数学建模传染病模型剖析
微积分方法建模12传染病模型--数学建模案例分析
![微积分方法建模12传染病模型--数学建模案例分析](https://img.taocdn.com/s3/m/70418fcb964bcf84b9d57bda.png)
§12 传染病模型建立传染病模型的目的是描述传染过程、分析受感染人数的变化规律、预报高潮期到来的时间等等。
为简单起见假定,传播期间内所观察地区人数N 不变,不计生死迁移,时间以天为计量单位。
模型(一)(SI 模型) 模型假设1、人群分为健康者和病人,在时刻t 这两类人中所占比例分别为)(t s 和)(t i ,即1)()(=+t i t s 。
2、平均每个病人每天有效接触人数是常数λ,即每个病人平均每天使)(t s λ个健康者受感染变为病人,λ称为日接触率。
模型建立与求解据假设,在时刻t ,每个病人每天可使)(t s λ个健康者变成病人,病人数为)(t Ni ,故每天共有)()(t i t Ns λ个健康者被感染,即Nsi dtdiNλ= 又由假设1和设0=t 时的比例0i ,则得到模型⎪⎩⎪⎨⎧=-=0)0()1(i i i i dt diλ (1)(1)的解为te i t i λ--+=)11(11)(0(2))(t i dtdi210i m dtdi )(m t t 21i模型解释1、当21=i 时,dtdi 达最大值,这个时刻为)11ln(01-=-i t m λ,即高潮到来时刻,λ越大,则m t 越小。
2、当∞→t 时1→i ,这即所有的人都被感染,主要是由于没有考虑病人可以治愈,只有健康者变成病人,病人不会再变成健康者的缘故。
模型(二)(SIS 模型) 在模型(一)中补充假设3、病人每天被治愈的占病人总数的比例为μ,称为日治愈率。
模型修正为⎪⎩⎪⎨⎧=--=0)0()1(i i ii i dt diμλ (t 时刻每天有μNi 病人转变成健康者) (3)(3)的解为⎪⎪⎩⎪⎪⎨⎧=+≠--+-=----μλλμλμλλμλλμλ101)(0)1(])1([)(i t e i t i t (4)可以由(3)计算出使dt di 达最大的高潮期m t 。
(dt di 最大值m dt di )(在λμλ2-=i 时达到)。
数学建模之传染病模型
![数学建模之传染病模型](https://img.taocdn.com/s3/m/34265f9d1711cc7930b71611.png)
第五章 微 分 方 程 模 型如果实际对象的某特性是随时间(或空间)变化的,那么分析它的变化规律,预测它的未来性态时,通常要建立此实际对象的动态模型,这就是微分方程模型.§1 传 染 病 模 型建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮的到来等,一直是各国有关专家和官员关注的课题.考虑某地区的传染病的传染情况,设该地区人口总数为N ,既不考虑生死,也不考虑迁移,时间以天为计量单位.一. SI 模 型假设条件:1. 人群分为易感染者(Susceptible )和已感染者(Infective )两类人,简称为健康人和病人,在时刻t 这两类人在总人数中所占比例分别记作()t s 和()t i .2. 每个病人每天有效接触的平均人数是λ(常数),λ称为日接触率,当病人与健康人有效接触时,使健康者受感染变为病人.试建立描述()t i 变化的数学模型.解: ()()1=+t i t s ()()N N t i N t s =+∴由假设2知,每个病人每天可使()t s λ个健康者变为病人,又由于病人数为()t i N ,∴每天共有()()t i N t s λ个健康人被感染.于是i s N λ就是病人数i N 的增加率,即有i s N dt di Nλ=………………………………………………(1) i s dtdi λ=∴ 而1=+i s .又记初始时刻(0=t )病人的比例为0i ,则()()⎪⎩⎪⎨⎧=-=001i i i i dt di λ 这就是Logistic 模型,其解为 ()t e i t i λ-⎪⎪⎭⎫ ⎝⎛-+=1111[结果分析]作出()t t i ~和i dt di ~的图形如下:1. 当21=i 时,dt di 取到最大值m dt di ⎪⎭⎫ ⎝⎛,此时刻为⎪⎪⎭⎫ ⎝⎛-=-11ln 01i t m λ2. 当∞→t 时,1→i 即所有人终将被传染,全变为病人(这是不实际的).二. SIS 模 型在前面假设1、2之下,再考虑病人可以医治,并且有些传染病如伤风、痢疾等愈后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,此模型称SIS 模型.假设1、2同SI 模型,增加假设:3. 病人每天被治愈的人数占病人总数的比例为μ,称为日治愈率.病人治愈后成为易感染者(健康人).显然μ1是这种传染病的平均传染期.解:在假设1、2、3之下,模型(1)修正为i N i Ns dtdi N μλ-= 于是 ()()⎪⎩⎪⎨⎧=--=001i i i i i dt di μλ解得()()⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+≠⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+-=--- = -μλλμλμλλμλλμλ,1,11010i t e i t i t [结果分析]1. 令μλσ=. 注意到λ和μ1的含义,可知σ是一个传染期内每个病人有效接触的平均人数,称为接触数.()⎪⎩⎪⎨⎧-=∞ 011σi 11≤>σσ1-2. 接触数1=σ是一个阈值.当1≤σ时,病人比例()t i 越来越小,最终趋于零.当1>σ时,()t i 的增减性取决于0i 的大小,其极限值()σ11-=∞i .3. SI 模型是SIS 模型中0=μ的情形. 三. SIR 模 型大多数传染病如天花、流感、肝炎、麻疹等治愈后均有很强的免疫力,所以病愈的人既非健康者,也非病人,他们已经退出传染系统,此时模型的假设为1.人群分为健康者、病人和病愈免疫的移出者三类,称为SIR 模型.三类人在总人数N 中占的比例分别记作()i s 、()t i 和()t r .1. 病人的日接解率为λ,日治愈率为μ(与SIS 模型相同),传染期接触数为μλσ=.解:由假设1,有()()()1=++t r t i t s 0=++∴dtdr dt di dt ds 由假设2,得i N dt dr N μ= N i N i s dt di N μλ-= ⎪⎪⎩⎪⎪⎨⎧-==∴i i s dtdi i dt dr μλμ 又设()()()00,0,000===r i i s s 于是()()⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00s 0s ,0i i i s dt ds ii s dt di λμλ (2)我们在相平面上来讨论解的性质.相轨线的定义域为(){}1s ,0,0s ,s ≤+≥≥=i i i D 由(2)式消去dt ,得⎪⎩⎪⎨⎧=-==0s s 01s 1s i i d di σ 这里 μλσ= 解得()000s s ln 1s -i s σ++=i ………………………………………(3) 在定义域D 内,(3)式表示的曲线即为相轨线..。
数学建模传染病模型剖析
![数学建模传染病模型剖析](https://img.taocdn.com/s3/m/d1429403fad6195f312ba6d1.png)
传染病的传播摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。
而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。
并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。
运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合MATLAB 编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。
同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS 预测模型之类的传染病预测模型的重要意义。
关键词:微分方程 SARS 数学模型 感染率1问题的重述SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:1)建立传染病传播的指数模型,评价其合理性和实用性。
2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件1提供的数据供参考。
3)说明建立传染病数学模型的重要性。
2 定义与符号说明N …………………………………表示为SARS 病人的总数;K (感染率)……………………表示为平均每天每人的传染他人的人数;L …………………………………表示为每个病人可能传染他人的天数;dt dN(t)………………………… 表示为每天(单位时间)发病人数;N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数;t …………………………………表示时间;R 2………………………………表示拟合的均方差; 3 建立传染病传播的指数模型3.1模型假设1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。
病毒传播模型的建模和分析
![病毒传播模型的建模和分析](https://img.taocdn.com/s3/m/891c15e85122aaea998fcc22bcd126fff7055db1.png)
病毒传播模型的建模和分析随着新冠肺炎疫情的爆发,人们开始关注病毒传播模型的建模和分析。
病毒传播模型是通过建立数学模型来描述一种病毒从一个人传播到另一个人的过程。
这些模型可以用来预测未来的病例数和疫情的发展趋势,从而对公共卫生政策做出决策。
本文将深入讨论一些病毒传播模型的建模和分析方法,以及用于计算病毒传播的参数。
基本假设在研究病毒传播模型之前,我们需要了解一些基本的假设。
首先,我们假设感染者可以将病毒传给其他人,这些人也可以将病毒传给其他人。
其次,每个人只能被感染一次。
最后,我们假设传染过程是随机的,并且每个人在接触病毒后,可以在一段时间内携带病毒,但并不一定表现出症状。
接触率接触率是指某个人在一段时间内和其他人接触的频率。
接触率是病毒传播模型中的一个重要参数,它可以用来预测病例数和疫情的发展趋势。
接触率的计算方法包括调查问卷、传感器技术和社交网络分析。
社交网络分析方法是最常用的方法之一,它通过分析人们之间的联系、交流和兴趣来计算接触率。
物理模型物理模型是建模和分析病毒传播的另一种方法。
在这种方法中,我们将人们视为一个个质点,并将他们在三维空间中的运动建模。
人与人之间的距离越近,接触的可能性就越高。
我们还可以通过模拟一个建筑物或地区的运动,预测病毒在该建筑物或地区的传播情况。
传染模型传染模型是病毒传播模型的核心部分,它用一个数学方程描述病毒在人群中的传播情况。
最常用的传染模型包括SI模型(易感者-感染者模型)、SIR模型(易感者-感染者-康复者模型)和SEIR模型(易感者-潜伏者-感染者-康复者模型)。
这些模型可以帮助我们了解病毒传播的时间和规模,以及在不同的干预措施下,疫情的发展趋势。
分析模型分析模型是对传染模型进行分析的一种数学方法。
通常,我们使用微分方程来描述传染模型,然后使用数值方法或解析方法来解决该微分方程。
解方程可以帮助我们了解一些基本的病毒传染规律。
例如,我们可以使用微分方程来计算感染速度,即感染者每日新增的数量。
数学模型之传染病模型的分析
![数学模型之传染病模型的分析](https://img.taocdn.com/s3/m/cb5d4c9d51e2524de518964bcf84b9d528ea2cda.png)
多因素影响的研究
多种疾病的相互作用
研究多种疾病之间的相互作用及其对疾病传播的影响, 为防控策略提供更全面的依据。
免疫力和治疗的影响
研究免疫力和治疗对疾病传播和流行病学特征的影响, 为疫苗接种和治疗方案提供科学依据。
社会因素的作用
研究社会因素如人口结构、生活方式、文化习俗等对 疾病传播的影响,揭示其背后的机制。
参数的敏感性分析
总结词
参数的敏感性分析有助于了解模型对参数变化的敏感程度,从而更好地理解和预测传染病的发展趋势 。
详细描述
通过分析参数变化对模型结果的影响程度,可以了解哪些参数对模型结果具有较大的敏感性,哪些参 数对模型结果的影响较小。这种分析有助于更好地理解传染病传播的动力学机制,并为制定有效的防 控策略提供依据。
参数的优化与控制
总结词
参数的优化与控制是传染病模型分析的重要应用,它涉及到如何通过调整模型参数来优 化防控效果。
详细描述
在制定防控策略时,可以根据模型分析的结果来调整相关参数,以达到优化防控效果的 目的。例如,可以通过调整感染者的隔离和治疗率等参数来控制疾病的传播,从而降低 发病率和死亡率。同时,也需要根据实际情况不断调整和优化模型参数,以更好地反映
等。
解的稳定性
03
SEIR模型的解在特定的参数条件下具有稳定性,这有
助于预测疾病的长期发展趋势。
SEIR模型的应用
预测
SEIR模型可用于预测疾病的传播趋势和流行情况。
控制策略
通过调整模型参数,SEIR模型可以为防控措施提供理论支持,如疫苗接种、 隔离等。
政策制定
基于SEIR模型的预测结果,政府和卫生部门可以制定针对性的防控政策, 以控制疾病的传播。
传染病数学模型
![传染病数学模型](https://img.taocdn.com/s3/m/0e7ca1a65ff7ba0d4a7302768e9951e79a896969.png)
传染病数学模型(二)引言:在传染病研究中,数学模型是一种重要的工具,通过模拟传染病的传播过程,可以帮助研究人员更好地了解病毒传播的规律,并提供有效的预测和控制策略。
本文将介绍传染病数学模型的相关理论及其应用。
概述:传染病数学模型是基于数学方程和模拟计算的方法,用于描述传染病在人群中的传播过程。
通过构建数学方程来描述人群中的感染者、易感者和康复者之间的相互作用,可以模拟传染病的传播动态,并为疫情的预测和控制提供有价值的信息。
正文:一、传染病数学模型的类型1. 动力学模型:描述传染病在时间上的变化规律,常用的动力学模型有SIR模型、SEIR模型等。
2. 空间模型:考虑传染病在空间上的传播,可以帮助研究人员更好地理解传染病的传播路径和空间分布规律。
3. 随机模型:考虑传染病传播的随机因素,可以更真实地反映传染病的传播过程。
4. 网络模型:基于网络结构,模拟人群之间的联系和传播路径,适用于研究社交网络中的传染病传播。
二、传染病数学模型的基本假设1. 平均场假设:假设人群中的每个个体都具有相同的特性和行为,且与其他个体的接触频率相同。
2. 免疫假设:假设人群中的康复者对传染病具有免疫力,不再感染。
3. 独立性假设:假设人群中的个体之间的相互作用是相互独立的,即每个个体的感染概率与其他个体无关。
4. 恒定人口假设:假设人口总数在模拟过程中保持恒定,不存在人口的出生和死亡。
三、传染病数学模型的参数和变量1. 基本再生数(R0):描述传染病在易感人群中的传播能力,是评估传染病传播速度的重要指标。
2. 感染率(β):描述感染者与易感者之间的传播强度,与传染病的传播速度密切相关。
3. 接触率(c):描述人群中个体之间的接触频率,是传染病传播过程中的重要参数。
4. 感染周期(1/α):描述传染病的潜伏期长度,即感染者从感染到出现症状的时间。
5. 恢复率(1/γ):描述感染者康复的速度,与传染病的严重程度相关。
四、传染病数学模型的应用1. 疫情预测:通过建立传染病数学模型,可以预测疫情的发展趋势和高发区域,为公共卫生部门提供决策依据。
常微分方程数学建模案例分析
![常微分方程数学建模案例分析](https://img.taocdn.com/s3/m/6e8358ff1b37f111f18583d049649b6649d70964.png)
常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。
它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。
本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。
假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。
现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。
为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。
根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。
感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。
总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。
进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。
例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。
反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。
另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。
相反,如果γ较小,传染病传播的速度会加快。
通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。
例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。
在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。
此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。
总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。
数学建模实验(传染病模型)
![数学建模实验(传染病模型)](https://img.taocdn.com/s3/m/b78fe11e59eef8c75fbfb3ea.png)
实验二:传染病模型1、SI 模型的建立基于以下三个假设,求出平衡点,给出参数,图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数,即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
2、SIS 模型的建立基于以下三个假设,求出平衡点,给出参数,图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数。
即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
(3)t 时刻,单位时间内从染病者中治愈的人与病人数量成正比,比例系数为γ,单位时间内治愈的人不具有免疫,将再成为易感者。
3、SIR 模型的建立基于以下三个假设,求出平衡点、给出参数、图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数,即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
(3)t 时刻,单位时间内从传染者中移出的人数与病人数量成正比,比例系数为γ,单位时间内移出者的数量为γ)(t I 。
求解过程1、SI 模型:由题目条件假设可以得到微分方程:K()()dIK S t I t dtβ=,又因为()()1S t I t +=, 令初始时刻病人的比例为0I ,则有:0()(1()),(0)dII t I t I I dtβ=-= %求平衡点,r 为有效传染率,x 病人比例 syms r xsolve('r*x*(1-x)','x') ans = 0 1 %方程求解syms i r t dsolve('Di=r*i*(1-i)','i(0)=i0','t')ans =1/(1-exp(-r*t)*(-1+i0)/i0) %绘制图形r=0.5,i0=0.01 fplot('1/(1-exp(-r*t)*(-1+i0)/i0)',[0,40]) fplot('1/(1-exp(-0.5*t)*(-1+0.01)/0.01)',[0,40]) function di=isf(t,i)di=0.5*i*(1-i); [t,i]=ode45(@isf,[0 40],[0.01]);plot(t,i)t ♓i♎♓ ♎♦图示4 SI 模型的i~t 曲线 图示5 SI 模型的di/dt~i 曲线2、SIS 模型 根据SI 模型及增加的假设条件,可得:)()()(t KI t I t KS dtdiKγβ-=,即: 0)0(),())(1)((I I t I t I t I dtdi=--=γβ 记 γβσ=, 则方程改写为 )]1([σβ---=i i i dt di%求解方程syms r b i t % b 为有效传染率,r 为治愈率dsolve('Di=b*i*(1-i)-r*i','i(0)=i0','t')ans =(b-r)/(b-exp(-(b-r)*t)*(-b+r+i0*b)/i0/(b-r)*b+exp(-(b-r)*t)*(-b+r +i0*b)/i0/(b-r)*r)%求平衡点syms x %(b=0.5,r=0.2)solve('0.5*x*(1-x)-0.2*x; ')ans =0..60000000000000000000000000000000%绘制图形function di=sisf(t,i)di=0.5*i*(1-i)-0.2*i;[t,i]=ode45(@sisf,[0 40],[0.01]);plot(t,i)t♓t ♓图示6 SIS 模型的i~t 曲线(σ>1) 图示7 SIS 模型的i~t 曲线(σ≤1)fplot('-0.5*x*[x-(1-1/20)]',[0,1]) fplot('-0.5*x*[x-(1-2)]',[ 0,1])i♎♓ ♎♦i♎♓ ♎♦图示8SIS 模型的di/dt~i 曲线(σ>1) 图示9SIS 模型的di/dt~i 曲线(σ≤1) 3、 SIR 模型模型的方程为{00()()(),(0)()(),(0)dIS t I t I t I I dtdSS t I t S S dtβγβ=-==-=function dx=sirf(t,x)dx=zeros(2,1);dx(1)=0.5*x(1)*x(2)-0.2*x(1); %x(1)表示i,x(2)表示s dx(2)=-0.5*x(1)*x(2);[t,x]=ode45(@sirf,[0 50],[0.01 0.99]);plot(t,x(:,1),t,x(:,2)),grid,pauseplot(x(:,2),x(:,1)),grid00.20.40.60.81s图示10 SIR模型的图形)(),(tStI图示11 SIR模型的相轨线备注:由于Matlab与Word连接不好,所绘制的图形上标的字符在Word中看不清楚。
传染病的数学模型(一)
![传染病的数学模型(一)](https://img.taocdn.com/s3/m/4c1f2cb405a1b0717fd5360cba1aa81145318f6f.png)
传染病的数学模型(一)引言概述:传染病的数学模型是通过数学方法对传染病的传播过程进行建模和预测的一种方法。
它可以帮助我们理解传染病的传播规律、评估控制措施的有效性,从而指导公共卫生决策。
本文将从概念、数学模型建立、参数估计、应用案例和局限性五个方面阐述传染病的数学模型。
正文内容:一、概念1. 传染病传播过程的基本概念2. 数学模型在理解传染病传播规律中的作用3. 传染病传播的主要途径及其模型4. 传染病的基本流行病学指标5. 常见传染病的数学模型分类及特点二、数学模型建立1. 传染病传播的动力学模型建立过程2. 常见数学模型的基本方程及假设3. 数学模型的参数选择和数据需求4. 模型的数值解和模拟仿真方法5. 模型灵敏度分析和鲁棒性评估方法三、参数估计1. 传染病传播参数的基本概念和估计方法2. 基于数据的参数估计方法及其优缺点3. 遗传算法在参数估计中的应用4. 参数不确定性分析及其影响5. 基于多源数据的参数估计方法及其应用四、应用案例1. 传染病模型在疫情预测中的应用2. 传染病模型在控制措施评估中的应用3. 传染病模型在疫苗接种策略优化中的应用4. 传染病模型在早期预警系统中的应用5. 传染病模型在流行病学调查分析中的应用五、局限性1. 数学模型的假设和简化带来的局限性2. 数据不确定性对模型预测的影响3. 模型的敏感性和鲁棒性问题4. 非线性和时空不均匀性问题的处理5. 模型的外推和推广的合理性评价总结:传染病的数学模型在理解传染病传播规律、预测疫情发展趋势、评估防控措施等方面发挥着重要作用。
通过建立合理的数学模型并进行参数估计,我们能够更好地了解传染病的特点和传播规律,并以此为基础制定出合理的公共卫生决策。
然而,数学模型也存在一定的局限性,需要充分考虑数据不确定性、模型的假设简化以及非线性和时空不均匀性等问题。
因此,在使用传染病的数学模型时,我们需要谨慎并结合其他数据和方法进行综合分析。
数学建模之传染病模型
![数学建模之传染病模型](https://img.taocdn.com/s3/m/a4db89032e3f5727a4e96239.png)
第五章 微 分 方 程 模 型如果实际对象的某特性就是随时间(或空间)变化的,那么分析它的变化规律,预测它的未来性态时,通常要建立此实际对象的动态模型,这就就是微分方程模型、§1 传 染 病 模 型建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮的到来等,一直就是各国有关专家与官员关注的课题、考虑某地区的传染病的传染情况,设该地区人口总数为N ,既不考虑生死,也不考虑迁移,时间以天为计量单位、一、 SI 模 型假设条件:1. 人群分为易感染者(Susceptible )与已感染者(Infective )两类人,简称为健康人与病人,在时刻t 这两类人在总人数中所占比例分别记作()t s 与()t i 、2. 每个病人每天有效接触的平均人数就是λ(常数),λ称为日接触率,当病人与健康人有效接触时,使健康者受感染变为病人、试建立描述()t i 变化的数学模型、解: ()()1=+t i t s Θ ()()N N t i N t s =+∴由假设2知,每个病人每天可使()t s λ个健康者变为病人,又由于病人数为()t i N ,∴每天共有()()t i N t s λ个健康人被感染、于就是i s N λ就就是病人数i N 的增加率,即有i s N dt di Nλ=………………………………………………(1) i s dtdi λ=∴ 而1=+i s 、 又记初始时刻(0=t )病人的比例为0i ,则()()⎪⎩⎪⎨⎧=-=001i i i i dt di λ 这就就是Logistic 模型,其解为 ()t e i t i λ-⎪⎪⎭⎫ ⎝⎛-+=1111[结果分析]di :1.当21=i 时,dt di 取到最大值mdt di ⎪⎭⎫ ⎝⎛,此时刻为 ⎪⎪⎭⎫ ⎝⎛-=-11ln 01i t m λ 2. 当∞→t 时,1→i 即所有人终将被传染,全变为病人(这就是不实际的)、二、 SIS 模 型在前面假设1、2之下,再考虑病人可以医治,并且有些传染病如伤风、痢疾等愈后免疫力很低,可以假定无免疫性,于就是病人被治愈后变成健康者,健康者还可以被感染再变成病人,此模型称SIS 模型、假设1、2同SI 模型,增加假设:3. 病人每天被治愈的人数占病人总数的比例为μ,称为日治愈率、病人治愈后成为易感染者(健康人)、显然μ1就是这种传染病的平均传染期、解:在假设1、2、3之下,模型(1)修正为i N i Ns dtdi N μλ-= 于就是 ()()⎪⎩⎪⎨⎧=--=001i i i i i dt di μλ解得()()⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+≠⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+-=--- = -μλλμλμλλμλλμλ,1,11010i t e i t i t [结果分析]1. 令μλσ=、注意到λ与μ1的含义,可知σ就是一个传染期内每个病人有效接触的平均人数,称为接触数、2. 接触数1=σ就是一个阈值、当1≤σ时,病人比例()t i 越来越小当1>σ时,()t i 的增减性取决于0i 的大小,其极限值()σ11-=∞i 、3. SI 模型就是SIS 模型中0=μ的情形、 1-三、 SIR 模 型大多数传染病如天花、流感、肝炎、麻疹等治愈后均有很强的免疫力,所以病愈的人既非健康者,也非病人,她们已经退出传染系统,此时模型的假设为1、人群分为健康者、病人与病愈免疫的移出者三类,称为SIR 模型、三类人在总人数N 中占的比例分别记作()i s 、()t i 与()t r 、1. 病人的日接解率为λ,日治愈率为μ(与SIS 模型相同),传染期接触数为μλσ=、解:由假设1,有()()()1=++t r t i t s 0=++∴dtdr dt di dt ds 由假设2,得i N dt dr N μ= N i N i s dt di N μλ-= ⎪⎪⎩⎪⎪⎨⎧-==∴i i s dtdi i dt dr μλμ 又设()()()00,0,000===r i i s s 于就是()()⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00s 0s ,0i i i s dt ds ii s dt di λμλ……………………………………………(2) 我们在相平面上来讨论解的性质、相轨线的定义域为(){}1s ,0,0s ,s ≤+≥≥=i i i D 由(2)式消去dt ,得⎪⎩⎪⎨⎧=-==0s s 01s 1s i i d di σ 这里 μλσ= 解得()000s s ln 1s -i s σ++=i ………………………………………(3) 在定义域D 内,(3)式表示的曲线即为相轨线、。
数学建模——传染病模型
![数学建模——传染病模型](https://img.taocdn.com/s3/m/a6cd7d73964bcf84b9d57be9.png)
传染病模型摘要当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。
本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。
不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。
本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。
然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。
本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。
同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。
关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。
一、问题重述有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。
考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。
1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。
2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。
建立模型求t时刻的感染人数。
3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。
数学建模——传染病模型
![数学建模——传染病模型](https://img.taocdn.com/s3/m/b314fa4230b765ce0508763231126edb6f1a7611.png)
数学建模——传染病模型数学建模——传染病模型关键词:数学建模,传染病模型,预测,疫情,发展一、引言传染病模型是数学建模中的一个重要领域,旨在通过数学方法描述和预测传染病的发展趋势。
通过建立传染病模型,我们可以了解疾病传播的机制,评估各种干预措施的效果,并为制定有效的防控策略提供决策支持。
二、传染病模型概述传染病模型是基于生物学、流行病学和数学理论建立的,主要考虑个体之间的接触方式和疾病传播的动态过程。
基本的传染病模型通常假设人群由易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)三类组成。
通过分析这三类人群的数量变化,可以揭示疾病传播的规律。
常见的传染病模型包括 SIR 模型、SEIR 模型等。
SIR 模型假设人群分为易感者(S)、感染者(I)和康复者(R),其中感染者与易感者接触后将传染疾病,感染后将进入康复阶段。
SEIR 模型则在 SIR 模型的基础上增加了潜伏期(E),即感染者并非立即变为易感者,而是进入潜伏期,一段时间后才具有传染性。
三、建模方法与步骤1、建立数学模型:根据传染病的基本假设,列出描述疾病传播的微分方程,确定变量及其含义。
2、参数估计:根据历史数据或实验结果,估计模型中的参数值。
这些参数包括感染率、恢复率、潜伏期等。
3、模型求解:通过求解微分方程,得到易感者、感染者和康复者的数量变化情况。
4、模型检验:将模型的预测结果与实际数据进行比较,检验模型的准确性和可靠性。
四、案例分析以某个地区的流感疫情为例,通过建立 SIR 模型预测疫情的发展趋势。
首先,根据历史数据估计模型的参数值,包括感染率和恢复率等。
然后,通过求解微分方程得到易感者、感染者和康复者的数量变化情况。
根据预测结果,可以评估各种干预措施的效果,如隔离、疫苗接种等。
通过比较预测结果与实际数据的差异,可以不断修正和完善模型,提高预测精度。
五、结论传染病模型是数学建模中的一个重要领域,通过建立数学模型描述和预测传染病的发展趋势。
传染病模型与分析
![传染病模型与分析](https://img.taocdn.com/s3/m/c9507c05b52acfc789ebc998.png)
《数学建模》实验报告实验名称 Matlab 微分方程的数值解 实验目的掌握用matlab 进行微分方程的数值解实验内容1. 对传染病模型⎪⎪⎩⎪⎪⎨⎧=-==-=00)0(,)0(,s s si dtds i i i si dtdiλμλ进行数值计算输出结果,并在同一坐标系中画出i (t ), s (t ) 的图形。
再画出i ~ s 的图形。
从数值结果和图形中分别可以得到什么结论? 2. 在传染病模型中,估计最终未被感染的健康者的比例∞s 与传染达到高峰时的m i ()10σ>s 。
给定不同的00,,,i s μλ,分别用0ln100=+-+∞∞s s s i s σ(1) )ln 1(1000s i s i m σσ+-+= (2)并分析所得结果。
模型传染病模型:⎪⎪⎩⎪⎪⎨⎧=-==-=00)0(,)0(,s s si dtds i i i si dtdiλμλ 程序第一题程序function y=ill(t,x)a=1;b=0.3;y=[a*x(1)*x(2)-b*x(1),-a*x(1)*x(2)]'ts=0:50;x0=[0.02,0.98];[t,x]=ode45('ill',ts,x0);[t,x] plot(t,x(:,1),t,x(:,2)),grid,pause plot(x(:,2),x(:,1)),grid,第二题程序s0=[0.98,0.98,0.98,0.98,0.70,0.70,0.70,0.70]; i0=[0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02]; a=[1.0,0.6,0.5,0.4,1.0,0.6,0.5,0.4]; b=[0.3,0.3,0.5,0.5,0.3,0.3,0.5,0.5]; k=b./a s=0;s=solve('1-s+0.3*log(s/0.98)=0',s); vpa(s,4)im=1-0.3*(1+log(3.3*0.98))结果第一题结果第二题结果k =0.3000 0.5000 1.0000 1.2500 0.3000 0.5000 1.0000 1.2500 ans =.3994e-11.009im =0.3479>>结果的分析第一题结果分析第一个图像是)(t I,)(tS图像第二个图像是SI、的两图像的相轨图。
Modeling_传染病的数学建模与分析报告
![Modeling_传染病的数学建模与分析报告](https://img.taocdn.com/s3/m/94308a17cf84b9d528ea7a81.png)
二、基本的传染病动力学模型
在传染病动力学中.长期以来主要使用的数学模型是所谓的“仓室”(compartment)模型.它的基本思想由Kermack与McKendrick创立于1927年.但一直到现在仍然被广泛的使用和不断地发展着。下面我们以他们提出的一个经典的基本模型为例.来阐述建立仓室模型的基本思想和有关基本概念.并显示由模型能得到的主要结论。
传染病的数学建模与分析
时间:2010年9月7日地点:2楼阶梯教室
一、传染病建模的意义
传染病历来就是威胁人类健康的大敌.人类征服传染病的道路依然曲折漫长。近20年来像AIDS病、SARS、禽流感等重大传染病相继爆发.在全球蔓延。2008手足口病的爆发曾给婴幼儿的健康带来了极大的危害。2009年的H1N1又来侵害年轻的我们。结核、白喉、鼠疫、登革热等一些老的传染病也重新抬头.给人们工作、生活和国民经济的发展带来了极大的影响。2003年突发的SARS传染病给我们的公共卫生体系应对突发性传染病提出了新的要求.也给数学在研究传染病动力学性态和预测等方面提出了一系列新问题。因此.研究和分析传染病传播的数量规律.建立有效的防控机制既是摆在我们面前的一个困难问题.也是一项紧迫任务。
移出者(Removed)类 其数量记为 .表示 时刻已从传染病者类移出的人数。
设总人口为 .则有 。K-M的 模型是一个十分简单粗糙的模型。它的建立基于以下三个基本假设:
(1)不考虑人口的出生、死亡、流动等种群动力因素。这意味着考虑一个封闭环境而且假定疾病随时间的变化要比出生、死亡随时间变化显著得多.从而后者可以忽略不计。这样.此环境的总人口始终保持为一个常数.即 .或 。
数学建模传染病模型
![数学建模传染病模型](https://img.taocdn.com/s3/m/e1b9c66eec630b1c59eef8c75fbfc77da26997c7.png)
常直数至,从此而疾可病以解在释该医地生们s区(t发)消现s失的oe现。1 象r (t )。
k
鉴于在本模型中的r作(t)用 n,1被 i(t) s(t)
infective
医为生揭们示称产为生此上疾述病现在象该的地原区因(3.18)中
的 较第大其的么的(的中阀此所常1值疾有)数。 病 人式通。没。改常kl的有写是引波成一入及:个解到与dd释ti该疾了地k病为i(区种s什类 )有关的
令:
d 2i dt 2
0
得:
t1
ln co k(n 1)
模型3
将人群划分为三类(见右图):易感染者、已感染 者和已恢复者(recovered)。分别记t时刻的三类人数为 s(t)、i(t)和r(t),则可建立下面的三房室模型:
di
dt
ksi
li
l
称为传染病恢(1)复系数
dr
dt
li
(2)
(3.18)
模型1 设某地区共有n+1人,最初时刻共有i人得病,t时刻已
感染(infective)的病人数为i(t),假定每一已感染者在单位 时间内将疾病传播给k个人(k称为该疾病的传染强度),且 设此疾病既不导致死亡也不会康复
则可导出:
di
dt
ki
i(o) io
故可得: i(t) ioekt
(3.15)
解得: 其中:
i(t)
co
n
co (n 1)ek(n1)t
1 io
coek
(n1)t
1 io
(3.17)
统计结果显示,(3.17)预报结果比(3.15)更
接近实际情况。医学上称曲线 为t ~传d此i 染值与病传曲染病的实际高峰期非常
四种传染病模型的建模分析
![四种传染病模型的建模分析](https://img.taocdn.com/s3/m/a0b91758da38376bae1fae6b.png)
对四种传染病模型的讨论与分析模型一(1)模型假设1.初始时,该地区存在一定的病人x0,2.每个病人每天都接触到一定的人数,且每次接触都会造成感染3.病人不被约束,可在一定区域内随机移动(2)建立模型在这个模型中,设时刻t的人数x(t)是连续、可微函数,并且每天每个病人有效接触(足以使人致病的接触)的人数为常数λ,考察到t+△t病人人数的增加,就有x(+△t)-x(t)=λx(t)△t再设t=0时有xo个病人,即得微分方程dx/dt=λxx(0)=x0方程(1)的解为x(t)=x0e^λt(3)代码求解syms λt x0ezplot(y,[0.100])figurey= x0e^λtplot(t,y)随着时间t的增长,病人数x(t)无线增长,与实际不符。
模型二(SI模型)(1)模型假设1.在传播期内所考察地区的总人数N不变,人群分为健康人和病人,时刻t这两类人在总人数中所占比例为s(t)和i(t)2每个病人每天有效接的平均人数是常数a,a为为日接率,当病人与健康者有效接触时,可使患病。
(2)建立模型根据假设,每个病人每天可使as(t)个健康人变成病人,t时刻病人数为Ni(1),所以每天共有aNs(t)i(t)个健康者被感染,即病人的增加率为:Ndi/dt=aNsi。
又因为s(t)+i(t)=1再记时刻t=0时病人的比例为i0则建立好的模型为:di/dt=ai(1-i),i(0)=i0(3)代码求解syms a I t i0i= dsolve(‘Di=a*i*(1-i)’,’i(0)=i0’,’t’);y=subs(i,{ai0},(0.3,0.02})ezplot(y,[0.100])figurei=str2double(i);i=0:0.01:1;y=0.3*i.*(1-i);plot(i,y)由上图可知,在i=0:1内,di/dt总是增大的,且在i=0.5时,取到最大值,即在t>inf时,所有人都将患病。
数学模型之传染病问题分析
![数学模型之传染病问题分析](https://img.taocdn.com/s3/m/f4fdef6127d3240c8447ef88.png)
摘要医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。
社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。
本论文通过建立传染病模型,分析被传人数多少与哪些因素有关,如何预报传染病高潮的到来等等。
传染病问题的研究一﹑模型假设1.在疾病传播期内所考察的地区范围不考虑人口的出生、死亡、流动等种群动力因素。
总人口数N(t)不变,人口始终保持一个常数N 。
人群分为以下三类:易感染者(Susceptibles),其数量比例记为s(t),表示t 时刻未染病但有可能被该类疾病传染的人数占总人数的比例;感染病者(Infectives),其数量比例记为i(t),表示t 时刻已被感染成为病人而且具有传染力的人数占总人数的比例;恢复者(Recovered),其数量比例记为r(t),表示t 时刻已从染病者中移出的人数(这部分人既非已感染者,也非感染病者,不具有传染性,也不会再次被感染,他们已退出该传染系统。
)占总人数的比例。
2.病人的日接触率(每个病人每天有效接触的平均人数)为常数λ,日治愈率(每天被治愈的病人占总病人数的比例)为常数μ,显然平均传染期为1/μ,传染期接触数为σ=λ/μ。
该模型的缺陷是结果常与实际有一定程度差距,这是因为模型中假设有效接触率传染力是不变的。
二﹑模型构成在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:在假设1s(t) + i(t) + r(t) = 1对于病愈免疫的移出者的数量应为r td N Ni d μ= 不妨设初始时刻的易感染者,染病者,恢复者的比例分别为0s (0s >0),0i (0i >0),0r =0. SIR 基础模型用微分方程组表示如下:di dt ds dtdr dt si isi i λμλμ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩s(t) , i(t)的求解极度困难,在此我们先做数值计算来预估计s(t) , i(t)的一般变化规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传染病的传播摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。
而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。
并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。
运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合MATLAB 编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。
同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS 预测模型之类的传染病预测模型的重要意义。
关键词:微分方程 SARS 数学模型 感染率1问题的重述SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:1)建立传染病传播的指数模型,评价其合理性和实用性。
2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件1提供的数据供参考。
3)说明建立传染病数学模型的重要性。
2 定义与符号说明N …………………………………表示为SARS 病人的总数;K (感染率)……………………表示为平均每天每人的传染他人的人数;L …………………………………表示为每个病人可能传染他人的天数;dt dN(t)………………………… 表示为每天(单位时间)发病人数;N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数;t …………………………………表示时间;R 2………………………………表示拟合的均方差; 3 建立传染病传播的指数模型3.1模型假设1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。
单位时间(一天)内一个病人能传播的人数是常数k ;2) 在 所传染的人当中不考虑已治愈的人是否被再次被传播,治愈的人数占该地区的总人数是绝对的少数,治愈者不会再被传播并不影响疫情在该时间内的感染率常数k;3) 病者在潜伏期传播可能性很小, 仍按健康人处理;4) SARS 对不同的年龄组的感染率略有不同(相差不大),但我们只考虑它健康人的感染率是一样的;5) 我们所采取的隔离是非常严格的,被隔离的病人不会再感染其他人;3.2模型的分析和建立求解全国疫情从出现第一例病人起,到4月20日前后(从起点起45天左右)是疫情高峰,在此之前k值我们取k=0.16204,在此后的时间里我们取k=0.0273来计算。
根据提供的数(1+K)t。
据可以建立指数模型:N(t)=n在前45天我们取k=0.16204来代入,分别算出45天的病人累计数,根据45天中天病人的数量来画出图1,并与附件中所提供的数据中的日累计数来进行了比较。
如图3-1所示:图3-1 根据指数模型建立的图形图3-2根据附件1所建立的图形从两个图形中,我们可以看出,从4月20日开始计算,前45天的病人累计数和我们用k 的值来代入模型画出的病人计算数基本上是吻合的。
图形1中的横坐标数字表示时间的天数,如15即4月20日之后的第15天,40即4月20日之后的第40天。
在45天之后的时间里,模型对k 的值进行了调整,k=0.0273,我们再将k=0.0273代入模型 N(t)=n 0(1+K)t ,在45天之后的时间里,我们取了30天的时间,分别算出每天的病人累计数,如图3-3所示:全国人数变化500100015002000250030003500135********17192123252729天数人数(全国)累计人数天数图3-33.3对指数模型的验证和评价在图形3-3中的横坐标的数值表示图形1中所表示的天数之后的天数,如1即表示4月15日之后的45天之后的有第六天,也就是4月15日之后的第51天,即表示4月15日之后的第67天。
首先在图形3-3结合图形3-1可以看出,图形3-1中的第45天与图形2中的第一天(相隔一天)的人数统计是相差比较大的,存在这种情况的原因是在我们在计算第61天,数据值发生了改变,从0.16204到0.0273是一个很大的变化,而在实际的生活中的情况是k 值每天都在进行数值在减小的改变,但改变的没有这么大,也正是因为k 有了跳跃,N(t)的值才会发生这么大的变化,这是可以理解的。
我们对图形2的整个曲线来与附件1中的图形1进行比较,可以发现,在整个阶段的数值曲线图形都是很接近的。
我们在对全国在前期和后期k 分别取k=0.16204和k=0.0273的值来代入所给的模型来计算并画出的图形,与实际的数据和图形进行了比较,是有着很好的吻合,同样我们也可以对k 取值一个定值来对全国进行计算和画图,同样也是合理的。
因此我们就认为题目中给我们的那个模型N(t)=n 0(1+K)t 是合理的。
通过这个模型我们可以根据某一地区的疫情从爆发到高潮或某一阶段的时间的长短来拟合得到一个与该地区这种疫情的感染率,就可以用该模型来计算或预测该地区现在及以后的病人的累计数, 这也就是该模型的实用性所在。
4建立新模型4.1模型假设模型假设与指数模型假设一致不在赘述。
4.2模型分析与建立4.2.1模型分析初期由于疫情初期政府控制力度不够,大众的对SARS 的防范意识不强,造成病情迅速蔓延。
而当政府采取有力措施,人们的防患意识增强,疫情则趋于缓和,病患者人数迅速下降。
所以SARS 传播大体上可分为两个阶段:1)控制前期:即认为病毒传播方式是自然传播。
2)控制后期:政府强力介入之后的病毒传播模型。
4.2.2 模型建立根据对指数模型的分析和4.2的分析疫情走势的微分方程如下;dtd N(t) = K [ N(t) – N(t – L) ] . (1) 4.3模型的求解如果假定有一个初始爆发时间,最初有N0 个病人突然出现,在L 天之内(t < L)则 N(t-L)=0 。
在这个初发期间内,方程(1) 给出的发病人数呈指数增长N(t)=N(1+K)t( 0<t≤L) (2) 当L<t≤2L的时候,N(t-L)这部分人就已经没有传播能力了,因此我们推算出了下列模型N(t)= N0[(1+K)t–(t-L)K(1+K))1(--Lt ] (L<t≤2L)(3)当2L<t≤3L的时候又有下列模型N(t)= N(1+K)t–N(t-L) (2L< t ≤ 3L) (4)L可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后他失去传染作用,可能的原因是被严格隔离、病愈不再传染或死去等。
在不同的时期L的取值范围也是不一样的,我们所得到的资料中总结出不论对于疫情的爆发阶段,还是疫情的控制阶段,这个参数都不能用得太小,否则无法描写好各阶段的数据。
该参数放在15-25之间比较好,现在医学界还没有确定出L的值,我们想象可能有的人抵抗能力强,有的人抵抗能力差,因此我们把它固定在20(天)上这个值有一定统计上的意义.我们把L的值定在了20天,是合理的,当t的取值比较大时,该模型又有指数关系,N(t)前后之间的差距比较大,然而当t>60时,在这之前失去传播能力的只占了少部分,因此规定当t>60时也可用N(t)= N(1+K)t–N(t-L)的模型。
K的值其实是一个变量,它每天的值都在发生变化。
疫情刚开始的时候,K的值大,原因可能有刚可能是政府部门还没有足够重视起来,人们也还没有重视,医疗部门也还没有比较好的设备,医生们对病情也还没有很了解,技术上可能也还有不足。
但随着病情的日益加重,来自各个方面的重视程度都有很大的提高,这是K的值就比较小了。
在此模型中,我们认为感染率(K)在数值上与病例的增长率是相等的,疫情患者他传播在传播给健康人的时候,健康人他可能是带病毒了,但健康热处于潜伏期状态,据“全国“非典”科技攻关组公布七大科研进展”与于2003-06-03日报道中指出潜伏期患者传染的可能很小。
有关部门对非典暴发过程中两例传播链进行了细致的调查和分析,这两个案例中共追查到潜伏期密切接触者158人,无一人死亡。
因此我们在模型中说的感染率只为疫情患者传染给他人,而且他人发病,若他人不发病则不为感染率。
增长率在数值上即为感染率。
我们对全国所提供的所有数据中的已确诊病例累计进行了分析计算,得出感染率K的变化数据并画出了曲线图。
如图4-1所示:图4-1K(感染率)是一条跟t的值有关的曲线,我们通过回归法K的公式为:K = 7E-13t6 - 4E-10t5 + 8E-08t4 - 1E-05t3 + 0.0006t2 - 0.0191t +0.2325 (5)图4-1中R2=0.6988为曲线回归的均方差,可见存在的误差并不大。
t为疫情流行的天数。
4.4模型检验通过该公式可预测疫情开始时或以后的累计病人总数。
例如要预测某一天病人的累计总数,将时间t的天数代入方程(5)即可求得K(感染率)的大小,因为L的值定在20天,所以当0<t≤20时,将K代入(2);当20<t≤40时,将K代入(3);当40<t≤60时,将K代入(4)。
当t=10时,我们根据方程(5),可求得K=0.0923,我们再将K=0.0923代入(2)得到N=8。
当t=50时,我们根据方程(5),可求得K=0.0614,我们再将K=0.0614代入(2)得到N=308。
这与实际给出的数据非常接近。
可以说明我们的模型是一个比较能够预测以及能为预防和控制提供信息的模型。
4.5模型的应用与推广此模型可以作为预测以及能为预防和控制提供可靠、足够的信息的模型。
4.6与指数模型的比较1)我们对不同阶段的疫情的计算和预测建立了不同的模型,这样来分析比附件1所提供的早期模型更加的精确。
2)对感染率K求出了方程,可以知道每一天的疫情感染率,可以更加有效的计算与预测有关数据。
3)该模型实用性更强,能更加准确的反映实情。
5 建立模型的关键和困难建立模型的关键在于对模型进行动态的分析,当传染病发展到一定阶段在政府的控传染率下降。