09高考数学中利用空间向量解决立体几何中向量的方法一课件

合集下载

高中数学3.2立体几何中的向量方法课件-(共43张PPT)

高中数学3.2立体几何中的向量方法课件-(共43张PPT)

,即14x+ 43y+12z=0

令 y=2,则 z=- 3,∴n=(0,2,- 3).
∵ PD =0,23 3,-1,显然 PD =
3 3 n.
26
∵ PD ∥n,∴ PD ⊥平面 ABE,即 PD⊥平面 ABE.
探究提高 证明线面平行和垂直问题,可以用 几何法,也可以用向量法,用向量法的关键在 于构造向量,再用共线向量定理或共面向量定 理及两向量垂直的判定定理。若能建立空间直 角坐标系,其证法较为灵活方便.
7
r 平面的法向量:如果表示向量 n的有向线段所在
直线垂直于r平面 ,则称r这个向量垂直于平r
面 ,记作 n⊥ ,如果 n⊥ ,那 么 向 量n
叫做平面 的法向量.
r
l
给定一点Ar 和一个向量 n,那么 过点A,以向量 n 为法向量的平面是
r 完全确定的.
n
几点注意:
1.法向量一定是非零向量;
17
题型分类 深度剖析
题型一 利用空间向量证明平行问题 例 1 如图所示,在正方体 ABCD—A1B1C1D1
中,M、N 分别是 C1C、B1C1 的中点.求证: MN∥平面 A1BD.
18
证明 方法一 如图所示,以 D 为原点,DA、DC、DD1 所在
直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的
1,得
x
1 2
y 1
r n
(
1
,
1,1),
2
10
思考2:
因为方向向量与法向量可以确定直线和平面的 位置,所以我们应该可以利用直线的方向向量与平 面的法向量表示空间直线、平面间的平行、垂直、 夹角等位置关系.你能用直线的方向向量表示空间两 直线平行、垂直的位置关系以及它们之间的夹角吗? 你能用平面的法向量表示空间两平面平行、垂直的 位置关系以及它们二面角的大小吗?

高中数学《立体几何中的向量方法(一)》课件

高中数学《立体几何中的向量方法(一)》课件

抓住3个考点
突破3个考向
⇔_v_∥__u_.
③设平面 α 和 β 的法向量分别为 u1 和 u2,则 α⊥β⇔_u_1⊥__u__2
⇔u__1·_u_2=__0__=0.
抓住3个考点
突破3个考向
揭秘3年高考
3.点面距的求法
如图,设 AB 为平面 α 的一条斜线段,
n
为平面
α
的法向量,则 →
B
到平面
α
|AB·n|
的距离 d=___|n_|___.
→→ 故 cos〈B→E,C→D〉=|BB→EE|·|CC→DD|=
3 2 12+h2× 5
= 10+3 20h2,
所以
10+3 20h2=cos
30°=
3, 2
解得
h=
1100,即
AE=
10 10 .
抓住3个考点
突破3个考向
揭秘3年高考
用向量法解答这类题要做到以下几点: ①建系要恰当,建系前必须证明图形中有从同一点出发 的三条两两垂直的直线,如果图中没有现成的,就需进 行垂直转化;②求点的坐标及有关计算要准确无误,这 就需要在平时加强训练;③步骤书写要规范有序.
抓住3个考点
突破3个考向
揭秘3年高考
解 取 AC 的中点 O,连接 OS、OB. ∵SA=SC,AB=BC, ∴AC⊥SO,AC⊥BO. ∵平面 SAC⊥平面 ABC,平面 SAC∩平面 ABC=AC, ∴SO⊥平面 ABC, 又∵BO⊂平面 ABC,∴SO⊥BO.
如图所示,建立空间直角坐标系 O-xyz,则 B(0,2 3,0),C(- 2,0,0),S(0,0,2 2),M(1, 3,0),N(0, 3, 2). ∴C→M=(3, 3,0),M→N=(-1,0, 2),M→B=(-1, 3,0).

高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

→ —→ (2)〈AB,C1A1〉; 解答 〈A→B,C—1→A1〉=π-〈A→B,A—1→C1〉=π-π4=34π.
→ —→ (3)〈AB,A1D1〉.
解答
〈A→B,A—1→D1〉=〈A→B,A→D〉=π2.
引申探求 →→
在本例中,求〈AB1,DA1〉. 解答
如图,衔接B1C,那么B1C∥A1D, →→
梳理
间向量的夹角
(1)文字表达:a,b是空间中两个非零向量,过空间恣意一点O,作
→ OA
=a,O→B=b,那么∠AOB 叫作向量a与向量b的夹角,记作〈a,b〉 .
(2)图形表示:
角度
表示
〈a,b〉=__0_
〈a,b〉是_锐__角__
〈a,b〉是_直__角__ 〈a,b〉是_钝__角__〈a,b〉 Nhomakorabea_π__
第二章 空间向量与立体几何
§1 从平面向量到空间向量
学习目的 1.了解空间向量的概念. 2.了解空间向量的表示法,了解自在向量的概 念. 3.了解空间向量的夹角. 4.了解直线的方向向量与平面的法向量的概念.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 空间向量的概念
思索1
类比平面向量的概念,给出空间向量的概念. 答案 在空间中,把具有大小和方向的量叫作空间向量.
答案 解析
研讨长方体的模型可知,一切顶点两两相连得到的线段中,长度为1 的线段只需4条,故模为1的向量有8个.
12345
5.在直三棱柱ABC-A1B1C1中,以下向量可以作为平面ABC法向量的 是②__③____.(填序号)答案
No Image
12345
规律与方法
在空间中,一个向量成为某直线的方向向量的条件包含两个方面:一是 该向量为非零向量;二是该向量与直线平行或重合.二者缺一不可. 给定空间中恣意一点A和非零向量a,就可以确定独一一条过点A且平行 于向量a的直线.

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。

空间向量在立体几何中的应用

空间向量在立体几何中的应用

中往往不是这样,那就需要作辅助线进而寻找三条互相垂
直的直线.
z
o
x
y
z
o x
y
z
o
x
y
z
P

F G M D
o
C E B
y
x
A


如图,有两个平面 α 与 β 所成的角跟 法向量 n1 与 n2 所成的角相等或互补, 所以 首先应判断二面角是锐角还是钝角.
cos cos n1 , n1
空 间 向 量 巧 应 用
利用空间向量求解空间夹角问题
空 间 向 量 巧 应 用
利用空间向量求解空间距离问题
空间建系有方法
利用空间向量能将立体几何问题转化为代数问题,对 空间感不好的同学们是一种很好地解题方法.此类问题的关 键就是建系.通常我们建立的是右手系,如果立体图形中有 现成的三条互相垂直的直线,就很容易建系,但实际问题
空间向量在立体几何中的应用
空 间 向 量 巧 应 用
利用空间向量证明空间中的位置关系(平行)
线线平行:
证明两条直线平行,只需证明两条直线的方向向量是共线向量.
线面平行:
①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线的方向向量是共线向量; ③利用共面向量定理,即证明直线的方向向量可用平面内两不共 线向量线性表示.
二面角平面角为钝角: 二面角平面角为锐角:
cos cos n1 , n1


以上介绍了空间向量处理立体几何问题的常见类题型及
常用方法,空间向量能能有效解决空间直线与直线、直线与 平面、平面与平面的位置关系和夹角问题.空间向量在一定 程度上把需要有良好空间想象能力的几何问题转化为“计算 题”.同学们还需做一定数量的题目,总结规律,提炼方法,

3.2立体几何中的向量方法 第1课时 空间向量与平行关系 课件

3.2立体几何中的向量方法 第1课时 空间向量与平行关系 课件

研一研· 问题探究、课堂更高效
3.2 第1课时

(1)∵ a= (2,3,-1),b=(- 6,- 9,3) 1 ∴a=-3b,∴a∥b,∴l1∥l2.
(2)∵a=(-2,1,4),b=(6,3,3),∴a· b≠0 且 a≠kb(k∈R), ∴a,b 既不共线也不垂直,即 l1 与 l2 相交或异面. 1 (3)∵u=(1,-1,2),v=3,2,-2, ∴u· v=3-2-1=0,∴u⊥v,即 α⊥β. (4)∵u=(2, -3,4), v=(4, -2,1), ∴u· v≠0 且 u≠kv(k∈R), ∴u 与 v 既不共线也不垂直,即 α 和 β 相交但不垂直. (5)∵a=(0,-8,12),u=(0,2,-3), 1 ∴u=-4a,∴u∥a,即 l⊥α.
研一研· 问题探究、课堂更高效
3.2 第1课时
跟踪训练 2 用向量方法证明: 平面外一条直线与此平面内 的一条直线平行,则该直线与此平面平行. 已知:直线 l,m 和平面 α,其中 l⊄α,m⊂α,且 l∥m, 求证:l∥α.
证明 设直线 l,m 的方向向量分别为 a,b,平面 α 的 法向量分别为 u. 因为 l∥m,所以 a=kb,k∈R. 又因为 u⊥α,m⊂α,所以 u⊥b, 因此 u· b = 0, u· a= u· kb=0.所以 l∥α.
3.2 第1课时
探究点一 利用方向向量和法向量判定线面的位置关系 问题 1 对于一条确定的直线和一个确定的平面, 它的方向 向量及法向量有几个?
答案 一条直线的方向向量有无数多个,它们都是共线 向量;一个平面的法向量也有无数多个,它们也都是共 线向量.平面的法向量可看作平面的垂线的方向向量。
研一研· 问题探究、课堂更高效

第八章第六节立体几何中的向量方法课件共18张PPT

第八章第六节立体几何中的向量方法课件共18张PPT

A.-
10 10
B.-210
C.210
D.
10 10
D [建立如图所示的空间直角坐标系 D-xyz,
设 DA=1,A(1,0,0),C(0,1,0),E(0,12 ,1),
则A→C =(-1,1,0),D→E =(0,12 ,1),
设异面直线 DE 与 AC 所成的角为 θ,
则 cos θ=|cos〈A→C
(2)点到平面的距离 如图所示,已知 AB 为平面 α 的一条斜线段,n 为平面 α 的法向量,则 B 到平面 α 的距离为|B→O |=|A→B|n·| n| .
直线的方向向量与平面的法向量的确定 (1)直线的方向向量:l 是空间一直线,A,B 是直线 l 上任意两点,则称A→B 为直线 l 的方向向量,与A→B 平行的任意非零向量也是直线 l 的方向向量.
,D→E
〉|=
10 10
.]
4.(选修 2-1P113 习题 T9 改编)如图所示,在空间直角坐标系中,有一 棱长为 a 的正方体 ABCD-A′B′C′D′,A′C 的中点 E 与 AB 的中点 F 的 距离为________.
解析: 由图易知 A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0, a),所以 F(a,a2 ,0),E(a2 ,a2 ,所成的角是这两个平面所成的角.( )
(4) 两 异 面 直 线 夹 角 的 范 围 是 0,π2 , 直 线 与 平 面 所 成 角 的 范 围 是
0,π2 ,二面角的范围是[0,π].(
)
答案: (1)× (2)× (3)× (4)√
2.已知两平面的法向量分别为 m=(0,1,0),n=(0,1,1),则两平面
所以 EF= (a-a2)2+(a2-a2)2+(0-a2)2

3.2--立体几何中的向量方法(全)ppt课件

3.2--立体几何中的向量方法(全)ppt课件

PB (1,1,1)
故PB DE 0 1
DE 1
(0,1 2
0
,1) 2
P
22 所以PB DE
F
E
由已知 EF PB,
且EF DE E,
所以PB 平面EFD A
X
D
C
Y
B
30
第30页,共70页。
例2. 四棱锥P - ABCD中, 底面ABCD是正方
形, PD 底面ABCD, PD DC ,点E是PC的中点,
A
证1 立体几何法
M
B
D
N C
MN就是异面直线AB与CD的公垂线, 故异面直线AB与CD的距离就是MN.
26
第26页,共70页。
例1 四面体ABCD的六条棱长相等, AB、CD
的中点分别是M、N,求证MN⊥AB, MN⊥CD.
证2 向量法
A
MN=MA AD DN
M
1 AB AD 1 DC
⑴设平面的法向量为 n ( x, y,
r 习惯上取n
z);
(
x,
y,1)
⑵找出(求出)平面内的两个不共线的向量的
坐标 a (a1,b1,c1),b (a2,b2,c2 )
⑶根据法向量的定义建立关于 x, y, z 的方程

n
a
0
n b 0
⑷解方程组,取其中的一个解,即得法向量.
6
第6页,共70页。
z
作EF PB交PB于点F . 2 求证 : PB 平面EFD.
证2:立体几何法
P
PD 面ABCD
BC
面ABCD
PD PC
BC BC,
E
PD PC P

利用空间向量解决立体几何PPT 演示文稿

利用空间向量解决立体几何PPT 演示文稿
关键:观察二面角的范围
cos | cos n1 , n2 |
如何求法向量
①找;②求:设
a, b 为平面 内的任意两个向量,
n ( x, y, z) 为 的法向量
a n 0 可求得法向量 n 则由方程组 b n 0

题型一:线线角 异面直线AB与CD所成角: cos
数量积: a b
a1b1 a2b2 a3b3
| a ||b |

| a | | b | cos a, b
a1b1 a2b2 a3b3 a12 a2 2 a32 b12 b2 2 b32
a b 夹角公式: cos a b
2.若A( x1 , y1 , z1 ), B( x2 , y2 , z2 ),则:
x
B B
C C
题型三:二面角
例五、如图,ABCD是一直角梯形,ABC 900 , SA 平面ABCD, 1 SA AB BC 1, AD , 求面SCD与面SBA 所成的二面角的余弦值。 2
S 1 - 1, 1, 0) ,D(0, ,0), S (0, 0,1) A( 0, 0, 0) ,C ( 2 1 易知,面SBA 的法向量n1 AD (0, ,0), 2 1 1 CD (1, ,0), SD (0, ,1) x A 2 2
AB ( x2 x1 , y2 y1 , z2 z1 )
题型一:线线角
异面直线所成角的范围: 0, 2 思考: C D

结论:
A
B
D1
CD, AB 与的关系? DC , AB 与的关系?
cos

高中数学第三章空间向量与立体几何1空间向量及其运算1空间向量及其加减法2课件新人教A版选修2

高中数学第三章空间向量与立体几何1空间向量及其运算1空间向量及其加减法2课件新人教A版选修2

于平面MAB内的充要 条件是存在有序实数

对(x,y),使 MP
= x MA+y MB ,
或对空间任意一点O
若在l上取 AB =a,则①式可化 来说,有 OP =OM

OP= OA +t AB.
+xMA+ y MB .
小结
1.λa是一个向量.当λ=0或a=0时,λa=0. 2.平面向量的数乘运算的运算律推广到空间向量的数乘运 算,结论仍然成立. 3.共线向量的充要条件及其推论是证明共线(平行)问题的重 要依据,条件b≠0不可遗漏.
4.直线的方向向量是指与直线平行或共线的向量.一条 直线的方向向量有无限多个,它们的方向相同或相反.
5.共面向量的充要条件给出了空间平面的向量表示式, 说明空间中任意一个平面都可以由一点及两个不共线的平面 向量表示出来.另外,还可以用OP =xOA+yOB+zOC ,且 x +y+z=1 判断 P,A,B,C 四点共面.
跟踪训练
5.在下列条件中,使 M 与 A,B,C 一定共面的是( ) A.OM =3OA-2OB-OC B.OM +OA+OB+OC =0 C. MA+ MB+ MC =0 D.OM =14OB-OA+12OC 解析:∵ MA+ MB+ MC =0, ∴ MA=- MB- MC , ∴M 与 A,B,C 必共面.
DF =-CF

将②代入①中,两式相加得 2 EF = AD+ BC .
所以 EF =12 AD+12BC ,即 EF 与 BC , AD共面.
[一点通] 利用向量法证明向量共面问题,关键是熟练 进行向量的表示,恰当应用向量共面的充要条件.解答本 题实质上是证明存在实数 x,y 使向量 EF =x AD+yBC 成 立,也就是用空间向量的加、减法则及运算律,结合图形, 用 AD, BC 表示 EF .

高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线平面的位置关系第1课

高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线平面的位置关系第1课
SA⊥平面ABCD,SA=AB=BC=1,AD=
(1)求平面ABCD的一个法向量;
(2)求平面SAB的一个法向量;
(3)求平面SCD的一个法向量.
1
2
,试建立适当的坐标系.
解 以点A为原点,AD,AB,AS所在的直线分别为x轴、y轴、z轴,建立如图所
示的空间直角坐标系,

1
A(0,0,0),B(0,1,0),C(1,1,0),D( ,0,0),S(0,0,1).
设 Q(0,1,m).
(方法 1)因为 =
=
1
-1,0, 2
1 1 1
- ,- ,
2 2 2
, 1 =(-1,-1,1),所以 ∥ 1 ,于是 OP∥BD1.
1
, =(-1,0,m),当 m=2时,
= ,即 AP∥BQ,有平面 PAO∥平
面 D1BQ,故当 Q 为 CC1 的中点时,平面 D1BQ∥平面 PAO.
是共面向量,即满足p=xa+yb(x,y∈R),则p,a,b共面,从而可证直线与平面平
行.
(2)利用共线向量法:证明直线的方向向量p与该平面内的某一向量共线,再
结合线面平行的判定定理即可证明线面平行.
(3)利用法向量法:求出直线的方向向量与平面的法向量,证明方向向量与
法向量垂直,从而证明直线与平面平行.




01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
基础落实•必备知识全过关
知识点1 空间中点、直线和平面的向量表示
1.点的位置向量
在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。

高中数学第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量课件

高中数学第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量课件

【例1】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD
的中点.AB=AP=1,AD= √3 ,试建立恰当的空间直角坐标系,求平面ACE的
一个法向量.
解因为PA⊥平面ABCD,底面ABCD为矩形,所以AB,AD,AP两两垂直.
如图,以 A 为坐标原点, , , 的方向为 x 轴,y 轴,z 轴的正方向,建立空间
· = 0,


- = 0,
· = 0,
= 3,
解得
令 z=1,则 x=y=3,
= .
故平面 ABC 的一个法向量为 n=(3,3,1).
探究点二 有关空间向量的证明问题
角度1利用空间向量证明平行问题
【例2】 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,
第一章
1.2.2 空间中的平面与空间向量
课标要求
1.理解平面的法向量的定义并能在空间直角坐标系中正确地求出某一平
面的法向量;
2.能用向量语言表达线面、面面的垂直、平行关系;
3.理解三垂线定理及其逆定理.




01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
基础落实•必备知识全过关
共线向量表示且直线不在平面内;③证明直线的方向向量与平面的法向量
垂直且直线不在平面内,如例2(1)中,FC1⊄平面ADE一定不能漏掉.
(2)利用空间向量证明面面平行,通常是证明两平面的法向量平行.当然要
注意当法向量坐标中有0时,要使用n1=λn2这一形式.
变式训练2
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面

高中数学 第一章 空间向量与立体空间向量研究距离、夹角问题课件 新人教A版选择性必修第一册

高中数学 第一章 空间向量与立体空间向量研究距离、夹角问题课件 新人教A版选择性必修第一册

,1 2
,1 2
,故
PB
DE 0 1 1 0 . 22
所以 PB DE .
由已知 EF PB,且 EF DE E ,所以 PB 平面 EFD.
25
(3)解:已知 PB EF ,由(2)可知 PB DF ,故 EFD 是平面 CPB 与平面
PBD 的夹角. 设点 F 的坐标为 (x ,y ,z) ,则 PF (x ,y ,z 1) .
2
2
设向量 CN 与 MA 的夹角为 ,
则直线 AM 和 CN 夹角的余弦值等于| cos | .
13
步骤二:进行向量运算
CN MA 1 (CA CD) (CA 1 CB)
2
2
1
2
CA
1
CA
CB 1 CD
CA 1 CD
CB
2
4
2
4
11111. 2848 2
又 △ABC 和△ACD 均为等边三角形,所以| MA | | CN | 3 . 2
则 n2 n2
PQ PR
0 0
,所以
2x y
y
2z
z 0
0
,所以
x y
3z 2 2z
.
取 n2
(3,4 ,2) ,则 cos n1 ,n2
n1 n1
n2 (0 ,0 ,1)
n2
1
(3,4 ,2) 2 29 .
29Biblioteka 29步骤三:回到图形问题
设平面
PQR
与平面
A1B1C1 的夹角为
,则 cos

m
(x,
y,
z)
是平面
A1BE
的法向量,则

高考试题中空间向量与立体几何建系问题专题探究ppt课件

高考试题中空间向量与立体几何建系问题专题探究ppt课件

A
A(0,0,2 3),B(0,0,0),C( 3,1,0),D(0,2,0)
33
M
F(2 3,0,0),M( , , 3),F(2 3,0,0) 22
B o
设 n ( x , y , z ) 是平面 MCB 一个法向量则
BA ( 0 , 0 , 2 3 ), BC ( 3 ,1 , 0 ).
一、空间直角坐标系的建立及空间 中点的坐标确定方法
•1、空间直角坐标系的建立方法:
在空间中取原点0,从原点0引三条两两垂直
的直线做为坐标轴,最后选定某个长度作为
单位长度。如右图
z
o
x
y
2、空间中点的坐标的确定方法
对于空间任意M一 ,点 求它的坐标: M分过别点做 个平面分别x垂 , y,直 z轴,平面与三个交 坐点 标轴 分别为 P,Q,R,在其相应轴上坐x标 ,y,依 z, 为 则(x, y, z)叫P的空间坐标,P(记 x, y作 , z), 三个数值P的 叫横坐标,纵坐坐 标标 ,。 竖
C1 B1
E1
D
E
A
R
F
C B
解(1): AB 4, BCCD 2, F为棱AB中点
BF BCCF, BCF为正三角形, ABCD
z
为等腰梯形,BACABC60。,取AF中
D1
点M,连DM,则DM AB,DMCD,以DM为x A1
例1、(2010 江西数理 17)如图, BCD 与A
MCD 都是边长为 2的正三角形,平
面MCD 平面 BCD , AB 平面 BCD ,
已知 AB 2 3.
M
(1)求点 A到平M 面B的 C 距离;
B
D

高中数学第三章空间向量与立体几何4-2用向量方法研究立体几何中的位置关系课件选择性必修一

高中数学第三章空间向量与立体几何4-2用向量方法研究立体几何中的位置关系课件选择性必修一
则 P(3,0,1),Q(0,2,2),R(3,2,0),S(0,4,1), =(-3,2,1),=(-3,2,1),
∴ = ,∴ ∥ ,即 PQ∥RS.
1
1
(方法二) = + = 2 − + 2 1 ,
1
1
= 1 + 1 = 2 1 + 2 − ,
· = 0,
1 · = 0,
取 =(1,1,-1).
定理.(逻辑推理)
3.能用向量方法证明空间中直线、平面的平行关系.(逻辑推理)
4.能用向量语言表述直线与直线、直线与平面、平面与平面的垂
直关系.(数学抽象)
5.能用向量方法证明必修内容中有关直线、平面垂直关系的判定
定理.(逻辑推理)
6.能用向量方法证明空间中直线、平面的垂直关系.(逻辑推理)
7.会用三垂线定理及逆定理解题.(数学运算)
(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向
向量的数量积为0.( √ )
(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线
的方向向量垂直.( × )
(4)若两平面α,β的法向量分别为u1=(1,0,1),u2=(0,2,0),则平面α,β互相垂
直.( √ )
微判断
(1)若两条直线的方向向量的数量积为0,则这两条直线一定垂直相交.( × )
(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向
向量的数量积为0.( √ )
(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线
的方向向量垂直.( × )
(4)若两平面α,β的法向量分别为u1=(1,0,1),u2=(0,2,0),则平面α,β互相垂
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中的向量方法(一)
A
1
作业讲评、正方体ABCD-A1B1C1D1的棱长为2,且AC与BD交 于点O,E为棱DD1的中点。求证:B1O⊥平面EAC。
解:如图所示,以A为原点建立空间直角坐标系 z
A-xyz,则A(0,0,0),B(2,0,0), C(2,2,0),D(0,2,0)E(0,2,1),
A A
方向确定.
4
⑵直线
空间中任意一条直线 l 的位置可以由 l 上一
个定点 A 以及一个定方向确定.
P
对于直线 l 上的任一点 P ,
a
存在实数 t 使得 APtAB
B
此方程称为直线的向量参数方程
O P O A t a 或 O P x O A y O B ( x y 1 )
A
⑶平面
P
A
3
(课本第 111 页)思考 1:
怎样用向量来表示点、直线、平面在空间中的位置?
⑴点 在空间中,我们取一定点 O 作为基点,
那么空间中任意一点 P 的位置就可以用向量
OP 来表示,我们把向量 OP 称为点 P 的位置向
量.
P ⑵直线
P
空间中任
பைடு நூலகம்
意一条直线 l
a
的位置可以由
O
l 上一个定点
B A 以及一个定
A1
B1(2,0,2)
B1
D1 C1
E
O是正方形ABCD的中心, O(1,1,0)
A
D
B 1O(1,1,2) AE(0,2,1) B
AC(2,2,0)
y OC
x
B 1 O A C ( 1 , 1 , 2 ) ( 2 , 2 , 0 ) 1 2 1 2 2 0 0
B 1 O A E ( 1 , 1 , 2 ) ( 0 , 2 , 1 ) 1 0 1 2 2 1 0
角的度数是___6_0____.
A
14
练习: 1. 已 知 AB (2, 2,1), AC (4, 5, 3), 求 平 面 ABC 的单位法向量.
解:设平面 ABC 的一个法向量为 n ( x, y, z)
则 n AB ,n AC .

( (
x, x,
y, y,
z) z)
(2, 2,1) (4,5, 3)
以 DA, DC, DD1 为单位正交基底, 建立如图所示空间坐标系 D xyz
DB1 (1,1,1) , AC (1,1, 0) ,
AD1 (1,0,1) DB1 AC 0,所以 DB1 AC , 同理 DB1 AD1 又因为 AD1 AC A
所 以 DB1 平 面 ACD , 从 而 DB1 是平面 ACD1 的一个法向量.
画出图形意会
A
10
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法向量分别为 u, v ,则
两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos a b ;
2
ab
直线 l 与平面 所成的角为 ( 0 ≤ ≤ ), sin a u ;
2
au
uv
二面角 ─l ─ 的大小为 ( 0≤ ≤ ), cos
直线垂直于平面 ,则称这个向量垂直于平
面 ,记作 n ⊥ ,如果 n ⊥ ,那 么 向 量 n
叫做平面 的法向量.
l
给定一点A和一个向量 n ,那么 过点A,以向量 n 为法向量的平面是
完全确定的.
n
几点注意:
1.法向量一定是非零向量;
A
2.一个平面的所有法向量都互
相平行;
3.向量n 是平面的法向量,向
注意:这里的线线平行包括线线重合,线面平行 包括线在面内,面面平行包括面面重合.
画出图形意会
A
9
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法向量分别为 u, v ,则
线线垂直 l ⊥ m a ⊥ b a b 0 ; 线面垂直 l ⊥ a ∥ u a ku ; 面面垂直 ⊥ u ⊥ v u v 0.
A
13
练习:
1.已知 AB (2, 2,1), AC (4, 5, 3), 求平面 ABC 的单位
法向量.
(1, 2,2)或 ( 1,2, 2).
3 33
33 3
2. 若 两 个 平 面 , 的 法 向 量 分 别 是
u (1, 0,1), v (1, 1, 0) ,则这两个平面所成的锐二面
b
O aA
5
⑶平面
空间中平面 的位置可以由 内两条相 交直线来确定.
n
b
O a
P
对于平面 上的任一点 P ,
存在有序实数对 ( x, y) ,使得
OPxayb
除 此之外, 还可以用垂直于平面的直线的 方向向量(这个平面的法向量)表示空间中平面 的位置.
A
6
平面的法向量:如果表示向量 n 的有向线段所在
方法小结
A
12
问题:如何求平面的法向量? ⑴设平面的法向量为 n ( x, y, z)
⑵找出(求出)平面内的两个不共线的向量的 坐标 a (a1,b1,c1),b (a2,b2,c2 ) ⑶根据法向量的定义建立关于 x, y, z 的方程

n
a
0
n b 0
⑷解方程组,取其中的一个解,即得法向量.
量m 是与平面平行或在平面
内,则A 有 nm0
7
因为方向向量与法向量可以确定直线和平 面的位置,所以我们应该可以利用直线的方向 向量与平面的法向量表示空间直线、平面间的 平行、垂直、夹角等位置关系.你能用直线的 方向向量表示空间两直线平行、垂直的位置关 系以及它们之间的夹角吗?你能用平面的法向 量表示空间两平面平行、垂直的位置关系以及 它们二面角的大小吗?
B1OAC B1OAE
即B1O⊥AC,B1O⊥AE,又AC
B1O⊥平面EAC
A
AE=A
2
立体几何中的向量方法(一)
前面,我们把 平面向量
推广到
空间向量
向量 渐渐成为重要工具
立体几何问题
(研究的基本对象是点、直线、平面 以及由它们组成的空间图形)
从今天开始,我们将进一步来体会向量这一工
具在立体几何中的应用.
A
16
学习小结: 本节课主要是认识了直线的方向向量及
平面的法向量的概念,这两个向量是运用向 量工具解决平行、垂直、夹角等立体几何问 题必要的条件.
A
17
0 0

2x 4 x
2 5
y y
z0 3z 0

y z
2 2x
x

∵ x2 y2 z2 1 ②∴由①②得 x 1 3
∴平面 ABC 的单位法向量为(1, 2,2)或( 1,2, 2).
3 33
33 3
A
15
练习 3:在正方体 ABCD A1B1C1D1 中,
求证: DB1 是平面 ACD1 的法向量 证:设正方体棱长为 1,
则 n AB ,n AC .∵ AB (3, 4, 0) , AC (3, 0, 2)

( (
x, x,
y, y,
z) z)
(3, (3,
4, 0,
0) 2)
0 0

3 x 3 x
4y 2z
0 0
取 x 4,则 n (4, 3, 6)

y z
3 4 3 2
x x
∴ n (4, 3, 6) 是平面 ABC 的一个法向量.
.
画出图形意会
uv
以上思考在今后的解题中会经常用到,注意体会.
A
11
问题:已知不共线的三点坐标,如何求经过这三点的
平面的一个法向量?
在空间直角坐标系中,已知 A(3,0,0), B(0,4,0) ,
C(0,0, 2) ,试求平面 ABC 的一个法向量. n (4, 3, 6)
解:设平面 ABC 的一个法向量为 n ( x, y, z)
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法向量分别为 u, v ,则
A
8
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法向量分别为 u, v ,则 线线平行 l ∥ m a ∥ b a kb ;
线面平行 l ∥ a u a u 0 ;
面面平行 ∥ u ∥ v u kv.
相关文档
最新文档