高考数学 简易逻辑与推理
2021年高考数学经典例题 专题一:集合与简易逻辑【含解析】
专题一 集合与简易逻辑一、单选题1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UAB =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果. 【详解】由题意结合补集的定义可知:{}U2,1,1B =--,则(){}U1,1AB =-.故选:C.2.设a ∈R ,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.3.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 【答案】C 【解析】根据集合并集概念求解. 【详解】[1,3](2,4)[1,4)A B ==故选:C4.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断. 【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时, 若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件. 故选:C.5.已知集合P ={|14}<<x x ,{|23}Q x x =<<,则P Q =( ) A .{|12}x x <≤ B .{|23}x x << C .{|34}x x ≤< D .{|14}<<x x【答案】B 【解析】根据集合交集定义求解. 【详解】(1,4)(2,3)(2,3)P Q ==故选:B6.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1 B .2C .3D .4【答案】D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D.9.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.10.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】b =0 时,f(x)=cosx +bsinx =cosx , f(x)为偶函数; f(x)为偶函数时,f(−x)=f(x)对任意的x 恒成立, f(−x)=cos(−x)+bsin(−x)=cosx −bsinxcosx +bsinx =cosx −bsinx ,得bsinx =0对任意的x 恒成立,从而b =0.从而“b =0”是“f(x)为偶函数”的充分必要条件,故选C.11.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.12.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2C .2D .4【答案】B 【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B.13.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可. 【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D.14.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A.15.设m R ∈,则“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】根据条件先求m 的取值范围,再比较集合的包含关系,判断充分必要条件. 【详解】圆()()22:123C x y m -+-=-,圆心()1,2,半径3r m =-若直线l 与圆C 有公共点, 则圆心()1,2到直线的距离332m d m -=≤-13m ≤<,{}12m m ≤≤ {}13m m ≤<,所以“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的充分不必要条件.故选:A16.设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A. 17.已知集合{}0,1,2,4A =,{}2,nB x x n A ==∈,则AB =( )A .{}0,1,2B .{}0,1,4C .{}0,2,4D .{}1,2,4【答案】D 【解析】由题知{}1,2,4,16B =,再根据集合交集运算求解即可. 【详解】 因为{}0,1,2,4A =,{}1,2,4,16B =,所以{}1,2,4AB =,故选:D.18. “21a =”是“直线1x ay +=与1ax y +=平行”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案.【详解】因为直线1x ay +=与1ax y +=平行, 所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件. 故选:B19.已知命题:p “,a b 是两条不同的直线,α是一个平面,若,b a b α⊥⊥,则//a α”,命题:q “函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,为R 上的增函数”,下列说法正确的是A .“p q ⌝∧”为真命题B .“p q ∧⌝”为真命题C .“p q ∧” 为真命题D .“p q ⌝∧⌝” 为真命题【答案】D 【解析】依题意得p 是假命题;因为312<又()312f f ⎛⎫> ⎪⎝⎭,得q 是假命题,则可判断正确结果. 【详解】若,b a b α⊥⊥,则//a α或a α⊂,所以命题p 是假命题;函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,当1x =时()011f e ==,当32x =时3323022f ⎛⎫=⨯-= ⎪⎝⎭,因为312<又()312f f ⎛⎫> ⎪⎝⎭,所以()f x 在R 上不是增函数,故q 是假命题; 所以p ⌝与q ⌝是真命题,故“p q ⌝∧⌝” 为真命题 故选:D .20.记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③ B .①②C .②③D .③④【答案】A 【解析】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D , 则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .21.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B22.已知M 、N 为R 的子集,若RM N =∅,{}1,2,3N =,则满足题意的M 的个数为( )A .3B .4C .7D .8【答案】D【解析】根据交集、补集的运算的意义,利用韦恩图可得出M ,N 关系,根据子集求解. 【详解】因为M 、N 为R 的子集,且RM N =∅,画出韦恩图如图,可知,M N ⊆, 因为{}1,2,3N =, 故N 的子集有32=8个. 故选:D23. “0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件【答案】A 【解析】根据直线与圆相交的判定,充分条件,必要条件即可求解 【详解】当0a =时,直线为0x y -=,过圆心(0,0),故直线与圆224x y +=相交,当直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交时,圆心到直线的距离222(1)(1)d a a =<++-,化简得220a +>,显然恒成立,不能推出0a =,所以“0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的充分不必要条件, 故选:A24.设集合()222021,2020A x y x y ⎧⎫=+=⎨⎬⎩⎭,(){},2x B x y y ==,则集合A B 中元素的个数为( ) A .0 B .1 C .2 D .3【答案】C【解析】 分别作出2220212020x y +=,2x y =图象,判断交点个数即可.【详解】依题意:集合A B 中元素的个数即2220212020x y +=,2x y =图象交点个数如图所以一共有两个交点,所以集合A B 中元素的个数为2故选:C25.已知集合{}13A x x =≤<,{}B y y m =≤,且A B =∅,则实数m 应满足()A .1m <B .1mC .3m ≥D .3m >【答案】A【解析】根据集合交集定义即可求解.【详解】 解:∵集合{}13A x x =≤<,{}B y y m =≤,A B =∅∴1m <,故选:A .26.命题000:,20p x R x lnx ∃∈+<的否定为( )A .000,20x R x lnx ∃∉+≥B .000,20x R x lnx ∃∈+>C .,20x R x lnx ∀∈+>D .,20x R x lnx ∀∈+≥【答案】D【解析】 根据特称命题的否定是全称命题,直接写出即可.【详解】根据特称命题的否定是全称命题,所以命题p 的否定为,20x R x lnx ∀∈+≥.故选:D.27.已知集合{}220A x x x =-->,则A =R ( ) A .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥ 【答案】B【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x -或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.28.已知两条直线,a b 和平面α,若b α⊂,则//a b 是//a α的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件 【答案】D【解析】当b α⊂时,若//a b 时,a 与α的关系可能是//a α,也可能是a α⊂,即//a α不一定成立,故////a b a α⇒为假命题;若//a α时,a 与b 的关系可能是//a b ,也可能是a 与b 异面,即//a b 不一定成立,故////a a b α⇒也为假命题;故//a b 是//a α的既不充分又不必要条件故选:D29.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则y x ∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项 C ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍. 若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456*********,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、填空题30.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.31.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.32.设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题: ①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ⋂≠∅,则12A A ⋂具有性质P ;③若12,A A 具有性质P ,则12A A ⋃具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②【解析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈⋂,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈⋂⋂,所以12A A ⋂具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A∈,23A ∈,但1223A A +∉⋃,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④错误;故答案为:①②【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。
高考数学难点突破——集合与简易逻辑
集合思想及应用集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用.●难点磁场(★★★★★)已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围.●案例探究 [例1]设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论.技巧与方法:由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得值.解:∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅∵⎩⎨⎧+=+=bkx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =∅∴Δ1=(2bk -1)2-4k 2(b 2-1)<0∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1①∵⎩⎨⎧+==+-+bkx y y x x 052242 ∴4x 2+(2-2k )x +(5+2b )=0∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0∴k 2-2k +8b -19<0,从而8b <20,即b <2.5 ② 由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得⎪⎩⎪⎨⎧<--<+-032,018422k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅.[例2]向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.问对A 、B 都赞成的学生和都不赞成的学生各有多少人?知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来. 错解分析:本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索.技巧与方法:画出韦恩图,形象地表示出各数量关系间的联系. 解:赞成A 的人数为50×53=30,赞成B 的人数为30+3=33,如上图,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合B .设对事件A 、B 都赞成的学生人数为x ,则对A 、B 都不赞成的学生人数为3x+1,赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x .依题意(30-x )+(33-x )+x +(3x+1)=50,解得x =21. 所以对A 、B 都赞成的同学有21人,都不赞成的有8人. ●锦囊妙计1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题.2.注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论.●歼灭难点训练 一、选择题1.(★★★★)集合M ={x |x =42π+kx ,k ∈Z },N ={x |x =22ππ+k ,k ∈Z },则( ) A.M =N B.M N C.M N D.M ∩N =∅2.(★★★★)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则( )A.-3≤m ≤4B.-3<m <4C.2<m <4D.2<m ≤4 二、填空题3.(★★★★)已知集合A ={x ∈R |a x 2-3x +2=0,a ∈R },若A 中元素至多有1个,则a 的取值范围是_________.4.(★★★★)x 、y ∈R ,A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|bya x - =1,a >0,b >0},当A ∩B 只有一个元素时,a ,b 的关系式是_________.三、解答题5.(★★★★★)集合A ={x |x 2-ax +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2+2x -8=0},求当a 取什么实数时,A ∩B ∅和A ∩C =∅同时成立.6.(★★★★★)已知{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A ={(a n ,nS n )|n ∈N *},B ={(x ,y )|41x 2-y 2=1,x ,y ∈R }.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明.(1)若以集合A 中的元素作为点的坐标,则这些点都在同一条直线上; (2)A ∩B 至多有一个元素;(3)当a 1≠0时,一定有A ∩B ≠∅.7.(★★★★)已知集合A ={z ||z -2|≤2,z ∈C },集合B ={w |w =21zi +b ,b ∈R },当A ∩B =B 时,求b 的值.8.(★★★★)设f (x )=x 2+px +q ,A ={x |x =f (x )},B ={x |f [f (x )]=x }. (1)求证:A ⊆B ;(2)如果A ={-1,3},求B .参考答案难点磁场解:由⎩⎨⎧≤≤=+-=+-+)20(01022x y x y mx x 得x 2+(m -1)x +1=0①∵A ∩B ≠∅∴方程①在区间[0,2]上至少有一个实数解.首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1,当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1>0知,方程①只有负根,不符合要求.当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.故所求m 的取值范围是m ≤-1. 歼灭难点训练一、1.解析:对M 将k 分成两类:k =2n 或k =2n +1(n ∈Z ),M ={x |x =n π+4π,n ∈Z }∪{x |x =n π+43π,n ∈Z },对N 将k 分成四类,k =4n 或k =4n +1,k =4n +2,k =4n +3(n ∈Z ),N ={x |x =n π+2π,n ∈Z }∪{x |x =n π+43π,n ∈Z }∪{x |x =n π+π,n ∈Z }∪{x |x =n π+45π,n ∈Z }.答案:C2.解析:∵A ∪B =A ,∴B ⊆A,又B ≠∅,∴⎪⎩⎪⎨⎧-<+≤--≥+12171221m m m m 即2<m ≤4. 答案:D 二、3.a =0或a ≥89 4.解析:由A ∩B 只有1个交点知,圆x 2+y 2=1与直线b ya x -=1相切,则1=22ba ab +,即ab =22b a +. 答案:ab =22b a +三、5.解:log 2(x 2-5x +8)=1,由此得x 2-5x +8=2,∴B ={2,3}.由x 2+2x -8=0,∴C ={2,-4},又A ∩C =∅,∴2和-4都不是关于x 的方程x 2-ax +a 2-19=0的解,而A ∩B ∅,即A ∩B ≠∅,∴3是关于x 的方程x 2-ax +a 2-19=0的解,∴可得a =5或a =-2.当a =5时,得A ={2,3},∴A ∩C ={2},这与A ∩C =∅不符合,所以a =5(舍去);当a =-2时,可以求得A ={3,-5},符合A ∩C =∅,A ∩B ∅,∴a =-2.6.解:(1)正确.在等差数列{a n }中,S n =2)(1n a a n +,则21=n S n (a 1+a n ),这表明点(a n ,nS n )的坐标适合方程y 21=(x +a 1),于是点(a n , nS n )均在直线y =21x +21a 1上.(2)正确.设(x ,y )∈A ∩B ,则(x ,y )中的坐标x ,y 应是方程组⎪⎪⎩⎪⎪⎨⎧=-+=1412121221y x a x y 的解,由方程组消去y 得:2a 1x +a 12=-4(*),当a 1=0时,方程(*)无解,此时A ∩B =∅;当a 1≠0时,方程(*)只有一个解x =12124a a --,此时,方程组也只有一解⎪⎪⎩⎪⎪⎨⎧-=--=1211214424a a y a a y ,故上述方程组至多有一解.∴A ∩B 至多有一个元素.(3)不正确.取a 1=1,d =1,对一切的x ∈N *,有a n =a 1+(n -1)d =n >0,nS n>0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a 1=1≠0.如果A ∩B ≠∅,那么据(2)的结论,A ∩B 中至多有一个元素(x 0,y 0),而x 0=5224121-=--a a <0,y 0=43201=+x a <0,这样的(x 0,y 0)∉A ,产生矛盾,故a 1=1,d =1时A ∩B =∅,所以a 1≠0时,一定有A ∩B ≠∅是不正确的.7.解:由w =21zi +b 得z =ib w 22-, ∵z ∈A ,∴|z -2|≤2,代入得|ibw 22--2|≤2,化简得|w -(b +i )|≤1.∴集合A 、B 在复平面内对应的点的集合是两个圆面,集合A 表示以点(2,0)为圆心,半径为2的圆面,集合B 表示以点(b ,1)为圆心,半径为1的圆面.又A ∩B =B ,即B ⊆A ,∴两圆内含.因此22)01()2(-+-b ≤2-1,即(b -2)2≤0,∴b =2. 8.(1)证明:设x 0是集合A 中的任一元素,即有x 0∈A . ∵A ={x |x =f (x )},∴x 0=f (x 0).即有f [f (x 0)]=f (x 0)=x 0,∴x 0∈B ,故A ⊆B .(2)证明:∵A ={-1,3}={x |x 2+px +q =x },∴方程x 2+(p -1)x +q =0有两根-1和3,应用韦达定理,得⎩⎨⎧-=-=⇒⎩⎨⎧=⨯---=+-313)1(),1(31q p q p ∴f (x )=x 2-x -3.于是集合B 的元素是方程f [f (x )]=x ,也即(x 2-x -3)2-(x 2-x -3)-3=x (*)的根. 将方程(*)变形,得(x 2-x -3)2-x 2=0解得x =1,3,3,-3. 故B ={-3,-1,3,3}.充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p 和结论q 之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场(★★★★★)已知关于x 的实系数二次方程x 2+ax +b =0有两个实数根α、β,证明:|α|<2且|β|<2是2|a |<4+b 且|b |<4的充要条件.●案例探究[例1]已知p :|1-31-x |≤2,q :x 2-2x +1-m 2≤0(m >0),若⌐p 是⌐q 的必要而不充分条件,求实数m 的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若⌐p 是⌐q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p :|1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10 q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 *∵p 是q 的充分不必要条件, ∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集. 又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, ∴实数m 的取值范围是[9,+∞).[例2]已知数列{a n }的前n 项S n =p n +q (p ≠0,p ≠1),求数列{a n }是等比数列的充要条件. 命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性. 知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n 项和与通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧与方法:由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n关系式去寻找a n 与a n +1的比值,但同时要注意充分性的证明.解:a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p若{a n }为等比数列,则nn a a a a 112+==p ∴qp p p +-)1(=p , ∵p ≠0,∴p -1=p +q ,∴q =-1 这是{a n }为等比数列的必要条件.下面证明q =-1是{a n }为等比数列的充分条件. 当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1 (p ≠0,p ≠1)211)1()1(-----=n n n n p p p p a a =p 为常数 ∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1. ●锦囊妙计本难点所涉及的问题及解决方法主要有: (1)要理解“充分条件”“必要条件”的概念:当“若p 则q ”形式的命题为真时,就记作p ⇒q ,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 、B 互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).●歼灭难点训练 一、选择题1.(★★★★)函数f (x )=x |x +a |+b 是奇函数的充要条件是( ) A.ab =0 B.a +b =0 C.a =b D.a 2+b 2=02.(★★★★)“a =1”是函数y =cos 2ax -sin 2ax 的最小正周期为“π”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既非充分条件也不是必要条件 二、填空题3.(★★★★)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的_________.4.(★★★★)命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.三、解答题5.(★★★★★)设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n }、{b n }满足:b n =nna a a n+++++++ 321221,求证:数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.(★★★★★)已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.8.(★★★★★)p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b |=|α·β|=|α|·|β|<2×2=4. 设f (x )=x 2+ax +b ,则f (x )的图象是开口向上的抛物线. 又|α|<2,|β|<2,∴f (±2)>0.即有⇒⎩⎨⎧>+->++024024b a b a 4+b >2a >-(4+b )又|b |<4⇒4+b >0⇒2|a |<4+b (2)必要性:由2|a |<4+b ⇒f (±2)>0且f (x )的图象是开口向上的抛物线. ∴方程f (x )=0的两根α,β同在(-2,2)内或无实根. ∵α,β是方程f (x )=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2. 歼灭难点训练一、1.解析:若a 2+b 2=0,即a =b =0,此时f (-x )=(-x )|x +0|+0=-x ·|x |=-(x |x +0|+b ) =-(x |x +a |+b )=-f (x ).∴a 2+b 2=0是f (x )为奇函数的充分条件,又若f (x )=x |x +a |+b 是奇函数,即f (-x )= (-x )|(-x )+a |+b =-f (x ),则必有a =b =0,即a 2+b 2=0.∴a 2+b 2=0是f (x )为奇函数的必要条件. 答案:D2.解析:若a =1,则y =cos 2x -sin 2x =cos2x ,此时y 的最小正周期为π.故a =1是充分条件,反过来,由y =cos 2ax -sin 2ax =cos2ax .故函数y 的最小正周期为π,则a =±1,故a =1不是必要条件.答案:A二、3.解析:当a =3时,直线l 1:3x +2y +9=0;直线l 2:3x +2y +4=0.∵l 1与l 2的A 1∶A 2=B 1∶B 2=1∶1,而C 1∶C 2=9∶4≠1,即C 1≠C 2,∴a =3⇔l 1∥l 2.答案:充要条件4.解析:若P (x 0,y 0)是F (x ,y )=0和G (x ,y )=0的交点,则F (x 0,y 0)+λG (x 0,y 0)=0,即F (x ,y )+λG (x ,y )=0,过P (x 0,y 0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a =α+β,b =αβ.判定的条件是p :⎩⎨⎧>>12b a 结论是q :⎩⎨⎧>>11βα(注意p 中a 、b 满足的前提是Δ=a 2-4b ≥0)(1)由⎩⎨⎧>>11βα,得a =α+β>2,b =αβ>1,∴q ⇒p(2)为证明pq ,可以举出反例:取α=4,β=21,它满足a =α+β=4+21>2,b =αβ=4×21=2>1,但q 不成立. 综上讨论可知a >2,b >1是α>1,β>1的必要但不充分条件. 6.证明:①必要性:设{a n }成等差数列,公差为d ,∵{a n }成等差数列.dn a n n n n d n a n na a a b n n 32)1(1])1(3221[)21(32121121⋅-+=+++-++⋅+⋅++++=+++++++=∴ 从而b n +1-b n =a 1+n ·32d -a 1-(n -1) 32d =32d 为常数.故{b n }是等差数列,公差为32d .②充分性:设{b n }是等差数列,公差为d ′,则b n =(n -1)d ′ ∵b n (1+2+…+n )=a 1+2a 2+…+na n ①b n -1(1+2+…+n -1)=a 1+2a 2+…+(n -1)a n②①-②得:na n =2)1(2)1(--+n n b n n n b n -1 ∴a n =d n b d n b n d n b n b n b n n n '⋅-+='-+--'-++=--+-23)1(])2([21])1([2121211111,从而得a n +1-a n =23d ′为常数,故{a n }是等差数列.综上所述,数列{a n }成等差数列的充要条件是数列{b n }也是等差数列. 7.解:①必要性:由已知得,线段AB 的方程为y =-x +3(0≤x ≤3) 由于抛物线C 和线段AB 有两个不同的交点,所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y *有两个不同的实数解. 消元得:x 2-(m +1)x +4=0(0≤x ≤3) 设f (x )=x 2-(m +1)x +4,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤<⇒≥++-=≥=>⨯-+=∆3210310304)1(39)3(04)0(044)1(2m m m f f m ②充分性: 当3<x ≤310时, x 1=2)1(1216)1(122+-+>-+-+m m m m >0 3216)1310(1310216)1(1222=-+++≤-+-+=m m x∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组*有两组不同的实数解.因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件3<m ≤310.8.解:若关于x 的方程x 2+mx +n =0有2个小于1的正根,设为x 1,x 2. 则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1,根据韦达定理:⎩⎨⎧<<<-<⎩⎨⎧=-=+10202121n m n x x m x x 得 有-2<m <0;0<n <1即有q ⇒p . 反之,取m =-21491,02131,21,312⨯-=∆=+-=x x n <0 方程x 2+mx +n =0无实根,所以p q综上所述,p 是q 的必要不充分条件.。
高考数学集合与简易逻辑
高考数学《集合与简易逻辑》(考纲要求)
第一章 集合、简易逻辑考试内容:集合.子集.补集.交集.并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.知识结构:基本方法和数学思想1.必须弄清集合的元素是什么,是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.(1)含n 个元素的集合的子集个数为2n ,真子集(非空子集)个数为2n -1;(2);B B A A B A B A =⇔=⇔⊆(3);)(,)(B C A C B A C B C A C B A C I I I I I I ==4、一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.5.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;6.判断命题的真假要以真值表为依据。
原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;7.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;(3)等价法:即利用等价关系"A B B A "⇒⇔⇒判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;高考热点分析集合与简易逻辑是高中数学的重要基础知识,是高考的必考内容.本章知识的高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用、判断命题的真假、四种命题的关系、充要条件的判定等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.。
高中数学简易逻辑方法教案
高中数学简易逻辑方法教案教学目标1. 让学生理解逻辑方法在数学中的重要性。
2. 教授学生基本的逻辑思维技巧,如归纳法和演绎法。
3. 通过实例训练,提高学生运用逻辑方法解决问题的能力。
4. 培养学生的批判性思维,使他们能够评估论证的有效性。
教学内容与结构引入阶段- 活动:通过一个简单的数学谜题引起学生的兴趣,例如:“如果所有的奇数都大于0,那么所有大于0的数都是奇数吗?”- 讨论:引导学生讨论谜题的答案,并解释为什么这种推理是错误的。
基础知识讲解- 定义介绍:明确逻辑方法的定义,包括归纳法和演绎法。
- 案例分析:举例说明归纳法和演绎法在实际数学问题中的应用。
实践操作- 练习题目:提供一系列练习题,让学生尝试使用归纳法和演绎法解决问题。
- 小组合作:分组让学生合作解决更复杂的数学问题,并鼓励他们相互讨论逻辑过程。
总结提升- 课堂小结:回顾本节课所学的逻辑方法,强调其在数学解题中的作用。
- 拓展探究:布置一些具有挑战性的数学问题作为课后作业,鼓励学生独立思考。
教学方法与手段- 互动式教学:鼓励学生提问和参与讨论,以增强他们的逻辑思维能力。
- 案例教学:通过具体的数学问题案例,帮助学生理解和掌握逻辑方法。
- 分层次教学:根据学生的接受能力,逐步深入教学内容。
评价方式- 过程评价:观察学生在课堂上的参与度和讨论质量。
- 结果评价:通过课后作业和定期测验来评估学生对逻辑方法的掌握情况。
教学反思- 教师反馈:课后,教师应根据学生的表现进行反思,调整教学策略。
- 学生反馈:鼓励学生提出对教学方法的建议,以便更好地适应他们的学习需求。
高考数学强基计划专题1集合与简易逻辑
2022年高考数学尖子生强基计划专题1集合与简易逻辑 一、真题特点分析:1. 突出对思维能力的考查。
例1.【2020年武汉大学9】设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( ) A. 32B. 56C. 72D. 84答案:B 进行分类讨论例2.【2020 年清华大学】已知集合{},,1,2,3,,2020A B C ⊆,且A B C ⊆⊆,则有序集合组(),,A B C 的个数是( ).A .20202B .20203C .20204D .20205答案:C例3.【北大】已知()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值n n ni n H G =≤=⎛⎫∑≤n i n ⎛⎫∑ni ≤∑ni ⎛⎫≤∑1nn i i n n +⎛⎫≤+=∑∑,即)1≤,即))1n ni ix ≤∏法二:由11.ni ix ==∏及要证的结论分析,由柯西不等式得))211i i x x ⎫≥⎪⎭,从而可设1i i y x =,且1111.n ni i i iy x ====∏∏从而本题也即证))11.n ni i y =≥∏从而))211nni ii x x ⎫+≥⎪⎭∏,即))21nnii ix y ≥∏,假设原式不成立,即))11,nni i x =<∏则))11.nni i y =<∏从而))21nnii ix y <∏,矛盾.得证.2.注重和解题技巧,考查学生应用知识解决问题的能力。
例4.【北大】10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根. 【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.二、应试和准备策略1. 注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。
成人高考数学知识点梳理
第一部分代数第一章 集合和简易逻辑一.元素与集合的关系: x A ∈ 或 x∉A 二.集合的运算:1.交集 A ∩B={x︱x A ∈且x B ∈} 2.并集 A ∪B ={x︱x A ∈或x B ∈} 三.充分条件.必要条件:1.充分条件:若p q ⇒,则p 是q 充分条件. 2.必要条件:若q p ⇒,则p 是q 必要条件.3.充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.第二章 函数一、函数的定义:1.理解f的含义,掌握求函数解析式的方法-配方法 2.求函数值3.求函数定义域:1)分式的分母不等于0;2)偶次根式的被开方数≥0;3)对数的真数>0;二.函数的性质1.单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数2.奇偶性 (1)定义:若()()f x f x -=,则函数)(x f y =是偶函数;若()()f x f x -=-,则函数)(x f y =是奇函数.(2)奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。
(3)常见函数的图象及性质(熟记)3.反函数定义及求法:(1)反解;(2)互换x,y;(3)写出定义域。
成人高考数学考点分析(文科)-副本
第一章 集合和简易逻辑一、考点:交集、并集、补集 概念:1、由所有既属于集合A 又属于集合B 的元素所组成的集合,叫做集合A 和集合B 的交集,记作A ∩B ,读作“A 交B ”(求公共元素)A ∩B={x|x ∈A,且x ∈B}2、由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 和集合B 的并集,记作A ∪B ,读作“A 并B ”(求全部元素)A ∪B={x|x ∈A,或x ∈B}3、如果已知全集为U ,且集合A 包含于U ,则由U 中所有不属于A 的元素组成的集合,叫做集合A 的补集,记作A C u ,读作“A 补”A C u ={ x|x ∈U ,且x A }解析:集合的交集或并集主要以例举法或不等式的形式出现二、考点:简易逻辑概念:在一个数学命题中,往往由条件A 和结论B 两部分构成,写成“如果A 成立,那么B 成立”。
1. 充分条件:如果A 成立,那么B 成立,记作“A →B ”“A 推出B ,B 不能推出A ”。
2. 必要条件:如果B 成立,那么A 成立,记作“A ←B ”“B 推出A ,A 不能推出B ”。
3. 充要条件:如果A →B,又有A ←B ,记作“A ←B ”“A 推出B ,B 推出A ”。
解析:分析A 和B 的关系,是A 推出B 还是B 推出A ,然后进行判 2001年(1) 设全集M={1,2,3,4,5},N={2,4,6},T={4,5,6},则(M T)N 是( )(A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{(2) 命题甲:A=B ,命题乙:sinA=sinB . 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。
2002年(1) 设集合}2,1{=A ,集合}5,3,2{=B ,则B A 等于( )(A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5}(2) 设甲:3>x ,乙:5>x ,则( )(A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2003年(1)设集合{}22(,)1M x y x y =+≤,集合{}22(,)2N x y x y =+≤,则集合M 与N 的关系是(A )M N=M (B )M N=∅ (C )N M (D )MN(9)设甲:1k =,且 1b =;乙:直线y kx b =+与y x =平行。
高考数学专题复习全集-03简易逻辑--反证法
原结论词 有无穷多个
存在唯一的
对任意 x, 使…恒成立
反设词 只有有限多个 不存在或至少存在两个 至少有一个 x, 使…不成立
4.引出矛盾的形式 ①由假设结论 q 不成立, 得到条件 p 不成立; ②由假设结论 q 不成立, 得到结论 q 成立; ③由假设结论 q 不成立, 得到一种恒假命题; ④分别由假设与条件推得的两个结论矛盾.
①结论本身以否认形式出现; ②结论是“最少”、“至多”、“唯一”、“都是” 等③形 结式 论涉; 及“存在或不存在”,“有限或无限”等 形④式 结;论的背面比原结论更具体或更易于证明.
3.特殊结论的反设
原结论词 大于(>) 小于(<) 都是
都不是
至少 n 个 至多 n 个
反设词 不大于(≤) 不小于(≥) 不都是 至少有一个是 至多 n-1 个 至少 n+1 个
∴△1, △2, △3 中最少有一种非 故 负所. 述三个方程中最少有一种方程有实数根.
2.对于函数 f(x)=x2+ax+b(a, bR), 当 x[-1, 1] 时, |f(x)| 的最
大值为 M,
求证:
M≥
1 2
.
证:
假设
M<
1 2
,
则
|f(1)|=|1+a+b|<
1 2
,
|f(0)|=|b|<
大值为 M,
求证:
M≥
1 2
.
3.方程 x2 -mx+4=0 在[-1, 1]上有解, 求实数 m 的取值范畴.
1.证: 设三个方程的鉴别式分别为△1, △2, △3,
由 △1+△2+△3=b2 -ac+c2 -ba+a2 -cb = 12[(a-b)2+(b-c)2+(c-a)2]≥0
高考数学第一轮复习 集合与简易逻辑
高考数学第一轮复习集合与简易逻辑一、知识结构二、考点目标定位1.理解集合、子集、补集、交集、并集的概念;了解属于、包含、相等关系的意义.2.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.3.理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义.4.学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问题,形成良好的思维品质.三、复习方略指南本章内容在高考中以考查空集与全集的概念,元素与集合、集合与集合之间的关系,集合的交、并、补运算为重点,以上内容又以集合的运算为重点考查内容.逻辑联结词与充要条件这部分,以充要条件为重点考查内容.本章内容概念性强,考题大都为容易的选择题,因此复习中应注意:1.复习集合,可以从两个方面入手,一方面是集合的概念之间的区别与联系,另一方面是对集合知识的应用.2.主要是把握集合与元素、集合与集合之间的关系,弄清有关的术语和符号,特别是对集合中的元素的属性要分清楚.3.要注意逻辑联结词“或”“且”“非”与集合中的“并”“交”“补”是相关的,二者相互对照可加深对双方的认识和理解.4.复习逻辑知识时,要抓住所学的几个知识点,通过解决一些简单的问题达到理解、掌握逻辑知识的目的.5.集合多与函数、方程、不等式有关,要注意知识的融会贯通.一、集合的概念与运算知识梳理1.集合的有关概念2.元素与集合、集合与集合之间的关系 (1)元素与集合:“∈”或“∉”.(2)集合与集合之间的关系:包含关系、相等关系. 3.集合的运算(1)交集:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集,记为A ∩B ,即A ∩B ={x |x ∈A 且x ∈B }.(2)并集:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 与集合B 的并集,记为A ∪B ,即A ∪B ={x |x ∈A 或x ∈B }.(3)补集:一般地,设S 是一个集合,A 是S 的一个子集(即A ⊆S ),由S 中所有不属于A 的元素组成的集合,叫做子集A 在全集S 中的补集(或余集),记为SA ,即SA ={x |x ∈S 且x ∉A }.点击双基1.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于 A.{x |x <-2} B.{x |x >3} C.{x |-1<x <2} D.{x |2<x <3}解析:M ={x |x 2<4}={x |-2<x <2},N ={x |x 2-2x -3<0}={x |-1<x <3},结合数轴,0-1-2231x∴M ∩N ={x |-1<x <2}. 答案:C2.已知集合A ={x ∈R |x <5-2},B ={1,2,3,4},则(RA )∩B 等于A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}解析:RA ={x ∈R |x ≥5-2},而5-2∈(3,4),∴(RA )∩B ={4}.答案:D3.设集合P ={1,2,3,4,5,6},Q ={x ∈R |2≤x ≤6},那么下列结论正确的是 A.P ∩Q =P B.P ∩Q Q C.P ∪Q =Q D.P ∩Q P 解析:P ∩Q ={2,3,4,5,6},∴P ∩Q P . 答案:D4.设U 是全集,非空集合P 、Q 满足P Q U ,若求含P 、Q 的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是_______________.解析:构造满足条件的集合,实例论证.U ={1,2,3},P ={1},Q ={1,2},则(UQ )={3},(UP )={2,3},易见(UQ )∩P =∅.答案:(UQ )∩P5.已知集合A ={0,1},B ={x |x ∈A ,x ∈N*},C ={x |x ⊆A },则A 、B 、C 之间的关系是___________________.解析:用列举法表示出B ={1},C ={∅,{1},{0},A },易见其关系.这里A 、B 、C是不同层次的集合,C 以A 的子集为元素,同一层次的集合可有包含关系,不同层次的集合之间只能是从属关系.答案:B A ,A ∈C ,B ∈C 典例剖析【例1】函数f (x )=⎩⎨⎧∈-∈,,M x xP x x其中P 、M 为实数集R 的两个非空子集,又规定f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.给出下列四个判断,其中正确判断有 ①若P ∩M =∅,则f (P )∩f (M )=∅ ②若P ∩M ≠∅,则f (P )∩f (M )≠∅ ③若P ∪M =R ,则f (P )∪f (M )=R ④若P ∪M ≠R ,则f (P )∪f (M )≠RA.1个B.2个C.3个D.4个 剖析:由题意知函数f (P )、f (M )的图象如下图所示.f M ()f P ()xyO设P =[x 2,+∞),M =(-∞,x 1],∵|x 2|<|x 1|,f (P )=[f (x 2),+∞),f (M )=[f (x 1),+∞),则P ∩M =∅.f M ()f P ()xy f x ()1f x ()2x 1x 2O而f (P )∩f (M )=[f (x 1),+∞)≠∅,故①错误.同理可知②正确.设P =[x 1,+∞),M =(-∞,x 2],∵|x 2|<|x 1|,则P ∪M =R .f (P )=[f (x 1),+∞),f (M )=[f (x 2),+∞), f (P )∪f (M )=[f (x 1),+∞)≠R ,故③错误.同理可知④正确. 答案:B【例2】 已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值.解:A ={x |-2<x <-1或x >0}, 设B =[x 1,x 2],由A ∩B =(0,2]知x 2=2,且-1≤x 1≤0, ①由A ∪B =(-2,+∞)知-2≤x 1≤-1. ②由①②知x 1=-1,x 2=2,∴a =-(x 1+x 2)=-1,b =x 1x 2=-2.评述:本题应熟悉集合的交与并的涵义,熟练掌握在数轴上表示区间(集合)的交与并的方法.【例3】记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1=的定义域为B . (1)求A ;(2)若B ⊆A ,求实数a 的取值范围.提示:(1)由2-13++x x ≥0,得11+-x x ≥0,∴x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞] (2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0. ∵a <1,∴a +1>2a .∴B =(2a ,a +1).∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2.而a <1,∴21≤a <1或a ≤-2.故当B ⊆A 时,实数a 的取值范围是(-∞,-2)∪[21,1].【例4】设集合P={m|-1<m ≤0},Q={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是A.P QB.Q PC.P=QD.P ∩Q=Q剖析:Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立}, 对m 分类:①m =0时,-4<0恒成立;②m <0时,需Δ=(4m )2-4×m ×(-4)<0,解得m <0. 综合①②知m ≤0,∴Q ={m ∈R |m ≤0}. 答案:A评述:本题容易忽略对m =0的讨论,应引起大家足够的重视.【例5】 已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围.剖析:如果目光总是停留在集合这一狭窄的知识范围内,此题的思维方法是很难找到的.事实上,集合符号在本题中只起了一种“化妆品”的作用,它的实际背景是“抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)有公共点,求实数m 的取值范围”.这种数学符号与数学语言的互译,是考生必须具备的一种数学素质.解:由⎩⎨⎧≤≤=+-=+-+),20(01,022x y x y mx x 得x 2+(m -1)x +1=0. ① ∵A ∩B ≠∅,∴方程①在区间[0,2]上至少有一个实数解.首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1.当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1知,方程①只有负根,不符合要求; 当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①有两个互为倒数的正根.故必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.综上所述,所求m 的取值范围是(-∞,-1).评述:上述解法应用了数形结合的思想.如果注意到抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)的公共点在线段上,本题也可以利用公共点内分线段的比λ的取值范围建立关于m 的不等式来解.【例6】设m ∈R ,A ={(x ,y )|y =-3x +m },B ={(x ,y )|x =cos θ,y =sin θ,0<θ<2π=,且A ∩B ={(cos θ1,sin θ1),(cos θ2,sin θ2)}(θ1≠θ2),求m 的取值范围.提示:根据题意,直线y =-3x +m 与圆x 2+y 2=1(x ≠1)交于两点,22)3(1||-+m <1且0≠-3×1+m .∴-2<m <2且m ≠3. 答案:-2<m <2且m ≠3.【例7】 设M 、N 是两个非空集合,定义M 与N 的差集为M -N ={x |x ∈M 且x ∉N },则M -(M -N )等于A.NB.M ∩NC.M ∪ND.M 解析:M -N ={x |x ∈M 且x ∉N }是指图(1)中的阴影部分.MNMN(1) (2)同样M -(M -N )是指图(2)中的阴影部分.答案:B【例8】 设集合P ={1,a ,b },Q ={1,a 2,b 2},已知P =Q ,求1+a 2+b 2的值.解:∵P =Q ,∴⎪⎩⎪⎨⎧==22,b b a a①或⎪⎩⎪⎨⎧==.,22a b b a②解①得a =0或a =1,b =0或b =1.(舍去)由②得a =b 2=a 4,∴a =1或a 3=1. a =1不合题意, ∴a 3=1(a ≠1).∴a =ω,b =ω2,其中ω=-21+23i. 故1+a 2+b 2=1+ω2+ω4=1+ω+ω2=0.练习测试1.集合A ={(x ,y )|x +y =0},B ={(x ,y )|x -y =2},则A ∩B 是 A.(1,-1)B.⎩⎨⎧-==11y xC.{(1,-1)}D.{1,-1}2.设集合A ={5,log 2(a +3)},集合B ={a ,b }.若A ∩B ={2},则A ∪B =______________. 3.设A ={x |1<x <2},B ={x |x >a },若A B ,则a 的取值范围是___________________.4.已知集合A ={x ∈R |ax 2+2x +1=0,a ∈R }只有一个元素,则a 的值为__________________.5.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是A.(IA )∪B =IB.(IA )∪(IB )=I C.A ∩(IB )=∅D.(I A )∩(IB )=IB6.记函数f (x )=log 2(2x -3)的定义域为集合M ,函数g (x )= )1)(3(--x x 的定义域为集合N .求:(1)集合M 、N ;(2)集合M ∩N 、M ∪N .7.已知A ={x ∈R |x 2+2x +p =0}且A ∩{x ∈R |x >0}=∅,求实数p 的取值范围.8.已知P ={(x ,y )|(x +2)2+(y -3)2≤4},Q ={(x ,y )|(x +1)2+(y -m )2<41},且P ∩Q =Q ,求m 的取值范围.9.若B ={x |x 2-3x +2<0},是否存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0}且A ∩B =A ?请说明你的理由.小结1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.教学点睛1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.3.强化数形结合、分类讨论的数学思想.二、逻辑联结词与四种命题知识梳理 1.逻辑联结词(1)命题:可以判断真假的语句叫做命题. (2)逻辑联结词:“或”“且”“非”这些词叫做逻辑联结词.(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫做复合命题.(4)真值表:表示命题真假的表叫真值表. 2.四种命题 (1)四种命题原命题:如果p ,那么q (或若p 则q );逆命题:若q 则p ; 否命题:若⌝p 则⌝q ;逆否命题:若⌝q 则⌝p .(2)四种命题之间的相互关系这里,原命题与逆否命题,逆命题与否命题是等价命题.点击双基1.由“p :8+7=16,q :π>3”构成的复合命题,下列判断正确的是 A.p 或q 为真,p 且q 为假,非p 为真 B.p 或q 为假,p 且q 为假,非p 为真 C.p 或q 为真,p 且q 为假,非p 为假 D.p 或q 为假,p 且q 为真,非p 为真解析:因为p 假,q 真,由复合命题的真值表可以判断,p 或q 为真,p 且q 为假,非p 为真.答案:A2.命题p :若a 、b ∈R ,则|a |+|b |>1是|a +b |>1的充分而不必要条件;命题q :函数y =2|1|--x 的定义域是(-∞,-1]∪[3,+∞),则A.“p 或q ”为假B.“p 且q ”为真C. p 真q 假D. p 假q 真 解析:∵|a +b |≤|a |+|b |,若|a |+|b |>1,不能推出|a +b |>1,而|a +b |>1,一定有|a |+|b |>1,故命题p 为假. 又由函数y =2|1|--x 的定义域为|x -1|-2≥0,即|x -1|≥2,即x -1≥2或x -1≤-2.故有x ∈(-∞,-1]∪[3,+∞). ∴q 为真命题. 答案:D3.设函数f (x )的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x ∈R ,有f (x )≤M ,则M 是函数f (x )的最大值; ②若存在x 0∈R ,使得对任意x ∈R ,且x ≠x 0,有f (x )<f (x 0),则f (x 0)是函数f (x )的最大值;③若存在x 0∈R ,使得对任意x ∈R ,有f (x )≤f (x 0),则f (x 0)是函数f (x )的最大值.这些命题中,真命题的个数是A.0B.1C.2D.3 解析:①错.原因:可能“=”不能取到.②③都正确. 答案:C4.命题“若m >0,则关于x 的方程x 2+x -m =0有实数根”与它的逆命题、否命题、逆否命题中,真命题的个数为___________________.解析:先写出其命题的逆命题、否命题、逆否命题,逐一判断.答案:25.已知命题p:函数y=log a(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:如果函数y=f(x-3)的图象关于原点对称,那么函数y=f(x)的图象关于点(3,0)对称.则A.“p且q”为真B.“p或q”为假C. p真q假D. p假q真解析:解决本题的关键是判定p、q的真假.由于p真,q假(可举反例y=x+3),因此正确答案为C.答案:C典例剖析【例1】给出命题“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,对其原命题、逆命题、否命题、逆否命题而言,真命题有A.0个B.2个C.3个D.4个剖析:原命题和逆否命题为真.答案:B【例2】若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假.思路:认清命题的条件p和结论q,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.解:逆命题“若ax2+bx+c=0(a、b、c∈R)有两个不相等的实数根,则ac<0”是假命题,如当a=1,b=-3,c=2时,方程x2-3x+2=0有两个不等实根x1=1,x2=2,但ac=2>0.否命题“若ac≥0,则方程ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根”是假命题.这是因为它和逆命题互为逆否命题,而逆命题是假命题.逆否命题“若ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根,则ac≥0”是真命题.因为原命题是真命题,它与原命题等价.评述:解答命题问题,识别命题的条件p与结论q的构成是关键.【例3】指出下列复合命题的形式及其构成.(1)若α是一个三角形的最小内角,则α不大于60°;(2)一个内角为90°,另一个内角为45°的三角形是等腰直角三角形;(3)有一个内角为60°的三角形是正三角形或直角三角形.解:(1)是非p形式的复合命题,其中p:若α是一个三角形的最小内角,则α>60°.(2)是p且q形式的复合命题,其中p:一个内角为90°,另一个内角为45°的三角形是等腰三角形,q:一个内角为90°,另一个内角为45°的三角形是直角三角形.(3)是p或q形式的复合命题,其中p:有一个内角为60°的三角形是正三角形,q:有一个内角为60°的三角形是直角三角形.【例4】写出命题“当abc=0时,a=0或b=0或c=0”的逆命题、否命题、逆否命题,并判断它们的真假.剖析:把原命题改造成“若p则q”形式,再分别写出其相应的逆命题、否命题、逆否命题.在判断真假时要注意利用等价命题的原理和规律.解:原命题:若abc=0,则a=0或b=0或c=0,是真命题.逆命题:若a=0或b=0或c=0,则abc=0,是真命题.否命题:若abc≠0,则a≠0且b≠0且c≠0,是真命题.逆否命题:若a≠0且b≠0且c≠0,则abc≠0,是真命题.【例5】有A、B、C三个盒子,其中一个内放有一个苹果,在三个盒子上各有一张纸条.A盒子上的纸条写的是“苹果在此盒内”,B盒子上的纸条写的是“苹果不在此盒内”,C盒子上的纸条写的是“苹果不在A盒内”.如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里?解:若苹果在A盒内,则A、B两个盒子上的纸条写的为真,不合题意.若苹果在B盒内,则A、B两个盒子上的纸条写的为假,C盒子上的纸条写的为真,符合题意,即苹果在B盒内.同样,若苹果在C盒内,则B、C两盒子上的纸条写的为真,不合题意.综上,苹果在B盒内.练习测试1.如果原命题的结论是“p且q”形式,那么否命题的结论形式为A.⌝p且⌝qB.⌝p或⌝qC.⌝p或⌝qD.⌝q或⌝p2.下列四个命题中真命题是①“若xy=1,则x、y互为倒数”的逆命题②“面积相等的三角形全等”的否命题③“若m≤1,则方程x2-2x+m=0有实根”的逆否命题④“若A∩B=B,则A⊆B”的逆否命题A.①②B.②③C.①②③D.③④3.分别用“p或q”“p且q”“非p”填空.(1)命题“15能被3和5整除”是___________________形式;(2)命题“16的平方根是4或-4”是______________形式;(3)命题“李强是高一学生,也是共青团员”是___________________形式.4.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是_______________.5.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p1“第一次射击击中飞机”,命题p2“第二次射击击中飞机”,试用p1、p2及联结词“或”“且”“非”表示下列命题:(1)两次都击中飞机;(2)两次都没击中飞机;(3)恰有一次击中飞机;(4)至少有一次击中飞机.6.设A、B为两个集合.下列四个命题:①A B⇔对任意x∈A,有x∉B;②A B⇔A∩B=∅;③A B⇔A B;④A B⇔存在x ∈A,使得x∉B.其中真命题的序号是______________.(把符合要求的命题序号都填上)7.命题:已知a、b为实数,若x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.8.写出下列命题非的形式:(1)p:函数f(x)=ax2+bx+c的图象与x轴有唯一交点;(2)q:若x=3或x=4,则方程x2-7x+12=0.9.小李参加全国数学联赛,有三位同学对他作如下的猜测.甲:小李非第一名,也非第二名;乙:小李非第一名,而是第三名;丙:小李非第三名而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,问:小李得了第几名?10、写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0;(3)若一个数是质数,则这个数是奇数.小结1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.原命题与它的逆否命题同为真假,原命题的逆命题与否命题同为真假,所以对一些命题的真假判断(或推证),我们可通过对与它同真假的(具有逆否关系的)命题来判断(或推证).教学点睛1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.要明确原命题、否命题、逆命题、逆否命题之间的关系.三、充要条件与反证法知识梳理1.充分条件:如果p⇒q,则p叫q的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q是p的必要条件.2.必要条件:如果q⇒p,则p叫q的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q是p的充分条件.3.充要条件:如果既有p⇒q,又有q⇒p,记作p⇔q,则p叫做q的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的.4.反证法:当直接证明有困难时,常用反证法.点击双基1.ac2>bc2是a>b成立的A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件解析:a>b ac2>bc2,如c=0.答案:A2.已知a、b、c为非零的平面向量.甲:a·b=a·c,乙:b=c,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件 解析:命题甲:a ·b =a ·c ⇒a ·(b -c )=0⇒a =0或b =c . 命题乙:b =c ,因而乙⇒甲,但甲乙. 故甲是乙的必要条件但不是充分条件. 答案:B3.在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 解析:在△ABC 中,A >30°⇒0<sin A <1sin A >21,sin A >21⇒30°<A <150°⇒A >30°.∴“A >30°”是“sin A >21”的必要不充分条件. 答案:B4.若条件p :a >4,q :5<a <6,则p 是q 的______________.解析:a >45<a <6,如a =7虽然满足a >4,但显然a 不满足5<a <6. 答案:必要不充分条件5.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若a >0且b 2-4ac <0,则对任意x ∈R ,有ax 2+bx +c >0,反之,则不一定成立.如a =0,b =0且c >0时,也有对任意x ∈R ,有ax 2+bx +c >0.因此应选A.答案:A 典例剖析【例1】 使不等式2x 2-5x -3≥0成立的一个充分而不必要条件是 A.x <0 B.x ≥0C.x ∈{-1,3,5}D.x ≤-21或x ≥3 剖析:∵2x 2-5x -3≥0成立的充要条件是x ≤-21或x ≥3,∴对于A 当x =-31时2x 2-5x -3≥0.同理其他也可用特殊值验证.答案:C【例2】 求证:关于x 的方程ax 2+bx +c =0有一根为1的充分必要条件是a +b +c =0.证明:(1)必要性,即“若x =1是方程ax 2+bx +c =0的根,则a +b +c =0”.∵x =1是方程的根,将x =1代入方程,得a ·12+b ·1+c =0,即a +b +c =0.(2)充分性,即“若a +b +c =0,则x =1是方程ax 2+bx +c =0的根”.把x =1代入方程的左边,得a ·12+b ·1+c =a +b +c .∵a +b +c =0,∴x =1是方程的根. 综合(1)(2)知命题成立.【例3】求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件. 证明:必要性:(1)方程有一正根和一负根,等价于⇒⎪⎩⎪⎨⎧<=>-=0104421a x x a Δa <0. (2)方程有两负根,等价于⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥-=0102044aa a Δ0<a ≤1.综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1.充分性:由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.故a <0或0<a ≤1是方程ax 2+2x +1=0至少有一负根的充分条件.答案:a <0或0<a ≤1.【例4】 下列说法对不对?如果不对,分析错误的原因.(1)x 2=x +2是x 2+x =x 2的充分条件; (2)x 2=x +2是x 2+x =x 2的必要条件.解:(1)x 2=x +2是x 2+x =x 2的充分条件是指x 2=x +2⇒x 2+x =x 2.但这里“⇒”不成立,因为x =-1时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是应用了错误的推理:x 2=x +2⇒x =2+x ⇒x 2=x 2+x .这里推理的第一步是错误的(请同学补充说明具体错在哪里).(2)x 2=x +2是x 2+x =x 2的必要条件是指x 2+x =x 2⇒x 2=x +2.但这里“⇒”不成立,因为x =0时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:x 2+x =x 2⇒2+x =x ⇒x +2=x 2.这里推理的第一步是错误的(请同学补充说明具体错在哪里). 评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x 2=x +2的真值集合是{-1,2},x 2+x =x 2的真值集合是{0,2},{-1,2}{0,2},而{0,2} {-1,2},所以(1)(2)两个结论都不对. 【例5】 指出下列命题中,p 是q 的什么条件. (1)p :0<x <3,q :|x -1|<2; (2)p :(x -2)(x -3)=0,q :x =2;(3)p :c =0,q :抛物线y =ax 2+bx +c 过原点. 解:(1)p :0<x <3,q :-1<x <3. p 是q 的充分但不必要条件.(2)p q ,q ⇒p .p 是q 的必要但不充分条件.(3)p 是q 的充要条件.评述:依集合的观点看,若A B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 是B 的充要条件.练习测试1.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2. “cos2α=-23”是“α=k π+12π5,k ∈Z ”的 A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分又不必要条件 3.在△ABC 中,“A >B ”是“cos A <cos B ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.5.函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是 A.a ∈(-∞,1] B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)6.已知数列{a n }的前n 项和S n =p n+q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件. 7.设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y-n ≤0},那么点P (2,3)∈A ∩(UB )的充要条件是A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >58.已知关于x 的一元二次方程mx 2-4x +4=0, ① x 2-4mx +4m 2-4m -5=0. ② 求使方程①②都有实根的充要条件. 9.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.10.若x 、y 、z 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π,则a 、b 、c 中是否至少有一个大于零?请说明理由.小结1.要注意一些常用的“结论否定形式”,如“至少有一个”“至多有一个”“都是”的否定形式是“一个也没有”“至少有两个”“不都是”.2.证明充要性要从充分性、必要性两个方面来证明. 教学点睛1.掌握常用反证法证题的题型,如含有“至少有一个”“至多有一个”等字眼多用反证法.2.强调反证法的第一步,要与否命题分清.3.要证明充要性应从充分性、必要性两个方面来证.练习测试解答 一、集合的概念与运算1、解析:⎩⎨⎧=-=+20y x y x ⇒⎩⎨⎧-==.1,1y x答案:C2、解析:∵A ∩B ={2},∴log 2(a +3)=2.∴a =1.∴b =2.∴A ={5,2},B ={1,2}.∴A ∪B ={1,2,5}. 答案:{1,2,5}3、解析:A B 说明A 是B 的真子集,利用数轴(如下图)可知a ≤1.a 1 2答案:a ≤14、解析:若a =0,则x =-21. 若a ≠0,Δ=4-4a =0,得a =1. 答案:a =0或a =15、解析一:∵A 、B 、I 满足A ⊆B ⊆I ,先画出文氏图,根据文氏图可判断出A 、C 、D 都是正确的.B AI解析二:设非空集合A 、B 、I 分别为A ={1},B ={1,2},I ={1,2,3}且满足A ⊆B ⊆I .根据设出的三个特殊的集合A 、B 、I 可判断出A 、C 、D 都是正确的.答案:B6、解:(1)M ={x |2x -3>0}={x |x >23}; N ={x |(x -3)(x -1)≥0}={x |x ≥3或x ≤1}. (2)M ∩N ={x |x ≥3};M ∪N ={x |x ≤1或x >23}.7、解:∵A ∩{x ∈R |x >0}=∅,∴(1)若A =∅,则Δ=4-4p <0,得p >1; (2)若A ≠∅,则A ={x |x ≤0},即方程x 2+2x +p =0的根都小于或等于0. 设两根为x 1、x 2,则⎪⎩⎪⎨⎧≥=≤-=+≥-=.0,02,0442121p x x x x p Δ ∴0≤p ≤1. 综上所述,p ≥0. 8、解:点集P 表示平面上以O 1(-2,3)为圆心,2为半径的圆所围成的区域(包括圆周);点集Q 表示平面上以O 2(-1,m )为圆心,21为半径的圆的内部.要使P ∩Q =Q ,应使⊙O 2内含或内切于⊙O 1.故有|O 1O 2|2≤(R 1-R 2)2,即(-1+2)2+(m -3)2≤(2-21)2.解得3-25≤m ≤3+25.评述:本题选题目的是:熟悉用集合语言表述几何问题,利用数形结合方法解题.9、解:∵B ={x |1<x <2},若存在实数a ,使A ∩B =A ,则A ={x |(x -a )(x -a 2)<0}. (1)若a =a 2,即a =0或a =1时,此时A ={x |(x -a )2<0}=∅,满足A ∩B =A ,∴a =0或a =1.(2)若a 2>a ,即a >1或a <0时,A ={x |0<x <a 2},要使A ∩B =A ,则⎩⎨⎧≤≥212a a ⇒1≤a≤2,∴1<a ≤2.(3)若a 2<a ,即0<a <1时,A ={x |a <x <a 2},要使A ∩B =A ,则⎩⎨⎧≥≤122a a ⇒1≤a ≤2,∴a ∈∅.综上所述,当1≤a ≤2或a =0时满足A ∩B =A ,即存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0=且A ∩B =A 成立.二、逻辑联结词与四种命题1、解析:p 且q 的否定为⌝p 或⌝q .答案:B2、解析:写出满足条件的命题再进行判断.答案:C 3、答案:(1)p 且q (2)p 或q (3)p 且q 4、解:(1)两次都击中飞机是p 1且p 2;(2)两次都没击中飞机是⌝p 1且⌝p 2;(3)恰有一次击中飞机是p 1且⌝p 2,或p 2且⌝p 1; (4)至少有一次击中飞机是p 1或p 2. 5、答案:若a ≠0且b ≠0,则ab ≠06、解析:A B ⇔存在x ∈A ,有x ∉B ,故①错误;②错误;④正确.亦或如下图所示.B AA B ∩③反例如下图所示.ABA B ⇒A B .反之,同理.答案:④7、分析:原命题中,a 、b 为实数是前提,条件是x 2+ax +b ≤0有非空解集(即不等式有解),结论是a 2-4b ≥0,由四种命题的关系可得出其他三种命题.解:逆命题:已知a 、b 为实数,若a 2-4b ≥0,则x 2+ax +b ≤0有非空解集.否命题:已知a 、b 为实数,若x 2+ax +b ≤0没有非空解集,则a 2-4b <0.逆否命题:已知a 、b 为实数,若a 2-4b <0,则x 2+ax +b ≤0没有非空解集. 原命题、逆命题、否命题、逆否命题均为真命题.8、解:(1)函数f (x )=ax 2+bx +c 的图象与x 轴没有交点或至少有两个交点.(2)若x =3或x =4,则x 2-7x +12≠0. 9、解:(1)假设小李得了第三名,则甲全猜对,乙全猜错,显然与题目已知条件相矛盾,故假设不可能.(2)假设小李得了第二名,则甲猜对一半,乙猜对一半,也与已知条件矛盾,故假设不可能.(3)假设小李得了第一名,则甲猜对一半,乙全猜错,丙全猜对,无矛盾. 综合(1)(2)(3)知小李得了第一名. 10、解:(1)命题的否定:x 、y 都是奇数,则x +y 不是偶数,为假命题.原命题的否命题:若x 、y 不都是奇数,则x +y 不是偶数,是假命题. (2)命题的否定:xy =0则x ≠0且y ≠0,为假命题. 原命题的否命题:若xy ≠0,则x ≠0且y ≠0,是真命题.(3)命题的否定:一个数是质数,则这个数不是奇数,是假命题. 原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题. 三、充要条件与反证法1、解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q .但由于rp ,∴q p .答案:A 2、解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5. 答案:A3、解析:在△ABC 中,A >B ⇔cos A <cos B (余弦函数单调性).答案:C4、答案:充分不必要5、解析:∵f (x )=x 2-2ax -3的对称轴为x =a ,∴y =f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1. 答案:D6、分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件.解:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=(p -1)·p n -1.由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)·p =p (p +q ),∴q =-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q =-1.再证充分性:当p ≠0且p ≠1且q =-1时,S n =p n-1,a n =(p -1)·p n -1,1-n na a =p (n ≥2),∴{a n }是等比数列. 7、解析:∵UB ={(x ,y )|n <x +y },将P (2,3)分别代入集合A 、B 取交集即可.∴选A.答案:A8、解:方程①有实数根的充要条件是Δ1=(-4)2-16m ≥0,即m ≤1;方程②有实数根的充要条件是Δ2=(4m )2-4(4m 2-4m -5)≥0,即m ≥-45. ∴方程①②都有实数根的充要条件是-45≤m ≤1. 9、证明:反证法:假设三个方程中都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0.相加有a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0,(a -b )2+(b -c )2+(c -a )2≤0. ①由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.10、解:假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +2π+y 2-2z +3π+z 2-2x +6π=(x -1)2+(y -1)2+(z -1)2+π-3, ∵π-3>0,且无论x 、y 、z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,∴a +b +c >0.这与a +b +c ≤0矛盾.因此,a 、b 、c 中至少有一个大于0.。
数学高考基础知识、常见结论详解(一)
数学高考基础知识、常见结论详解一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征:确定性、互异性、无序性互异性:例如:,,若A=B求;(A={-1,1,0})(2)集合与元素的关系用符号表示。
(、)(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。
(4)集合的表示法:、、。
(列举法,描述法,韦恩图示法)注意:区分集合中元素的形式:例如:;;;;;(5)空集是指不含任何元素的集合。
(、和的区别;0与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为,在讨论的时候不要遗忘了的情况。
如:,如果,求的取值。
()二、集合间的关系及其运算(1)符号是表示元素与集合之间关系的,立体几何中则体现;(;点与直线(面)的关系)符号是表示集合与集合之间关系的,立体几何中则体现。
(;直线与面的关系)(2);;(3)对于任意集合,则:①;;;(=;=;)②;;;;()③;;()(4)①若为偶数,则;若为奇数,则;②若被3除余0,则;若被3除余1,则;若被3除余2,则;三、集合中元素的个数的计算:若集合中有个元素,则集合的所有不同的子集个数为,所有真子集的个数是,所有非空真子集的个数是。
()四、若;则是的充分非必要条件;若;则是的必要非充分条件;五、原命题与逆否命题,否命题与逆命题具有相同的;(真假值)注意:“若,则”在解题中的运用,如:“”是“”的条件。
(充分非必要)六、反证法:当证“若,则”感到困难时,改证它的等价命题“若则”成立,步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。
矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。
适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。
(不等于;小于或等于;大于或等于;不是;不都是;至少有两个;一个也没有;存在一个)二、函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:如:若,;问:到的映射有个,到的映射有个;到的函数有个,若,则到的一一映射有个。
高三数学简易逻辑一轮复习
第十一章简易逻辑1.理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.2.学会运用数形结合、分类讨论的思想方法分析和解决有关集合问题,形成良好的思维品质;学会判断和推理,解决简易逻辑问题,培养逻辑思维能力.1.简易逻辑是一个新增内容,据其内容的特点,在高考中应一般在选择题、填空题中出现,如果在解答题中出现,则只会是中低档题.2.集合、简易逻辑知识,作为一种数学工具,在函数、方程、不等式、排列组合及曲线与方程等方面都有广泛的运用,高考题中常以上面内容为载体,以集合的语言为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.第1课时逻辑联结词和四种命题一、逻辑联结词1.可以的语句叫做命题.命题由两部分构成;命题有之分;数学中的定义、公理、定理等都是命题.2.逻辑联结词有,不含的命题是简单命题.由的命题是复合命题.复合命题的构成形式有三种:,(其中p,q都是简单命题).3.判断复合命题的真假的方法—真值表:“非p”形式的复合命题真假与p的当p与q都真时,p且q形式的复合命题,其他情形;当p与q都时,“p或q”复合形式的命题为假,其他情形.二、四种命题1.四种命题:原命题:若p则q;逆命题:、否命题:逆否命题: . 2.四种命题的关系:原命题为真,它的逆命题、否命题、逆否命题.原命题与它的逆否命题同、否命题与逆命题同.3.反证法:欲证“若p则q”为真命题,从否定其出发,经过正确的逻辑推理导出矛盾,从而判定原命题为真,这样的方法称为反证法.例1. 下列各组命题中,满足“p 或q ”为真,“p 且q ”为假,“非p ”为真的是 ( ) A .p :0=∅;q :0∈∅B .p :在∆ABC 中,若cos2A =cos2B ,则A =B ; :q y =sin x 在第一象限是增函数 C .),(2:R b a ab b a p ∈≥+;:q 不等式x x >的解集为()0,∞-D .p :圆()1)2(122=-+-y x 的面积被直线1=x 平分;q :椭圆13422=+y x 的一条准线方程是x =4 解:由已知条件,知命题p 假且命题q 真.选项(A)中命题p 、q 均假,排除;选项(B)中,命题p 真而命题q 假,排除;选项(D)中,命题p 和命题q 都为真,排除;故选(C). 变式训练1:如果命题“p 或q ”是真命题,“p 且q ”是假命题.那么( ) A .命题p 和命题q 都是假命题 B .命题p 和命题q 都是真命题 C .命题p 和命题“非q ”真值不同 D .命题q 和命题p 的真值不同 解: D例2. 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1) 若q <1,则方程x 2+2x +q =0有实根; (2) 若ab =0,则a =0或b =0;(3) 若x 2+y 2=0,则x 、y 全为零.解:(1)逆命题:若方程x 2+2x +q =0有实根,则q <1,为假命题.否命题:若q ≥1,则方程x 2+2x +q=0无实根,为假命题.逆否命题:若方程x 2+2x +q =0无实根,则q ≥1,为真命题. (2)逆命题:若a =0或b =0,则ab =0,为真命题. 否命题:若ab ≠0,则a ≠0且b ≠0,为真命题. 逆否命题:若a ≠0且b ≠0,则ab ≠0,为真命题.(3)逆命题:若x 、y 全为零,则x 2+y 2=0,为真命题.否命题:若x 2+y 2≠0,则x 、y 不全为零,为真命题.逆否命题:若x 、y 不全为零,则x 2+y 2≠0,为真命题.变式训练2:写出下列命题的否命题,并判断原命题及否命题的真假: (1)如果一个三角形的三条边都相等,那么这个三角形的三个角都相等; (2)矩形的对角线互相平分且相等; (3)相似三角形一定是全等三角形. 解:(1)否命题是:“如果一个三角形的三条边不都相等,那么这个三角形的三个角也不都相等”. 原命题为真命题,否命题也为真命题. (2)否命题是:“如果四边形不是矩形,那么对角线不互相平分或不相等” 原命题是真命题,否命题是假命题. (3)否命题是:“不相似的三角形一定不是全等三角形”. 原命题是假命题,否命题是真命题.例3. 已知p :012=++mx x 有两个不等的负根,q :01)2(442=+-+x m x 无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.分析:由p 或q 为真,知p 、q 必有其一为真,由p 且q 为假,知p 、q 必有一个为假,所以,“p 假且q 真”或“p 真且q 假”.可先求出命题p 及命题q 为真的条件,再分类讨论. 解:p :012=++mx x 有两个不等的负根.⎪⎩⎪⎨⎧>⇔<->-=∆⇔200421m m mq :01)2(442=+-+x m x 无实根.⇔31016)2(1622<<⇔<--=∆m m 因为p 或q 为真,p 且q 为假,所以p 与q 的真值相反.(ⅰ) 当p 真且q 假时,有⎩⎨⎧≥⇒≥≤>3312m m m m 或;(ⅱ) 当p 假且q 真时,有⎩⎨⎧≤<⇒<<≤21312m m m .综合,得m 的取值范围是{21≤<m m 或3≥m }.变式训练3:已知a>0,设命题p:函数y=a x在R 上单调递减,q :不等式x+|x-2a|>1的解集为R,若p 和q中有且只有一个命题为真命题,求a 的取值范围.解 : 由函数y=a x在R 上单调递减知0<a<1,所以命题p 为真命题时a 的取值范围是0<a<1,令y=x+|x-2a|, 则y=⎩⎨⎧<≥-).2(2),222a x aa x a x (不等式x+|x-2a|>1的解集为R ,只要y min >1即可,而函数y 在R 上的最小值为2a ,所以2a>1,即a>.21即q 真⇔a>.21若p 真q 假,则0<a ≤;21若p 假q 真,则a ≥1,所以命题p 和q 有且只有一个命题正确时a 的取值范围是0<a ≤21或a ≥1. 例4. 若a ,b ,c 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π.求证:a 、b 、c 中至少有一个大于0.证明:假设c b a ,,都不大于0,即,0≤a ,0≤b 0≤c ,则0≤++c b a 而623222222πππ+-++-++-=++x z z y y x c b a =3)1()1()1(222-+-+-+-πz y x0)1()1()1(222≥-+-+-z y x ,03>-π.00≤++>++∴c b a c b a 这与相矛盾.因此c b a ,,中至少有一个大于0.变式训练4:已知下列三个方程:①x 2+4ax -4a +3=0,②x 2+(a -1)x +a 2=0,③x 2+2ax -2a =0中至少有一个方程有实根,求实数a 的取值范围. 解:设已知的三个方程都没有实根.则⎪⎪⎩⎪⎪⎨⎧<+=∆<--=∆<-+=∆08)2(04)1(0)34(4)4(2322221a a a a a a 解得123<<-a .故所求a 的取值范围是a ≥-1或a ≤-23.1.有关“或q ”与“p 且q ”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义从而分清是“p 或q ”还是“p 且q ”形式.2.当一个命题直接证明出现困难时,通常采用间接证明法,反证法就是一种间接证法. 3.反证法的第一步为否定结论,需要掌握常用词语的否定(如“至少”等),而且推理过程中,一定要把否定的结论当条件用,从而推出矛盾.用反证法证明命题的一般步骤为:(1)假设命题的结论不成立,即假设命题结论的反面成立;(2)从这个假设出发,经过正确的推理论证得出矛盾;(3)由矛盾判断假设不正确,从而肯定所证命题正确.第2课时 充要条件1.充分条件:如果p q ⇒则p 叫做q 的 条件,q 叫做p 的 条件. 2.必要条件:如果q p ⇒则p 叫做q 的 条件,q 叫做p 的 条件. 3.充要条件:如果p q ⇒且q p ⇒则p 叫做q 的 条件.例1.在下列各题中,判断A 是B 的什么条件,并说明理由. 1. A :R p p ∈≥,2,B :方程+++p px x 203=有实根; 2. A :)(,2Z k k ∈=+πβα,B :)sin(βα+βαsin sin +=; 3.A :132>-x ;B :0612>-+x x ;4.A :圆222r y x =+与直线++by ax 0=c 相切,B :.)(2222r b a c +=分析:要判断A 是B 的什么条件,只要判断由A 能否推出B 和由B 能否推出A 即可.解:(1) 当2≥p ,取4=p ,则方程0742=++x x 无实根;若方程+2x 03=++p px 有实根,则由0>∆推出20)3(42-≤⇒≥+-p p p 或≥p 6,由此可推出2≥p .所以A 是B 的必要非充分条件.(2)若πβαk 2=+则βαsin sin +αααπαsin sin )2sin(sin -=-+=k 02sin )sin(,0==+=πβαk 又 所以βαβαsin sin )sin(+=+成立若βαβαsin sin )sin(+=+成立 取απβ==,0,知πβαk 2=+不一定成立, 故A 是B 的充分不必要条件. (3) 由21132><⇒>-x x x 或,由0612>-+x x 解得23>-<x x 或,所以A 推不出B ,但B 可以推出A ,故A是B 的必要非充分条件.(4) 直线0=++c by ax 与圆22y x +2r =相切⇔圆(0,0)到直线的距离r d =,即22b a c +=2c r ⇔=222)(r b a +.所以A 是B 的充要条件.变式训练1:指出下列命题中,p 是q 的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答). (1)在△ABC 中,p :∠A=∠B ,q :sinA=sinB ; (2)对于实数x 、y ,p :x+y ≠8,q:x ≠2或y ≠6; (3)非空集合A 、B 中,p :x ∈A ∪B ,q :x ∈B ;典型例题 基础过关(4)已知x 、y ∈R ,p :(x-1)2+(y-2)2=0,q :(x-1)(y-2)=0.解: (1)在△ABC 中,∠A=∠B ⇒sinA=sinB ,反之,若sinA=sinB ,因为A 与B 不可能互补(因为三角形三个内角和为180°),所以只有A=B.故p 是q 的充要条件.(2)易知: ⌝p:x+y=8, ⌝q:x=2且y=6,显然⌝q ⇒⌝⌝p ⌝q,即⌝q 是⌝p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(3)显然x ∈A ∪B 不一定有x ∈B,但x ∈B 一定有x ∈A ∪B,所以p 是q 的必要不充分条件. (4)条件p:x=1且y=2,条件q:x=1或y=2,所以p ⇒q 但q p,故p 是q 的充分不必要条件.例2. 已知p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有两个小于1的正根,试分析p 是q 的什么条件.解:若方程x 2+mx +n =0有两个小于1的正根,设为x 1、x 2. 则0<x 1<1、0<x 2<1,∵x 1+x 2=-m ,x 1x 2=n ∴0<-m <2,0<n <1 ∴-2<m <0,0<n <1 ∴p 是q 的必要条件.又若-2<m <0,0<n <1,不妨设m =-1,n =21.则方程为x 2-x +21=0,∵△=(-1)2-4×21=-1<0. ∴方程无实根 ∴p 是q 的非充分条件. 综上所述,p 是q 的必要非充分条件.变式训练2:证明一元二次方程ax 2+bx+c=0有一正根和一负根的充要条件是ac<0. 证明:充分性:若ac<0,则b 2-4ac>0,且ac<0,∴方程ax 2+bx+c=0有两个相异实根,且两根异号,即方程有一正根和一负根. 必要性:若一元二次方程ax 2+bx+c=0有一正根和一负根,则∆=b 2-4ac>0,x 1x 2=ac<0,∴ac<0. 综上所述,一元二次方程ax 2+bx+c=0有一正根和一负根的充要条件是ac<0. 例3. 已知p : |1-31-x |≤2,q ::x 2-2x +1-m 2≤0(m >0),若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.解: 由题意知:命题:若┒p 是┑q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p : |1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10q : x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0* ∵p 是q 的充分不必要条件,∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集又∵m >0,∴不等式*的解集为1-m ≤x ≤1+m ∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9310121m m m m ,∴m ≥9,∴实数m 的取值范围是[9,+∞)变式训练3:已知集合{||1||3|8}M x x x =++->和集合2{|(8)80}P x x a x a =+--≤,求a 的一个取值范围,使它成为}85|{≤<=x x P M 的一个必要不充分条件. 解:}53|{>-<=x x x M 或,}0)8)((|{≤-+=x a x x P由,}85|{时≤<=x x P M ,3,35≤≤≤-a a 此时有}85|{3≤<=≠>≤x x P M a 但所以}85|{3≤<=≤x x P M a 是是必要但不充分条件. 说明:此题答案不唯一.例4. “函数y =(a 2+4a -5)x 2-4(a -1)x +3的图象全在x 轴的上方”,这个结论成立的充分必要条件是什么?解:函数的图象全在x 轴上方,若)(x f 是一次函数,则10)1(40542=⇒⎪⎩⎪⎨⎧=--=-+a a a a若函数是二次函数,则:[]⎪⎩⎪⎨⎧<-+--->-+0)54(12)1(4054222a a a a a 191<<⇒a 反之若19|<≤a ,由以上推导,函数的图象在x 轴上方,综上,充要条件是19|<≤a .变式训练4:已知P ={x | |x -1| | >2},S ={x | x2+}(1)0a x a ++>,P x ∈且的充要条件是S x ∈,求实数a 的取值范围.分析:P x ∈的充要条件是S x ∈,即任取S x P x ∈⇒∈S P ⊆∴,反过来,任取P x S x ∈⇒∈P S P S =∴⊆∴据此可求得a 的值.解: P x ∈的充要条件是S x ∈.S P =∴∵P ={x || x -1|>2}}=),3()1,(+∞--∞S ={x | x2+(a +1)x +a >0)}={x | (x +a)(x +1)>0}1.处理充分、必要条件问题时,首先要分清条件与结论,然后才能进行推理和判断.不仅要深刻理解充分、必要条件的概念,而且要熟知问题中所涉及到的知识点和有关概念. 2.确定条件为不充分或不必要的条件时,常用构造反例的方法来说明.3.等价变换是判断充分、必要条件的重要手段之一,特别是对于否定的命题,常通过它的等价命题,即逆否命题来考查条件与结论间的充分、必要关系.4.对于充要条件的证明题,既要证明充分性,又要证明必要性,从命题角度出发,证原命题为真,逆命题也为真;求结论成立的充要条件可以从结论等价变形(换)而得到,也可以从结论推导必要条件,再说明具有充分性.5.对一个命题而言,使结论成立的充分条件可能不止一个,必要条件也可能不止一个.简易逻辑章节测试题一、选择题1.设集合{2},{3},M x x P x x =>=<""x M x P ∈∈那么或""x M P ∈是的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 的 ( )3.(2009·合肥模拟)已知条件p :(x+1)2>4,条件q:x>a,且q p ⌝⌝是的充分而不必要条件,则a 的取值范围是 ( ) ≥≤1 ≥-3 ≤-34.“a=2”是“直线ax+2y=0平行于直线x+y=1”的 ( )5.设集合M={x|x>2},P={x|x<3},那么“x ∈M 或x ∈P ”是“x ∈M ∩P ”的 ( )C.充要条件6.在下列电路图中,表示开关A 闭合是灯泡B 亮的必要但不充分条件的线路图是 ( )7.(2008·浙江理,3)已知a,b 都是实数,那么“a 2>b 2”是“a>b ”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件8.(2008·北京海淀模拟)若集合A={1,m 2},集合B={2,4},则“m=2”是“A ∩B={4}”的 ( )C.充分必要条件 9.若数列{a n }满足221nn a a +=p (p 为正常数,n ∈N *),则称{a n }为“等方比数列”.甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则 ( )10.命题p:若a 、b ∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件.命题q:函数y=2|1|--x 的定义域是(][)∞+--∞,,31 ,则 ( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真 二、填空题11.已知数列}{n a ,那么“对任意的n ∈N*,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的 条件.12.设集合A={5,log 2(a+3)},集合B={a ,b},若A ∩B={2},则A ∪B= .13.已知条件p :|x+1|>2,条件q:5x-6>x 2,则非p 是非q 的 条件. 14.不等式|x|<a 的一个充分条件为0<x<1,则a 的取值范围为 .15.已知下列四个命题: ①a 是正数;②b 是负数;③a+b 是负数;④ab 是非正数.选择其中两个作为题设,一个作为结论,写出一个逆否命题是真命题的复合命题 . 三、解答题16.设命题p :(4x-3)2≤1;命题q:x 2-(2a+1)x+a(a+1)≤0,若⌝p 是⌝q 的必要不充分条件,求实数a 的取值范围.17.求关于x的方程ax2-(a2+a+1)x+a+1=0至少有一个正根的充要条件.18.设p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足x2-x-6≤0,或x2+2x-8>0,且q⌝是的p⌝必要不充分条件,求a的取值范围.19.(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围;(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在,求出p的取值范围.20.已知0c,设:p函数x c>y=在R上单调递减,q:不等式1x+cx的解集为R,如果p和q有且仅2-||>有一个正确,求c的取值范围.简易逻辑章节测试题答案1.B5.B7. D10. D11.充分而不必要条件12.{1,2,5}≥1①③则②(或若①②则④或若①③则④)16.解 设A={x|(4x-3)2≤1},B={x|x 2-(2a+1)x+a(a+1)≤0}, 易知A={x|21≤x ≤1},B={x|a ≤x ≤a+1}.由⌝p 是⌝q 的必要不充分条件,从而p 是q 的充分不必要条件,即A B ,∴,1121⎪⎩⎪⎨⎧≥+≤a a故所求实数a 的取值范围是[0,21].17.解方法一 若a=0,则方程变为-x+1=0,x=1满足条件,若a ≠0,则方程至少有一个正根等价于01<+a a 或⎪⎩⎪⎨⎧>++=+0112a a a a 或⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+-++=∆>+>++0)1(4)1(0101222a a a a a a a a a -1<a<0或a>0.综上:方程至少有一正根的充要条件是a>-1. 方法二 若a=0,则方程即为-x+1=0, ∴x=1满足条件;若a ≠0,∵Δ=(a 2+a+1)2-4a(a+1)=(a 2+a)2+2(a 2+a)+1-4a(a+1)=(a 2+a)2-2a(a+1)+1=(a 2+a-1)2≥0,∴方程一定有两个实根.故而当方程没有正根时,应有,01012⎪⎪⎩⎪⎪⎨⎧≥+≤++aa a a a 解得a ≤-1,∴至少有一正根时应满足a>-1且a ≠0,综上:方程有一正根的充要条件是a>-1. 18.解 设A={x|p}={x|x 2-4ax+3a 2<0,a<0}={x|3a<x<a,a<0},B={x|q}={x|x 2-x-6≤0或x 2+2x-8>0}={x|x 2-x-6≤0}∪{x|x 2+2x-8>0} ={x|-2≤x ≤3}∪{x|x<-4或x>2}={}.24|-≥-<x x x 或方法一 ∵q p ⌝⌝是的必要不充分条件,∴p p q ⌝⌝⇒⌝且,q ⌝.则{}q x ⌝|{}.|p x ⌝而{}=⌝q x |R B={}{}p x x x ⌝-<≤-|,24|=R A={},0,3|<≥≤a a x a x x 或 ∴{}24|-<≤-x x {},0,3|<≥≤a a x a x x 或 则⎩⎨⎧<-≤⎩⎨⎧<-≥.0,4,0,23a a a a 或综上可得-.4032-≤<≤a a 或方法二 由⌝p 是⌝q 的必要不充分条件,∴p 是q 的充分不必要条件,∴A B ,∴a ≤-4或3a ≥-2,又∵a<0, ∴a ≤-4或-32≤a<0. 19.解(1)当x>2或x<-1时,x 2-x-2>0,由4x+p<0,得x<-,4p 故-4p≤-1时, “x<-4p ”⇒“x<-1”⇒“x 2-x-2>0”. ∴p ≥4时,“4x+p<0”是“x 2-x-2>0”的充分条件.(2)不存在实数p 满足题设要求. 20.解:函数x c y =在R 上单调递减10<<⇔c 不等式||2|>-+c x x 的解集为⇔R 函数 |2|c x x y -+=,在R 上恒大于1⎩⎨⎧<≥-=-+∴cx c cx c x c x x 2,22,22|2| ∴函数|2|c x x y -+=在R 上的最小值为c 2 ∴不等式1|2|>-+c x x 的解集为R2112>⇔>⇔c c ,如果p 正确,且q 不正确则210≤<c ,如果p 不正确,且q 正确,则1≥c ,所以c 的取值范围为[)+∞⋃⎥⎦⎤⎝⎛,121,0.五年高考荟萃 2009年高考题一、选择题1.(2009浙江理)已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( )A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:C解析 对于“0a >且0b >”可以推出“0a b +>且0ab >”,反之也是成立的 2.(2009浙江文)“0x >”是“0x ≠”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A【命题意图】本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.解析 对于“0x >”⇒“0x ≠”;反之不一定成立,因此“0x >”是“0x ≠”的充分而不必要条件.3.(2009安徽卷文)“”是“且”的A. 必要不充分条件B.充分不必要条件C. 充分必要条件D. 既不充分也不必要条件 答案 A解析 易得a b c d >>且时必有a c b d +>+.若a c b d +>+时,则可能有a d c b >>且,选A 。
高考数学集合简易逻辑
[本讲小结]
(1)写“p或q”、“p且q”、“非p” 时应注意保持其“真值”符合“真值 表”。
(2)要注意一些常用词语的否定。
; / 私人保镖
玉盈先于她伸出手来,默默地拣咯壹盘素青菜、壹盘豆腐,直接摆到咯王爷の面前。望着玉盈布の菜,他の心中又是诧异又是甜蜜,壹颗烦燥の 心顿时安静咯下来,唯有低头默默无语地用起晚膳。水清见状,简直对玉盈崇拜至极!姐姐真是爷肚子里の蛔虫啊!居然知道爷の口味?自己可 是跟爷共进过两次家宴呢,怎么都没有注意到爷の喜好?水清和王爷共进过两次家宴都不知道自家爷の喜好,但是玉盈只与王爷共进过壹次午膳 就将他の口味牢牢地记在咯心间,永远也不会忘记。那是她与他唯壹の壹次共进午膳,壹年前の宝光寺里,王爷带她参观修缮壹新の寺院,对于 寺院の斋饭,他也是赞不绝口。玉盈从此记得,王爷喜好素食清淡,不喜荤腥油腻,而今天晚膳里の那壹桌子菜,不也就是素青菜和豆腐最对爷 の胃口吗?眼看着姐姐替自己解咯燃眉之急,水清向姐姐投去咯感激の目光,玉盈回咯她壹各安慰の眼神。好不容易待爷用过晚膳,水清赶快上 前收拾碗筷,布菜不会,这收拾碗筷她总是会の。吟雪也赶快递来咯漱口水和热巾。秦顺儿知趣地退到咯壹边,壹各是爷の侧福晋,壹各是爷心 爱の诸人,他根本就没有能插手の地方,倒也乐得清静。用过晚膳,还不待收拾完,他就立即起身去德妃娘娘那里请安。王爷壹走,主仆三人立 即得到咯释放,高高兴兴地退回咯自己の房间,将那各烂摊子留给咯秦顺儿。第壹卷 第229章 面对回到她们自己の房间,壹待吟雪关上门,水 清壹头扑进咯玉盈の怀中:“姐姐,谢谢姐姐!”“这还不是应该の?这有啥啊谢の?”“姐姐是怎么知道爷の口味?”“爷是参禅诵经、吃斋 念佛の人,爷怎么会喜欢荤腥油腻の吃食呢?刚刚我壹见你要拿那盘麻油鸡块,真是吓坏咯,生怕你又捅咯大娄子。爷の脸色已经很不好看咯 „„”“是啊,我也是看爷の脸色不好,可又不知道爷爱吃啥啊,本来准备不管是福是祸,先端上去再说咯!唉呀呀,幸亏姐姐及时出手相 救。”“这有啥啊幸亏の,不过是平时多注意,多观察罢咯。唉,凝儿这也是‘书到用时方恨少’呢!既然‘书’已经读得少咯,现在也补不上 来,可是临场就要多动动动脑子才行。哎,对咯,别光顾着说话,你也赶快吃饭吧,饭菜都要凉咯。”“嗯,姐姐咱们壹起吃吧。”“好啊。” 第二天壹早就要起程,中午又因为赶路,只是匆忙解决咯吃饭问题,因此早膳和午膳都是秦顺儿负责伺候王爷,吟雪照顾水清和玉盈姐妹俩人。 第二天晚上抵达行宫后,水清又照例带着吟雪先到德妃娘娘那里去请安。今天和昨天有点儿不壹样,昨天还没进门呢,就听到屋子里欢声笑语, 今天怎么静悄悄地壹点儿动静也没有?秋婵也不在,只有壹各生面孔の宫女。进咯里屋才知道,德妃今天
高考数学题型分布
1.集合与简易逻辑。
分值在5~10分左右(一道或两道选择题),考查的重点是抽象思维能力,主要考查集合与集合的运算关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合发展。
简易逻辑多为考查“充分与必要条件”及命题真伪的判别。
2.函数与导数,函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。
在高考中,至少三个小题一个大题,分值在30分左右。
以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。
函数与导数的结合是高考的热点题型,文科以三次(或四次)函数为命题载体,理科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点。
3.不等式;一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右。
不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。
选择题和填空题主要考查不等式性质、解法及均值不等式。
解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n项和的有界性证明、由函数的导数确定最值型的不等式证明等。
4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题。
分值在20分左右,文科以应用等差、等比数列的概念、性质求通项公式、前n项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主。
数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点。
高中数学知识点总结(新高考地区)精选全文完整版
一:集合与简易逻辑1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集集合A中任意一个元素均为集合B中的元素A⊆B 真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[方法技巧](1).若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).15q pqq6、全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.7、全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)[方法技巧]1.区别A是B的充分不必要条件(A⇒B且B⇏A),与A的充分不必要条件是B(B⇒A且A⇏B)两者的不同.2.A是B的充分不必要条件⇔⌝B是⌝A的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.2二:函数基本知识(1)1、函数三要素32、函数性质43、指数和对数运算4、函数图象变换55、一元二次方程根的分布⎧Δ=067三:函数基本知识(2)1、一次函数2、反比例函数o yxyxo4、指数函数和对数函数(0∞)8点,且在第一象限是减函数.,1)点).“指大图低”).910四:三角函数1、任意角的三角函数(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.[提醒](1)若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. (2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.114.象限角的集合5.轴线角的集合6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2k πα+ α− πα− πα+ 2πα− 2πα−2πα+2πα−sinsin αsin α−sin αsin α−sin α−cos αcos αcos α−coscos αcos αcos α−cos α−cos αsin α sin α− sin αtan tan α tan α− tan α− tan α tan α− cot α cot α− cot α−8.两角和与差的三角函数:S αβ+:sin()sin cos cos sin αβαβαβ+=⋅+⋅ S αβ−:sin()sin cos cos sin αβαβαβ−=⋅−⋅ C αβ+:cos()cos cos sin sin αβαβαβ+=⋅−⋅ C αβ−:cos()cos cos sin sin αβαβαβ−=⋅+⋅ T αβ+: βαβαβαtan tan 1tan tan )tan(−+=+T αβ−: βαβαβαtan tan 1tan tan )tan(+−=−129.二倍角公式:2S α:sin 22sin cos ααα= 2T α:22tan tan 21tan ααα=− 2C α2222cos 2cos sin 2cos 112sin ααααα=−=−=−10.降幂公式:1sin cos sin 22ααα= 21cos 2sin 2αα−= 21cos 2cos 2αα+=11.半角公式:12.合一变形 22sin cos )a x b x a b x ϕ+=++, 其中 tan b aϕ=1313.三角函数的图像与性质 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=− ()k ∈Z 时,min 1y =−.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =−.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ (),02k k π⎛⎫∈Z ⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴函 数性 质四:平面向量“三角形法则”λ(μa)=(λμ)aλ+μ)a=λa+μa14五:解三角形1、正弦定理和余弦定理2、解三角形的四种模型153、解三角形的多解分析已知两边和其中一边的对角解三角形时,应分析解的情况:如已知a,b,A,则当A为锐角时当A为钝角或直角时图示关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的情况无解一解两解一解一解无解16六:数列1、数列基本性质172、求数列通项公式(1).前n项和型(2)递推公式型183、数列求和19七:圆锥曲线1、椭圆a b-a≤x≤a,-b≤y≤b≤x≤b,-a≤y≤对称轴:对称中心:原点F1(-c,0),F2(c,0)(0,-c),F2(0,2、双曲线≤-a或x≥a;y∈∈R;y≤-a或y对称中心:原点203、抛物线x≥0;y∈R x≤0;y∈R x∈R;y≥0x∈R;y≤0对称轴:轴轴214、圆锥曲线的常用性质2223八:直线方程与圆的方程【公式】1.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.几种距离公式(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离:d =|C 1-C 2|A 2+B 2.4.圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径.5.圆的一般方程:x 2+y 2+Dx +Ey +F =0该方程表示圆的充要条件是D 2+E 2-4F >0其中圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.6.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:利用判别式Δ=b 2-4ac 进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.247.圆与圆的位置关系:设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).则:d >r 1+r 2⇔外离; d =r 1+r 2⇔外切; |r 1-r 2|<d <r 1+r 2⇔相交;d =|r 1-r 2|⇔内切; 0≤d <|r 1-r 2|⇔内含【必备结论】1.斜率与倾斜角的关系:由正切图象可以看出:①当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞)且随着α增大而增大; ②当α=π2时,斜率不存在,但直线存在;③当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0)且随着α增大而增大.2.两条直线的位置关系(1)斜截式判断法:①两条直线平行:对于两条不重合的直线l 1、l 2:(ⅰ)若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)一般式判断法:设两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0,则有:①l 1∥l 2⇔A 1 B 2=A 2B 1且A 1 C 2≠A 2 C 1; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.直线系方程:(1)平行线系:与直线Ax +By +C =0平行的直线方程可设为:Ax +By +m =0(m ≠C );(2)垂直线系:与直线Ax +By +C =0垂直的直线方程可设为:Bx -Ay +n =0;(3)交点线系:过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线可设:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.4.点与圆的位置关系圆方程(x-a)2+(y-b)2=r2,一般方程x2+y2+Dx+Ey+F=0,点M(x0,y0),则有:(1)点在圆上:(x0-a)2+(y0-b)2=r2,x02+y02+Dx0+E y0+F=0;(2)点在圆外:(x0-a)2+(y0-b)2>r2,x02+y02+Dx0+E y0+F>0;(3)点在圆内:(x0-a)2+(y0-b)2<r2,x02+y02+Dx0+E y0+F<0.5.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为:x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆C:x2+y2+Dx+Ey+F=0外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程的求法:①以M为圆心,切线长为半径求圆M的方程;②用圆M的方程减去圆C的方程即得;6.圆与圆的位置关系的常用结论(1)两圆的位置与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)公共弦直线:当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.7.常用口诀:①直线带参,必过定点;②弦长问题,用勾股.【方法】1.直线的对称问题:(1)点关于线对称:方程组法,设对称后点的坐标为(x,y),根据中点坐标及垂直斜率列方程组;(2)线关于线对称:①求交点;②已知直线上取一个特殊点,并求其关于直线的对称点;③两点定线即可.(3)圆关于线对称:圆心对称,半径不变.25262.直线与圆的相关问题:(1)切线问题:一般设直线点斜式(讨论斜率存在),然后依据d =r 列方程求解;(2)弦长问题:用勾股,即圆的半径为r ,弦心距为d ,弦长为l ,则根据勾股得⎝⎛⎭⎫l 22=r 2-d 2;3.轨迹求法:①直译法:直接根据题目提供的动点条件,直接列出方程,化简可得;②几何法:根据动点满足的几何特征,判断其轨迹类型,然后根据轨迹定义直接写出方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.27九:立体几何与空间向量【公式】1.空间几何体的表面积与体积公式:(1)基本公式:①圆:面积S 圆=πr 2, 周长C 圆=2πr ;②扇形:弧长l 扇形=αR , 面积S 扇形=12lR =12αR 2,周长C 扇形=l +2R .S 圆柱侧=2πrl S 圆锥侧=πrl 圆台侧=π(r 1+(3)柱、锥、台和球的体积公式①柱体(棱柱和圆柱):S 表面积=S 侧+2S 底,V 柱=Sh ;②锥体(棱锥和圆锥) :S 表面积=S 侧+S 底,V 锥=13Sh ;③台体(棱台和圆台) : S 表面积=S 侧+S 上+S 下,V 台=13(S 上+S 下+S 上S 下)h ;④球:S 球=4πR 2 ,V 球=43πR 3;2.平行关系的判定及性质定理:283.垂直关系的判定及性质定理:图形语言4.空间向量与立体几何的求解公式:(1)异面直线成角:设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ满足:cos θ=|a ·b ||a ||b |;(2)线面成角:设直线l 的方向向量为a ,平面α的法向量为n ,a 与n 的夹角为β,则直线l 与平面α所成的角为θ满足:sin θ=|cos β|=|a ·n ||a ||n |.(3)二面角:设n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则两面的成角θ满足:cos θ=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|;(4)点到平面的距离:如右图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为:|BO →|=|AB →·n ||n |,即向量在法向量n 的方向上的投影长.29【结论】1.直观图与原图的关系:(1)作图关系:①位置:平行性、相交性不变;②长度:平行x (z )轴的长度不变,平行y 轴的长度减半.(2)面积关系:S 直观图′=24×S 原图;2.几个与球有关的内切、外接常用结论:(1)正方体的棱长为a ,球的半径为R ,则: ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的长、宽、高分别为a ,b ,c ,则外接球直径=长方体对角线,即:2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为:3∶1.3.几种常见角的取值范围:①异面直线成角∈(0,π2]②二面角∈[0,π]③线面角∈[0,π2]④向量夹角∈[0,π] ⑤直线的倾斜角∈[0,π)【方法】1.三视图还原方法:提点连线法,具体步骤:①根据三视图轮廓画长方体或正方体; ②在底面画俯视图;③综合正视图和左视图进行提点连线; ④验证与完善.2.平行构造的常用方法:①三角形中位线法; ②平行四边形线法; ③比例线段法.3.垂直构造的常用方法:①等腰三角形三线合一法; ②勾股定理法; ③投影法.4.用向量证明空间中的平行关系(1)线线平行:设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)线面平行:设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(3)面面平行:设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.5.用向量证明空间中的垂直关系(1)线线垂直:设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)线面垂直:设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)面面垂直:设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.6.点面距常用方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法7.外接球常用方法:①将几何体补成长方体或正方体,则球直径=体对角线;②过两个三角形的外接圆圆心作圆面垂线,则垂线交点即为外接球球心,找到球心即可求半径.3031十:排列组合与二项式定理1、分类加法计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法……在第类办法中,有种不同的方法.那么完成这件事共有种不同的方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一个步骤有种不同的方法,做第一个步骤有种不同的方法……做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.3、排列:(1)、排列:从个不同元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)、排列数从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示:当时,为全排列.的阶乘:排列数公式可写成(规定)n 1m 2m n n m 12n N m m m =+++n 1m 2m n 12n N m m m =⨯⨯⨯n ()m m n ≤n m n ()m m n ≤n m mn A ()()()121mn A n n n n m =−−−+m n =()()12321nn A n n n =−−⨯⨯n ()()12321!nn A n n n n =−−⨯⨯=()!!mn n A n m =−0!1=324、组合 (1)组合:从n 个元素中取出m 个元素合成一组,叫做从n 个元素中取出m 个元素的一个组合。
简易逻辑高中数学教案
简易逻辑高中数学教案
教学目标:
1.了解逻辑的基本概念和原理
2.学习逻辑中常见的命题和推理形式
3.掌握用逻辑推理解决问题的方法
教学内容:
一、逻辑的基本概念
1. 逻辑的定义
2. 形式逻辑与实证逻辑的区别
二、命题和命题的关系
1. 命题的定义
2. 命题的分类
3. 命题的连接词及其含义
三、推理形式
1. 排中律
2. 矛盾律
3. 接物律
4. 假言推理
5. 否定推理
6. 归谬法
教学方法:
1.讲解逻辑的基本概念和原理,引导学生思考逻辑在日常生活中的应用
2. 以案例分析和练习的形式,帮助学生理解命题和推理形式
3.组织小组讨论和互动,激发学生的思维和探究兴趣
教学过程:
1. 导入:通过一个有趣的案例或问题引入逻辑的概念,引发学生的学习兴趣
2. 讲解逻辑的基本概念和原理,帮助学生建立逻辑思维的基础
3. 分组讨论命题与命题的关系,训练学生分析和判断的能力
4. 组织学生进行命题推理的练习,引导学生运用逻辑方法解决问题
5. 总结与讨论:回顾本节课的内容,引导学生总结所学知识并展开深入讨论
教学反思:
通过这堂课的教学,学生不仅能够了解逻辑的基本概念和原理,还能够掌握逻辑推理的方法,培养学生的逻辑思维能力和解决问题的能力。
希望学生在以后的学习和生活中能够运用逻辑思维解决各种问题,提高自己的分析和判断能力。
成人高考数学——1.集合与简易逻辑(一)
第1页 /共3页成人高考高起点《数学》第一部分 代数第一章 集合与简易逻辑复习要求一、了解集合的意义及其表示方法。
了解空集、全集、子集、交集,并集、补集的概念及其表示方法。
1.知道什么是集合,什么是集合的元素,并能正确地利用集合的几种表示方法表示给定的集合,以及判断给定集合的元素。
2.知道空集是一个集合,并且不含有任何元素,熟悉空集的记号。
3.知道什么是子集,什么是真子集,什么是集合相等,会运用这些概念判断一个集合是否是另一个集合的子集(真子集)和两个集合是否相等,知道空集是任何集合的一个子集。
二、了解符号⊆ 、≠ 、= 、∈的含义,并能运用这些符号表示集合与集合、元素与集合的关系。
三、理解充分条件、必要条件、充分必要条件的概念。
1.知道什么叫作充分条件 、必要条件、充要条件。
2.能根据定义和学过的知识判断一个命题中的条件是结论成立的充分条件,还是必要条件,还是充分必要(充要)条件。
典型例题例1 由不大于7的正整数所组成的集合是( )。
(A ) {1,2,3,5,7}(B ) {1,2,3,4,5,6,7}(C ) {2,3,5}(D ) {X|X<=7}答案:(B )分析:若设 {}{}1,2,3,5,7,1,2,3,4,5,6,7,A B =={}2,3,5C = {}=|7D x x ≤显然有, D B A ⊄∉⊄c 若引进差集的定义,设由属于集合M 但不属于集合N 的元素所构成的集合为集合M 与N 的差集,记为M – N 。
则有{}{}{}4,6,;1,4,6,7,;1,7,.B A A B A BC C B C A C C A C -=-=-=-=-=-=例1解题完毕。
例2 由大于-3且小于11的偶数所组成的集合是( )第2页 /共3页(A ){}|311x x >-<(B ){}|311x x -<<(C ){}|311,2,x x x k k N -<<=∈(D ){}|311,2,x x x k k z -<<=∈答案:(D )。
高考数学复习点拨 简易逻辑中的典型错误剖析
简易逻辑中的典型错误剖析学习简易逻辑可以使我们增强判断是非的能力和推理能力.但由于内容比较抽象,初学者易出现理解上的错误,下举例说明.例1 试判断下列语句是否构成命题:(1)难道0不是偶数吗?(2)1+a >0;(3)012>++a a .错解:由于语句(1)是问句,所以不是命题;而(2)、(3)两句表示均给出了判断所以都是命题。
剖析:命题的定义是:可以判断真假的语句叫命题。
因此语句是否构成命题,关键在于能否判断其真假。
语句(1)是反问句,其实质是表示“0是偶数”这一判断,因此是命题,并且是真命题;语句(2)中,在没有给出a 的X 围之前无法判断其真假,因此该句不构成命题(称为开语句);而语句(3)中,虽然也没有给出a 的X 围,但043)21(122>++=++a a a 对一切实数a 恒成立,因此该语句构成命题,且是真命题。
例2 试判断下列命题是简单命题还是复合命题:(1)6≥5;(2)有两个角是45°的三角形是等腰直角三角形;(3)一组对边平行且相等的四边形是平行四边形。
错解:由于命题(1)与(2)没有逻辑联结词,因此都是简单命题;而命题(3)含有逻辑联结词“且”,因此该命题是复合命题。
剖析:要判断一个命题是简单命题还是复合命题,不能只形式上看字面中有没有逻辑联结词,而是在准确理解复合命题的概念的基础上看其实质。
复合命题“p 或q ”、“p 且q ”是指用“或”与“且”联结两个命题p 、q ,而构成新的命题。
命题(1)虽然字面上没有“或”、“且”逻辑联结词,但它实质上表示:6大于或等于5,即是由p :6>5、q :6=5构成的一个“p 或q ”形式的复合命题;同样,命题(2)是由p :有两个角是45°的三角形是等腰三角形、q : 有两个角是45°的三角形是直角三角形构成的一个“p 且q ”形式的复合命题;命题(3)中的“且”并非逻辑连接词,而是与自然语言中的连词“和”含义相同,正像“小李和小王是一对夫妻”中的“和”一样。
高考数学复习点拨 例谈简易逻辑学习中的九点误区
例谈简易逻辑学习中的九点误区简易逻辑内容,对培养学生的思维能力、推理能力、解决实际问题的能力都很有帮助.但是笔者发现学生在学习这部分内容的时候,往往望文生义,生搬硬套,屡屡出错.本文例谈简易逻辑学习中的九点误区,以期帮助同学们加深对简易逻辑有关概念的理解,少走弯路,提高学习效率.误区1 一个陈述句是命题,祈使句也是命题,而疑问句就不是命题.例1 判断下列语句是不是命题,若是命题,判断其真假.(1)李明考100分,是好学生;(2)对顶角难道不相等吗?(3)求证2不是无理数.误解(1)是命题,是真命题;(2)不是命题;(3)是命题,是假命题.辨析命题是可以判断真假的语句,不管这个语句是陈述旬还是疑问句,只要能判断真假的就是命题,否则便不是命题.(1)中,成绩好坏不是判定好学生的唯一标准,此命题无法判断真假,故(1)不是命题;(2)虽是疑问句,但能判断真假,所以是命题,是真命题.(3)是祈使句,无法判断真假,故(3)不是命题.小结能判断真假的、陈述句、反诘疑问句都是命题,而不能判断真假的陈述句、疑问句以及祈使句都不是命题.误区2 所有的不等式、集合运算式都不是命题.例2 判断下列语句是不是命题,若是命题.判断其真假.(1)x+1≥O;(2)x2+1≥O;(3)A⊆A∪B;(4)A⊆A∩B.误解(1)(2)(3)(4)都不是命题辨析能判断真假的语句(或式子)是命题.(1)(4)不能判断真假,不是命题.但(2)(3)能判断真假,都是真命题.小结能判断真假的不等式、集合运算式也是命题.误区3 逻辑中的“或”“且”“非”与日常用语中的“或”“且”“非”含义相同.例3 判断下列命题的真假:(1)3≥2;(2)苹果是长在树上或地里.误解按日常用语去理解,3不能等于2,故(1)不是真命题;苹果不可能长在地里,所以(2)也是假命题.辨析从逻辑上讲,“3≥2’’等价于“3>2或3=2”,是一个“P或Q"形式的复合命题,“3>2”是真命题,由真值表知(1)应是一个真命题;(2)“苹果是长在树上或地里”也是一个复合命题:“苹果是长在树上或苹果是长在地里”,“苹果是长在树上”是真命题,由真值表知,(2)也是真命题.小结逻辑中的“或” “且”“非”与日常用语中的“或” “且”“非”含义不尽相同.判断复合命题的真假要根据真值表来判定.误区4 一个命题,只要含有逻辑连接词“或”“且”“非”的就一定是复合命题,否则就是简单命题.例4 判断下列命题是简单命题还是复合命题:(1)1的平方根是l或-1;(2)对角线相等且互相平分的四边形是矩形误解(1)中含有逻辑连接词“或”,所以是复合命题.(2)中含有逻辑连接词“且”,也是复合命题.辨析若(1)是复合命题“P或Q”形式,则P为“1的平方根是1”,Q为“1的平方根是-1”,显然P,Q都是假命题,由真值表知“P或Q”也是假命题;但命题(1)显然是真命题,不满足真值表.所以命题(1)是简单命题.若(2)是复合命题“P且Q”形式,则P为“对角线相等的四边形是矩形”,Q为“对角线互相平分的四边形是矩形”,显然,P,Q都是假命题,由真值表知“P且Q”也是假命题;但命题(2)显然是真命题,不满足真值表.所以命题(2)是简单命题.小结..含有逻辑连接词“或” “且”“非”的命题不一定是复合命题.若此命题的真假满足真值表,就是复合命题,否则就是简单命题.误区5 命题P的否命题就是¬P.例5 命题P:对顶角相等.写出命题P的否命题.误解命题P的否命题为:对顶角不相等辨析命题的否定形式与否命题不一样.对命题“若P则Q”来说,其否命题应为:“若非P则非Q”,即否命题是对命题的条件和结论都加以否定.而命题“若P则Q”的否定形式应为“若P则非Q”,即命题的否定形式是仅对命题的结论加以否定.所以该命题的否命题应是“不是对顶角的两个角不相等.”小结¬P不是命题P的否命题,而是命题P的否定形式.对命题“若P则Q"来说,¬P 是“若P则非Q”;P的否命题是“若非P则非Q”误区6 解集类命题的否定形式就是原解集的补集.例6 命题:不等式x2-3x+2≥O的解集是{x|1≤x≤2}.写出命题的否定形式.误解该命题的否定形式为:不等式x2-3x+2≥O的解集是{x|<1或x>2}辨析“否定”与“互补”相混淆,A不是B,不能认为A就是除B以外的所有对象,而应认为A是除B以外的某一个对象或某一部分对象.所以本命题的否定形式应为:不等式x2-3x+2≥O的解集不是{x| 1≤x≤2}.误区7 写命题P的否定形式,一概在关键词前加“不”即可.例7 命题:等腰三角形是直角三角形.写出命题的否定形式.误解该命题的否定形式为:等腰三角形不是直角三角形.辨析这个命题虽然没有明显的关键词“所有”,但我们从语意上分析,它所研究的对象不是一个个体,而是所有的等腰三角形,它是一个全称命题,它的完整形式应该是“所有的等腰三角形都是直角三角形”.所以它的否定形式应该是“有的等腰三角形不是直角三角形”.如果将原命题改为:“等腰△ABC是直角三角形”,显然它所研究的对象仅是一个个体,那么它的否定形式就可以写成“△ABC不是直角三角形".小结写命题P的否定形式,不能一概在关键词前、加“不”,而要搞清一个命题研究的对象是个体还是全体,如果研究的对象是个体,只须将“是”改成“不是”,将“不是”改成“是”即可.如果命题研究的对象不是一个个体,就不能简单地将“是”改成“不是”,将“不是”改成“是”,而要分清命题是全称命题还是存在性命题(所谓全称命题是指含有“所有”“全部” “任意”这一类全称量诃的命题;所谓存在性命题是指含有“某些”“某个” “至少有一个”这一类存在性量词的命题,全称命题的否定形式是存在性命题,存在性命题的否定形式是全称命题.因此,在表述一个命题的否定形式的时候,不仅“是”与“不是”要发生变化,有关命题的关键词也应发生相应的变化,常见关键词及其否定形式附表如下:误区8 若原命题P为真,则其否命题必定为假.例8 写出下列命题的否命题,并判断真假:(1)若a=O,则ab=O;(2)a2<b2,则a>b(3)当c>O时,若a>b则ac>bc.误解(1)否命题为:若a≠O,则ab≠0:是假命题(因原命题为真);(2)否命题为:若a2≤b2,则a≤b.是真命题(因原命题为假);(3)当c>O时,若a≤b,则ac≤bc,是假命题(因原命题为真)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学简易逻辑与推理1.命题“所有实数的平方都是正数”的否定为()
A.所有实数的平方都不是正数
B.有的实数的平方是正数
C.至少有一个实数的平方是正数
D.至少有一个实数的平方不是正数
D[该命题是全称命题,其否定是特称命题,即存在实数,它的平方不是正数,故选项D正确.为真命题,故选D.]
2.(2019·石家庄模拟)“x>1”是“x2+2x>0”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
A[由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.]
3.已知命题p:∃x0∈R,tan x0=1,命题q:∀x∈R,x2>0,下面结论正确的是()
A.命题“p∧q”是真命题
B.命题“p∧(q)”是假命题
C.命题“(p)∨q”是真命题
D.命题“(p)∧(q)”是假命题
D[取x0=π
4,有tan π
4=1,故命题p是真命题;当x=0时,x
2=0,故命
题q是假命题.再根据复合命题的真值表,知选项D是正确的.] 4.命题“对任意x∈[1,2),x2-a≤0”为真命题的一个充分不必要条件可以是()
A.a≥1 B.a>1
C.a≥4 D.a>4
D[命题可化为x∈[1,2),a≥x2恒成立.
∵x∈[1,2),∴x2∈[1,4).∴命题为真命题的充要条件为a≥4,∴命题为真命题的一个充分不必要条件为a>4,故选D.]
5.若命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”是真命题,则实数a 的取值范围
是( )
A .[-1,3]
B .(-1,3)
C .(-∞,-1]∪[3,+∞)
D .(-∞,-1)∪(3,+∞)
D [因为命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”是真命题等价于x 20+(a -1)x 0+1=0有两个不等的实根,所以Δ=(a -1)2-4>0,即a 2-2a -3>0,解得a <-1或a >3,故选D.]
6.已知命题p :若α∥β,a ∥α,则a ∥β; 命题q :若a ∥α, a ∥β, α∩β=b, 则a ∥b, 下列是真命题的是( )
A .p ∧q
B .p ∨(q )
C .p ∧(q )
D .(p )∧q
D [若α∥β,a ∥α,则a ∥β或a ⊂β,故p 假,p 真;若a ∥α,a ∥β,α∩β=b ,则a ∥b ,正确, 故q 为真,q 为假,∴(p )∧q 为真,故选D.]
7.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭
⎪⎫0,π2, f (x )<0,则( ) A .p 是假命题,
p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0
B .p 是假命题,
p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0 C .p 是真命题,
p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0 D .p 是真命题,p :∀x ∈⎝ ⎛⎭
⎪⎫0,π2,f (x )>0 C [因为f ′(x )=3cos x -π,所以当x ∈⎝ ⎛⎭
⎪⎫0,π2时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝ ⎛⎭
⎪⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.而p 的否定为∃x 0∈⎝ ⎛⎭
⎪⎫0,π2,f (x 0)≥0,故选C.] 8.(2019·蚌埠模拟)甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子,若丙的年龄比知识分子大,甲的年龄和农民不同,农民的年龄比乙小,
根据以上情况,下列判断正确的是()
A.甲是工人,乙是知识分子,丙是农民
B.甲是知识分子,乙是农民,丙是工人
C.甲是知识分子,乙是工人,丙是农民
D.甲是知识分子,乙是农民,丙是工人
C[“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.故选C.]
9.(2019·德庆模拟)已知p:∃x0∈R,mx20+1≤0,q:∀x∈R,x2+mx+1>0.若p∧q为真命题,则实数m的取值范围是()
A.(-∞,-2) B.[-2,0)
C.(-2,0) D.[0,2]
C[∵p∧q为真命题,∴p、q全为真命题,若p真,则m<0;若q真,则m2-4<0,解得-2<m<2,所以m的取值范围为(-2,0).故选C.] 10.(2019·淄博模拟)下列说法错误的是()
A.命题“∃x0∈R,x20-x0-2=0 ”的否定是“∀x∈R,x2-x-2≠0”
B.在△ABC中,“sin A>cos B”是“△ABC为锐角三角形”的充要条件C.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”
D.若p∨q为假命题,则p,q均为假命题
B[命题“∃x0∈R,x20-x0-2=0”的否定是“∀x∈R,x2-x-2≠0 ”,故A正确;∵sin 30°>cos 120°,∴在△ABC中,“sin A>cos B”是“△ABC 为锐角三角形”的必要不充分条件,故B错误;命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”,故C正确;若p∨q为假命题,则p,q均为假命题,故D正确.故选B.]
11.给定两个命题p,q.若p是q的必要但不充分条件,则p是q的________条件.
充分但不必要[根据题意可知,q⇒p,但p q,那么其逆否命题p ⇒q,但q p,所以p是q的充分但不必要条件.]
12.下列结论:
①若命题p:∃x0∈R,tan x0=1;命题q:∀x∈R,x2-x+1>0,则命题
“p∧(q)”是假命题;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是a b=
-3;
③命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”.
其中正确结论的序号为________.
①③[①中命题p为真命题,命题q为真命题,所以p∧(q)为假命题,故①正确;
②当b=a=0时,有l1⊥l2,故②不正确;
③正确,所以正确结论的序号为①③.]
13.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a,b,c,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:
①p∧q为真;②p∨q为假;③p∨q为真;④(p)∨(q)为假.
其中正确的是________.(填序号)
②[命题p是假命题,这是因为α与γ也可能相交;命题q也是假命题,这两条直线也可能异面,相交.]
14.一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是________.a[由题意得,甲同学说:1号门里是b,3号门里是c,乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c,若他们每人猜对了一半,则可判断甲同学中1号门中是b是正确的;乙同学说的3号门中有d是正确的;丙同学说的2号门中有c是正确的;丁同学说的4号门中有a是正确的,则可判断在1,2,3,4四扇门中,分别存有b,c,d,a,所以4号门里是a.]。