2018年浙江高考理科数学试题及答案
2018年浙江省高考数学试题及答案解析
![2018年浙江省高考数学试题及答案解析](https://img.taocdn.com/s3/m/261595bedd88d0d232d46a2c.png)
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则 若事件A ,B 相互独立,则 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高 锥体的体积公式其中表示锥体的底面积,表示锥体的高 球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则 A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线的焦点坐标是()()()P A B P A P B +=+()()()P AB P A P B =()C (1)(0,1,2,,)k k n k n n P k p p k n −=−=121()3V S S h =12,S S h V Sh =S h 13V Sh =S h 24S R =π343V R =πR =U A ð∅221 3=x y −A .,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是俯视图正视图21i−||2x ⊄⊂则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 1B +1C .2D .210.已知成等比数列,且.若,则 A .B .C .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年浙江数学高考试题及答案解析
![2018年浙江数学高考试题及答案解析](https://img.taocdn.com/s3/m/345e1a28cc175527072208cb.png)
2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件侧视图俯视图正视图22117.设0<p <1,随机变量ξ的分布列是ξ 012P12p- 12 2p 则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A .3−1B .3+1C .2D .2−310.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年浙江高考数学试题及答案
![2018年浙江高考数学试题及答案](https://img.taocdn.com/s3/m/3adc4eedf01dc281e53af0c7.png)
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-= 台体的体积公式121()3V S S h=++其中分别表示台体的上、下底面积,表12,S S h 示台体的高柱体的体积公式V Sh=其中表示柱体的底面积,表示柱体的高S h 锥体的体积公式13V Sh=其中表示锥体的底面积,表示锥体的高S h 球的表面积公式24S R =π球的体积公式343V R =π其中表示球的半径R选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA . B .{1,3}C .{2,4,5}D .{1,2,3,4,5}∅2.双曲线的焦点坐标是221 3=x y -A .0),,0)B .(−2,0),(2,0)C .(0,,(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧侧侧侧侧侧A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是21i-A .1+i B .1−i C .−1+iD .−1−i5.函数y =sin2x 的图象可能是||2xt h i ng sA .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的⊄⊂A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ012P12p -122p 则当p 在(0,1)内增大时,A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,π3向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A B .+1C .2D .10.已知成等比数列,且.若,则1234,,,a a a a 1234123ln()a a a a a a a +++=++11a >A .B .C .D .1324,a a a a <<1324,a a a a ><1324,a a a a <>1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年浙江省高考数学试卷(含详细解析)
![2018年浙江省高考数学试卷(含详细解析)](https://img.taocdn.com/s3/m/1281670d14791711cc7917ab.png)
2018年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(4分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4分)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.84.(4分)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4分)函数y=2|x|sin2x的图象可能是()A.B.C.D.6.(4分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣10.(4分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年高考真题浙江卷数学试题及答案解析
![2018年高考真题浙江卷数学试题及答案解析](https://img.taocdn.com/s3/m/7a17eae8581b6bd97e19eadb.png)
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A,B互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B; 因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年浙江高考数学真题及答案
![2018年浙江高考数学真题及答案](https://img.taocdn.com/s3/m/6403ca5c84868762cbaed54a.png)
2018年浙江高考数学真题及答案本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式11221()3V S S S S h =++其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(2,0),2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ 0 1 2P12p- 12 2p 则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A 3 1B 3C .2D .2310.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
2018年浙江省高考数学试卷及解析
![2018年浙江省高考数学试卷及解析](https://img.taocdn.com/s3/m/bfd0f0679b89680203d825cc.png)
2018年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(4.00分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4.00分)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4.00分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.84.(4.00分)复数(i为虚数单位)的共轭复数是()1A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4.00分)函数y=2|x|sin2x的图象可能是()A .B .C .D .6.(4.00分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4.00分)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()2A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4.00分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4.00分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A .﹣1B .+1 C.2 D.2﹣10.(4.00分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018浙江数学高考试题(附含答案解析)
![2018浙江数学高考试题(附含答案解析)](https://img.taocdn.com/s3/m/1368564e376baf1ffd4fad1e.png)
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn kn nP k p p k n -=-=台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧视图俯视图正视图2211A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A 1BC .2D 10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年高考浙江高考数学试题及答案(精校版)
![2018年高考浙江高考数学试题及答案(精校版)](https://img.taocdn.com/s3/m/ecf0459f04a1b0717fd5dd78.png)
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则 若事件A ,B 相互独立,则 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高 锥体的体积公式其中表示锥体的底面积,表示锥体的高 球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}()()()P A B P A P B +=+()()()P AB P A P B =()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=121()3V S S h =12,S S h V Sh =S h 13V Sh =S h 24S R =π343V R =πR =UA ∅2.双曲线的焦点坐标是A .(,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件221 3=x y -俯视图正视图21i-||2x ⊄⊂7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A −1B +1C .2D .210.已知成等比数列,且.若,则 A .B .C .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年普通高等学校招生全国统一考试(浙江卷) 数学试题及详解
![2018年普通高等学校招生全国统一考试(浙江卷) 数学试题及详解](https://img.taocdn.com/s3/m/58514ae1240c844769eaee62.png)
2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式: 若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h =+ 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð( ) A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5}1.答案:C解答:由题意知U C A ={2,4,5}.2.双曲线221 3=x y -的焦点坐标是( )A .(,0),0) B .(−2,0),(2,0) C .(0,),(0D .(0,−2),(0,2)2.答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 3.答案:C解答:该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=. 4.复数21i- (i 为虚数单位)的共轭复数是( ) A .1+i B .1−i C .−1+i D .−1−i 4.答案:B 解答:22(1)11(1)(1)i z i i i i +===+--+,∴1z i =-.5.函数y =||2x sin2x 的图象可能是( )A .B .C .D .5.答案:D解答:令||()2sin 2x y f x x ==,||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,所以()f x 为奇函数①;当(0,)x p Î时,||20x >,sin 2x 可正可负,所以()f x 可正可负②.由①②可知,选D.6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.答案:A解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件.7.设0<p <1,随机变量ξ的分布列是( )俯视图正视图222则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小7.答案:D 解答:111()0122222p p E p x -=???+, 22211113()()()()222222p p D p p p x -=?+?+?22111()422p p p =-++=--+,所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D.8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1 8.答案:D 解答:作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角, 根据最小角定理,OM 与直线SE 所成的线线角13θθ≥, 所以231θθθ≤≤.9.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是( ) A1 B C .2 D .29.答案:A解答:设(1,0)e =,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+=22(2)1x y ⇒-+=如图所示,a OA =,b OB =,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min11a bCD -=-=.(其中CD OA ⊥.)10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( ) A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >>10.答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
2018浙江高考数学试题及其官方答案
![2018浙江高考数学试题及其官方答案](https://img.taocdn.com/s3/m/71bddf4ad15abe23482f4dca.png)
2018年普通高等学校招生全国统一考试浙江卷一、选择题(本大题共10小题,每小题4分,共40分)1. 已知全集U ={1,2,3,4,5},A ={1,3},则C U A =( )A . ∅B . {1,3}C . {2,4,5}D . {1,2,3,4,5}2. 双曲线 x 23−y 2=1的焦点坐标是( )A . (−√2,0),(√2,0)B . (−2,0),(2,0)C . (0,−√2),(0,√2)D . (0,−2),(0,2) 3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A . 2B . 4C . 6D . 84. 复数21−i(i 为虚数单位)的共轭复数是( ) A . 1+i B . 1−i C . −1+i D . −1−i5. 函数y =2|x |sin 2x 的图象可能是( )6. 已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件7. 设0<p <1,随机变量ξ则当p 在(0,1)内增大时A . D (ξ)减小 B . D (ξ)增大 C . D (ξ)先减小后增大 D . D (ξ)先增大后减小8. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则() A . θ1≤θ2≤θ3B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ1俯视图正视图DC B A9. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为 π3,向量b 满足b 2−4e •b +3=0,则|a −b |的最小值是( ) A . √3−1 B . √3+1 C . 2 D . 2−√3 10. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 4 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 11. 我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为x ,y ,z ,则{x +y +z =1005x +3y +13z =100,当z =81时,x =__________________________,y =___________________________12. 若x ,y 满足约束条件{x −y ≥02x +y ≤6x +y ≥2 ,则z =x +3y 的最小值是________________________,最大值是_____________________13. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =√7,b =2,A =60°,则sinB =_________________,c =___________________ 14. 二项式(√x 3+ 12x )8的展开式的常数项是_________________________15. 已知λ∈R ,函数f (x )={x −4,x ≥λ x 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是_____________________,若函数f (x )恰有2个零点,则λ的取值范围是________________________16. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)17. 已知点P (0,1),椭圆 x 24+y 2=m (m >1)上两点A ,B 满足AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则当m =____________________时,点B 横坐标的绝对值最大三、解答题(本大题共5小题,共74分)18. (14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (− 35,− 45)(1) 求sin (α+π)的值(2) 若角β满足sin (α+β)= 513,求cosβ的值19. (15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2(1) 证明:AB 1⊥平面A 1B 1C 1(2) 求直线AC 1与平面ABB 1所成的角的正弦值20. (15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n (1) 求q 的值(2) 求数列{b n }的通项公式C 1B 1A 1CA21.(15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上(1)设AB中点为M,证明:PM垂直于y轴(2)若P是半椭圆x2+ y 24=1(x<0)上的动点,求△P AB面积的取值范围22.(15分)已知函数f(x)=√x−lnx(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2(2)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点。
2018年高考浙江高考数学试题及答案(精校版)
![2018年高考浙江高考数学试题及答案(精校版)](https://img.taocdn.com/s3/m/b367f0d2bed5b9f3f80f1c4a.png)
(Ⅱ)若 P 是半椭圆 x2+ y2 =1(x<0)上的动点,求△PAB 面积的取值范围. 4
22.(本题满分 15 分)已知函数 f(x)= . x −lnx
(Ⅰ)若 在 , 处导数相等,证明: ; f(x) x=x1 x2(x1≠x2)
f(x1)+f(x2)>8−8ln2
(Ⅱ)若 a≤3−4ln2,证明:对于任意 k>0,直线 y=kx+a 与曲线 y=f(x)有唯一公共点.
Pn (k) Ckn pk (1 p)nk (k 0,1, 2,L , n)
柱体的体积公式V Sh 其中S 表示柱体的底面积,h表示柱体的高
锥体的体积公式V 1 Sh 3
其中S 表示锥体的底面积,h表示锥体的高 球的表面积公式
台体的体积公式 V
1 3 (S1
S1S2 S2 )h
其中 S1,S2 分别表示台体的上、下底面积, h 表
绝密★启用前
2018 年普通高等学校招生全国统一考试(浙江卷)
数学
本试题卷分选择题和非选择题两部分。全卷共 4 页,选择题部分 1 至 2 页;非选择题部 分 3 至 4 页。满分 150 分。考试用时 120 分钟。 考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题 卷和答题纸规定的位置上。
55
5
所以 sin( π) sin 4 . 5
(Ⅱ)由角 的终边过点 P( 3 , 4) 得 cos 3 ,
55
5
由 得 sin( ) 5 cos( ) 12 .
13
13
由 得 , ( ) cos cos( ) cos sin( )sin
所以 或 cos 56 cos 16 .
2018年浙江高考理科数学试题含答案
![2018年浙江高考理科数学试题含答案](https://img.taocdn.com/s3/m/47b33feb48d7c1c709a14561.png)
2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( ) .60 C D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y≥⎧=⎨<⎩,设,a b r r 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99Λ==i i a i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-=Λ,.3,2,1=k 则 A.321I I I << B. 312I I I << C. 231I I I << D. 123I I I <<二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.、在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______ 16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a n b n 221Λ.若{}na 为等比数列,且.6,2231b b a +== (1)求n a 与n b ;(2)设()*∈-=N n b a c nn n 11。
2018年浙江高考理科数学试题含答案(Word版)
![2018年浙江高考理科数学试题含答案(Word版)](https://img.taocdn.com/s3/m/5dc0e882866fb84ae55c8d4f.png)
2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、(1)设全集,集合,则( )A. B 、 C 、 D 、(2)已知就是虚数单位,,则“”就是“”得( )A 、 充分不必要条件B 、 必要不充分条件C 、 充分必要条件D 、 既不充分也不必要条件(3)某几何体得三视图(单位:cm)如图所示,则此几何体得表面积就是A 、 90B 、 129C 、 132D 、 1384.为了得到函数得图像,可以将函数得图像( )A.向右平移个单位 B 、向左平移个单位C 、向右平移个单位D 、向左平移个单位5.在得展开式中,记项得系数为,则 ( )A 、45B 、60C 、120D 、 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A. B 、 C 、 D 、7.在同意直角坐标系中,函数得图像可能就是( )8.记,,设为平面向量,则( )A 、B 、C 、D 、9、已知甲盒中仅有1个球且为红球,乙盒中有个红球与个篮球,从乙盒中随机抽取个球放入甲盒中、(a)放入个球后,甲盒中含有红球得个数记为;(b)放入个球后,从甲盒中取1个球就是红球得概率记为、则A. B 、C 、D 、10.设函数,,,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-=Λ,则A 、B 、C 、D 、二、填空题:本大题共7小题,每小题4分,共28分、11.若某程序框图如图所示,当输入50时,则该程序运算后输出得结果就是________、12.随机变量得取值为0,1,2,若,,则________、13.当实数,满足时,恒成立,则实数得取值范围就是________、14.、在8张奖券中有一、二、三等奖各1张,其余5张无奖、将这8张奖券分配给4个人,每人2张,不同得获奖情况有_____种(用数字作答)、15.设函数若,则实数得取值范围就是______16.设直线与双曲线(0a b>>)两条渐近线分别交于点,若点满足,则该双曲线得离心率就是__________17、如图,某人在垂直于水平地面得墙面前得点处进行射击训练、已知点到墙面得距离为,某目标点沿墙面得射击线移动,此人为了准确瞄准目标点,需计算由点观察点得仰角得大小、若则得最大值19(本题满分14分)已知数列与满足、若为等比数列,且(1)求与;(2)设。
2018年普通高等学校招生全国统一考试(浙江卷) 数学试题及详解 精编版
![2018年普通高等学校招生全国统一考试(浙江卷) 数学试题及详解 精编版](https://img.taocdn.com/s3/m/882e49d305087632311212b3.png)
2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式: 若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h = 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð( ) A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5}1.答案:C解答:由题意知U C A ={2,4,5}.2.双曲线221 3=x y -的焦点坐标是( )A .(0),0) B .(−2,0),(2,0) C .(0,,(0D .(0,−2),(0,2)2.答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 3.答案:C解答:该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=. 4.复数21i- (i 为虚数单位)的共轭复数是( ) A .1+i B .1−i C .−1+i D .−1−i 4.答案:B 解答:22(1)11(1)(1)i z i i i i +===+--+,∴1z i =-.5.函数y =||2x sin2x 的图象可能是( )A .B .C .D .5.答案:D 解答:令||()2sin 2x y f x x ==,||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,所以()f x 为奇函数①;当(0,)x p Î时,||20x >,sin 2x 可正可负,所以()f x 可正可负②.由①②可知,选D.6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.答案:A解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件.7.设0<p <1,随机变量ξ的分布列是( )俯视图正视图222则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小7.答案:D 解答:111()0122222p p E p x -=???+, 22211113()()()()222222p p D p p p x -=?+?+?22111()422p p p =-++=--+,所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D.8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1 8.答案:D 解答:作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角, 根据最小角定理,OM 与直线SE 所成的线线角13θθ≥, 所以231θθθ≤≤.9.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是( )A 1BC .2D .29.答案:A解答:设(1,0)e =,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+=22(2)1x y ⇒-+=如图所示,a OA =,b OB =,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min11a b CD -=-=.(其中CD OA ⊥.)10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( ) A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >>10.答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<. ∴13a a >,24a a <.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
2018年浙江省高考数学试卷及解析
![2018年浙江省高考数学试卷及解析](https://img.taocdn.com/s3/m/bfd0f0679b89680203d825cc.png)
2018年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(4.00分)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4.00分)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4.00分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.84.(4.00分)复数(i为虚数单位)的共轭复数是()1A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4.00分)函数y=2|x|sin2x的图象可能是()A .B .C .D .6.(4.00分)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4.00分)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()2A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4.00分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4.00分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A .﹣1B .+1 C.2 D.2﹣10.(4.00分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试(浙江卷)
数学(理科)
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设全集{}2|≥∈=x N x U ,集合{}
5|2≥∈=x N x A ,则=A C U ( )
A. ∅
B. }2{
C. }5{
D. }5,2{
(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是
A. 902cm
B. 1292cm
C. 1322cm
D. 1382cm
4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )
A.向右平移
4π个单位 B.向左平移4
π个单位 C.向右平移12π个单位 D.向左平移12
π个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )
A.45
B.60
C.120
D. 210
6.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )
A.3≤c
B.63≤<c
C.96≤<c
D. 9>c
7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )
8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y ≥⎧=⎨<⎩
,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤
B.min{||,||}min{||,||}a b a b a b +-≥
C.2222min{||,||}||||a b a b a b +-≥+
D.2222min{||,||}||||a b a b a b +-≤+
9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.
(a )放入i 个球后,甲盒中含有红球的个数记为()1,2i i ξ=;。