高等数学教学大纲(完整资料).doc

合集下载

(完整word版)《高等数学》(下)课程教学大纲

(完整word版)《高等数学》(下)课程教学大纲

《高等数学》(下)课程教学大纲教研室主任:王树泉执笔人:蔡俊青一、课程基本信息开课单位:经济学院课程名称:高等数学下册课程编号:101001212英文名称:Advanced Mathematics课程类型:专业基础课总学时: 72理论学时: 72 实验学时: 0学分:3开设专业:所有专业先修课程:《高等数学》(上)二、课程任务目标(一)课程任务本课程是理科院校经济管理类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。

通过本课程的学习,要使学生掌握多元函数微积分学、无穷级数和常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

(二)课程目标基本了解多元函数微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握多元函数微积分学、无穷级数和常微分方程的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学、无穷级数和微分方程的思想方法解决应用问题。

三、教学内容和要求第六章多元函数微积分1.内容概要空间解析几何简介,多元函数基本概念,偏导数,全微分,多元复合函数微分法与隐函数微分法,多元函数的极值及其求法,二重积分的概念与性质,直角坐标系下二重积分的计算,极坐标系下二重积分的计算。

2.重点和难点重点:多元函数的概念;偏导数与全微分的概念;多元复合函数的求导法则;多元函数的极值问题;二重积分的概念及其计算难点:全微分的概念;多元复合函数的求导法则与隐函数微分法;二重积分的计算。

3.学习目的与要求(1)理解多元函数的极限与连续性,以及有界闭区域上的连续函数的性质。

(2)理解偏导数、全微分的概念。

(3)熟练掌握复合函数求导法;会求二阶偏导。

(4)会求隐函数的偏导数。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲一、课程基本信息课程编码:课程名称:《高等数学》总学时:112学时适用专业:长春大学旅游学院商学院、旅游管理学院、工学院相关专业开课单位:基础部计算机与数学教研室课程类别:公共基础课课程性质:必修课二、课程性质、目的与任务高等数学课程的教学内容由3个数学分支的内容组成,即《微积分》(52学时)、《线性代数》(30学时)、《概率论及数理统计》(30学时)。

本课程是一门培养学生具有一定的抽象概括问题能力、逻辑推理能力、熟练的运算能力,综合运用所学知识去分析问题,解决问题能力的公共基础课,是商学院、旅游管理学院、工学院相关专业一门必修的课程。

通过本课程的学习,使学生掌握高等数学的基本知识、基本理论和基本方法,为学生解决实际问题提供有效的数学方法,以及将高等数学的知识在自然科学和工程技术中的广泛应用奠定良好的数学基础。

本课程的主要任务是为专业课提供必不可少的数学基础知识,在传授知识的同时,努力培养学生进行抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力,以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。

三、课程的内容及要求、教学重点与难点(一)函数、极限、连续1.主要教学内容函数的概念;数列的极限;函数的极限;无穷小量与无穷大量;极限运算法则;极限存在准则、两个重要极限;函数的连续性与间断点;连续函数的运算、初等函数的连续性;闭区间上的连续函数的性质。

2.知识点与能力点(1)知识点:加深对函数概念的理解,了解函数性质(奇偶性、单调性、周期性和有界性);理解复合函数的概念,了解反函数的概念;理解极限的概念,了解极限的,Nεεδ--定义、理解左、右极限的定义;掌握极限的四则运算法则;了解极限的性质(唯一性、有界性、保号性)和两个存在准则(夹逼准则与单调有界准则);掌握两个重要极限;了解无穷小、无穷大,理解高阶无穷小和等价无穷小的概念;理解函数在一点连续和在区间上连续的概念;了解函数间断点的概念;了解初等函数的连续性和闭区间上连续函数的介值定理,最大值、最小值定理。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

(完整版)《高等数学》(经管类)教学大纲

(完整版)《高等数学》(经管类)教学大纲

《高等数学》(经管类)教学大纲大纲说明课程代码:4915001总学时:128学时(讲课128学时)总学分:8分课程类别:必修适用专业:经管类本科一年级学生预修要求:初等数学一、课程性质、目的、任务本课程是本科经管类各专业的一门公共基础课,教学内容主要有一元与多元微积分;级数;常微分方程初步。

本课程教学目的是使学生获得从事经济管理和经济研究所必需的微积分方面的知识;学会应用变量数学的方法分析研究经济现象中的数量关系;培养抽象思维和逻辑推理的能力;树立辩证唯物主义的观点,同时,本课程也是后继经济应用数学(如概率统计等)的必要基础。

二、课程教学的基本要求:1、正确理解下列基本概念和它们之间的内在联系:函数、极限、无穷小、连续、导数、微分、不定积分、定积分、曲面的方程、偏导数、全微分、二重积分、常微分方程、无穷级数的收敛与发散性、边际、弹性。

2、正确理解下列基本定理和公式并能正确应用:极限的主要定理、罗尔定理、拉格朗日中值定理、柯西中值定理、定积分作为变上限的函数及其求导的定理、牛顿—莱布尼兹公式。

3、牢固掌握下列基本公式:基本初等函数的导数公式、基本积分公式、函数e x 、sinx 、cosx 、α)1(x +、ln(1+x)的幂级数展开式。

4、熟练运用下列法则和方法函数的和、差、积、商求导法则与复合函数的求导法则、隐函数的求导法、反函数的求导法、直接积分法、换元积分法、分部积分法、二重积分计算法、级数收敛性的比较判别法,达朗贝尔判别法、莱布尼兹判别法、幂级数收敛半径的求法、变量可分离的一阶微分方程的解法、一阶线性微方程的解法、二阶常系数线性微分方程的解法、拉格朗日乘数法、最小二乘法。

5、会运用微积分和常微分方程的方法解决一些简单的经济问题。

6、在学习过程中,逐步培养熟练的运算能力,抽象的思维能力,逻辑推理能力、空间想象能力。

知识的获得与能力的培养是同一过程的两个侧面,知识是发展能力的内容,能力是掌握知识的条件,我们既努力获得新知识,同时也注意不断提高分析问题和解决问题的能力。

高等数学教学大纲

高等数学教学大纲

高等数学教学大纲1. 课程简介高等数学作为理工科学生的重要课程之一,是一门基础性较强的数学课程。

本课程为学生打下坚实的数学基础,为进一步的学习和研究提供必备的数学工具。

本课程涉及到的内容较为广泛,包括微积分、线性代数、概率论等多个学科,具有重要的理论意义和实际应用价值。

本教学大纲旨在规范本课程的教学内容和教学要求,提高教学质量。

2. 教学目标•熟悉微积分和线性代数的基本概念、理论和方法•掌握微积分和线性代数的基本技能和方法•具备初步的应用能力•培养科学素养和数学思维,提高学习兴趣3. 课程要求3.1 基本知识要求1.掌握微积分基本概念,包括极限、导数、微分、积分、级数等2.掌握线性代数基本概念,包括向量、矩阵、行列式、特征值和特征向量等3.熟悉概率论和数理统计的基本概念3.2 基本技能要求1.能够通过计算求解微积分中的基本问题2.能够通过矩阵计算求解线性代数中的基本问题3.熟练掌握微积分和线性代数在实际问题中的应用3.3 常识与思维1.具有科学素养和数学思维,能够进行数学推理和证明2.能够认识和理解现代科学技术在广泛领域的应用3.具有独立思考和创新能力,尊重知识和事实,积极探索和实践4. 教学内容及进度安排课程内容学时第一章极限与连续12学时第二章导数及其应用12学时第三章积分12学时第四章常微分方程与级数16学时第五章方程组与矩阵论(含行列式、矩阵、特征值和特征向量、线性方程组等内容)18学时课程内容学时第六章多元函数微分学8学时第七章重积分与曲线积分10学时第八章曲面积分与高斯公式6学时第九章常微分方程8学时第十章概率论和数理统计16学时总计教学总学时108学时5. 学生评估1.平时成绩:包括作业、课堂表现等,占总成绩的30%;2.期末成绩:占总成绩的70%。

6. 教学方法1.授课:以讲授为主,充分发挥教师在教育教学中的主导作用;2.课堂互动:教师和学生进行互动,促进学生思考和表达;3.实例分析:通过实例展示,让学生了解案例应用和解决问题的方法;4.课堂练习和作业:通过课堂练习和作业巩固学生基础知识和解决问题的能力;5.课后辅导:提供个性化辅导,提高学生学习效果。

高等数学教学大纲

高等数学教学大纲

高等数学教学大纲课程概述高等数学是大学数学教育的基础课程,旨在为学生提供数学知识和技能,培养其逻辑思维能力、分析问题和解决问题的能力。

本大纲详细说明了高等数学课程的教学目标、教学内容、教学方法和评估方式。

教学目标1.理解高等数学的基本概念和理论,如函数、极限、连续性、微积分等。

2.掌握高等数学的基本方法和技能,包括微分学、积分学及其应用,能够运用数学知识解决实际问题。

3.培养学生的数学素养和逻辑思维能力,提高其分析问题和解决问题的能力。

4.使学生具备初步的研究能力,为后续课程的学习和研究打下基础。

教学内容1.函数与极限:包括函数的定义与性质,数列的极限,函数的极限与连续性。

2.导数与微分:包括导数的定义与性质,求导法则,微分及其应用。

3.积分学:包括不定积分与定积分的定义、性质和计算方法,以及积分的应用。

4.多元函数微积分:包括多元函数的极限、连续性、偏导数与全微分,以及二重积分。

5.无穷级数与常微分方程:包括无穷级数的概念与性质,常微分方程的基本概念与求解方法。

教学方法1.课堂讲解:通过讲解基本概念、理论和例题,使学生了解和掌握高等数学的知识和方法。

2.习题练习:通过大量的习题练习,加深学生对知识的理解,提高其解题能力。

3.案例分析:通过分析实际问题中的数学应用,培养学生的数学应用能力和解决问题的能力。

4.课堂讨论:通过讨论式教学,引导学生主动参与学习,提高其自主学习和合作学习能力。

评估方式1.平时作业:通过定期布置和批改平时作业,了解学生的学习情况,以便及时调整教学策略。

2.期中考试:通过期中考试检查学生对知识的掌握情况,为后续教学提供参考。

3.期末考试:通过期末考试全面评估学生对高等数学知识的掌握情况和应用能力。

4.课堂表现:通过观察学生的课堂表现,了解其学习状态和参与度,及时给予指导和帮助。

教学资源1.教材:选用适合学生学习的高等数学教材,保证教学内容的准确性和系统性。

2.教学辅导材料:提供相应的教学辅导材料,如习题集、案例集等,以便学生巩固和提高。

《高等数学》教学大纲

《高等数学》教学大纲

《高等数学》教学大纲一、课程基本信息课程名称:高等数学课程类别:公共基础课课程学分:_____课程总学时:_____授课对象:_____先修课程:_____二、课程性质与任务高等数学是高等院校各专业学生必修的一门重要基础理论课,它不仅为学生学习后续课程和解决实际问题提供了必不可少的数学基础知识和数学方法,而且在培养学生的创新思维能力、逻辑推理能力、空间想象能力以及分析问题和解决问题的能力等方面都起着重要的作用。

本课程的主要任务是使学生掌握高等数学的基本概念、基本理论和基本方法,培养学生运用数学知识解决实际问题的能力,为学生学习后续课程以及今后从事科学研究和实际工作打下坚实的数学基础。

三、课程教学目标1、知识目标使学生掌握函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程等方面的基本概念、基本理论和基本方法。

了解数学建模的基本思想和方法,能够运用所学的数学知识建立简单的数学模型,并求解实际问题。

2、能力目标培养学生的逻辑推理能力、抽象思维能力和空间想象能力。

提高学生的运算能力和综合运用所学知识分析问题、解决问题的能力。

培养学生的创新意识和创新能力。

3、素质目标培养学生的科学态度和严谨的治学精神。

提高学生的数学素养和文化素质。

培养学生的团队合作精神和沟通能力。

四、课程教学内容与要求(一)函数、极限与连续1、函数理解函数的概念,掌握函数的表示方法。

了解函数的单调性、奇偶性、周期性和有界性。

掌握基本初等函数的性质和图形,了解初等函数的概念。

2、极限理解数列极限和函数极限的概念。

掌握极限的性质和运算法则,会求数列和函数的极限。

了解无穷小量和无穷大量的概念,掌握无穷小量的性质和比较方法。

3、连续理解函数连续的概念,掌握函数在一点连续的充要条件。

了解函数的间断点及其类型,会判断函数的间断点。

掌握初等函数的连续性,会利用连续性求函数的极限。

(二)一元函数微分学1、导数与微分理解导数的概念,掌握导数的几何意义和物理意义。

高等数学教学大纲Word

高等数学教学大纲Word

《高等数学》教学大纲一、课程的地位与任务《高等数学》是高等职业教育的一门必修的基础课程,是学生提高文化素质和学习有关专业知识、专门技术的重要基础。

本课程包括微积分、空间解析几何及工程数学等部分知识本课程教学大纲的制定是以高等职业教育的培养目标、教学计划为依据,遵循“必需、够用”为度的原则,适应于工科类专业对本课程的要求。

本大纲适用于三年制专科工科各专业及五年制工科各专业《高等数学》的教学。

二、课程教学目标(一)知识教学目标通过本课程的各个教学环节和多渠道的教学,使学生初步掌握微积分、空间解析几何及相关专业所需的工程数学的基本知识、基本方法。

(二)能力培养目标引导学生在生活实践中使用数学,在其它课程中应用数学,增强运用数学方法、借助计算机来分析和解决实际问题的能力;形成积极应用数学的氛围,在教学活动中,渗透素质教育,使学生提高逻辑思维能力,注重培养严谨求实的科学态度,树立科学的世界观。

三、教学要求及时数分配(一)函数与极限1、教学内容函数概念,基本初等函数图象性质,复合函数初等函数概念;数列函数极限,无穷大量与无穷小量;极限运算法则,两个重要极限,函数的连续性。

2、教学要求(1)、在初数所学的基本初等函数的有关知识的基础上,了解分段函数、复合函数、初等函数等概念。

(2)、理解数列极限、函数极限的定义。

(3)、掌握极限的四则运算法则。

(4)、了解无穷大、无穷小及其比较的概念,了解函数及其极限与无穷小的关系。

理解无穷小的性质。

(5)、了解夹逼准则和单调有界数列极限存在准则。

掌握两个重要极限求极限。

(6)、理解函数连续与间断概念,会判断间断点类型,了解初等函数连续性及闭区间上连续函数性质。

3、重点与难点教学重点:函数的概念、复合函数的概念,基本初等函数的图形和性质;极限概念,极限四则运算法则;连续概念。

教学难点:函数与复合函数的概念;极限定义,两个重要极限;连续与间断的判断。

(二)导数与微分1、教学内容导数概念、函数和、差、积、商的导数,复合函数求导法则,隐函数求导法则,反函数求导法则,初等函数的导数,高阶导数,微分概念。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲高等数学课程教学大纲1. 引言高等数学是大学理工类专业中一门重要的基础课程,它为学生提供了深入理解数学概念和方法的机会。

本教学大纲旨在明确高等数学课程的目标、内容和教学方式,以帮助教师和学生在学习过程中更好地掌握知识和技能。

2. 课程目标2.1 知识目标通过本课程的学习,学生应能够:- 掌握高等数学的基本概念、原理和公式;- 理解和运用微积分的基本思想和方法;- 熟悉常微分方程的求解技巧;- 理解多元函数的极限、连续性和偏导数等概念;- 掌握重要的高等数学定理和定理的证明方法。

2.2 技能目标通过本课程的学习,学生应能够:- 运用高等数学知识解决实际问题;- 熟练使用数学工具(如计算器和数学软件)进行计算和绘图;- 能够进行简单的数学推理和证明;- 培养数学建模和问题求解的能力。

3. 课程内容3.1 函数与极限- 函数的概念与性质- 极限的定义与运算法则- 连续与间断3.2 微积分- 导数与微分- 函数的极值与最值- 曲线的图形与函数的分析- 不定积分与定积分- 微分方程的基本概念与求解方法3.3 多元函数与偏导数- 多元函数的极限与连续性- 偏导数与全微分- 多元函数的极值与最值- 多元函数的泰勒展开4. 教学方式4.1 授课教师通过讲授基本概念、原理和公式,引导学生理解和掌握数学知识。

4.2 讨论与互动教师组织学生进行小组讨论、问题解答和数学实例演练,促进学生之间和教师之间的互动。

4.3 实践与实验教师引导学生进行数学建模和实际问题的求解,通过实践和实验帮助学生巩固和应用所学知识。

4.4 作业与课堂测试教师布置作业和组织课堂测试,帮助学生及时巩固所学知识,并提供反馈和指导。

5. 教材及参考资料- 主教材:《高等数学教程》(或其他适合的教材)- 辅助教材:《高等数学习题集》(或其他适合的教材)- 参考资料:相关数学期刊、学术论文和互联网资源6. 考核方式6.1 平时成绩包括作业、实验报告、课堂表现等6.2 期中考试考察学生对前期知识的掌握和理解能力6.3 期末考试考察学生对所有学习内容的整体掌握和应用能力7. 教学评价通过课程问卷调查、评估反馈和学生学业成绩等多种方式对教学效果进行评价,不断改进教学方法和内容。

《高等数学》课程教学大纲 .doc

《高等数学》课程教学大纲 .doc

《高等数学》课程教学大纲Advanced Mathematics A课程代码:03100A01, 03100A02课程性质:公共基础理论课(必修)适用专业:各工科专业(创新班)总学分数:11总学时数:176 修订年月:2015年12月编写年月:2013年7月执笔:xxx课程简介(中文):高等数学是一门工科各专业必修的公共基础理论课。

主要讲授分析学基础、一元函数微分学、一元函数积分学、常微分方程、空间解析与向量代数、多元函数微分学、多元函数积分学、无穷级数等方面内容。

为后序课程的学习奠定必要的数学基础。

课程简介(英文):Advanced mathematics is a compulsory public basic theory course for all majors of science and engineering. It mainly concerns basic analysis, calculus of unary functions, ordinary differential equations, spatial analysis and vector algebra, calculus of multivariate functions, infinite series, etc. Also it lays the necessary mathematical foundation for the study of subsequent courses.一、课程目的通过对本课程的学习,要使学生掌握相应的基本概念、基本理论和基本运算技能,逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力,注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析和解决问题的能力,为后序课程的学习奠定必要的数学基础,提供了必备的数学工具。

二、课程教学内容及学时分配(总176学时理论176学时)(一) 教学内容1.函数、极限、连续函数:映射及函数的概念,函数的表示法,函数的特性,复合函数、反函数、分段函数和隐函数的概念,基本初等函数的性质及图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】
《高等数学》课程教学大纲
课程代码:500107
学时数:64
课程类别:必修开课学期:第1学期
适用专业:理工管各专业开课单位:基础部
编写时间:2011年11月
一、课程性质和目的
《高等数学》是高等院校工程造价等专业学生一门必修的重要基础理论课,是培养高层次人才所需的基本课程。

通过《高等数学》课程的学习应使学生具备函数极限和连续、一元函数微分学、一元函数积分学、多元函数微积分、微分方程等方面的基本概念,为学生提供必不可少的数学基础知识和常用的数学方法。

在能力培养上,在传授知识的同时通过各教学环节逐步培养学生用极限的方法分析的方法解决问题的能力。

培养学生具有一定的逻辑思维能力,初步的抽象概括问题的能力和综合运用所学知识分析问题、解决问题的能力。

二、课程教学内容、学时分配和基本要求
第一章函数极限连续
第二章一元函数微分学及其应用
第三章一元函数积分学及其应用
第四章多元函数微积分
第五章无穷级数
微分方程与数学建模
第六章
第七章行列式
三、各教学环节学时分配
四、本课程与其他课程的联系和分工
前期课程:高中数学知识。

后续课程:工程数学、化学、物理、力学及其它工科和管理专业课程。

五、本课程的考核方式
本课程考核方式为闭卷考试,时间120分钟。

其中平时成绩占总成绩的30%,期末考试题占70% 。

每次课作业布置4~5题,作业,出勤,小测试的成绩算平时成绩。

六、建议教材和教学参考书
1.同济大学数学教研室主编,《高等数学》上下册。

高等教
育出版社,1996.
2.谭光兴主编,《线性代数》,中国人民大学出版社,2006年
版.
七、大纲说明
在教学过程中,可根据实际情况,对大纲中的学时分配作适当调整。

执笔人:程婧审核人:王瑞金系部主任:王勇
院学术委员会:主管院长:。

相关文档
最新文档