模电复习资料
模电复习资料

一、填空题1、三极管内部有____________,____________,__________三个区,____________,__________两个结。
2、放大电路的基本分析方法有_____________,_____________。
3、对放大电路来说,人们总是希望输入电阻__________越好,因为这可以减轻信号源的负荷;人们又希望放大电路的输出电阻________越好,因为这可以增强放大电路的整个负载能力。
4、电压放大器中的三极管通常工作在__________状态下,而功率放大器通常工作在__________状态下。
5、功放电路不仅要求有足够大的_____________,还要求电路中有足够大的___________,以获取足够大的功率。
6、晶体管由于长期工作在受外界___________以及电网电压不稳定的影响,即使输入信号为零,放大电路输出仍有缓慢的信号输出,这种现象叫做___________。
克服___________的最有效常用电路是_____________。
7、影响放大电路的低频响应的主要因素是________________,影响高频效应的主要因素是_______________。
8、理想集成运放的理想化条件是_______________,_______________,________________,___________________。
9、_____________运算电路可实现Au>1放大器,___________运算可实现Au<0的放大器,________运算电路可以将方波电压转换成三角波电压,________运算电路可以实现将方波电路转换成尖脉冲电路。
10、_________比较器的电压传输过程中具有回差特性。
11、单相半波整流电路的输出电压平均值是变压器输出电压U2的______倍,桥式整流电路的输出电压平均值是变压器输出电压U2的_____倍,桥式,含有电容滤波的整流电路,其输出电压的平均值是变压器输出电压U2的___倍。
模电总结复习资料_模拟电子技术基础(第五版)

绪论一.符号约定•大写字母、大写下标表示直流量。
如:V CE、I C等。
•小写字母、大写下标表示总量〔含交、直流〕。
如:v CE、i B等。
•小写字母、小写下标表示纯交流量。
如:v ce、i b等。
•上方有圆点的大写字母、小写下标表示相量。
如:等。
二.信号〔1〕模型的转换〔2〕分类〔3〕频谱二.放大电路〔1〕模型〔2〕增益如何确定电路的输出电阻r o?三.频率响应以及带宽第一章半导体二极管一.半导体的根底知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯洁的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
表达的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素〔多子是空穴,少子是电子〕。
*N型半导体: 在本征半导体中掺入微量的五价元素〔多子是电子,少子是空穴〕。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。
模拟电子技术基础复习资料

模拟电路基础复习资料一、填空题1. 在P型半导体中, 多数载流子是(空隙), 而少数载流子是(自由电子)。
2. 在N型半导体中, 多数载流子是(电子), 而少数载流子是(空隙)。
3. 当PN结反向偏置时, 电源的正极应接( N )区, 电源的负极应接( P )区。
4.当PN结正向偏置时, 电源的正极应接( P )区, 电源的负极应接( N )区。
5. 为了保证三极管工作在放大区, 应使发射结(正向)偏置, 集电结(反向)偏置。
6.根据理论分析, PN结的伏安特性为,其中被称为(反向饱和)电流, 在室温下约等于( 26mV )。
7. BJT管的集电极、基极和发射极分别与JFET的三个电极(漏极)、(栅极)和(源极)与之相应。
8. 在放大器中, 为稳定输出电压, 应采用(电压取样)负反馈, 为稳定输出电流, 应采用(电流取样)负反馈。
9. 在负反馈放大器中, 为提高输入电阻, 应采用(串联-电压求和)负反馈, 为减少输出电阻, 应采用(电压取样)负反馈。
10.放大器电路中引入负反馈重要是为了改善放大器. 的电性. )。
11. 在BJT放大电路的三种组态中, (共集电极)组态输入电阻最大, 输出电阻最小。
(共射)组态即有电压放大作用, 又有电流放大作用。
12.在BJT放大电路的三种组态中,.共集电. )组态的电压放大倍数小于1,.共.)组态的电流放大倍数小于1。
13. 差分放大电路的共模克制比KCMR=(), 通常希望差分放大电路的共模克制比越(大)越好。
14. 从三极管内部制造工艺看, 重要有两大特点, 一是发射区(高掺杂), 二是基区很(薄)并掺杂浓度(最低)。
15.在差分放大电路中发射极接入长尾电阻后, 它的差模放大倍数将(不变), 而共模放大倍数将(减小), 共模克制比将(增大)。
16. 多级级联放大器中常用的级间耦合方式有(阻容), (变压器)和(直接)耦合三种。
17. 直接耦合放大器的最突出的缺陷是(零点漂移)。
模电期末复习资料

一、 半导体器件1. N 型半导体,在本征半导体中掺入五价元素,它的多数载流子是电子,少数载流子是空穴。
2. P 型半导体。
在本征半导体中掺入三价元素,它的多数载流子是空穴,少数载流子是电子。
3. 半导体中载流子的运动方式:漂移运动、扩散运动。
4. PN 结及基单向导电性① PN 结外加正向电压,即P 型区接外加电源正极,N 型区接外加电源负极,PN 结导通当PN 结外加正向电压时,扩散电流增加,漂移电流减小扩散电流由N 型区,P 型区多数载流子产生 漂移电流由N 型区,P 型区少数载流子形成 ② PN 结外加反向电压,即P 型区接外加电源负极,N 型区接外加电源正极,PN 结截止,P 结呈高阻抗.PN 结反向偏置时,扩散电流趋于零,反向漂移电流很少 5.二极管二极管由一个PN 结组成,二极管的伏安特性由正向伏安特性、反向伏安特性及击穿特性三部份组成 ① 正向特性当外加电压大于其阀值电压(Si: th V =0.5V , Ge: th V =0.1V)时,流过二极管的电流由零显著增加. ② 反向特性二极管外加反向电压时,其反向电流很少 ③ 击穿特性 当二极管承受的反向电压大于其本身的击穿电压时,反向电流急剧增大 例:二极管电路如图示,试判断图4中二极管是导通还是截止,并求出0A 二端的电压0AV ,设二极管是理想的. 解: 对于图4a )首先断开二极管D,求A V 、B V此时, AV =-12V, B V =-6V ,则BA V =B V -A V =-6-(-12)=6V 这样,二极管是正向导通的 由理想模型,F V =0.由此 +6-12+3I=0 I=2mA0A V =2×3-12=-6V. 解:对于图b ),当D 断开时, B V =-15V,A V =-12V图1.PN 结外加正向电压图2.PN 结外加反向电压图3.二极管的伏案特性a)BA V =B V -A V =-15-(-12)=-3VD 因反向偏置而截止,0A V =-12V.例:二只稳压值分别为7.5V 和8.5V 的稳压二极管串联 使用,连接方式如图5所示, 0V 为多少伏,设稳压二极管正向 导通压降为0.7V解: 设1DZ V =7.5V , 2DZ V =8.5V 对于图5a)电路,由于二支稳压管 均处于稳压状态(即均为反向击穿状态) 0V =1DZ V +2DZ V =7.5+8.5=16V对于图5b)电路, 1DZ V 为反向击穿状态, 2DZ V 为正向连接,故0V =1DZ V +2DZ V =7.5+0.7=8.2V6.稳压二极管它是利用PN 结的击穿特性,即当流过稳压二极管电流变化较大时,其二端电压变化较小的性质,在电路中起稳压作用.① 稳压二极管正常工作是在反向击穿状态,即外加电源正极接其N 型区,外加电源负极接其P 型区;② 稳压二极管应与负载并联使用;③ 应保证稳压二极管工作于规定的电流范围;7.半导体三极管半导体三极管是双极型器件,即参与导电的载流子是电子和空穴,三极管有三个电极(发射极,基极,集电极)三个分区(发射区,基区,集电区)、二个PN 结(发射结,集电结)半导体三极管分为NPN 型和PNP 型二种。
模电复习资料(判断和填空有答案)

判断题第一章半导体 1、少数载流子是电子的半导体称为P型半导体。
(对)二极管1、由PN结构成的半导体二极管具有的主要特性是单向导电性。
(对)2、普通二极管反向击穿后立即损坏,因为击穿是不可逆的。
(错)3、晶体二极管击穿后立即烧毁。
(错)三极管1、双极型晶体三极管工作于放大模式的外部条件是发射结正偏,集电结也正偏。
(错)2、三极管输出特性曲线可以分为三个区,即恒流区,放大区,截止区. (错)3、三极管处于截止状态时,发射结正偏。
(错)4、晶体三极管的发射区和集电区是由同一类半导体(P型或N型)构成的,所以极e和c极可以互换使用。
(错)5、当集电极电流值大于集电极最大允许电流时,晶体三极管一定损坏。
(错)6、晶体三极管的电流放大系数β随温度的变化而变化,温度升高,β减少。
(错)场效应管1、场效应管的漏极特性曲线可分成三个区域:可变电阻区、截止区和饱和区。
(错)第二章1、技术指标放大电路的输出信号产生非线性失真是由于电路中晶体管的非线性引起的,对2、基本放大电路在基本放大电路中,若静态工作点选择过高,容易出现饱和失真。
(对)3、放大电路的三种组态射极跟随器电压放大倍数恒大于1,而接近于1。
(错)三种基本放大电路中输入电阻最大的是射极输出器。
(对)射极跟随器电压放大倍数恒大于1,而接近于1。
(错)射极输出器不具有电压放大作用。
(对)4、多级放大电路直流放大器是放大直流信号的,它不能放大交流信号。
(错)直流放大器只能放大直流信号。
(错)现测得两个共射放大电路空载时的放大倍数都是-100,将它们连成两级放大电路,其电压放大倍数为10000。
(错)多级放大器的通频带比组成它的各级放大器的通频带窄,级数愈少,通频带愈窄。
(错)。
多级放大器总的电压放大倍数是各级放大倍数的和。
(错)多级阻容耦合放大器的通频带比组成它的单级放大器的通频带宽。
(错)第四章在三种功率放大电路中,效率最高是的甲类功放。
(对)第五章从信号的传输途径看,集成运放由输入级,输出级,偏置电路这几个部分组成。
模电总结复习资料-模拟电子技术基础.doc

模电总结复习资料-模拟电子技术基础第一章半导体二极管一.半导体的基础知识1.*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
2.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
3.PN结*PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
*PN结的单向导电性---正偏导通,反偏截止。
4.PN结的伏安特性二.半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
分析方法------将二极管断开,分析二极管两端电位的高低:若V 阳>V阴(正偏),二极管导通(短路);若V阳u-时,uo=+Uom当u+2.当AF=0时,表明反馈效果为零。
3.当AF<0时,Af升高,这种反馈称为正反馈。
4.当AF=-1时,Af→∞。
放大器处于“自激振荡”状态。
二.反馈的形式和判断1.反馈的范围----本级或级间。
2.反馈的性质----交流、直流或交直流。
直流通路中存在反馈则为直流反馈,交流通路中存在反馈则为交流反馈,交、直流通路中都存在反馈则为交、直流反馈。
3.反馈的取样----电压反馈:反馈量取样于输出电压;具有稳定输出电压的作用。
(输出短路时反馈消失)电流反馈:反馈量取样于输出电流。
具有稳定输出电流的作用。
(输出短路时反馈不消失)4.反馈的方式-----并联反馈:反馈量与原输入量在输入电路中以电流形式相叠加。
Rs越大反馈效果越好。
反馈信号反馈到输入端)串联反馈:反馈量与原输入量在输入电路中以电压的形式相叠加。
Rs越小反馈效果越好。
反馈信号反馈到非输入端)5.反馈极性-----瞬时极性法:(1)假定某输入信号在某瞬时的极性为正(用+表示),并设信号的频率在中频段。
(2)根据该极性,逐级推断出放大电路中各相关点的瞬时极性(升高用+表示,降低用-表示)。
模电考试复习资料

-3dB,对应电压和电流是变为原来的 倍 c.BW(带宽)= (上限频率)- (下限频率) ⑥线性失真与非线性失真
幅度失真(不同频率 增益不同) a. 线性失真
相位失真(不同频率 相移不同) 线性失真无新频率产生 b. 非线性失真:元器件非线性特性引起的失真,非线性失真系数:
∞2
γ= =2 x100%,其中分子是高次谐波开方,分母是基波分量的
d. 电压增益=20lg 丨 丨 dB,电流增益=20lg 丨 丨 dB,功率增益
=10lg 丨 丨 dB(先有)
⑤频率响应 a. (jw)=丨 ( )丨 [
()
− ( )],前者为
幅频响应,后者为相频响应,P12 的 1.5.4 是波特图
b.半功率点是功率下降一半的点,对应到波特图是下降 3dB,也就是
第二章:运算放大器
①集成电路运算放大器:该知识点没太多考点,主要是让大家了解运 算放大器,其中要知道一些符号含义: 同相输入端, 反向输入 端, 为输出电压,输入电阻 (很大),输出电阻 (很小),开环 增益 (很大)。其简化模型如下
此外还需了解 p20 运算放大器的传输特性 ②理想运算放大器:其特性可以归结为两点:虚短 = ,虚断 = =0, 这是这一章做题的最重要的条件。 ③六大放大电路(准确说只有四大):
抗干扰能力)P9 的 1.4.3 就是该模型。
c. 输入电阻 ,输出电阻 ,电压增益
这里还要说一下这三个参数的求法,输入电阻 使用的方法是去掉信
号源,在输入端加 ,利用 = 。输出电阻 是用的方法是电压
源置零,负载换 ,利用 = 。电压增益要回到四大模型各自解
决,这里同学们可以去思考一下四大模型 , 的大小要求
号的含义比较熟悉:
模电复习资料

总复习第1章 直流电路一、电流、电压、电位参考方向与实际方向关系在电路分析中,我们常在电路中选择一个点作为参考点,电路中某一点到参考点的电压就称谓这个点的电位。
参考点又称零电位点。
电路中a 、b 点两点间的电压等于a 、b 两点的电位差。
b a ab u u u -= 二、电功率电场力在单位时间内所做的功称为电功率,简称功率。
dtdWp =关联方向时:p >0时吸收功率,p <0时放出功率。
三、电压源与电流源等效变换:为了便于分析电路,常常用等效变换的方法简化或变换电路结构,但变换后的电路与原电路伏安特性不变。
实际电源模型及其等效变换 o IR U U s -=oR U I I s -= 四、简单的电阻电路串联电阻具有分压作用 并联电阻具有分流作用 五、基尔霍夫定律1、基尔霍夫电流定律(KCL )——基尔霍夫第一定律 在任一瞬时,通过任一节点电流的代数和恒等于零。
0i =∑2、基尔霍夫电压定律(KVL )——基尔霍夫第二定律 在任一瞬时,沿任一回路电压的代数和恒等于零。
0u =∑任意设定回路绕行方向,电压参考方向与回路绕行方向一致时取正号,相反时取负号。
六、支路电流法支路电流法是以支路电流为未知量,直接应用KCL 和KVL ,分别对节点和回路列出所需的方程式,然后联立求解出各未知电流。
一个具有m 条支路、n 个节点的电路,根据KCL 可列出(n -1)个独立的节点电流方程式,根据KVL 可列出m -(n -1)个独立的回路电压方程式。
1、支路电流法2、节点电位分析法七、叠加定理:适用于线性电路八、戴维南定理、诺顿定理:适用于线性电路 九、受控源分类及表示方法第3章 交流电路一、正弦交流电:)sin(u m t U u θω+=,)sin(i m t I i θω+=振幅、角频率和初相称为正弦量的的三要素。
周期、频率、角频率:f 2T2ππω== 相位、初相和相位差 交流电的有效值、振幅:2I I m =,2U U m =二、正弦量的相量表示法)sin(i m t I i θω+=,im j m m I e I I i θθ∠==&,I I m &&2=,U U m &&2=三、KCL 、KVL 的相量形式:KCL :0=∑I&,KVL :0=∑U & 四、 单一元件参数电路在以下的推导过程中,设元件两端的电压和流过元件的电流均采用关联参考方向。
模拟电子技术复习资料

模拟电子技术复习资料模拟电子技术复习资料模拟电子技术是电子工程中的重要一环,它涉及到电子电路的设计、分析和优化。
在现代科技发展迅速的时代,模拟电子技术的应用范围越来越广泛。
为了更好地掌握这门学科,以下是一些模拟电子技术复习资料,希望对大家的学习有所帮助。
一、基础知识回顾1. 电路基本元件:电阻、电容、电感。
了解它们的特性和在电路中的应用。
2. 电路定律:欧姆定律、基尔霍夫定律、电流和电压的分布规律。
3. 放大器基础:了解放大器的基本概念和分类,如共射放大器、共集放大器、共基放大器等。
4. 信号处理:了解滤波器的原理和分类,如低通滤波器、高通滤波器、带通滤波器等。
二、放大器设计与分析1. 放大器的基本特性:增益、带宽、输入输出阻抗等。
掌握放大器的参数计算方法。
2. 放大器的稳定性分析:了解稳定性的概念和判据,如极点、零点的分布,掌握稳定性分析的方法。
3. 反馈放大器:了解反馈放大器的原理和分类,如电压串联反馈、电流串联反馈等。
4. 差分放大器:了解差分放大器的原理和应用,如差分放大器的共模抑制比、共模反馈等。
三、运算放大器及其应用1. 运算放大器的基本特性:了解运算放大器的输入输出特性,如输入阻抗、输出阻抗、放大倍数等。
2. 运算放大器的反馈电路:了解反馈电路的原理和分类,如电压反馈、电流反馈、电阻反馈等。
3. 运算放大器的应用:了解运算放大器在各种电路中的应用,如比较器、积分器、微分器等。
四、振荡器与频率特性1. 振荡器的原理:了解振荡器的基本原理和分类,如正弦波振荡器、方波振荡器、脉冲振荡器等。
2. 振荡器的稳定性:了解振荡器的稳定性条件和稳定性分析方法,如震荡幅度、相位噪声等。
3. 频率特性分析:了解频率响应的概念和分析方法,如Bode图、相频特性等。
五、模拟滤波器设计1. 模拟滤波器的分类:了解模拟滤波器的基本分类,如低通滤波器、高通滤波器、带通滤波器等。
2. 滤波器的设计方法:了解滤波器的设计方法和参数计算,如阻抗匹配、频率响应等。
模电综合复习

模拟电子技术基本知识点复习1.半导体二极管和三极管(1)导电能力介于导体和绝缘体之间的物质称为半导体。
(2)硅和锗是常用的两种半导体材料。
(3)纯净半导体称为本征半导体。
(4)半导体在热(或别的外能)作用下,少数价电子离开共价键,产生自由电子(以下简称电子)和空穴,这种现象称本征激发。
(5)电子带负电、空穴带正电,能自由移动,均为载流子。
(6)本征激发成对产生电子和空穴,称为电子一空穴对。
(7)电子“跳入”空穴使一对电子、空穴同时消失称为复合。
(8)温度一定时,本征激发和复合动态平衡。
(9)本征半导体中的电流,是电子形成的电流和空穴形成的电流之和,两者方向相同。
(10)硅或锗晶体中掺入五价杂质元素(如磷、砷)形成N型半导体,其多数载流子(以下简称多子)是电子,少数载流子(以下简称少子)是空穴,还有不能自由移动的正离子。
N型半导体也称为电子型半导体。
(11)硅或锗晶体中掺入三价杂质元素(如硼、铟)形成P型半导体,多子是空穴,少子是电子,还有不能自由移动的负离子。
P型半导体也称为空穴型半导体。
(12)N型半导体中的杂质原子能提供电子,称为施主杂质。
(13)P型半导体中的杂质原子因吸收电子,称为受主杂质。
(14)多子由杂质原子提供,多子浓度决定于掺杂浓度。
(15)少子由本征激发产生,少子浓度主要取决于温度。
(16)发生于N型和P型交界面,由浓度差产生的多子运动称为多子扩散运动。
(17)形成于N型和P型交界面的PN结,也称为空间电荷区、势垒区、阻挡层、耗尽层。
(18)PN结中,空间电荷形成的电位差称为势垒,形成的电场称为自建电场。
(19)自建场不利于多子扩散,有利于少子漂移。
(20)PN结没有外施电压时,多子形成的扩散电流与少子漂移形成的漂移电流大小相等、方向相反,流过 PN结的净电流为零。
即多子扩散与少子漂移动态平衡。
(21)当N区和P区掺杂浓度不相等时,浓度高的一侧,其耗尽层宽度小于浓度低的一侧,这种PN结称为不对称PN结。
(完整版)模拟电子技术基础-知识点总结

模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子 ----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电总复习资料课件

场效应管是电压控制器件,具有低噪声、高输入阻抗和可靠性高的 特点,主要用于放大和开关电路。
模拟电路的基本分析与设计方法
电路分析
模拟电路的分析方法包括时域分析、频域分析和暂态分析等,需要掌握各种分 析方法的特点和应用范围。
电路设计
模拟电路的设计方法包括基于晶体管的电路设计、基于集成电路的电路设计和 基于计算机辅助设计的电路设计等,需要掌握各种设计方法的特点和应用范围 。
模电总复习资料课件
• 模电基础知识 • 模电中的基本元件与电路 • 集成运算放大器 • 反馈放大器 • 信号处理电路 • 波形产生电路
01
模电基础知识
模拟信号与数字信号的区别与联系
01
02
03
模拟信号
连续的、时间上无限变化 的信号,如声音、光线、 温度等。
数字信号
离散的、只有有限个数值 的信号,如计算机信息、 二进制数等。
区别与联系
模拟信号和数字信号在本 质上是不同的,但可以通 过模数转换和数模转换相 互转换。
放大器的基本原理
放大器的功能
将微弱的输入信号放大成 较强的输出信号,以便进 行后续处理或驱动负载。
基本原理
利用晶体管的放大效应, 通过反馈和输入回路的设 计,实现对输入信号的放 大。
放大器的分类
根据不同的应用场景和设 计要求,可分为共射、共 基、共集等类型。
反馈放大器的稳定性分析
反馈放大器的稳定性问题
由于反馈信号的存在,反馈放大器可能存在 稳定性问题,如振荡和失真。
提高反馈放大器稳定性的 方法
通过在电路中添加补偿元件,如电阻、电容 等,可以改善反馈放大器的稳定性。
05
信号处理电路
信号的运算与变换(加减、乘除、微分、积分等)
模电重点总结复习必备

混合型等效电路
简化的混合型等效电路
场效应管等效电路
其中:gmugs是压控电流源,它体现了输入电压对输出电流的控制作用。
—
-
+
+
d
g
s
gs
u
u
ds
i
d
+
—
+
+
-
gs
m
u
gs
u
u
-
S
ds
g
g
d
S
d
i
运算放大器
工作在线性区时的特点
虚短 虚断
工作在非线性区时的特点
虚断
波特图
画复杂电路或系统的波特图,关键在于一些基本因子
(4)输出电阻
反馈放大电路
反馈类型的判断
负反馈对放大电路性能的影响
深度负反馈下的近似估算
反馈稳定性判断
深度负反馈条件下的近似计算
一、 估算的依据
深度负反馈:
深度负反馈条件下,闭环增益只与反馈系数有关。
由
得
方法一:
估算电压增益
方法二:
根据
将
代入上式
得
即:输入量近似等于反馈量
净输入量近似等于零
截止频率的计算方法是“时间常数法”,即根据信号传递的具体情况,求出每一个起作用的电容所在RC回路的时间常数,进而求出截止频率。
直流稳压电源
工作原理
整流
滤波
稳压
计算
(1)差模电压增益
(3)差模输入电阻
不论是单端输入还是双端输入,差模输入电阻Rid是基本放大电路的两倍。
单端输出时, 双端输出时,
等效电路法
模电复习大全

1、在N型半导体中如果参入足够量的三价元素,可将其改型为P型半导体。
2、因为N型半导体的多子是自由电子,所以它带负电。
(错,原子呈电中性)3、PN结在无光照、无外加电压时,结电流为零。
4、处于放大状态的晶体管,集电极电流是多子漂移运动形成的。
5、PN结加正向电压时,空间电荷区变窄。
6、稳压管的稳压区是其工作在反向击穿。
7、当晶体管工作在放大区时,发射结电压和集电结电压应为前者正偏,后者反偏。
8、在本征半导体中加入五价元素可形成N型半导体,加入三价元素可形成P型半导体。
9、当温度升高时,二极管的反向饱和电流将增大。
10、工作在放大区的某三极管,如果当IB从12μA增大到22μA时,IC从1mA变成2mA,那么它的β约为100。
第二章1、只有电路既放大电流又放大电压,才称其有放大作用。
(错,其中一项即可。
本质是对功率的放大)2、可以说任何放大电路都有功率放大的作用。
3、放大电路中输出的电流和电压都是由有源元件提供的。
(错)4、电路中各电量的交流成分是交流信号源提供的(错)5、放大电路必须加上合适的直流电源才能正常工作。
6、由于放大的对象是变化量,所以当输入信号为直流信号时,任何放大电路的输出都毫无变化。
(错)7、只要是共射放大电路,输出电压的底部失真都是饱和失真。
(错)第三章1、要求输入电阻为1kΩ到2kΩ,电压放大倍数大于3000,第一级应采用共射电路,第二级应采用共射电路。
2、要求输入电阻大于10MΩ,电压放大倍数大于300,第一级应采用共源电路,第二级应采用共射电路。
3、要求输入电阻为100~200kΩ,电压放大倍数数值大于100,第一级应采用共基电路,第二级应采用共射电路。
4、要求电压放大倍数的数值大于10,输入电阻大于10MΩ,输出电阻小于100Ω,第一级应采用共源电路,第二级应采用共集电路。
5、设信号源为内阻很大的电压源,要求将信号源电流转换成输出电压,且|Auis|=|Uo/Is|>1000,输出电阻Ro<100,第一级应采用共基电路,第三级应采用共集电路。
模电全复习

集成运放:实质上是一个具有高放大倍数的多级直接耦合放 大电路。 四个基本组成部分,输入、输出、中间级,偏置电路 第一级通常为差动放大,克服零点漂移。 模拟乘法器
v0 Kv i2
乘方运算电路
2.除法运算
v x1 v 2 0. v2 kv0v x 2 R1 R2 R2 v x1 v0 vx2只能为正 KR1 v x 2
基本组成: 1、变压器:①把交流220V→所需的交流电; ②电网隔离。 2、整流电路:把交流电→脉动的直流电。 3、 滤波电路:滤除脉动成分,得到比较平滑的直流电压。 4、 稳压电路:将不稳定的直流→稳定的直流电压。 整流滤波电路(电容滤波)
输 入 电 压 有 效 值 V2 整流形式 单向半波整 流 输出电 压 负载开路 加电容 加负载 加电容 二极管 反压 二极管电 流
T d D D
参数; 最大整流电流IF
反向击穿电压VBR
齐纳二极管(稳压管)
反向应用
稳压管使用时必须加限流电阻。
4 半导体三极管及放大电路基础 直流通路:在电路中只考虑直流信号作用。要获得直流通路: 应将电路中电容开路。 交流通路:在电路中只考虑交流信号作用。要获得交流通路, 应将电容短路,直流电压源短路,直流电流源开路。 三种工作状态 1)饱和区:bc, be均正偏(Vce﹤0.7V) Q点上移,Vce→0 e发射有余, c收集不足, Ic≠βIB Ics=Vcc/Rc, IB﹥IBS =Ics/ β 2)放大区: be正偏, bc反偏, IC= IB VBE=0.7V 3)截止区: be、bc均反偏, VBE≤0 (实际﹤0.5V就认为截止) Ic=ICEO≈0 VCE=VCC IB=0以下区域
F F A AF 1 振荡条件 A a f a f 振荡频率 A( ) F ( ) 1 振幅平衡条件 1 ( ) ( ) 2nπ 相位平衡条件
(完整版)模电总结复习资料

(完整版)模电总结复习资料第⼀章半导体⼆极管⼀.半导体的基础知识1.半导体---导电能⼒介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流⼦----带有正、负电荷的可移动的空⽳和电⼦统称为载流⼦。
5.杂质半导体----在本征半导体中掺⼊微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺⼊微量的三价元素(多⼦是空⽳,少⼦是电⼦)。
*N型半导体: 在本征半导体中掺⼊微量的五价元素(多⼦是电⼦,少⼦是空⽳)。
6. 杂质半导体的特性*载流⼦的浓度---多⼦浓度决定于杂质浓度,少⼦浓度与温度有关。
*体电阻---通常把杂质半导体⾃⾝的电阻称为体电阻。
*转型---通过改变掺杂浓度,⼀种杂质半导体可以改型为另外⼀种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截⽌。
8. PN结的伏安特性⼆. 半导体⼆极管*单向导电性------正向导通,反向截⽌。
*⼆极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析⽅法------将⼆极管断开,分析⼆极管两端电位的⾼低:若 V阳 >V阴( 正偏 ),⼆极管导通(短路);若 V阳1)图解分析法该式与伏安特性曲线的交点叫静态⼯作点Q。
2) 等效电路法直流等效电路法*总的解题⼿段----将⼆极管断开,分析⼆极管两端电位的⾼低:若 V阳 >V阴( 正偏 ),⼆极管导通(短路);若 V阳*三种模型微变等效电路法三. 稳压⼆极管及其稳压电路*稳压⼆极管的特性---正常⼯作时处在PN结的反向击穿区,所以稳压⼆极管在电路中要反向连接。
第⼆章三极管及其基本放⼤电路⼀. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。
模电总结复习-模拟电子技术基础

模电复习资料第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为~,锗材料约为~。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管~,锗管~。
*死区电压------硅管,锗管。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
第二章三极管及其基本放大电路一. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。
2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触面积较小;集电区掺杂浓度较高,与基区接触面积较大。
二. 三极管的工作原理1. 三极管的三种基本组态2. 三极管内各极电流的分配* 共发射极电流放大系数 (表明三极管是电流控制器件式子称为穿透电流。
3. 共射电路的特性曲线*输入特性曲线---同二极管。
* 输出特性曲线(饱和管压降,用U CES表示放大区---发射结正偏,集电结反偏。
截止区---发射结反偏,集电结反偏。
4. 温度影响温度升高,输入特性曲线向左移动。
温度升高I CBO、I CEO、I C以及β均增加。
三. 低频小信号等效模型(简化)h ie---输出端交流短路时的输入电阻,常用r be表示;h fe---输出端交流短路时的正向电流传输比,常用β表示;四. 基本放大电路组成及其原则1. VT、V CC、R b、R c 、C1、C2的作用。
2.组成原则----能放大、不失真、能传输。
五. 放大电路的图解分析法1. 直流通路与静态分析*概念---直流电流通的回路。
*画法---电容视为开路。
*作用---确定静态工作点*直流负载线---由V CC=I C R C+U CE确定的直线。
*电路参数对静态工作点的影响1)改变R b:Q点将沿直流负载线上下移动。
2)改变R c:Q点在I BQ所在的那条输出特性曲线上移动。
3)改变V CC:直流负载线平移,Q点发生移动。
2. 交流通路与动态分析*概念---交流电流流通的回路*画法---电容视为短路,理想直流电压源视为短路。
*作用---分析信号被放大的过程。
*交流负载线--- 连接Q点和V CC’点V CC’= U CEQ+I CQ R L’的直线。
3. 静态工作点与非线性失真(1)截止失真*产生原因---Q点设置过低*失真现象---NPN管削顶,PNP管削底。
*消除方法---减小R b,提高Q。
(2)饱和失真*产生原因---Q点设置过高*失真现象---NPN管削底,PNP管削顶。
*消除方法---增大R b、减小R c、增大V CC 。
4. 放大器的动态范围(1)U opp---是指放大器最大不失真输出电压的峰峰值。
(2)范围*当(U CEQ-U CES)>(V CC’ - U CEQ)时,受截止失真限制,U OPP=2U OMAX=2I CQ R L’。
*当(U CEQ-U CES)<(V CC’ - U CEQ)时,受饱和失真限制,U OPP=2U OMAX=2 (U CEQ-U CES)。
*当(U CEQ-U CES)=(V CC’ - U CEQ),放大器将有最大的不失真输出电压。
六. 放大电路的等效电路法1.静态分析(1)静态工作点的近似估算(2)Q点在放大区的条件欲使Q点不进入饱和区,应满足R B>βRc。
2.放大电路的动态分析* 放大倍数* 输入电阻* 输出电阻七.分压式稳定工作点共射放大电路的等效电路法1.静态分析2.动态分析*电压放大倍数在R e两端并一电解电容C e后输入电阻在R e两端并一电解电容C e后* 输出电阻八. 共集电极基本放大电路1.静态分析2.动态分析* 电压放大倍数* 输入电阻* 输出电阻3. 电路特点* 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。
* 输入电阻高,输出电阻低。
第三章场效应管及其基本放大电路一. 结型场效应管( JFET)1.结构示意图和电路符号2. 输出特性曲线(可变电阻区、放大区、截止区、击穿区)转移特性曲线U P ----- 截止电压二. 绝缘栅型场效应管(MOSFET)分为增强型(EMOS)和耗尽型(DMOS)两种。
结构示意图和电路符号2. 特性曲线*N-EMOS的输出特性曲线* N-EMOS的转移特性曲线式中,I DO是U GS=2U T时所对应的i D值。
* N-DMOS的输出特性曲线注意:u GS可正、可零、可负。
转移特性曲线上i D=0处的值是夹断电压U P,此曲线表示式与结型场效应管一致。
三. 场效应管的主要参数1.漏极饱和电流I DSS2.夹断电压U p3.开启电压U T4.直流输入电阻R GS5.低频跨导g m (表明场效应管是电压控制器件)四. 场效应管的小信号等效模型E-MOS 的跨导g m ---五. 共源极基本放大电路1.自偏压式偏置放大电路* 静态分析动态分析若带有C s,则2.分压式偏置放大电路* 静态分析* 动态分析若源极带有C s,则六.共漏极基本放大电路* 静态分析或* 动态分析第四章多级放大电路一.级间耦合方式1. 阻容耦合----各级静态工作点彼此独立;能有效地传输交流信号;体积小,成本低。
但不便于集成,低频特性差。
2. 变压器耦合 ---各级静态工作点彼此独立,可以实现阻抗变换。
体积大,成本高,无法采用集成工艺;不利于传输低频和高频信号。
3. 直接耦合----低频特性好,便于集成。
各级静态工作点不独立,互相有影响。
存在“零点漂移”现象。
*零点漂移----当温度变化或电源电压改变时,静态工作点也随之变化,致使u o偏离初始值“零点”而作随机变动。
二. 单级放大电路的频率响应1.中频段(f L≤f≤f H)波特图---幅频曲线是20lg A usm=常数,相频曲线是φ=-180o。
2.低频段(f ≤f L)‘3.高频段(f ≥f H)4.完整的基本共射放大电路的频率特性三. 分压式稳定工作点电路的频率响应1.下限频率的估算2.上限频率的估算四. 多级放大电路的频率响应1. 频响表达式2. 波特图第五章功率放大电路一. 功率放大电路的三种工作状态1.甲类工作状态导通角为360o,I CQ大,管耗大,效率低。
2.乙类工作状态I CQ≈0,导通角为180o,效率高,失真大。
3.甲乙类工作状态导通角为180o~360o,效率较高,失真较大。
二. 乙类功放电路的指标估算1. 工作状态➢任意状态:U om≈U im➢尽限状态:U om=V CC-U CES➢理想状态:U om≈V CC2. 输出功率3. 直流电源提供的平均功率4. 管耗P c1m=0.2P om5.效率理想时为78.5%三. 甲乙类互补对称功率放大电路1.问题的提出在两管交替时出现波形失真——交越失真(本质上是截止失真)。
2. 解决办法➢甲乙类双电源互补对称功率放大器OCL----利用二极管、三极管和电阻上的压降产生偏置电压。
动态指标按乙类状态估算。
➢甲乙类单电源互补对称功率放大器OTL----电容C2上静态电压为V CC/2,并且取代了OCL 功放中的负电源-V CC。
动态指标按乙类状态估算,只是用V CC/2代替。
四. 复合管的组成及特点1.前一个管子c-e极跨接在后一个管子的b-c极间。
2.类型取决于第一只管子的类型。
3.β=β1·β 2第六章集成运算放大电路一. 集成运放电路的基本组成1.输入级----采用差放电路,以减小零漂。
2.中间级----多采用共射(或共源)放大电路,以提高放大倍数。
3.输出级----多采用互补对称电路以提高带负载能力。
4.偏置电路----多采用电流源电路,为各级提供合适的静态电流。
二. 长尾差放电路的原理与特点1. 抑制零点漂移的过程----当T↑→ i C1、i C2↑→ i E1、i E2 ↑→ u E↑→ u BE1、u BE2↓→ i B1、i B2↓→ i C1、i C2↓。
R e对温度漂移及各种共模信号有强烈的抑制作用,被称为“共模反馈电阻”。
2静态分析1) 计算差放电路I C设U B≈0,则U E=-0.7V,得2) 计算差放电路U CE•双端输出时••单端输出时(设VT1集电极接R L)对于VT1:对于VT2:3. 动态分析1)差模电压放大倍数•双端输出••单端输出时从VT1单端输出:从VT2单端输出:2)差模输入电阻3)差模输出电阻•双端输出:•单端输出:三. 集成运放的电压传输特性当u I在+U im与-U im之间,运放工作在线性区域:四. 理想集成运放的参数及分析方法1. 理想集成运放的参数特征* 开环电压放大倍数A od→∞;* 差模输入电阻R id→∞;* 输出电阻R o→0;* 共模抑制比K CMR→∞;2. 理想集成运放的分析方法1) 运放工作在线性区:* 电路特征——引入负反馈* 电路特点——“虚短”和“虚断”:“虚短”---“虚断” ---2) 运放工作在非线性区* 电路特征——开环或引入正反馈* 电路特点——输出电压的两种饱和状态:当u+>u-时,u o=+U om当u+<u-时,u o=-U om两输入端的输入电流为零:i+=i-=0第七章放大电路中的反馈一.反馈概念的建立*开环放大倍数---A*闭环放大倍数---Af*反馈深度---1+AF*环路增益---AF:1.当AF>0时,Af下降,这种反馈称为负反馈。