a =,写出1b ,2b ,3b ,4b ,并猜想数列{}n b 的通项公式;(2)证明(1)中你的猜想;(3)若数列{}n a 的前n 项和为n S ,求2n S .题型四:数列插项问题1.记数列{an }的前n 项和为Sn ,对任意正整数n ,有2Sn =nan ,且a 2=3.(1)求数列{an }的通项公式;(2)对所有正整数m ,若ak <2m <ak +1,则在ak 和ak +1两项中插入2m ,由此得到一个新数列{bn },求{bn }的前40项和.变式训练1.已知数列{}n a 的前n 项和为n S ,且()23n n S a n n *=-∈N .(1)求证:12n a ⎧⎫+⎨⎩⎭是等比数列;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和.题型五不良结构问题1.已知数列{}n a 是公差不为零的等差数列,11a =且2a ,5a ,14a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和为n S ,在①21n n S =-,*n ∈N ;②21n n S b =-,*n ∈N ;③121n n S S +=+,*n ∈N 这三个条件中任选一个,将序号补充在下面横线处,并根据题意解决问题.问题:若11b =,且______,求数列{}n n a b ⋅的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答给分.变式训练1.在①89a =,②520S =,③2913a a +=这三个条件中选择两个,补充在下面问题中,并进行解答已知等差数列{}n a 的前n 项和为n S ,*n ∈N ,___________,___________.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T ;(3)若存在n *∈N ,使得10n n T a λ+-≥成立,求实数λ的取值范围.注:如果选择多组条件分别解答,按第一个解答计分.题型六数列与其他知识点交叉问题1.为了让幼儿园大班的小朋友尝试以客体区分左手和右手,左肩和右肩,在游戏中提高细致观察和辨别能力,同时能大胆地表达自己的想法,体验与同伴游戏的快乐,某位教师设计了一个名为【肩手左右】的游戏,方案如下:游戏准备:选取甲、乙两位小朋友面朝同一方向并排坐下进行游戏.教师站在两位小朋友面前出示游戏卡片.游戏卡片为两张白色纸板,一张纸板正反两面都打印有相同的“左”字,另一张纸板正反两面打印有相同的“右”字.游戏进行:一轮游戏(一轮游戏包含多次游戏直至决出胜者)开始后,教师站在参加游戏的甲、乙两位小朋友面前出示游戏卡片并大声报出出示的卡片上的“左”或者“右”字.两位小朋友如果听到“左”的指令,或者看到教师出示写有“左”字的卡片就应当将左手放至右肩上并大声喊出“停!”.小朋友如果听到“右”的指令,或者看到教师出示写有“右”字的卡片就应当将右手放至左肩上并大声喊出“停!”.最先完成指令动作的小朋友喊出“停!”时,两位小朋友都应当停止动作,教师根据两位小朋友的动作完成情况进行评分,至此游戏完成一次.游戏评价:为了方便描述问题,约定:对于每次游戏,若甲小朋友正确完成了指令动作且乙小朋友未完成则甲得1分,乙得-1分;若乙小朋友正确完成了指令动作且甲小朋友未完成则甲得-1分,乙得1分;若甲,乙两位小朋友都正确完成或都未正确完成指令动作,则两位小朋友均得0分.当两位小朋友中的一位比另外一位小朋友的分数多8分时,就停止本轮游戏,并判定得分高的小朋友获胜.现假设“甲小朋友能正确完成一次游戏中的指令动作的概率为α,乙小朋友能正确完成一次游戏中的指令动作的概率为β”,一次游戏中甲小朋友的得分记为X .(1)求X 的分布列;(2)若甲小朋友、乙小朋友在一轮游戏开始时都赋予4分,()0,1,,8i p i =⋅⋅⋅表示“甲小朋友的当前累计得分为i 时,本轮游戏甲小朋友最终获胜”的概率,则00p =,81p =,11(1,2,,7)i i i i bp cp a i p p -+=++=⋅⋅⋅,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.6β=.(i )证明:{}1(0,1,2,,7)i i p p i +-=⋯为等比数列;(ii )根据4p 的值说明这种游戏方案是否能够充分验证“甲小朋友能正确完成一次游戏中的指令动作的概率为0.5,乙小朋友能正确完成一次游戏中的指令动作的率为0.6”的假设.变式训练1.已知函数()cos 2f x x =,()sin g x x =.(1)判断函数()2ππ4H x f x g x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的奇偶性,并说明理由;(2)设函数()()sin h x x ωϕ=+(0ω>,π02ϕ<<),若函数2πh x ⎛⎫+ ⎪⎝⎭和()πh x -都是奇函数,将满足条件的ω按从小到大的顺序组成一个数列{}n a ,求{}n a 的通项公式;(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,π)n 内恰有147个零点.模拟尝试一、解答题1.已知数列{}n a 的前n 项之积为()()1*22n n n S n -=∈N .(1)求数列{}n a 的通项公式;(2)设公差不为0的等差数列{}n b 中,11b =,___________,求数列{}n n a b +的前n 项和n T .请从①224b b =;②358b b +=这两个条件中选择一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别作答,则按照第一个解答计分.2.已知数列{}n a 的前n 项和为11131,3,31n n n n n S S a S ++-==-.(1)求23,S S 及{}n a 的通项公式;(2)若()()()()()()()32122311111111n n n n a a a a a a a a a a λ-+++≤------- 对任意的*2,N n n ≥∈恒成立,求λ的最小值.3.在数列{}n a 中,21716a =,*113,N 44n n a a n +=+∈.(1)证明:数列{}1n a -是等比数列;(2)令123n n n b a +=⋅+,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:1340n S <.4.已知正项等差数列{}n a 和正项等比数列{}n b ,n S 为数列{}n a 的前n 项和,且满足1325162,12,4,a S b b a ====.(1)分别求数列{}n a 和{}n b 的通项公式;(2)将数列{}n a 中与数列{}n b 相同的项剔除后,按从小到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n T ,求100T .5.已知{}n a 为首项112a =的等比数列,且n a ,12n a +,24n a +成等差数列;又{}n b 为首项11b =的单调递增的等差数列,{}n b 的前n 项和为n S ,且1S ,2S,4S 成等比数列.(1)分别求数列{}n a ,{}n b 的通项公式;(2)令n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求证:3n T <.6.设数列{}n a 的前n 项之积为n T ,且满足()*21N n n T a n =-∈.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记22212n n S T T T =++⋅⋅⋅+,证明:14n S <.7.设{}n a 是首项为1的等比数列,且满足123,3,9a a a 成等差数列:数列{}n b 各项均为正数,n S 为其前n 项和,且满足()21n n n S b b =+,则(1)求数列{}n a 和{}n b 的通项公式;(2)记n T 为数列{}n n a b 的前n 项的和,证明:121412318n n n T --+≤⋅;(3)任意()()254,N ,,n n n n nb b a n nc a n +⎧--∈=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项的和.真题再练一、解答题1.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.2.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .3.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}nb 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.4.(2022·北京·统考高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.5.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.6.(2022·浙江·统考高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.7.(2021·全国·统考高考真题)已知数列{}n a 满足11a =,11,,2,.nn n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.8.(2020·山东·统考高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .9.(2020·海南·高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.。

高考数学二轮复习 第1部分 重点强化专题 专题3 概率与统计 专题限时集训7 回归分析、独立性检验

高考数学二轮复习 第1部分 重点强化专题 专题3 概率与统计 专题限时集训7 回归分析、独立性检验

专题限时集训(七) 回归分析、独立性检验(对应学生用书第91页)(限时:40分钟)1.(2017·某某一模)下列说法错误的是( )【导学号:07804050】A .回归直线过样本点的中心(x ,y )B .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .对分类变量X 与Y ,随机变量K 2的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小D .在回归直线方程y ^=0.2x +0.8中,当解释变量x 每增加1个单位时,预报变量y ^就增加0.2个单位C [根据相关定义知选项A ,B ,D 均正确;选项C 中,对分类变量X 与Y ,随机变量K 2的观测值k 越大,对判断“X 与Y 有关系”的把握程度越大,故C 错误.选C.]2.(2017·某某名校联考)利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定“X 和Y 有关系”的可信度.如果k >3.841,那么有把握认为“X 和Y 有关系”的百分比为C .99.5%D .95%D [由图表中数据可得,当k >3.841时,有0.05的几率说明这两个变量之间的关系是不可信的,即有1-0.05=0.95的几率,也就是有95%的把握认为变量之间有关系,故选D.]3.(2017·某某七市联考)广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费x 和销售额y 进行统计,得到统计数据如下表(单位:万元):广告费x 2 3 4 5 6 销售额y2941505971由上表可得回归方程为y ^=10.2x +a ^,据此模型,预测广告费为10万元时销售额约为( )【导学号:07804051】A .101.2万元B .108.8万元C .111.2万元D .118.2万元C [根据统计数据表,可得x =15×(2+3+4+5+6)=4,y =15×(29+41+50+59+71)=50,而回归直线y ^=10.2x +a ^经过样本点的中心(4,50),∴50=10.2×4+a ^,解得a ^=9.2,∴回归方程为y ^=10.2x +9.2,∴当x =10时,y ^=10.2×10+9.2=111.2,故选C.]4.(2017·某某二模)现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如图7­7所示的两个等高堆积条形图.图7­7根据这两幅图中的信息,下列哪个统计结论是不正确的( ) A .样本中的女生数量多于男生数量B .样本中有理科意愿的学生数量多于有文科意愿的学生数量C .样本中的男生偏爱理科D .样本中的女生偏爱文科D [由图2知,样本中的女生数量多于男生数量,样本中的男生、女生均偏爱理科;由图1知,样本中有理科意愿的学生数量多于有文科意愿的学生数量,故选D.] 5.(2016·某某模拟)对四组不同数据进行统计,分别获得以下散点图,如果对它们的相关系数进行比较,下列结论中正确的是( )图7­8(1)图7­8(2)图7­8(3)图7­8(4)A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3A [由给出的四组数据的散点图可以看出,图(1)和图(3)是正相关,相关系数大于0,图(2)和图(4)是负相关,相关系数小于0,图(1)和图(2)的点相对更加集中,所以相关性要强,所有r 1接近于1,r 2接近于-1,由此可得r 2<r 4<r 3<r 1.故选A.] 6.(2017·某某一模)设某中学的高中女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到回归直线方程为y ^=0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kgD .若该中学某高中女生身高为160 cm ,则可断定其体重必为50.29 kgD [因为回归直线方程y ^=0.85x -85.71中x 的系数为0.85>0,因此y 与x 具有正线性相关关系,所以选项A 正确;由最小二乘法及回归直线方程的求解可知回归直线过样本点的中心(x ,y ),所以选项B 正确;由于用最小二乘法得到的回归直线方程是估计值,而不是具体值,若该中学某高中女生身高增加 1 cm ,则其体重约增加0.85 kg ,所以选项C 正确,选项D 不正确.]7.在用线性回归方程研究四组数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是( )ABCDC[当残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明拟合精度越好,拟合效果越好,对比4个残差图,易知选项C的图对应的带状区域的宽度越窄.故选C.]8.(2017·某某南城一中、高安中学第九校3月联考)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线合计愿生452065不愿生132235合计5842100由K2=n ad-bc2a+b c+d a+c b+d,得K2=100×45×22-20×13265×35×58×42≈9.616.参照下表,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C.有99%以上的把握认为“生育意愿与城市级别有关”D.有99%以上的把握认为“生育意愿与城市级别无关”C[K2≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,故选C.]二、填空题9.(2017·某某二模)为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的实验数据,计算得回归直线方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.【导学号:07804052】6 [x =5=5,y =5=5,代入回归直线方程,得14+c5=0.85×5-0.25,解得c =6.]10.(2017·某某百校联盟二模)已知x 、y 的取值为:从散点图可知y 与x 呈线性相关关系,且回归直线方程为y =1.2x +a ,则当x =20时,y 的取值为________.27.6 [由表格可知x =3,y =7.2,所以这组数据的样本点的中心是(3,7.2),根据样本点的中心在回归直线上,得7.2=a ^+1.2×3,得a ^=3.6,所以这组数据对应的回归直线方程是y ^=1.2x +3.6,将x =20代入,得y =1.2×20+3.6=27.6.]11.(2017·某某某某五中一模)某小卖部销售某品牌的饮料的零售价与销量间的关系统计如下:已知x ,y 的关系符合回归方程y =b x +a ,其中b =-20.若该品牌的饮料的进价为2元,为使利润最大,零售价应定为________元. 3.75 [x =3.5,y =40,∴a ^=40-(-20)×3.5=110, ∴回归直线方程为:y ^=-20x +110,利润L =(x -2)(-20x +110)=-20x 2+150x -220, ∴x =15040=3.75元时,利润最大,故答案为3.75.]12.(2017·某某三中二模)以模型y =c e kx(e 为自然对数的底)去拟合一组数据时,为了求出回归直线方程,设z =ln y ,其变换后得到线性回归方程为z =0.4x +2,则c =________. e 2[∵y =c e kx,∴两边取对数,可得ln y =ln(c e kx )=ln c +ln e kx=ln c +kx , 令z =ln y ,可得z =ln c +kx , ∵z =0.4x +2, ∴ln c =2, ∴c =e 2.] 三、解答题13.(2017·某某一模)为了调查某地区成年人血液的一项指标,现随机抽取了成年男性、女性各20人组成一个样本,对他们的这项血液指标进行了检测,得到了如图7­9所示的茎叶图.根据医学知识,我们认为此项指标大于40为偏高,反之即为正常.图7­9(1)依据上述样本数据研究此项血液指标与性别的关系,列出2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系? (2)以样本估计总体,视样本频率为概率,现从本地区随机抽取成年男性、女性各2人,求此项血液指标为正常的人数X 的分布列及数学期望. 附:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (K 2≥k 0)0.025 0.010 0.005 k 05.0246.6357.879正常 偏高 合计 男性 16 4 20 女性 12 8 20 合计281240K 2=n ad -bc 2a +bc +d a +cb +d =40×16×8-4×12220×20×28×12≈1.905<6.635,所以不能在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系. (2)由样本数据可知,男性正常的概率为45,女性正常的概率为35.此项血液指标为正常的人数X 的可能取值为0,1,2,3,4,P (X =0)=⎝⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫1-352=4625, P (X =1)=C 1245⎝⎛⎭⎪⎫1-45⎝⎛⎭⎪⎫1-352+⎝ ⎛⎭⎪⎫1-452C 1235·⎝ ⎛⎭⎪⎫1-35=44625, P (X =2)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫1-352+C 1245⎝ ⎛⎭⎪⎫1-45·C 1235·⎝ ⎛⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫352=169625, P (X =3)=C 1245⎝ ⎛⎭⎪⎫1-45⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫452C 1235·⎝⎛⎭⎪⎫1-35=264625, P (X =4)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫352=144625,所以X 的分布列为X 0 1 2 3 4 P462544625169625264625144625所以E (X )=0×625+1×625+2×625+3×625+4×625=2.8.14.(2017·某某三湘名校联盟三模)为了研究一种昆虫的产卵数y 和温度x 是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:y =C 1x 2+C 2与模型②:y =e C 3x +C 4作为产卵数y 和温度x 的回归方程来建立两个变量之间的关系.温度x /℃ 20 22 24 26 28 30 32 产卵数y /个6 10 21 24 64 113 322 t =x 2 400 484 576 676 784 900 1024 z =ln y1.792.303.043.184.164.735.77xtyz26692803.57错误! 错误! 错误! 错误!1157.540.430.32 0.00012其中t i =x 2i ,t =∑ni =1t i ,z i =ln y i ,z =∑ni =1z i ,附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=β^u +α^的斜率和截距的最小二乘估计分别为:β^=∑ni =1u i -uv i -v∑ni =1u i -u2,α^=v -β^u .图7­10(1)在答题卡中分别画出y 关于t 的散点图、z 关于x 的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).图7­11(2)根据表中数据,分别建立两个模型下y 关于x 的回归方程;并在两个模型下分别估计温度为30℃时的产卵数.(C 1,C 2,C 3,C 4与估计值均精确到小数点后两位)(参考数据:e 4.65≈104.58,e4.85≈127.74,e5.05≈156.02)(3)若模型①、②的相关指数计算得分分别为R 21=0.82,R 22=0.96,请根据相关指数判断哪个模型的拟合效果更好.【导学号:07804053】[解] (1)画出y 关于t 的散点图,如图1;z 关于x 的散点图,如图2.图1 图2根据散点图可判断模型②更适宜作为回归方程类型. (2)对于模型①:设t =x 2,则y =C 1x 2+C 2=C 1t +C 2,其中C ^1=∑7i =1t i -ty i -y∑7i =1t i -t2=0.43,C ^2=y -C ^1t =80-0.43×692=-217.56,所以y =0.43x 2-217.56,当x =30时,估计温度为y 1=0.43×302-217.56=169.44. 对于模型②:y =e C 3x +C 4⇒z =ln y =C 3x +C 4,word 其中C ^3=∑7i =1 z i -z x i -x∑7i =1x i -x2=0.32,C ^4=z -C ^3x =3.57-0.32×26=-4.75.所以y =e 0.32x -4.75,当x =30时,估计温度为y 2=e0.32×30-4.75=e 4.85≈127.74. (3)因为R 21<R 22,所以模型②的拟合效果更好.。

第1部分 专题二 第1讲 专题限时集训(五)

第1部分  专题二  第1讲  专题限时集训(五)

专题限时集训(五) (限时:45分钟)一、选择题(本题共8小题,每小题8分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得8分,选对但不全的得4分,有选错的得0分。

)1.火车在水平轨道上做匀加速直线运动,若阻力不变,则牵引力F 和瞬时功率P 的变化情况是( )A .F 不变,P 变大B .F 变小,P 不变C .F 变大,P 变大D .F 、P 都不变解析:选A 火车做匀加速直线运动,牵引力不变,速度逐渐增大,由公式P =F v ,知功率P 不断变大,A 正确。

2.如图1所示,在倾角θ=30°的光滑固定斜面上,放有两个质量分别为1 kg 和2 kg 的可视为质点的小球A 和B ,两球之间用一根长L =0.2 m 的轻杆相连,小球B 距水平面的高度h =0.1 m 。

斜面底端与水平面之间有一光滑短圆弧相连,两球从静止开始下滑到光滑地面上,g 取10 m/s 2。

轻杆的质量不计,则下列说法中正确的是( )图1A .下滑的整个过程中A 球机械能守恒B .下滑的整个过程中两球组成的系统机械能守恒C .两球在光滑水平面上运动时的速度大小为2 m/sD .系统下滑的整个过程中B 球机械能的增加量为13J解析:选B A 、B 下滑的整个过程中,杆的弹力对A 球做负功,A 球机械能减少,A 错误;A 、B 球组成的系统只有重力和系统内弹力做功,机械能守恒,B 正确;设两球在水平面上时速度为v ,已知m A =1 kg ,m B =2 kg ,对A 、B 球组成的系统由机械能守恒定律得m A g (h +L sin 30°)+m B gh =12(m A +m B )v 2,解得v =23 6 m/s ,C 错误;B 球机械能的增加量为ΔE =12m B v 2-m B gh =23J ,D 错误。

3.人通过挂在高处的定滑轮,用绳子拉起静止在地面上的重物,使它的高度上升h ,如图2所示,第一次拉力为F ,第二次拉力为2F ,则( )A .两次重物克服重力做的功相等B .两次上升到h 处时拉力的功率,第二次是第一次的2倍C .两次上升到h 处时的动能,第二次是第一次的2倍 图2D .两次上升到h 处时机械能增加量相等解析:选A 由于两次重物上升高度h 相同,所以两次克服重力做的功mgh 相等,A 正确;第二次拉力做功是第一次的2倍,但两次时间不等,由P =Wt 知,第二次拉力的功率不等于第一次的2倍,B 错误;由动能定理知,当拉力为F 时,Fh -mgh =E k1,当拉力为2F 时,2Fh -mgh =E k2,所以E k2=2E k1+mgh ,C 错误;由功能关系,除重力以外其他力所做功等于物体机械能的增量,所以两次上升到h 处时机械能增加量,第二次是第一次的2倍,D 错误。

高三数学(理科)二轮复习

高三数学(理科)二轮复习

高考数学第二轮复习计划一、指导思想高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。

第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。

强化高中数学主干知识的复习,形成良好知识网络。

整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。

第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.“二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》的理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.二、时间安排:1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。

2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。

3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。

三、怎样上好第二轮复习课的几点建议:(一).明确“主体”,突出重点。

第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究2009-2010湖南对口高考试题.第二轮复习的形式和内容1.形式及内容:分专题的形式,具体而言有以下八个专题。

2019-2020版高考化学二轮教师用书第1部分 专题1 第2讲 阿伏加德罗常数 Word版含答案

2019-2020版高考化学二轮教师用书第1部分 专题1 第2讲 阿伏加德罗常数 Word版含答案

第2讲 阿伏加德罗常数(对应学生用书第5页)■储知识——剖解重点难点备考·1.四个关键问题六大突破点阿伏加德罗常数应用的2. 求算N (微粒数)的基本思路:气体摩尔体积的适用条件1突破点 (1)角度:从V m =22.4 L·mol -1的适用条件和物质的状态突破。

(2)突破方法:一看气体是否处在“标准状况(0 ℃、101 kPa)”;二看标准状况下,物质是否为气态(如CCl 4、CHCl 3、CH 2Cl 2、H 2O 、溴、SO 3、己烷、HF 、苯、乙醇等在标准状况下均不为气态)。

与物质所处状况)或质量(物质的量 2突破点 (1)角度:设置与计算无关的一些干扰条件,给出非标准状况下气体的物质的量或质量,干扰正确判断。

(2)突破方法:排“干扰”,明确物质的量或质量与物质所处状况无关,物质的量或质量确定时,物质所含的粒子数与温度、压强等外界条件无关。

物质的组成与结构3突破点 (1)角度:从特殊物质的组成与结构特点突破。

(2)突破方法:①熟记特殊物质中所含微粒(分子、原子、电子、质子、中子等)的数目,常考查的特殊物质(如Ne 、D 2O 、18O 2、O 3、P 4、H 37Cl 、—OH 、OH -等)。

②记住最简式相同的物质,明确微粒数目特点(如NO 2和N 2O 4、乙烯和丙烯、O 2和O 3等)。

③记住物质中所含化学键的数目(如1 mol 硅中含Si —Si 键的数目为2N A,1 mol SiO 2中含Si —O 键的数目为4N A ,再如H 2O 2、C n H 2n +2中化学键的数目分别为3、3n +1等)。

④记住摩尔质量相同的物质(如N 2、CO 、C 2H 4等)。

电解质溶液中粒子数目4突破点 (1)角度:难电离、易水解的粒子的数目计算以及电解质组成、溶液体积等因素上突破。

(2)突破方法:细审题、抓“三看”:一看是否指明溶液的体积;二看是否有弱电解质或可水解的弱酸根离子(或弱碱阳离子),如1 L 0.1 mol·L -1的乙酸溶液和1 L 0.1 mol·L -1的乙酸钠溶液中含CH 3COO -的数目不相等且都小于0.1N A ;三看所给条件是否与电解质的组成有关,如pH =1的H 2SO 4溶液中c (H +)=0.1 mol·L -1(与电解质的组成无关),0.05 mol·L -1的Ba(OH)2溶液中c (OH -)=0.1 mol·L -1(与电解质的组成有关),不要忽略溶剂水中的H 、O 原子数目。

数学二轮复习专题限时集训2统计与统计案例随机事件的概率古典概型几何概型含解析文

数学二轮复习专题限时集训2统计与统计案例随机事件的概率古典概型几何概型含解析文

专题限时集训(二) 统计与统计案例随机事件的概率、古典概型、几何概型1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.]2.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0。

5 B.0。

6 C.0.7 D.0。

8C[由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.]3.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0。

4 C.0.6 D.0.7B[设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0。

15=0。

4。

故选B.]4.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为() A.错误!B.错误!C.错误!D.错误!B[如图,若该行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为错误!=错误!,故选B.]5.(2020·全国卷Ⅲ)设一组样本数据x1,x2,…,x n的方差为0。

2020高考语文二轮复习:专题限时集训7 古代诗歌鉴赏(二)含答案

2020高考语文二轮复习:专题限时集训7 古代诗歌鉴赏(二)含答案

专题限时集训(七) 古代诗歌鉴赏(二)(限时70分钟)1.(2019·长郡中学三模)阅读下面这首汉诗,完成(1)~(2)题。

(9分)秋风辞刘彻[注]秋风起兮白云飞,草木黄落兮雁南归。

兰有秀兮菊有芳,怀佳人兮不能忘。

泛楼船兮济汾河,横中流兮扬素波。

箫鼓鸣兮发櫂歌,欢乐极兮哀情多。

少壮几时兮奈老何!【注】刘彻:汉武帝。

公元113年,汉武帝刘彻带领群臣到河东郡汾阳县祭祀后土,途闻南征将士喜报,进而“顾视帝京,欣然中流,与群臣宴饮,自作《秋风辞》”。

(1)下面对诗歌的赏析,错误的一项是(3分)()A.开篇二句以秋日最具特色的四个意象点明了季节时令特点,色彩斑斓,动静结合,勾勒出了一个清旷幽远、萧瑟凄凉的意境,奠定了全诗的情感基调。

B.五、六、七句铺写诗人与群臣共同宴游的场景,“泛、济、横、扬、鸣、发”等动作一一排列开来,将“欣然中流”的热烈场面彩绘得声情并茂。

C.最后收笔两句情感陡转,发出“变徵之音”,乐极生悲,直接抒发了一代帝王对生命易逝盛年难再的悲慨。

D.起句“秋风起兮白云飞”,字面义上近似于高祖刘邦的《大风歌》中“大风起兮云飞扬”,但综合全诗来看,两者境界、情韵不一样,后者较前者更苍莽雄放。

A[A项,“动静结合”错,皆为动景;“凄凉”一词,氛围用词稍重。

](2)清代诗人沈德潜读此诗时批“《离骚》遗响”,请结合此评价简要赏析“兰有秀兮菊有芳,怀佳人兮不能忘”两句。

(6分)[答案]①此两句在手法上沿袭了《离骚》常用的比兴手法,由兰之秀及菊之香起兴,并以兰菊喻佳人,由物及人,引发出对“佳人”的无尽思念。

②正如屈原以美人比喻自身理想美政一样,一代帝王汉武帝在此处不仅是对佳人的怀念,也可以是对宏伟大业的追求或是对贤才英士的渴望与思慕。

③形式上诗人还沿用了楚辞体的常有调式,如同《离骚》一样,以“兮”为间顿,节奏感强。

(每点2分)2.(2019·郑州二模)阅读下面这首唐诗,完成(1)~(2)题。

专题02破解力与平衡-【小题小卷】冲刺2023年高考物理小题限时集训(原卷版)

专题02破解力与平衡-【小题小卷】冲刺2023年高考物理小题限时集训(原卷版)

02 破解力与平衡难度:★★★☆☆建议用时:30分钟正确率:/15 1.(2023·福建泉州·校考二模)(多选)两个物体相互接触,关于接触处的弹力和摩擦力,以下说法正确的是()A.一定有弹力,但不一定有摩擦力B.如果有弹力,不一定有摩擦力C.如果有摩擦力,则一定有弹力D.如果有摩擦力,则其大小一定与弹力成正比2.(2023·辽宁沈阳·统考一模)(多选)中国的杂技艺术种类繁多、底蕴深厚。

如图所示,男、女演员均处于静止状态。

下列说法正确的是()A.男演员对女演员的作用力竖直向上B.女演员对男演员的作用力斜向左下方C.男演员对地面有向右的摩擦力作用D.男演员对地面的作用力等于两人的总重力3.(2023·福建·一模)如图所示为某粮库输送小麦的示意图。

麦粒离开传送带受重力作用在竖直方向上掉落后,形成圆锥状的麦堆。

若麦堆底面半径为r,麦粒之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,不考虑麦粒的滚动。

则形成的麦堆的最大高度为()B.rμA.rμC.√1−μ2r D.√1+μ2r4.(2023·湖南长沙模拟)如图所示,水平地面上有重力均为20N的A、B两木块,它们之间夹有被压缩了2.0cm的轻质弹簧,已知弹簧的劲度系数k=200N/m,两木块与水平地面间的动摩擦因数均为0.25,系统处于静止状态。

现用F=9N的水平力推木块B,假设最大静摩擦力等于滑动摩擦力,则力F作用后()A.弹簧的压缩量变为2.5cm B.木块B所受静摩擦力为0C.木块A所受静摩擦力大小为5N D.木块B所受静摩擦力大小为5N5.(2023·山东日照·统考一模)(多选)如图所示,质量为M 的三角形斜劈B 放置在水平地面上,质量为m 的木块A 放在三角形斜劈B 上,现用大小相等、方向相反的水平力F 分别推A 和B ,木块A 和斜劈B 均静止不动,重力加速度为g 。

高考生物二轮复习专题限时集训(新课标):专题二 复杂精巧的细胞结构 Word版含解析

高考生物二轮复习专题限时集训(新课标):专题二 复杂精巧的细胞结构 Word版含解析

专题限时集训(二)[专题二复杂精巧的细胞结构](时间:40分钟)1.下列生理过程能在生物膜上发生的是( )A.肽链的生物合成B.抗原—抗体的正常结合C.遗传信息的转录D.细胞中生成还原氢2.下列细胞结构中不能合成ATP的是( )A.线粒体的内膜B.叶绿体中进行光反应的膜结构C.内质网的膜D.蓝细菌中进行光反应的膜结构3.下列有关细胞器结构与功能的叙述,正确的是( ) A.液泡是唯一含有色素的细胞器B.内质网是蛋白质加工、分类和包装的“车间”C.线粒体与叶绿体都有两层膜,都与能量转化有关D.核糖体都附着在内质网上4.下列用光学显微镜可观察到的现象是( )A.线粒体内膜折叠成嵴B.有丝分裂中期染色体形态C.经甲基绿染色后绿色的DNA分子D.噬菌体侵入大肠杆菌细胞5.图1-2-1为细胞核结构模式图,下列有关叙述正确的是( )图1-2-1A.①是遗传物质的载体,能被碱性染料染色B.②是产生核糖体、mRNA和蛋白质的场所C.一般而言,衰老的细胞中结构③的数量较多D.DNA和RNA从细胞核进入细胞质要消耗ATP6.胰岛素是由胰岛素原在高尔基体内转变而成。

胰岛素原有86个氨基酸,1条肽链;胰岛素有51个氨基酸,2条肽链。

由此推知高尔基体( )A.加快了氨基酸的脱水缩合B.促进了限制酶的合成C.参与了肽链的剪切加工D.能独立合成蛋白质7.人体的肌肉细胞与神经细胞明显不同,是因为( )A.它们的DNA组成不同B.它们的核糖体结构不同C.它们使用不同的遗传密码D.它们表达不同的基因8.黄曲霉毒素是毒性极强的致癌物质,常藏身于霉变的花生和玉米等种子中。

研究发现,黄曲霉毒素能引起细胞中的核糖体不断从内质网上脱落下来,从而影响细胞的正常功能。

下列相关的叙述中不正确的是( )A.黄曲霉毒素会影响人体的血糖调节功能B.真核细胞中,核糖体的装配与核仁有关C.蛋白质在游离于细胞质中的核糖体上合成,在附着于内质网的核糖体上加工D.一些抗生素通过抑制细菌核糖体来治疗疾病,说明人和细菌的核糖体结构有区别9.生物膜系统是真核细胞的重要结构,细胞许多新陈代谢活动都离不开它,下列有关叙述正确的是( )A.细胞膜、内质网和高尔基体通过“囊泡”这种细胞器进行直接联系B.不同生物膜中分子的种类、数量和排列顺序大体相同C.生物膜系统使细胞内多种化学反应既相互联系又彼此独立、互不干扰D.细胞膜是由磷脂分子、蛋白质分子和糖类等物质组成的双层膜结构10.根据图1-2-2分析神经细胞,下列叙述错误的是( )图1-2-2A.若此图为突触前膜,则其兴奋时B面电位为正B.静息电位的形成可能与膜上的②⑤有关C.若此图为突触后膜,则突触间隙位于图示膜的A面D.若将神经细胞膜的磷脂层平展在空气—水界面上,则④与水面接触11.图1-2-3表示动物细胞有关细胞代谢与细胞结构关系的模式图,下列叙述不正确的是( )图1-2-3A.若①为胰岛素,则会与②上的受体结合向细胞传递信息B.若①为胰岛素,则会促进该细胞摄取、利用葡萄糖C.若④为胰岛素,则③过程需要依赖②结构的流动性D.若④为胰岛素,则其形成过程需要髙尔基体和溶酶体的参与12.下列有关细胞核的叙述,正确的是( )A.细胞核是活细胞进行细胞代谢的主要场所B.衰老细胞的体积变小,但是细胞核体积增大,核膜内折,染色质收缩C.原核细胞没有具核膜的细胞核,真核细胞只有一个具核膜的细胞核D.有丝分裂间期,细胞核中的染色体复制,数目加倍13.(双选)下面是以洋葱为材料的实验,说法合理的是( ) A.洋葱分生区细胞经甲基绿吡罗红染色,可观察到红色的细胞质B.紫色洋葱鳞片叶细胞在发生质壁分离时,可观察到液泡紫色逐渐加深C.观察洋葱鳞片叶内表皮细胞中的线粒体时,需对材料进行解离和固定D.洋葱根尖成熟区细胞,可做低温诱导染色体加倍的实验14.(双选)下表列出某动物两种细胞的生物膜结构的相对含量(%),据此可推测( )A.细胞乙的线粒体氧化活性强度小于细胞甲B.细胞乙合成的纤维素多于细胞甲C.细胞乙合成的分泌蛋白多于细胞甲D.生物膜结构的含量不同取决于基因的含量不同15.(双选)图1-2-4为大学生李杨在电镜下观察某活体生物材料切片后绘制的该切片组织细胞图。

2015届高三地理(全国卷地区)二轮复习限时集训15份

2015届高三地理(全国卷地区)二轮复习限时集训15份

2015届高三地理(全国卷地区)二轮复习限时集训专题限时集训(一)[专题一地球运动规律] (2)专题限时集训(二)[专题二大气运动规律] (6)专题限时集训(三)[专题三水体运动规律] (12)专题限时集训(四)[专题四地质作用、地质构造与地形地貌] (17)专题限时集训(五)[专题五地理环境的整体性与差异性] (23)专题限时集训(六)[专题六人口与城市] (34)专题限时集训(七)[专题七产业活动与地域联系] (40)专题限时集训(八)[专题八人文地理事象区位分析] (45)专题限时集训(九)[专题九区域分析与地理信息技术] (55)专题限时集训(十)[专题十区域地理] (60)专题限时集训(十一)[专题十一环境、资源与区域可持续发展] (65)专题限时集训(十二)[专题十二等值线的判读与应用] (70)专题限时集训(十三)[专题十三地理图表分析] (76)专题限时集训(十四)[专题十四地理事象的季节变化] (81)专题限时集训(十五)[专题十五地理信息的提取和应用] (87)阶段限时集训(十六)[地理学科技能] (91)专题限时集训(一)[专题一地球运动规律](时间:45分钟)一、选择题图Z1-1是美国宇航局2012年7月4日拍摄到的太阳活动剧烈爆发时的图像,大量速度达800千米/秒的带电粒子被喷射到太空中。

读图回答1~2题。

图Z1-11.图示太阳活动发生的太阳大气层是()A.光球层B.色球层C.日冕层D.大气层之外2.图示太阳活动()A.没有活动周期,但可能持续较长的一段时间B.地球是太阳系中最先受其影响的行星C.爆发后8分钟左右引起两极极光产生D.高峰年极端天气现象的频率增加图Z1-2为某日地球半球示意图,a为晨线。

读图回答3~5 题。

图Z1-23.此日,我国的节气是()A.春分日B.夏至日C.秋分日D.冬至日4.此时,下列即将日出的城市是()A.兰州B.北京C.上海D.广州5.图中表示地球绕日公转方向箭头是()A.①B.②C.③D.④6.2013年6月20日10时04分至10时55分(北京时间),“神州十号”航天员在“天宫一号”为全国青少年进行太空授课。

全品高考数学考前专题限时训练含答案作业手册

全品高考数学考前专题限时训练含答案作业手册

全品高考数学考前专题限时训练含答案(基础+提升)作业手册(共75页)-本页仅作为预览文档封面,使用时请删除本页-专题限时集训(一)[第1讲 集合与常用逻辑用语](时间:5分钟+30分钟)基础演练1.已知全集U ={x ∈Z |1≤x ≤5},集合A ={1,2,3},∁U B ={1,2},则A ∩B =( )A .{1,2}B .{1,3}C .{3}D .{1,2,3}2.命题“对任意x ∈R ,都有x 3>x 2”的否定是( )A .存在x 0∈R ,使得x 30>x 2B .不存在x 0∈R ,使得x 30>x 2C .存在x 0∈R ,使得x 30≤x 2D .对任意x ∈R ,都有x 3≤x 23.若p :(x -3)(x -4)=0,q :x -3=0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知集合M ={x |x ≥x 2},N ={y |y =2x,x ∈R },则M ∩N =( ) A .(0,1) B .[0,1] C .[0,1) D .(0,1]5.已知集合A ={0,1,2,3},B ={x |x 2-x =0},则集合A ∩B 的子集个数是________.提升训练6.已知全集I ={1,2,3,4,5,6},集合M ={3,4,5},N ={1,2,3,4},则图1­1中阴影部分表示的集合为( )图1­1A .{1,2}B .{1,2,6}C .{1,2,3,4,5}D .{1,2,3,4,6}7.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -1x =0,x ∈R ,则满足A ∪B ={-1,0,1}的集合B 的个数是( )A .2B .3C .4D .98.命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是( )A .若a ,b ,c 成等比数列,则b 2≠acB .若a ,b ,c 不成等比数列,则b 2≠acC .若b 2=ac ,则a ,b ,c 成等比数列D .若b 2≠ac ,则a ,b ,c 不成等比数列9.已知集合M ={y |y =lg(x 2+1)},N ={x |4x<4},则M ∩N 等于( ) A .[0,+∞) B .[0,1) C .(1,+∞) D .(0,1]10.已知集合M ={x |x 2-3x =0},集合N ={x |x =2n -1,n ∈Z },则M ∩N =( ) A .{3} B .{0} C .{0,3} D .{-3}11.若a ,b 为实数,则“ab <1”是“0<a <1b”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 12.给出如下四个判断: ①∃x 0∈R ,e x 0≤0;②∀x ∈R +,2x >x 2;③设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -1x +1<0,B ={x |x 2-2x +1-a 2<0,a ≥0},则“a =1”是“A ∩B ≠∅”的必要不充分条件;④a ,b 为单位向量,其夹角为θ,若|a -b |>1,则π3<θ≤π.其中正确判断的个数是( ) A .1 B .2 C .3 D .413.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是________________________________________________________________________.14.若集合P ={0,1,2},Q =(x ,y )⎩⎪⎨⎪⎧x -y +1>0,x -y -2<0,x ,y ∈P ,则集合Q 中元素的个数是__________.15.命题“存在实数x ,使得不等式(m +1)x 2-mx +m -1≤0”是假命题,则实数m 的取值范围是________.专题限时集训(二)[第2讲 平面向量与复数](时间:5分钟+30分钟)基础演练1.复数5i1+2i的虚部是( )A .1B .-1C .iD .-i2.若复数z 满足(z -3)(2-i)=5(i 为虚数单位),则在复平面内z 对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.在△ABC 中,“AB →·BC →>0”是“△ABC 是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.向量a =(3,-4),向量|b|=2,若a·b =-5,则向量a 与b 的夹角为( ) A .π3 B .π6C .2π3D .3π45.已知平面向量a ,b ,若|a |=3,|a -b |=13,a ·b =6,则|b |=________,向量a ,b 夹角的大小为________.提升训练6.复数5i -2的共轭复数是( )A .-2+iB .2+iC .-2-iD .2-i7.在复平面内,复数z =(1+2i)2对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.已知复数z 1=(2-i)i ,复数z 2=a +3i(a ∈R ).若复数z 2=kz 1(k ∈R ),则a =( )A .32B .1C .2D .139.如果复数2-b i1+2i(b ∈R ,i 为虚数单位)的实部和虚部互为相反数,那么b 等于( )A . 2B .23C .-23D .210.已知△ABC 的三边长AC =3,BC =4,AB =5,P 为AB 边上任意一点,则CP →·(BA →-BC →)的最大值为( )A .8B .9C .12D .1511.已知向量a ·(a +2b )=0,|a |=|b |=1,且|c -a -2b|=1,则|c |的最大值为( )A .2B .4C .5+1D .3+112.已知a ,b ∈R ,i 是虚数单位.若(1+a i )(1-i )b +i=2-i ,则a +b i =________.13.在△ABC 中,AB =2,D 为BC 的中点.若AD →·BC →=-32,则AC =________.14.已知四边形ABCD 是边长为3的正方形,若DE →=2EC →,CF →=2FB →,则AE →·AF →的值为________.15.在平面直角坐标系xOy 中,已知点A 的坐标为(3,a ),a ∈R ,点P 满足OP →=λOA →,λ∈R ,|OA →|·|OP →|=72,则线段OP 在x 轴上的投影长度的最大值为________.专题限时集训(三)[第3讲 不等式与线性规划](时间:5分钟+30分钟)基础演练1.已知集合A ={x |0<x <2},B ={x |(x -1)(x +1)>0},则A ∩B = ( ) A .(0,1) B .(1,2)C .(-∞,-1)∪(0,+∞)D .(-∞,-1)∪(1,+∞)2.已知全集U =R ,集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -1x +1<0,N ={x |x 2-x <0},则集合M ,N 的关系用图示法可以表示为( )图3­13.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥0,2x -y -2≤0,则目标函数z =x -2y 的最大值为( )A .32 B .1 C .-12D .-24.若a <b <0,则下列不等式不成立的是( )A .1a -b >1aB .1a >1bC .|a |>|b |D .a 2>b 25.若x >0,y >0,则x +yx +y 的最小值为( )A . 2B .1C .22D .12提升训练6.已知集合A ={x |x 2-2x -3<0},集合B ={x |2x +1>1},则∁B A =( )A .(3,+∞)B .[3,+∞)C .(-∞,-1]∪[3,+∞)D .(-∞,-1)∪(3,+∞)7.已知集合A ={x |x 2-6x +5≤0},B ={y |y =2x+2},则A ∩B =( ) A .∅ B .[1,2) C .[1,5] D .(2,5]8.已知向量a =(m ,1-n ),b =(1,2),其中m >0,n >0.若a ∥b ,则1m +1n的最小值是( )A .2 2B .3+22C .4 2D .3+29.已知M (x ,y )是不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y +1≥0,2x +y -4≤0表示的平面区域内的动点,则(x +1)2+(y+1)2的最大值是( )A .10B .495C .13D .1310.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a 2+b 2=3c 2,则cos C 的最小值为( )A .12B .14C .32 D .2311.设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0,y ≤x ,x +2y -a ≤0,若目标函数z =3x +y 的最大值为6,则a =________.12.已知x ,y 均为正实数,且xy =x +y +3,则xy 的最小值为________.13.已知x ,y 满足⎩⎪⎨⎪⎧y -2≤0,x +3≥0,x -y -1≤0,则x +2y -6x -4的最大值是________.14.已知函数f (x )=x (x -a )(x -b )的导函数为f ′(x ),且f ′(0)=4,则a 2+2b 2的最小值为________.15.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为8,则ab 的最大值为________.专题限时集训(四)[第4讲 算法、推理证明、排列、组合与二项式定理](时间:5分钟+30分钟)基础演练1.给出下面类比推理的命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”,类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”,类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a ,b ∈R ,则a -b >0⇒a >b ”,类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”,类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比正确的为( ) A .①② B .①④ C .①②③ D .②③④2.二项式⎝ ⎛⎭⎪⎫2x +1x 展开式中的常数项是( )A .15B .60C .120D .2403.执行如图4­1所示的程序框图,其输出结果是( )A .-54B .12C .54D .-124.现有3位男生和3位女生排成一行,若要求任何两位女生和任何两位男生均不能相邻,且男生甲和女生乙必须相邻,则这样的排法总数是( )A .20B .40C .60D .805.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,….根据上述规律,第n 个等式为____________.提升训练6.阅读如图4­2所示的程序框图,若输入n 的值为1,则输出的S 的值为( ) A .176 B .160 C .145 D .1177.已知a n =3n +2,n ∈N *,如果执行如图4­3所示的程序框图,那么输出的S 等于( )A .B .37C .185 D8.阅读如图4­4所示的程序框图,则输出s 的值为( ) A .12 B .32C .- 3D .39.6个人站成一排,其中甲、乙必须站在两端,且丙、丁相邻,则不同站法的种数为( )A .12B .18C .24D .3610.⎝⎛⎭⎪⎪⎫3x -13x 的展开式中各项系数之和为A ,所有偶数项的二项式系数和为B .若A +B =96,则展开式中含有x 2的项的系数为 ( )A .-540B .-180C .540D .18011.对任意实数x ,都有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2=________. 12.航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,且最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为________.(用数字作答)13.观察下列等式: 121=1,12+221+2=53,12+22+321+2+3=73,12+22+32+421+2+3+4=93,则第n 个等式为__________________.14.阅读如图4­5所示的程序框图,若输入i =5,则输出的k 的值为________.图4­515.有n个球(n≥2,n∈N*),任意将它们分成两堆,求出两堆球数的乘积,再将其中一堆任意分成两堆,求出这两堆球数的乘积,如此下去,每次任意将其中一堆分成两堆,求出这两堆球数的乘积,直到不能分为止,记所有乘积之和为S n.例如,对于4个球有如下两种分法:(4)→(1,3)→(1,1,2)→(1,1,1,1),此时S4=1×3+1×2+1×1=6;(4)→(2,2)→(1,1,2)→(1,1,1,1),此时S4=2×2+1×1+1×1=6.于是发现S4为定值6,则S5的值为________.专题限时集训(五)A[第5讲 函数、基本初等函数Ⅰ的图像与性质](时间:5分钟+30分钟)基础演练1.已知定义在复数集C 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧1+x ,x ∈R ,(1-i )x ,x ∉R ,则f (1+i)=( )A .-2B .0C .2D .2+i2.下列函数中,在定义域内既是奇函数又是增函数的是( )A .y =⎝ ⎛⎭⎪⎫12 B .y =sin x C .y =x 3D .y =log 12x3.已知a =,b =,c =log 23则( ) A .a >b >c B .c >b >a C .c >a >b D .a >c >b4.已知函数y =f (2x )+x 是偶函数,且f (2)=1,则f (-2)=( ) A .2 B .3 C .4 D .55.已知函数f (x )=⎩⎪⎨⎪⎧log 4 x ,x >0,3x ,x ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫14=________.提升训练6.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=2x,则f (-3)=( )A .18B .-18C .8D .-87.设函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,x 12,x >0,若f (x )>1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(0,+∞)8.下列函数中,在区间(0,+∞)上单调递减,且是偶函数的是( )A .y =x 2B .y =-x 3C .y =-lg|x |D .y =2x9.设a =log 32,b =log 23,c =log 125,则( )A .c <b <aB .a <c <bC .c <a <bD .b <c <a10.定义区间[x 1,x 2]的长度为x 2-x 1.若函数y =|log 2x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为( )A .152B .154C .3D .3411.设函数f (x )=2C 图5­112.已知函数f (x )对定义域内的任意x ,都有f (x +2)+f (x )<2f (x +1),则函数f (x )可以是( )A .f (x )=2x +1B .f (x )=e xC .f (x )=ln xD .f (x )=x sin x13.函数f (x )=16-x -x2的定义域是________. 14.已知y =f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,则满足f (m )<f (1) 的实数m 的取值范围是________.15.设函数f (x )=a ln x +b lg x +1,则f (1)+f (2)+…+f (2014)+f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫13+…+f ⎝ ⎛⎭⎪⎫12014=________.专题限时集训(五)B[第5讲 函数、基本初等函数Ⅰ的图像与性质](时间:5分钟+30分钟)基础演练1.对于函数y =f (x ),x ∈R ,“函数y =|f (x )|的图像关于y 轴对称”是“y =f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.下列函数中,既是偶函数又在区间(1,2)上单调递增的是( ) A .y =log 2|x | B .y =cos 2xC .y =2x -2-x 2D .y =log 22-x 2+x3.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( ) A .0 B .3 C .-1 D .-24.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a =( )A .12B .45C .2D .95.已知y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为________.提升训练6.函数y =1x -sin x的大致图像是( )AC 图5­27.已知定义在R 上的函数f (x )满足f (4)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2014)=( )A .-2- 3B .-2+3C .2- 3D .2+38.设a =14,b =log 985,c =log 83,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a9.已知定义在R 上的函数f (x )满足f (x )+2f ⎝ ⎛⎭⎪⎫x +2012x -1=3x ,则f (2014)=( )A .0B .2010C .-2010D .201410.已知函数y =f (x ),若对于任意的正数a ,函数g (x )=f (x +a )-f (x )都是其定义域上的增函数,则函数y =f (x )可能是( )A .y =2xB .y =log 3(x +3)C .y =x 3D .y =-x 2+4x -611.若a >2,b >2,且12log 2(a +b )+log 22a =12log 21a +b +log 2b2,则log 2(a -2)+log 2(b -2)=( )A .2B .1C .12D .0 12.已知定义在R 上的函数y =f (x )在区间(-∞,a )上是增函数,且函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有( )A .f (x 1)>f (x 2)B .f (x 1)≥f (x 2)C .f (x 1)<f (x 2)D .f (x 1)≤f (x 2)13.若x ,y ∈R ,设M =x 2-2xy +3y 2-x +y ,则M 的最小值为________.14.设函数f (x )的定义域为D ,若存在非零实数l ,使得对于任意x ∈M (M ⊆D ),有x +l ∈D ,且f (x +l )≥f (x ),则称f (x )为M 上的“l 高调函数”.如果定义域是[0,+∞)的函数f (x )=(x -1)2为[0,+∞)上的“m 高调函数”,那么实数m 的取值范围是________. 15.函数f (x )=2sin πx 与函数g (x )=3x -1的图像的所有交点的橫坐标之和为________.专题限时集训(六)[第6讲 函数与方程、函数模型及其应用](时间:5分钟+40分钟)基础演练1.“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.函数f (x )=2x+4x -3的零点所在的区间是( ) A .⎝ ⎛⎭⎪⎫14,12 B .⎝ ⎛⎭⎪⎫-14,0 C .⎝ ⎛⎭⎪⎫0,14 D .⎝ ⎛⎭⎪⎫12,34 3.函数f (x )=tan x -1x 在区间⎝⎛⎭⎪⎫0,π2内零点的个数是( )A .0B .1C .2D .34.已知函数f (x )与g (x )的图像在R 上连续,由下表知方程f (x )=g (x )的实数解所在的区间是( )A .(-1C .(1,2) D .(2,3)5.若函数f (x )=ax +b 的零点为x =2,则函数g (x )=bx 2-ax 的零点是x =0和x =________.提升训练6.已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( )A .[0,1)B .(-∞,1)C .(-∞,0]∪(1,+∞)D .(-∞,1]∪(2,+∞)7.已知函数f (x )是定义域为R 的奇函数,且当x ≤0时,f (x )=2x-12x +a ,则函数f (x )的零点的个数是( )A .1B .2C .3D .48.已知函数f (x )=4-a x ,g (x )=4-log b x ,h (x )=4-x c的图像都经过点P ⎝ ⎛⎭⎪⎫12,2,若函数f (x ),g (x ),h (x )的零点分别为x 1,x 2,x 3,则x 1+x 2+x 3=( )A .76B .65C .54D .329.若直角坐标平面内的两个不同的点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图像上;②P ,Q 关于原点对称.则称点对[P ,Q ]是函数y =f (x )的一对“友好点对”(注:点对[P ,Q ]与[Q ,P ]看作同一对“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12,x >0,-x 2-4x ,x ≤0,则此函数的“友好点对”有( )A .0对B .1对C .2对D .3对10.若关于x 的方程⎪⎪⎪⎪⎪⎪x +1x -⎪⎪⎪⎪⎪⎪x -1x -kx -1=0有五个互不相等的实根,则k 的取值范围是( )A .⎝ ⎛⎭⎪⎫-14,14 B .⎝ ⎛⎭⎪⎫-∞,-14∪⎝ ⎛⎭⎪⎫14,+∞ C .⎝ ⎛⎭⎪⎫-∞,-18∪⎝ ⎛⎭⎪⎫18,+∞ D .⎝ ⎛⎭⎪⎫-18,0∪⎝ ⎛⎭⎪⎫0,18 11.已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.12.已知定义在R 上的函数f (x )为增函数,且对任意x ∈(0,+∞),有f [f (x )-log 2x ]=1恒成立,则函数f (x )的零点为________.13.已知函数g (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,若函数f (x )=2x ·g (ln x )+1-x 2,则函数f (x )的零点个数为________.14.已知函数f (x )=2x,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 分别有一个解、两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求m 的取值范围.15.某单位拟建一个扇环面形状的花坛(如图6­1所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米,设小圆弧所在圆的半径为x米,圆心角为θ(弧度).(1)求θ关于x的函数关系式.(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比值为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值?16.如图6­2所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径r=310 mm,滴管内液体忽略不计.(1)如果瓶内的药液恰好156 min滴完,问每分钟滴下多少滴?(2)在条件(1)下,设开始输液x min后,瓶内液面与进气管的距离为h cm,已知当x=0时,h=13,试将h表示为x的函数.(注:1 cm3=1000 mm3)专题限时集训(七)[第7讲 导数及其应用](时间:5分钟+40分钟)基础演练1.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .22.曲线f (x )=x 3+x -2在点P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( ) A .(1,0) B .(2,8)C .(2,8)或(-1,-4)D .(1,0)或(-1,-4)3.如图7­1所示,阴影区域是由函数y =cos x 的一段图像与x 轴围成的封闭图形,那么这个阴影区域的面积是( )A .1B .2C .π2 D .π4.函数f (x )=12x 2-ln x 的最小值为( )A .12B .1C .-2D .3 5.曲线y =ln x -1在x =1处的切线方程为____________.提升训练6.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =( )A .1B .12C .0D .-17.函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图像大致是( )D图7­28.如图7­3所示,长方形的四个顶点为O (0,0),A (4,0),B (4,2),C (0,2),曲线y =x 经过点B .现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域的概率是( )A .512B .12C .23D .349.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在区间[-1,1]上是减函数,则a 的取值范围是( )A .0<a <34B .12<a <34C .a ≥34D .0<a <1210.方程f (x )=f ′(x )的实数根x 0叫作函数f (x )的“新驻点”.如果函数g (x )=x ,h (x )=ln (x +1),φ(x )=cos x ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫π2,π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α<β<γB .α<γ<βC .γ<α<βD .β<α<γ11.已知定义在区间⎝⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是它的导函数,且恒有f (x )<f ′(x )·tan x 成立,则( )A .3f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3 B .f (1)<2f ⎝ ⎛⎭⎪⎫π6sin 1 C .2f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4 D .3f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3 12.函数f (x )=2ln x +x 2在点x =1处的切线方程是________.13.由曲线y =2x 2,直线y =-4x -2,x =1围成的封闭图形的面积为________.14.已知函数f (x )=x 2+2x ,g (x )=x e x. (1)求f (x )-g (x )的极值;(2)当x ∈(-2,0)时,f (x )+1≥ag (x )恒成立,求实数a 的取值范围.15.已知函数f(x)=x ln x.(1)求f(x)的单调区间和极值;(2)设A(x1,f(x1)),B(x2,f(x2)),且x1≠x2,证明:f(x2)-f(x1)x2-x1<f′⎝⎛⎭⎪⎫x1+x22.16.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0恒成立,求k的最大值.专题限时集训(八)[第8讲 三角函数的图像与性质](时间:5分钟+40分钟)基础演练1.函数y =sin x sin ⎝ ⎛⎭⎪⎫π2+x 的最小正周期是( ) A .π2B .2πC .πD .4π2.将函数y =sin ⎝⎛⎭⎪⎫x +π6(x ∈R )的图像上所有的点向左平移π4个单位长度,再把所得图像上各点的横坐标扩大到原来的2倍,所得的函数图像的解析式为( )A .y =sin ⎝⎛⎭⎪⎫2x +5π12(x ∈R ) B .y =sin ⎝ ⎛⎭⎪⎫x 2+5π12(x ∈R ) C .y =sin ⎝ ⎛⎭⎪⎫x 2-π12(x ∈R ) D .y =sin ⎝ ⎛⎭⎪⎫x 2+5π24(x ∈R ) 3.为了得到函数y =cos ⎝⎛⎭⎪⎫2x +π3的图像,可将函数y =sin 2x 的图像( ) A .向左平移5π6 B .向右平移 5π6C .向左平移 5π12D .向右平移5π124.已知向量a =(sin θ,cos θ),b =(2,-3),且a ∥b ,则tan θ=________.5.若点P (cos α,sin α) 在直线y =-2x 上,则tan ⎝⎛⎭⎪⎫α+π4=________. 提升训练6.函数f (x )=2sin(ωx +φ)(ω>0,0≤φ≤π)的部分图像如图8­1所示,其 中A ,B 两点之间的距离为5,则f (x )的单调递增区间是( )A .[6k -1,6k +2](k ∈Z )B .[6k -4,6k -1](k ∈Z )C .[3k -1,3k +2](k ∈Z )D .[3k -4,3k -1](k ∈Z )7. 已知P 是圆(x -1)2+y 2=1上异于坐标原点O 的任意一点,直线OP 的倾斜角为θ.若|OP |=d ,则函数d =f (θ)的大致图像是( )A B图8­2 8.函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图像向左平移π6个单位后关于原点对称,则函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-32 B .-12 C .12 D .329.已知f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,满足f (x )=-f (x +π),f (0)=12,则g (x )=2cos(ωx +φ)在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值与最小值之和为( )A .3-1B .3-2C .23-1D .210.将函数f (x )=3sin 2x -cos 2x 的图像向左平移m 个单位⎝⎛⎭⎪⎫m >-π2,若所得的图像关于直线x =π6对称,则m 的最小值为( )A .-π6B .-π3C .0D .π1211.如图8­3所示,直角三角形POB 中,∠PBO =90°,以O 为圆心、OB 为半径作圆弧交OP 于A 点,若AB 等分△OPB 的面积,且∠AOB =α,则αtan α=________.12.将函数f (x )=sin ⎝⎛⎭⎪⎫3x +π4的图像向右平移π3个单位长度,得到函数y =g (x )的图像,则函数y =g (x )在区间⎣⎢⎡⎦⎥⎤π3,2π3上的最小值为 ________ .13.已知α∈R ,sin α+3cos α=5,则tan 2α=________.14.已知函数f (x )=4sin 2⎝ ⎛⎭⎪⎫π4+x -23cos 2x -1,且π4≤x ≤π2.(1)求f (x )的最大值及最小值;(2)求f (x )在定义域上的单调递减区间.15.已知函数f (x )=23cos x sin x +2cos 2x .(1)求f ⎝ ⎛⎭⎪⎫4π3的值; (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域.16.在平面直角坐标系xOy 中,点A (cos θ,2sin θ),B (sin θ,0),其中θ∈R .(1)当θ=2π3时,求向量AB →的坐标;(2)当θ∈⎣⎢⎡⎦⎥⎤0,π2时,求|AB →|的最大值.专题限时集训(九)[第9讲 三角恒等变换与解三角形](时间:5分钟+40分钟)基础演练1.在钝角三角形ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积为( ) A .14 B .32C .34 D .122.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a =2,A =45°,B =105°,则c = ( )A .32B .1C . 3D .6+223.函数f (x )=sin 2x -sin ⎝⎛⎭⎪⎫2x +π3的最小值为( ) A .0 B .-1 C .- 2 D .-24.若cos 2θ=13,则sin 4θ+cos 4θ的值为( )A .1318B .1118 C .59D .1 5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若sin 2A +sin 2C -sin 2B =3sin A sinC ,则B =________.提升训练6.已知sin 2α=13,则cos 2 ⎝⎛⎭⎪⎫α-π4=( ) A .13 B .-13 C .23 D .-237.已知△ABC 的外接圆O 的半径为1,且OA →·OB →=-12,C =π3.从圆O 内随机取一点M ,若点M 在△ABC 内的概率恰为334π,则△ABC 为( ) A .直角三角形 B .等边三角形 C .钝角三角形 D .等腰直角三角形8.已知A ,B ,C 是△ABC 的三个内角,其对边分别为a ,b ,c .若(sin A +sin B )(sinA -sinB )=sinC (2sin A -sin C ),则B =( )A .π4B .π3C .π2D .2π39.在△ABC 中,若AB →·AC →=7,||AB →-AC →=6,则△ABC 的面积的最大值为( )A .24B .16C .12D .810.已知△ABC 的重心为G ,内角A ,B ,C 的对边分别为a ,b ,c .若aGA →+bGB →+33cGC →=0,则A 等于( )A . π6B .π4C . π3D .π211.已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos(π-α)=-45,则tan 2α=______ . 12.在△ABC 中,C =60°,AB =3,AB 边上的高为43,则AC +BC =________.13.已知∠MON =60°,由此角内一点A 向角的两边引垂线,垂足分别为B ,C ,AB =a ,AC =b ,若a +b =2,则△ABC 外接圆的直径的最小值是________.14.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2B2=3sin B ,b =1.(1)若A =5π12,求c ;(2)若a =2c ,求△ABC 的面积.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若B =60°,b =4,求△ABC 的面积.16.如图9­1所示,已知OPQ 是半径为3,圆心角为π3的扇形,C 是扇形弧上的动点(不与P ,Q 重合),ABCD 是扇形的内接矩形,记∠COP =x ,矩形ABCD 的面积为f (x ).(1)求函数f (x )的解析式,并写出其定义域;(2)求函数y =f (x )+f ⎝⎛⎭⎪⎫x +π4的最大值及相应的x 值.专题限时集训(十)[第10讲数列、等差数列、等比数列](时间:5分钟+40分钟)基础演练1.若等差数列{a n}的前n项和为S n,已知a5=8,S3=6,则a9=( ) A.8 B.12C.16 D.242.等比数列{a n}中,a2=1,a8=64,则a5=( )A.8 B.12C.8或-8 D.12或-123.已知等差数列{a n}中,a3+a4-a5+a6=8,则S7=( )A.8 B.21C.28 D.354.已知数列{a n}为等差数列,且a1+a7+a13=π,则tan(a2+a12)的值为( )A. 3 B.- 3C.33D.-335.等比数列{a n}满足对任意n∈N*,2(a n+2-a n)=3a n+1,a n+1>a n,则数列{a n}的公比q =________.提升训练6.设等差数列{a n}的前n项和为S n,若a2+a4+a9=24,则S9= ( )A.36 B.72C.144 D.707.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2-S n=36,则n=( ) A.5 B.6C.7 D.88.已知数列{a n}是各项均为正数的等比数列,若a2=2,2a3+a4=16,则a5=( ) A.4 B.8C.16 D.329.在数列{a n}中,“a n=2a n-1(n=2,3,4,…)”是“{a n}是公比为2的等比数列”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.在各项均为正数的等比数列{a n}中,a m+1a m-1=2a m(m≥2),数列{a n}的前n项积为T n,若T2k-1=512(k∈N*),则k的值为( )A.4 B.5C.6 D.711.设等差数列{a n}的前n项和为S n,若S9=11,S11=9,则S20=________.12.已知等比数列{a n}的前n项积为T n,若a3a4a8=8,则T9=________.13.已知等比数列{a n}中,a4+a8=⎠⎛24-x2dx,则a6(a2+2a6+a10)=________.14.已知数列{a n }的首项为1,其前n 项和为S n ,且对任意正整数n ,有n ,a n ,S n 成等差数列.(1)求证:数列{S n +n +2}为等比数列; (2)求数列{a n }的通项公式.15.已知数列{a n }的前n 项和为S n ,a 1=1且3a n +1+2S n =3(n 为正整数). (1)求数列{a n }的通项公式;(2)若∀n ∈N *,32k ≤S n 恒成立,求实数k 的最大值.16.已知数列{a n}是公差不为零的等差数列,a1=2且a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)若{b n-(-1)n a n}是等比数列,且b2=7,b5=71,求数列{b n}的前2n项和.专题限时集训(十一)[第11讲 数列求和及数列的简单应用](时间:5分钟+40分钟)基础演练1.等差数列{a n }的通项公式为a n =2n +1,其前n项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为( )A .70B .75C .100D .1202.已知等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C . 8D .2+log 3 53.等差数列{a n }的前n 项和为S n (n =1,2,3,…),若当首项a 1和公差d 变化时, a 5+a 8+a 11是一个定值,则下列选项中为定值的是( )A .S 17B .S 16C .S 15D .S 144.数列{a n }的前n 项和为S n ,若a n =1n (n +2),则S 10等于( )A .1112B .1124C .175132D .1752645.设等比数列{a n }的各项均为正数,其前n 项和为S n .若a 1=1,a 3=4,S k =63,则k =________.提升训练6.等差数列{a n }的前n 项和为S n ,且满足S 35=S 3992 ,a =(1,a n ),b =(2014,a 2014),则a ·b 的值为( )A . 2014B . -2014C . 1D .07.已知一次函数f (x )=kx +b 的图像经过点P (1,2)和Q (-2,-4),令a n =f (n )f (n+1),n ∈N *,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,当S n =625时,n 的值为( )A .24B .25C .23D .268.已知幂函数y =f (x )的图像过点(4,2),令a n =f (n +1)+f (n ),n ∈N *,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,则当S n =10时,n 的值是( )A . 110B . 120C . 130D . 1409.已知a n =⎠⎛0n (2x +1)d x(n∈N *),数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,数列{b n }的通项公式为b n=n -8,则b n S n 的最小值为( )A .-3B .-4C .3D .410.设数列{a n }满足a 1=2,a n +1=4a n -3n +1,n ∈N *,则数列{a n }的前n 项和可以表示为( )A .B .C .D .11.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形的面积为S n ,则S 1+S 2+…+S 2014=________ .12.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.13.已知函数 f (x )=⎩⎪⎨⎪⎧(-1)nsin πx 2+2n ,x ∈[2n ,2n +1),(-1)n +1sin πx 2+2n +2,x ∈[2n +1,2n +2)(n ∈N ),若数列{a m }满足a m =f ⎝ ⎛⎭⎪⎫m 2(m ∈N *),且{a m }的前m 项和为S m ,则S 2014-S 2006=________.14.已知数列{a n }与{b n },若a 1=3,且对任意正整数n 满足a n +1-a n =2, 数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .15. 已知函数f (x )=4x,数列{a n }中,2a n +1-2a n +a n +1a n =0,a 1=1,且a n ≠0, 数列{b n }中, b 1=2,b n =f ⎝ ⎛⎭⎪⎫1a n -1(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .16. 中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题.若某地区2012年人口总数为45万,专家估计实施 “放开二胎” 新政策后人口总数将发生如下变化:从2013年开始到2022年每年人口比上年增加0.5万,从2023年开始到2032年每年人口为上一年的99%.(1)求实施新政策后第n 年的人口总数a n 的表达式(注:2013年为第一年).(2)若新政策实施后2013年到2032年的人口平均值超过49万,则需调整政策,否则继续实施.问2032年后是否需要调整政策?=(1-10≈专题限时集训(十二)A[第12讲 空间几何体的三视图、表面积及体积](时间:5分钟+30分钟)基础演练1.某几何体的三视图如图12­1所示,根据图中标出的尺寸(单位:cm)可得这个几何体的体积是( )A .13 cm 3B .23 cm 3C .43 cm 3D .83cm 3­ 1 12­22.图12­2是一个封闭几何体的三视图,则该几何体的表面积为( ) A .7π B .8π C .9π D .11π3. 一只蚂蚁从正方体 ABCD ­A 1B 1C 1D 1的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点 C 1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是( )图12­A .①② B .①③ C .②④ D .③④4. 某四棱锥的三视图如图12­5所示,记A 为此棱锥所有棱的长度的集合,则( )图12­5A .2∈A ,且4∈AB .2∈A ,且4∈AC . 2∈A ,且25∈AD .2∈A ,且17∈A提升训练5.如图12­6所示,三棱柱ABC ­A 1B 1C 1的侧棱长和底边长均为2,且侧棱 AA 1⊥底面A 1B 1C 1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A . 3B .2 3C .4D .43图12­ 12­7 6.某几何体的三视图如图12­7所示,则它的体积是( )A .8+433B .8+423C .8+233D .3237.若某棱锥的三视图(单位:cm)如图12­8所示,则该棱锥的体积等于( )A .10 cm 3B .3. 30 cm 3 D .40 cm 3­98.一个简单组合体的三视图及尺寸如图12­9所示,则该组合体的体积为( ) A .42 B .48 C .56 D .449. 某由圆柱切割获得的几何体的三视图如图12­10所示,其中俯视图是中心角为60°的扇形, 则该几何体的侧面积为( )A .12+103πB .6+103π C . 12+2π D .6+4π图12­10 图12­1110. 如图12­11所示,边长为2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,△AED ,△EBF ,△FCD 分别沿DE ,EF ,FD 折起,使A ,B ,C 三点重合于点A ′.若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为( )A. 2 B.62C.112D.5211.边长是22的正三角形ABC内接于体积为43π的球O,则球面上的点到平面ABC的最大距离为________.专题限时集训(十二)B[第12讲 空间几何体的三视图、表面积及体积](时间:5分钟+30分钟)基础演练1.某空间几何体的三视图如图12­12所示,则该几何体的体积为( ) A .83 B .8 C .323D .1612 图12­132.一个几何体的三视图如图12­13所示,则该几何体的体积为( ) A .13 B .23C .2D .1 3. 图12­14 ( )14A .3+π6B . 3+43πC .33+43πD .33+π64. 一个四面体的四个顶点在空间直角坐标系O ­xyz 中的坐标分别是(0,0,0),(1,2,0),(0,2,2),(3,0,1),则该四面体以yOz 平面为投影面的正视图的面积为( )A .3B .52C . 2D .72提升训练5.一个几何体的三视图如图12­15所示,其中正视图是边长为2的正三角形,俯视图为正六边形,则该几何体的侧视图的面积为( )A .32B .1C .52D .1215 12­16 6.一个几何体的三视图如图12­16所示,则它的体积为( ) A .203 B .403C .20D .407. 已知某几何体的三视图如图12­17所示,其中俯视图是圆,则该几何体的体积为( )A .π3B .2π3C . 23D .1317 ­18 8.图12­18是一个几何体的三视图,则该几何体的体积是( ) A .54 B .27 C .18 D .99. 用一个边长为4的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为1的鸡蛋(视为球体)放在其上(如图12­19所示),则鸡蛋中心(球心)与蛋托底面的距离为___________.图12­10. 直三棱柱ABC ­A 1B 1C 1的各顶点都在同一个球面上.若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积为________.11.如图12­20所示,已知球O是棱长为1的正方体ABCD­A1B1C1D1的内切球,则平面ACD1截球O的截面面积为________.专题限时集训(十三)[第13讲空间中的平行与垂直](时间:5分钟+40分钟)基础演练1.能够得出平面α与平面β一定重合的条件是:它们的公共部分有( )A.两个公共点B.三个公共点C.无数个公共点D.共圆的四个公共点2.直线a⊥平面α,b∥α,则a与b的关系为( )A.a⊥b,且a与b相交 B.a⊥b,且a与b不相交C.a⊥b D.a与b不一定垂直3.a,b,c表示不同直线,M表示平面,给出四个命题:①若a∥M,b∥M,则a∥b或a,b相交或a,b异面;②若b⊂M,a∥b,则a∥M;③a⊥c,b⊥c,则a∥b;④a⊥M,b⊥M,则a∥b.其中为真命题的是( )A.①② B.②③ C.③④ D.①④4.设α,β,γ为平面,m,n为直线,则m⊥β的一个充分条件是( )A.α⊥β,α∩β=n,m⊥nB.α∩γ=m,α⊥γ,β⊥γC.α⊥β,m⊥αD.n⊥α,n⊥β,m⊥α5.已知m,n,l是不同的直线,α,β,γ是不同的平面,给出下列命题:①若m∥n,n⊂α,则m∥α;②若m⊥l,n⊥l,则m∥n;③若m⊥n,m∥α,n∥β,则α⊥β;④若α⊥γ,β⊥γ,则α∥β.其中真命题有( )A.0个 B.1个C.2个 D.3个提升训练6.已知α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线l,l⊂α,l∥βB.存在一个平面γ,γ⊥α,γ⊥βC.存在一条直线l,l⊥α,l⊥βD.存在一个平面γ,γ⊥α,γ∥β7.设l为直线,α,β是两个不同的平面,下列命题中为真的是( )A.若l∥α,l∥β,则α∥β B.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥β D.若α⊥β,l∥α,则l⊥β8.在正方体中,二面角A1­BD­A的正切值是( )A. 2 B.22C. 2 D.129.已知α,β是两个不同的平面,m ,n 是两条不同的直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③如果m ⊂α,n ⊄α,m ,n 是异面直线,那么n 与α相交;④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β.其中为真命题的是 ( )A .①②B .②③C . ③④D .①④10.如图13­1所示,正方体ABCD ­A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ­BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等图13­211.如图13­2所示,已知三个平面α,β,γ互相平行,a ,b 是异面直线,a 与α,β,γ分别交于A ,B ,C 三点,b 与α,β,γ分别交于D ,E ,F 三点,连接AF 交平面β于点G ,连接CD 交平面β于点H ,则四边形BGEH 必为________.12. 在三棱锥C ­ABD 中(如图13­3所示),△ABD 与△CBD 是全等的等腰直角三角形,O 为斜边BD 的中点,AB =4,二面角A ­BD ­C 的大小为60°,并给出下面结论:①AC ⊥BD ;②AD ⊥CO ;③△AOC 为正三角形;④ cos ∠ADC =34;⑤四面体ABCD 的外接球的表面积为 32π.其中正确的是________.13. 已知四棱锥P ­ABCD 的底面ABCD 是边长为2的正方形,且俯视图如图13­4所示.关于该四棱锥的下列说法中:①该四棱锥中至少有两组侧面互相垂直;②该四棱锥的侧面中可能存在三个直角三角形;③该四棱锥中不可能存在四组互相垂直的侧面;④该四棱锥的四个侧面不可能都是等腰三角形.其中,所有正确说法的序号是________________.14.如图13­5所示,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB =2,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BD F.15.如图13­6所示,平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD垂直,H是BE的中点,G是AE,的交点.(1)求证:GH∥平面CDE;(2)求证:BD⊥平面CDE.16.已知在梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,CD=3,点E是线段AB的中点,G为CD的中点,现沿ED将△AED折起到△PED位置,使PE⊥EB.(1)求证:平面PEG⊥平面PCD;(2)求点A到平面PDC的距离.专题限时集训(十四)[第14讲 空间向量与立体几何](时间:5分钟+40分钟)基础演练1. 直线l 1的方向向量s 1=(1,0,-2),直线l 2的方向向量s 2=(-1,2,2),则直线l 1,l 2所成角的余弦值是( )A .53B .-53C . 23D .-232.平面α,β的法向量分别是 n 1=(1,1,1),n 2=(-1,0,-1),则平面α,β所成锐二面角的余弦值是( )A .33B .-33C . 63D .-633.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的单位法向量是( )A .±(1,1,1)B .±⎝ ⎛⎭⎪⎫22,22,22C .±⎝⎛⎭⎪⎫33,33,33 D .±⎝ ⎛⎭⎪⎫33,-33,33 4.已知a ,b 是两个非零的向量,α,β是两个平面,下列命题中正确的是( )A .a ∥b 的必要条件是a ,b 是共面向量B .a ,b 是共面向量,则a ∥bC .a ∥α,b ∥β,则α∥βD .a ∥α,b ∥β,则a ,b 不是共面向量5.若a ⊥b ,a ⊥c ,l =αb +β c (α,β∈R ),m ∥a ,则m 与l 一定( ) A .共线 B .相交 C . 垂直 D .不共面提升训练6. 如图14­1所示,三棱锥A ­BCD 的棱长全相等,E 为AD 的中点,则直线CE 与BD 所成角的余弦值为( )A .36B .32C . 336D .127. 在正方体ABCD ­A 1B 1C 1D 1中,E 是C 1D 1的中点,则异面直线DE 与AC 所成角的余弦值为( )A .120B .1010C . -1010D .-1208. 对于空间任意一点O 和不共线的三点A ,B ,C ,有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则x =2,y =-3,z =2是P ,A ,B ,C 四点共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件9.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →=________.10.在底面是直角梯形的四棱锥S ­ABCD 中,∠ABC =90°,SA ⊥平面ABCD ,SA =AB=BC =1,AD =12,则平面SCD 与平面SBA 夹角的余弦值是_________.11.平行四边形ABCD 中,AB =1,AD =2,且∠BAD =45°,以BD 为折线,把△ABD 折起到△A 1BD 的位置,使平面A 1BD ⊥平面BCD ,连接A 1C .(1)求证:A 1B ⊥DC ;(2)求二面角B ­A 1C ­D 的大小.图14­12.如图14­3所示,四棱锥P ­ABCD 中,底面ABCD 为平行四边形,AB =2AD =4,BD =23,PD ⊥底面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若二面角P ­BC ­D 的大小为 π4,求AP 与平面PBC 所成角的正弦值.。

2019政治人教新资料专项限时集训(二)生活、劳动与经营

2019政治人教新资料专项限时集训(二)生活、劳动与经营

2019政治人教新资料专项限时集训(二)生活、劳动与经营注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

专题限时集训(二)[专题二生产、劳动与经营](时间:45分钟)【一】选择题1.2017年4月1日,京津城际高铁通车运营三周年。

三年来,由北京来津的旅游团体,比高铁开通前增加了30%。

这说明()A.生产决定消费,生产为消费创造动力B.消费方式决定生产方式C.生产和消费相互影响、相互决定D.消费对生产的调整和升级具有导向作用2.为期184天的2017年世博会落下帷幕后,来自世博局的统计数据显示,总计7308.44万人次参观了世博园,其中海外游客超过350万人次。

据预测,世博会对上海GDP的贡献值将达5%,受其影响第三产业在上海的GDP比重将上升到60%,创下新高。

这说明()①消费是经济发展的根本动力②消费对产业升级具有带动作用③消费是拉动经济增长的重要力量④生产决定了消费的方式和水平A.①②B.②③C.③④D.①④3.国务院于2017年4月13日发文,强调要进一步拓宽民间资本投资的领域和范围,允许民间资本进入金融、石油等领域。

这说明在我国社会主义初级阶段()①国有经济的控制力逐步减弱②个体、私营和外资经济已成为社会主义经济的重要组成部分③非公有制经济和公有制经济在市场竞争中的地位是平等的④我国坚持公有制为主体、多种所有制经济共同发展的经济制度A.①②B.③④C.①③D.②④4.在我国,大量的民营企业集中在传统产业,而且存在着企业规模小、技术水平低、能源和资源消耗高等问题。

专题07破解抛体运动与圆周运动-【小题小卷】冲刺2023年高考物理小题限时集训(原卷版)

专题07破解抛体运动与圆周运动-【小题小卷】冲刺2023年高考物理小题限时集训(原卷版)

07 破解抛体运动与圆周运动难度:★★★★☆建议用时: 30分钟正确率: /14 1.(2023·福建福州·统考二模)如图,某次小明同学在家中对着竖直墙壁打乒乓球,将球从A点斜向上击出,球垂直在墙上的O点后,反向弹回正好落在A点正下方的B点。

忽略球的旋转及空气阻力,则下列说法中正确的是()A.球在上升阶段和下降阶段的加速度不同B.球从A点到O点的运动时间等于从O点到B点的运动时间C.球刚离开A点时的水平速度大小大于刚到达B点时的水平速度大小D.球刚离开A点时的速度大小一定大于刚到达B点时的速度大小2.(2023·辽宁沈阳·辽宁实验中学校联考模拟预测)如图所示光滑直管MN倾斜固定在水平地面上,直管与水平地面间的夹角为45°,管口到地面的竖直高度为ℎ=0.4m;在距地面高为H=1.2m处有一固定弹射装置,可以沿水平方向弹出直径略小于直管内径的小球。

某次弹射的小球恰好无碰撞地从管口M处进入管内,设小球弹出点O到管口M的水平距离为x,弹出的初速度大小为v0,重力加速度g取10m/s2。

关于x和v0的值,下列选项正确的是()A.x=1.6m,v0=4m/s B.x=1.6m,v0=4√2m/sC.x=0.8m,v0=4m/s D.x=0.8m,v0=4√2m/s 3.(2023·辽宁鞍山·鞍山一中校考二模)如图所示,两根长度不同的细线分别系有1、2两个质量相同的小球,细线的上端都系于O点,细线长L1大于L2现使两个小球在同一水平面上做匀速圆周运动,下列说法中正确的有()A.球2运动的角速度大于球1的角速度B.球1运动的线速度比球2大C.球2所受的拉力比球1大D.球2运动的加速度比球1大4.(2023·福建·模拟)如图所示,竖直固定的光滑圆轨道内有一质量为m的小球在做完整的圆周运动。

已知轨道半径为R,a为最高点,b为最低点,c和d为与圆心O等高的点,e 和f为圆心O的对称点,重力加速度大小为g。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题限时集训(七) (限时:45分钟)1.(20分)(2013·武汉一模)如图1所示。

在竖直平面内有轨道 ABCDE ,其中BC 是半径为R 的四分之一圆弧轨道,AB (AB >R )是竖直轨道,CE 是水平轨道,CD >R 。

AB 与BC 相切于B 点,BC 与CE 相切于C 点, 轨道的AD 段光滑,DE 段粗糙且足够长。

一根长为R 的轻杆两端分别固定着两个质量均为m 的相同小球P 、Q (视为质点),将轻杆锁定在图示位置,并使Q 与B 等高。

现解除锁定释放轻杆,轻杆将沿轨道下滑,重力加速度为g 。

图1(1)Q 球经过 D 点后,继续滑行距离x 停下(x >R )。

求小球与 DE 段之间的动摩擦因数μ;(2)求 Q 球到达 C 点时的速度大小。

解析:(1)由能量守恒定律得mgR +mg ·2R =μmgx +μmg (x -R )(6分) 解得μ=3R 2x -R(3分)(2)轻杆由释放到Q 球到达C 点过程,系统的机械能守恒,设P 、Q 两球的速度大小分别为v P 、v Q ,则mgR +mg (2-sin 30°)R =12m v 2P +12m v 2Q (6分)又v P =v Q (2分) 联立解得v Q = 5gR2(3分) 答案:(1)3R2x -R(2)5gR22.(25分)(2013·南京二模)如图2所示,质量m =0.2 kg 的小物体(视为质点),从光滑曲面上高度H =0.8 m 处释放,到达底端时水平进入轴心距离L =6 m 的水平传送带,传送带可由一电机驱使逆时针转动。

已知物体与传送带间的动摩擦因数μ=0.1(取g =10 m/s 2)。

图2(1)求物体到达曲面底端时的速度大小;(2)若电机不开启,传送带不转动,则物体滑离传送带右端的速度大小和在传送带上所用时间分别为多少?(3)若开启电机,传送带以速率v =5 m/s 逆时针转动,则物体在传送带上滑动的过程中产生多少热量?解析:(1)设物体到达曲面底端时的速度大小为v 0,物体从曲面上下滑时机械能守恒,则mgH =12m v 20(3分)解得v 0=2gH =4 m/s(2分)(2)设水平向右为正方向,物体滑上传送带后向右做匀减速运动,期间物体的加速度大小和方向都不变,所受摩擦力大小F f =μmg加速度a =-F fm=-μg =-1 m/s 2(3分)设物体滑离传送带右端时速度为v 1,在传送带上所用时间为t ,则v 21-v 20=2aL(3分) 解得v 1=2 m/s (1分) 由t =v 1-v 0a得t =2 s(2分)(3)以地面为参考系,则滑上逆时针转动的传送带后,物体向右做匀减速运动。

由题(2)计算可知,期间物体的加速度大小和方向都不变,所以到达右端时速度为2 m/s ,所用时间为2 s ,最后将从右端滑离传送带。

此段时间内,物体向右运动位移大小x 1=6 m ,皮带向左运动的位移大小x 2=v t =10 m(3分)物体相对于传送带滑行的距离 Δx =x 1+x 2=16 m(3分)物体与传送带相对滑动期间产生的热量 Q =F f Δx =μmg Δx =3.2 J(5分)答案:(1)4 m /s (2)2 m/s 2 s (3)3.2 J3.(30分)如图3所示,ABCD 为固定在竖直平面内的轨道,AB 段光滑水平,BC 段为光滑圆弧,对应的圆心角θ=37°,半径r =2.5 m ,CD 段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E =2×105 N /C 、方向垂直于斜轨向下的匀强电场。

质量m =5×10-2 kg 、电荷量q =+1×10-6 C 的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑行,在C 点以速度v 0=3 m/s 冲上斜轨。

以小物体第一次通过C 点时为计时起点,0.1 s 以后,场强大小不变,方向反向。

已知斜轨与小物体间的动摩擦因数μ=0.25。

设小物体的电荷量保持不变,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8。

图3(1)求弹簧枪对小物体所做的功;(2)在斜轨上小物体能到达的最高点为P ,求CP 的长度。

解析:(1)设弹簧枪对小物体做功为W ,对AC 段由动能定理得W -mgr (1-cos θ)=12m v 2-0(4分)代入数据得W =0.475 J(2分)(2)取沿平行斜轨向上为正方向。

设小物体通过C 点进入电场后的加速度为a 1,由牛顿第二定律得-mg sin θ-μ(mg cos θ+qE )=ma 1(4分)小物体向上做匀减速运动,经t 1=0.1 s 后,速度达到v 1,有 v 1=v 0+a 1t 1(3分)联立以上方程可知v 1=2.1 m/s ,设此过程中小物体运动的位移为x 1,有 x 1=v 0t 1+12a 1t 21(3分)电场力反向后,设小物体的加速度为a 2,由牛顿第二定律得 -mg sin θ-μ(mg cos θ-qE )=ma 2(4分)小物体以此加速度运动到P 点时速度为0,设运动的时间为t 2,位移为x 2,有 0=v 1+a 2t 2(3分) x 2=v 1t 2+12a 2t 22(3分)设CP 的长度为x ,有 x =x 1+x 2(2分)联立相关方程,代入数据解得 x =0.57 m(2分)答案:(1) 0.475 J (2) 0.57 m4.(25分)(2013·海南高考)一质量m =0.6 kg 的物体以v 0=20 m /s 的初速度从倾角α=30°的斜坡底端沿斜坡向上运动。

当物体向上滑到某一位置时,其动能减少了ΔE k =18 J ,机械能减少了ΔE =3 J 。

不计空气阻力,重力加速度g =10 m/s 2,求:(1)物体向上运动时加速度的大小; (2)物体返回斜坡底端时的动能。

解析:(1)设物体运动过程中所受的摩擦力为F f ,向上运动的加速度的大小为a ,由牛顿第二定律可知mg sin α+F f =ma(4分)设物体的动能减少ΔE k 时,在斜面上运动的距离为x ,由功能关系得 ΔE k =(mg sin α+F f )x (4分)ΔE =F f x (4分) 解得a =6 m/s 2(3分)(2)设物体沿斜面向上运动的最大距离为x m ,由运动学规律可得x m =v 202a(4分)设物体返回斜面底端时的动能为E k ,由动能定理得 E k =(mg sin α-F f )x m(4分)解得E k =80 J(2分) 答案:(1)6 m/s 2 (2)80 J[教师备选题库]1.如图1所示,足够长的传送带以恒定速率顺时针运行,将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度;第二阶段与传送带相对静止,匀速运动到达传送带顶端。

下列说法正确的是( )A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功 图1B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增量C .第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增量D .物体从底端到顶端全过程机械能的增量等于全过程物体与传送带间的摩擦生热 解析:选C 第一阶段为滑动摩擦力做功,第二阶段为静摩擦力做功,两个阶段摩擦力方向都跟物体运动方向相同,所以摩擦力都做正功,A 错误;由功能关系可知,第一阶段摩擦力对物体做的功(除重力之外的力做的功)等于物体机械能的增量,即ΔE =W 阻=F 阻l 物,摩擦生热为Q =F 阻l 相对,又由于l 带=v t ,l 物=v 2t ,所以l 物=l 相对=12l 带,即Q =ΔE ,C 正确,B 错误;第二阶段没有摩擦生热,但物体的机械能继续增加,结合C 可以判断D 错误。

2.如图2所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球(视为质点)自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力。

已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( )A .重力做功2mgRB .机械能减少mgRC .合力做功mgR 图2D .克服摩擦力做功12mgR解析:选D 小球在A 点正上方由静止释放,通过B 点时恰好对轨道没有压力,设此时小球速度为v ,此时小球的重力提供向心力,即mg =m v 2R ,得v 2=gR ,小球从P 到B 的过程中,重力做功W =mgR ,A 错误;减小的机械能ΔE =mgR -12m v 2=12mgR ,B 错误;合力做功W 合=12m v 2=12mgR ,C 错误;由动能定理得mgR -WF f =12m v 2-0,所以克服摩擦力做功WF f =12mgR ,D 正确。

3.[多选]一人用力把质量为m 的物体由静止竖直向上匀加速提升h ,速度增加为v ,则对此过程(忽略空气阻力),下列说法正确的是( )A .人对物体所做的功等于物体机械能的增量B .物体所受合力做的功为12m v 2C .人对物体所做的功为mghD .人对物体所做的功为12m v 2解析:选AB 由功能关系可知,人对物体所做的功等于物体机械能的增量,则物体机械能的增量ΔE =mgh +12m v 2,A 正确,C 、D 错误;由动能定理知,物体所受合力做的功为12m v 2,B 正确。

4. (2013·银川二模)一劲度系数k =800 N /m 的轻质弹簧两端分别连接着质量均为12 kg 的物体A 、B ,将它们竖直静止放在水平面上,如图3所示。

现将一竖直向上的变力F 作用在A 上,使A 开始向上做匀加速运动,经0.40 s 物体B 刚要离开地面。

g =10.0 m/s 2,试求:(1)物体B 刚要离开地面时,物体A 的速度v A 的大小;(2)物体A 重力势能的改变量ΔE p A ; 图3 (3)弹簧的弹性势能公式:E p =12kx 2,x 为弹簧的形变量,则此过程中拉力F 做的功为多少?解析:(1)设开始时弹簧压缩量为x 1,物体B 刚要离开地面时弹簧伸长量为x 2,此过程所用时间为t =0.40 s ,A 的加速度大小为a ,A 、B 质量为m A =m B =12 kg ,故有开始时m A g =kx 1当物体B 刚要离开地面时kx 2=m B g 解得x 1=x 2=0.15 m 由x 1+x 2=12at 2v A =at解得v A =1.5 m/s(2)物体A 重力势能增大,则 ΔE p A =m A g (x 1+x 2)=36 J(3)因开始时弹簧的压缩量与末时刻弹簧的伸长量相等,对应弹性势能相等,由功能关系可得此过程中拉力F 做的功W F =ΔE p A +12m A v 2A =49.5 J答案:(1)1.5 m/s (2)36 J (3)49.5 J。

相关文档
最新文档