矩阵论PPT
合集下载
矩阵论第一章第二节PPT课件
分析: 设 dimV n, 1, 2, , n 是V的一组基,
线性变换 在这组基下的矩阵为A.
设 0是 的特征值,它的一个特征向量 在基
1,2,
, n 下的坐标记为
x01 ,
x0n
则 ( )在基 1, 2 ,
, n下的坐标为
x01 A ,
x0n
x01
而0
的坐标是
0
x0n
21 11
k 1 k
k k 1
.
例. 在线性空间 P3 中,线性变换 定义如下:
(1 ) (2 )
( 5, 0, (0, 1,
3) 6)
,
(3 ) (5, 1,9)
其中, 12((01,,10,,12)) 3 (3, 1,0)
(1)求 在标准基 1, 2 , 3 下的矩阵. (2)求 在 1,2 ,3 下的矩阵.
② 若 是 的属于特征值 0的特征向量,则 k (k P,k 0) 也是 的属于0 的特征向量.
(k ) k ( ) k(0 ) 0(k )
由此知,特征向量不是被特征值所唯一确定的, 但是特征值却是被特征向量所唯一确定的,即
若 ( ) 且 ( ) ,则 .
2、特征值与特征向量的求法
5 0 5
因而,
AX
0 3
1 6
1 9
,
5 0 5
5 0 5 1 0 3 1
A
0 3
1 6
1 9
X
1
0 3
1 6
1 9
0 2
1 1
1 0
1 7
5 4 27
20 5 18
20
2 24
(2)设 在1,2 ,3下的矩阵为B,则A与B相似,且
矩阵论课件
矩阵论
第二章
第一节
矩阵与约当标准形
矩阵
第二节 不变因子及初等因子
第三节 约当标准形 第四节 凯莱—哈米尔顿定理 最小多项式
4 December 2014 河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
第一节
定义 设 P
矩阵
为数域, 为数字,P[ ] [ ]为关于 中的元素(数)为元素的矩
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
定理 设 矩阵 A( ) aij
阵,且 rank( A( )) r ,则
矩阵论
m n
为非零的多项式矩
A( )
d1 ( ) d 2 ( ) r ( ) 0 J ( ) 0 0 d ( ) r 0 0 0 diag d1 ( ), d 2 ( ), , d r ( ), 0, , 0 --称为 A( )的 Smith (史密斯)标准形.
矩阵论
Dn ( ) a ;
n
Dn1 ( )
4 December 2014
D1 ( ) 1.
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
定义 把 矩阵 A( ) 的每个次数大于零的不变因子
在复数域 [ ]中分解成标准分解式,即分解成首项 系数为1的互不相同的一次因式方幂的乘积,所有 这些一次因式 的方幂 ( 相同的必须按出现次数 计 算) ,称为 A( )的初等因子.
[ ]中分解成标准分解式,所有出现的一次因式的
标准形)
方幂就是 A( )的全部初等因子.
第二章
第一节
矩阵与约当标准形
矩阵
第二节 不变因子及初等因子
第三节 约当标准形 第四节 凯莱—哈米尔顿定理 最小多项式
4 December 2014 河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
第一节
定义 设 P
矩阵
为数域, 为数字,P[ ] [ ]为关于 中的元素(数)为元素的矩
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
定理 设 矩阵 A( ) aij
阵,且 rank( A( )) r ,则
矩阵论
m n
为非零的多项式矩
A( )
d1 ( ) d 2 ( ) r ( ) 0 J ( ) 0 0 d ( ) r 0 0 0 diag d1 ( ), d 2 ( ), , d r ( ), 0, , 0 --称为 A( )的 Smith (史密斯)标准形.
矩阵论
Dn ( ) a ;
n
Dn1 ( )
4 December 2014
D1 ( ) 1.
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
定义 把 矩阵 A( ) 的每个次数大于零的不变因子
在复数域 [ ]中分解成标准分解式,即分解成首项 系数为1的互不相同的一次因式方幂的乘积,所有 这些一次因式 的方幂 ( 相同的必须按出现次数 计 算) ,称为 A( )的初等因子.
[ ]中分解成标准分解式,所有出现的一次因式的
标准形)
方幂就是 A( )的全部初等因子.
《矩阵论》课件 共39页PPT资料
n
x 1
xi ;
i1
1
x
2
n i1
xi
2 2
;
x
max
1 i n
xi
;
1
x
n p i 1
xi
p p ,
p1
x , x , x , x ( p 1)都是 C n上的向量范数。
1
2
p
引6理 .1.1 如 果p实 1,q数 1且111,则 对 pq
向 量 范,数1,,n为V的 一 组,V基中 任 一 向量
n
可唯一地表示为xii, x(x1,, xn)T Pn. i1
则 是x1,, xn的连续函. 数
定义6.1.2 设 , 是n维线性V空 上间 定义的 ab
种 向 量,范 如数 果 存 在 两 无个关与的 正 常
其中p 实 1,q 数 1且 111. pq
定理6.1.2(Minkowski不等式)
设 x ( x 1 , ,x n ) T ,y ( y 1 , ,y n ) T C n ,则
1
1
1
i n1xiyi p p i n1xi p p i n1yi p p
定理6.1.5 设V是 数 域 P上 的n维 线 性 空,间 1,,n 为V的 一 组,基 则V中 任 一 向可 量唯 一 地 表 示
n
xii , x (x1,, xn)T Pn.又 设 是Pn上 的
i1
向 量 范,数 令 v
x,
则 是V上的向量范. 数 v
定理6.1.6 设 是数域 P上n维线性空V上 间的任一
矩阵论ppt
a
则称方阵范数 A 与向量范数 x a 是相容的.
4 February 2018 河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
性质:
(1 ) P n n 上的每一个方阵范数,在 P n 上都存在与它 相容的向量范数;
(2 ) P n n 上任意两种方阵范数 A a , A b 都是等价的, 即 存 在 两 个 与 A 无 关 的 正 的 常 数 C1 , C2 , 使 得 对
证
矩阵论
j H n n H n
1 H n
j 1
j 1 i 1
4 February 2018
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
注 (1 ) F - 范数的优点之一是矩阵乘以酉矩阵U 之 后 F -范数不变,即: UA F A F AU F . 事实上:
H A ( A A); (3) 2
nn
n n Cc ,则
列模和最大者
行模和最大者
H
H
( A A) 是 A A 的最大特征值
2
(4) A
F
a
j 1 i 1
n
m
ij
tr A A ;
H
F -范数
4 February 2018
河北科技大学
机动 目录 上页 下页 返回 结束
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
矩阵序列的极限计算具有以下性质:
设 Am 和 Bm 为两个 n阶矩阵序列
lim Am A ,则对 Cnn 中任何方阵范数 , Am 有界; (1 ) 如果 m
矩阵分析课件精品PPT
典型例题解析
例1
求矩阵A的特征值和特征向量,其中A=[[3,1],[2,2]]。
例2
已知矩阵A的特征值为λ1=2, λ2=3,对应的特征向量为 α1=[1,1]T, α2=[1,-1]T,求矩阵A。
解析
首先求出矩阵A的特征多项式为f(λ)=(λ-1)(λ-4),解得特 征值为λ1=1, λ2=4。然后分别将特征值代入(A-λI)x=0求 解对应的特征向量。
应用举例
通过克拉默法则求解二元、三元线性方程组,并验证解的正确性 。
典型例题解析
01
例题1
求解三元线性方程组,通过高斯消元 法得到增广矩阵的上三角形式,然后 回代求解未知数列向量x。
02
03
例题2
例题3
判断四元线性方程组的解的情况,通 过计算系数矩阵的行列式|A|以及替换 列向量后的矩阵行列式|Ai|,根据克 拉默法则判断方程组的解是唯一解、 无解还是无穷多解。
特殊类型矩阵介绍
01
02
03
04
方阵
行数和列数相等的矩阵称为方 阵。
零矩阵
所有元素都是零的矩阵称为零 矩阵。
对角矩阵
除主对角线外的元素全为零的 方阵称为对角矩阵。
单位矩阵
主对角线上的元素全为1,其 余元素全为0的方阵称为单位 矩阵。
矩阵性质总结
Байду номын сангаас
01
结合律
02
交换律
03 分配律
04
数乘结合律
数乘分配律
• 对于每一个特征值m,求出齐次线性方程组(A-mI)x=0的一个基础解系,则A对应于特征值m的全部特征向量(其中I是与A 同阶的单位矩阵)。
特征值和特征向量求解方法
矩阵论课件
机动 目录 上页 下页 返回 结束
矩阵论
对于满秩方阵 A,A1存在, 且 AA1 A1 A I , 故当然有
AA-1 A A A-1 AA-1 A ( AA-1 )* AA-1 ( A-1 A)* A-1 A
这四个对满秩方阵显然成立的等式构成了Penrose 广义逆的启示.
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
第一节 和相容方程组求解问题相应的广 义逆矩阵 A
1.广义逆矩阵的定义及性质
设 线 性 方 程 组 AX b 是 相 容 的 , 其 中
A C mn , X C n , b C m ,
则 AX b相容 b R( A) (矩阵 A 的象空间) .
0 ,Ar 为 r 阶满 0
0 1 1 Ar 1 Q P I 0 Q r 0 0 1 Ar 令 C P , D I r 0 Q 1 0
1 1 C L D* ( DD* )1(C *C )1C * . 则 A - DR
3. 反射 g 逆
定义 设 A C mn ,若存在G C nm ,使得
(1) AGA A;
和
(2) GAG G ;
同时成立,则称G 为 A 的一个反射(或自反)广 义逆矩阵,简称为反射 g 逆,记作: Ar ,其全体 记作: A{1, 2}.
4 December 2014
河北科技大学
(4) 若G1G2 A{1},则G1 AG2 A{1, 2};
(5) A{1, 2} A{1};
R
L
4 December 2014
矩阵论
对于满秩方阵 A,A1存在, 且 AA1 A1 A I , 故当然有
AA-1 A A A-1 AA-1 A ( AA-1 )* AA-1 ( A-1 A)* A-1 A
这四个对满秩方阵显然成立的等式构成了Penrose 广义逆的启示.
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
第一节 和相容方程组求解问题相应的广 义逆矩阵 A
1.广义逆矩阵的定义及性质
设 线 性 方 程 组 AX b 是 相 容 的 , 其 中
A C mn , X C n , b C m ,
则 AX b相容 b R( A) (矩阵 A 的象空间) .
0 ,Ar 为 r 阶满 0
0 1 1 Ar 1 Q P I 0 Q r 0 0 1 Ar 令 C P , D I r 0 Q 1 0
1 1 C L D* ( DD* )1(C *C )1C * . 则 A - DR
3. 反射 g 逆
定义 设 A C mn ,若存在G C nm ,使得
(1) AGA A;
和
(2) GAG G ;
同时成立,则称G 为 A 的一个反射(或自反)广 义逆矩阵,简称为反射 g 逆,记作: Ar ,其全体 记作: A{1, 2}.
4 December 2014
河北科技大学
(4) 若G1G2 A{1},则G1 AG2 A{1, 2};
(5) A{1, 2} A{1};
R
L
4 December 2014
(课件)矩阵论
=
aB 11 1
+
(a12
−
a 11
)
B 2
+
( a 21
−
a 12
)
B 3
+
( a 22
−
a
21
)
B 4
坐标为
β
=
(a11
,
a 12
−
a 11
,
a
21
−
a 12
,
a 22
− a21 )Τ
[注] 一个元素在两个不同的基下的坐标可能相同,也可能不同.
例如:
A
=
E 22
在上述两个基下的坐标都是 (0,
0,
(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
mn
∑ ∑ (2) A = (ai j )m×n =
ai j Ei j .
i=1 j=1
故 Ei j (i = 1,2,L, m ; j = 1,2,L, n) 是 R m×n 的一个基, dimR m×n = mn .
第一章 线性空间与线性变换(第 1 节)
5
2.坐标:给定线性空间V
n
的基
x 1
解 采用中介法求过渡矩阵.
矩阵论简明教程(整理全)PPT课件
n 1
1
2
x n1 n
§1.3 矩阵的秩
一、 矩阵秩的定义及基本性质 1、秩的定义
1 r a n k A r
A 的 行 向 量 组 的 极 大 线 性 无 关 组 中 向 量 的 个 数
2 r a n k A r
A 的 列 向 量 组 的 极 大 线 性 无 关 组 中 向 量 的 个 数
a2, j1 a3, j1
a a n, j1 n, j1
a2n
a3n
ann
2 、 A d e tA
( 1 ) j1 j2
aa jn 1 j12 j2
a n jn
j1 j2 jn
二、块矩阵的行列式
1、 设 ACmm,BCmn,CCnm,DCnn,则
1A
0A
BA
0 AD
0 D 0 D CD
A2r
B2r
,
Asr
Bsr
2、数乘
A11 A12 设 AA21 A22
As1 As2
3、乘法 A11 A12
设AA21 A22 As1 As2
A1r
A11 A12
A2r, 则 AA21 A22
Asr
As1 As2
A1r A2r
Asr
A1t
B11 B12
A2t ,BB21 B22
Ast
Bt1 Bt2
B1r
B2r
Btr
C11 C12 则ABC21 C22
Cs1 Cs2
C1r
C2r
, 其中Cij
t
k1
AikBkj
Csr
i 1,2, ,s; j 1,2, ,r
4、转置与共轭转置
矩阵(Matrix)PPT课件
a11 a12
A
a21
a22
am1 am2
a1n x1 b1
a2n
,
x
x2
,
b
b2
amn xn bn
ai1x1 ai2 x2 ain xn bi
则方程组又可表示为 Ax b.
x1ai1 x2ai2 xnain bi
a11 a21
定义成
a11 a21
x1 x1
a12 x2 a22 x2
x1
a11
a21
x2
a12
a22
x1 1 x2 2
e2
(a12 , a22 )
2
1
y ( y1, y2 )
2
A和x的乘法实质给出了 向量y在A坐标系(β1Oβ2) 下的刻划方法。
e1
(a11,1a21 )
y y1e1 y2e2
ai1b1 j ai 2b2 j a b b 1j is sj
a a a i1 i2
b2 j is
注:A的列数和B的行数相等时 b,sj AB才有意义。
• 例3 设矩阵
1 0 1
A
1
1
3
,
求乘积 AB.
解
1 0
C
AB
1
1
0 3 4 B 1 2 1
3 1 1
B
a12
a22
a1n a2n
am1
am2
y (x1, x2, , xn )
c (b1,b2, ,bm)
amn nm
则方程组又可表示为 yB c.
矩阵向量乘法意义之二:为刻划向量提供了坐标系
根据矩阵乘法定义,m n 阶矩阵A与n维列向
戴华《矩阵论》 第一章线性空间与内积空间 ppt课件
22r111221221000001001000001iiieeee????????????????????????显然111221112212211000101aeeeeee??????????????????类似地211221112212211000101aeeeeee?????????????????????312211112212200111010aeeeeee??????????????????则基iii到基i的过渡矩阵为11100001100111100c??????????????412211112212200111010aeeeeee?????????????????????而基iii到基ii的过渡矩阵为21111111011001000c????????????所以1234111221221aaaaeeeec1234111221222bbbbeeeec从而112ccc?1123421aaaacc?因此基i到基ii的过渡矩阵为21110111122???2100010?????????1234111221222bbbbeeeec注意
(a,bR)都有a+bi=(1,i)( a ),所以(a,b) T即为k的坐
标。
b
ppt课件
30
例 1.3.2 实数域 R上的线性空间R [x]n中的向量组 1,x, x2 ,… xn-1
是 基底, R [x]n的维数为 n。
例1.3.3 实数域 R上的线性空间 Rnn 的维数为
nn,标准基为Eij:(i=1,2…n;j=1,2…n)
27
ppt课件
28
注: (1)若把线性空间V 看作无穷个向量组成的向
量组,那么 V 的基就是向量组的极大无关组, V 的 维数就是向量组的秩.
(a,bR)都有a+bi=(1,i)( a ),所以(a,b) T即为k的坐
标。
b
ppt课件
30
例 1.3.2 实数域 R上的线性空间R [x]n中的向量组 1,x, x2 ,… xn-1
是 基底, R [x]n的维数为 n。
例1.3.3 实数域 R上的线性空间 Rnn 的维数为
nn,标准基为Eij:(i=1,2…n;j=1,2…n)
27
ppt课件
28
注: (1)若把线性空间V 看作无穷个向量组成的向
量组,那么 V 的基就是向量组的极大无关组, V 的 维数就是向量组的秩.
矩阵论课件
P 是数域, 若 n是正整数, 则系数属于 P 而未知元为 x 的
所有次数不超过 n 的多项式的集合,此集合连同零多 项式在内按通常多项式的加法及数与多项式的乘法, 构成数域 P 上的一个线性空间全体记作: Pn [ x ].
4 December 2014 河北科技大学
机动 目录 上页 下页 返回 结束
, t 可以由1 , 2 ,
, s 线性表
, t 线性相关.
推论1 若 1 , 2 ,
, t 可 以 由 1 , 2 ,
, s 线 性 表 示 , 且
1 , 2 , , t 线性无关,则 t s .
推论2 若 1 , 2 ,
, t 与 1 , 2 , , s 等 价 ,且 均 线性 无
实数域 R 上的线性空间简称为实线性空间; 复数域 C 上的线性空间简称为复线性空间.
下面看几个线性空间的例子.
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
例1 若 P= 是数域,V 是分量属于 P= 的 n元有序数组的集合
V a1 , a2 ,
, an | ai P,i 1, 2,
矩阵论
例4 所有定义在区间 a , b a t b 上的实值连续
函数全体构成的集合, 按照函数的加法及数与函数 的数量乘法,构成实数域 R 上的一个线性空间,记 作: R a , b .
例5 实(复)系数齐次线性方程组 Ax 0( A R mn
或 C mn ; x R n 或 C n ;行向量和列向量不做区别) 的解空间 S 构成 R 或C 上的一个线性空间.
才成立,称 x1 , x2 ,
矩阵论简明教程整理全PPT课件
k
ei
e
H j
E ei , ej , k
第45页/共188页
Remark
det E u,v, det In uvH det 1 vHu
1 vHu (由n Im AB m In BA 得到)
第46页/共188页
四、其他特殊矩阵
1幂零矩阵:Ak 0, k : 某正整数; 2幂等矩阵:A2 A; 3 实对称正定矩阵:
a a jn 1 j1 2 j2
anjn
j1 j2 jn
第13页/共188页
二、块矩阵的行列式
1、设A Cmm , B Cmn , C Cnm , D Cnn , 则
1 A
0A
BA
0 AD
0D 0D CD
2 A B 1mn C D 1mn B A
CD
AB
DC
3 A B m A B
minrank A, rank B
第30页/共188页
推论1
设ACmn , B Cnk ,且AB 0,则
rank A rank B n
第31页/共188页
§1.4 特殊矩阵
一、 几类基本的特殊矩阵
1、零矩阵,单位矩阵 2、对角矩阵
a11
D
a22
diag
a11
,
a22
,
ann
第50页/共188页
§2.1 矩阵的特征值与特征向量
一、特征值与特征向量 1、定义 定义1
设ACnn ,若存在数 C和x Cn , x 0使得 Ax x
则称是A的特征值,x称为A属于的特征向量。
第51页/共188页
2、特征多项式 定义2
设ACnn , 称In A为A的特征矩阵,称detIn A 为A的特征多项式,称detIn A 0为A的特征方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)
x y 2 x 2 y 2
单位向量; 向量的单位化; 正交向量; 向量组的
Schmidt 正交化方法; 正交基; 标准正交基.
定理 1.20: 两两正交的非零向量组一定线性无关.
定义: 设 A C nn, 若 A 满足
1 H 或 A A A A I
H
则称 A 为酉矩阵.
x, y x, y
(3) x y, z x, z y, z , x, y z x, y x, z
(4) x, x 0, 且仅当 x 0 时才有 x, x 0.
(5) x, y y, x x, x y, y (Cauchy-Schwarz不等式)
定理 1.27: 设 A C nn 是Hermite矩阵, 则 A 是Her-
mite正定矩阵的充要条件是 A 的各阶顺序主子式均
为正.
第二章:范数理论
§2.1 向量范数
定义: 若对任意 x C n 都有一个实数 x 与之对应,
且满足
(1) 当 x 0 时, x 0. 当 x 0 时, x 0.
§1. 4 Caylay-Hamilton定理
定理 1.13 (Cayley-Hamilton): 设 A C nn ,
detI A, 则 A 0.
定理1.13说明: 设 A C
nn
, 则 A 的任意次幂都
可转化为 A 的 n 1 次多项式计算.
推论2: 实对称矩阵的特征值均为实数, 实反对称矩
阵的特征值为零或纯虚数.
推论3: 设 A C nn是正规矩阵, 是 A 的特征值, x
是对应 的特征向量, 则 是 A H 的特征值, A H 的
对应 的特征向量仍为 x .
推论4: 正规矩阵的属于不同特征值的特征向量彼此
正交.
1) 特征向量法
设 AC
nn
, 如果 i 是 A 的单特征值, 则对应一
阶Jordan块 J i i ; 如果i 是 A 的 ri ri 1 重特征
值, 则对应 i 有几个线性无关的特征向量, 就有几个 以 i 为对角元素的Jordan块, 这些Jordan块的阶数 之和等于 ri . 由 A 的所有特征值对应的Jordan块构成 的Jordan矩阵即为 A 的Jordan标准形. 2) 初等变换法 3) 行列式因子法
定理 1.22 (Schur): 设 A C nn , 则 A 可酉相似于上
三角矩阵 T , 即存在 n 阶酉矩阵 U , 使得
U 1 AU U H AU T
问题: 什么样的矩阵才能酉相似于对角阵?
答案: 正规矩阵
定义: 设 A C nn , 若 A 满足 AH A AAH ,
Байду номын сангаас
A 的任一零化多项式, 且最小多项式是唯一的.
定理 1.16: 相似矩阵具有相同的特征值,相同的特征
多项式和相同的最小多项式.
定理1.17: 设 A C nn , 1 , 2 ,, t 是 A 的所有互不 相同的特征值, 则
mA 1
最高阶数.
m1
2
m2
t
mt
其中 mi 是 A 的Jordan标准形 J 中含i 的Jordan块的
§1. 5 向量的内积
<<线性代数>>课程中对 n 维向量的内积是在实
数域中定义的, <<矩阵论>>对 n 维向量的内积将在
复数域中定义.
定义: 设 x 1, 2 ,, n C , y 1,2 ,,n C n .
(1) A 是Hermite正定矩阵;
(2) A 的特征值全为正实数;
nn (3) 存在矩阵 P Cn , 使得 A P H P.
推论: Hermite正定矩阵的行列式大于零. 定理 1.25: 设 A C nn 是Hermite矩阵, 则下列条件
等价:
(1) A 是Hermite半正定矩阵;
• 几种常见的向量范数 设 x 1, 2 ,, n T C n , 规定 (1) 向量的2范数: x 2
x, x
x x
H
k 1
n
2 k
(2) 向量的1范数:
x 1 k
k 1
n
(3) 向量的 范数: x
max k
k
n (4) 向量的 p 范数: x k p p k 1 (5) 向量的加权范数或椭圆范数:
则称 A 为正规矩阵.
酉矩阵, 正交阵; Hermite阵, 实对称阵; 反Hermite
阵, 实反对称阵; 对角阵等都是正规矩阵.
定理 1.23: 设 A C nn , 则 A 酉相似于对角阵的充要 条件是 A 为正规矩阵. • 有关正规阵的4个性质: 推论1: Hermite矩阵的特征值均为实数, 反Hermite 矩阵的特征值为零或纯虚数.
T n
T
令
x, y y H x k k
k 1
n
称 x, y 为向量 x 与 y 的内积.
• 内积的性质 定理 1.18: 设 x, y, z C , C , 则
n
(1) x, y y, x (2) x, y x, y ,
(2) 对任何 C , x x .
(3) 对任意 x, y C n ,都有 x y x y .
则称 x 为 C n 上向量 x 的范数.
• 向量范数的基本性质
定理 2.1: 对任意 x, y C n , 有
(1) x x ;
(2)
x y x y
推论:
f A 0
f 0
定理1.3: 矩阵的属于不同特征值的特征向量线性无
关.
定理1.4: 设 A aij nn 的特征值为 1 , 2 ,, n , 则: (1) tr A 1 2 n (2) det A 12 n (3) AT 的特征值为 1 , 2 ,, n , 而 A H a ji
第一章:矩阵的相似变换
§1. 1 特征值与特征向量
• 有关定义回顾: 特征值; 特征向量; 特征矩阵; 特征多项式.
• 矩阵的特征值与特征向量的性质.
定理1.1: 设 i 是 A C nn 的 ri 重特征值, 对应 i
有 s i 个线性无关的特征向量, 则: 1 si r i
简言之: 矩阵特征值的几何重数小于或等于其代
1 1 其中 p 1, q 1, 且 1. p q
定理 2.3: 设 x 1, 2 ,, n C n , 则
T
lim x
p
p
x
• 从已知的某种向量范数导出另一种向量范数的方
法.
mn 定理 2.4: 设 A Cn , a 是 C m上的一种向量范数.
i Ji 1
i
1 i r r i i
的矩阵称为 ri 阶Jordan块. 由若干个Jordan块构成
的分块对角阵 J diagJ1 , J 2 ,, J s 称为Jordan矩阵.
定理1.9(Jordan): 设 A C nn , 则 A 一定与一个 Jordan矩阵 J 相似. 且这个Jordan矩阵 J 除Jordan 块的排列顺序外由 A 唯一决定. 将方阵 A C nn 相似变换为Jordan标准形的方法:
推论2: 设 1 , 2 ,, s是 n 阶方阵 A 的所有互不相 同的特征值, 其重数分别为 r1 , r2 ,, rs . 若每个 i 都 有 ri 个线性无关的特征向量 i 1, 2, , s , 则 A 可 对角化.
§1. 3 Jordan标准形介绍
定义: 形如
nn
的特
征值为 1 , 2 ,, n .
§1. 2 相似对角化 • 矩阵(方阵)相似的定义. • 矩阵相似的性质(6条). • 矩阵可对角化的条件. 定理1.8: 设 A C nn , 则 A 可对角化的充要条件是
A 有 n 个线性无关的特征向量.
推论1: 若 A C nn 的特征值两两相异,则 A 可对角化.
(研究生课程)
高 等 工 程 数 学
教师: 李晓东
• 课程主要内容:
矩阵论:矩阵的相似变换;向量范数与矩阵范数 的理论及应用;矩阵分析及应用;矩阵的各种分 解方法等。 泛函分析:距离空间;赋范空间与Banach空间; 内积空间与Hilbert空间等。
• 主要参考书目:
1.徐仲等著,《矩阵论简明教程》,科学出 版 社,2007。 2.姚泽清等著,《应用泛函分析》,科学出版 社,2008。
对任意 x C n , 规定
x b Ax a
则 x 是 C n上的向量范数. b
• 向量范数的等价性
定义: 设 a和 b是 C n 上的两种向量范数. 如果存在
正数 和 , 使对任意 x C n 都有
1 p
1 p
x
A
x Ax , (其中A 为Hermite正定阵.)
H
可以证明: 以上定义的5种算式都符合向量范数 的定义. 以向量的 p 范数为例, 用下面的引理进行证 明. 引理: 对任意 k ,k C k 1, 2, , n, 有Holder不等式
n n p q k k k k , k 1 k 1 k 1 n 1 p 1 q
数重数.
定理1.2: 设 A C nn , A 的 n 个特征值为1 , 2 ,, n , 对应的特征向量为 x1 , x2 ,, xn ,又设 f 为一多项式,