七年级上数学找规律题专题

合集下载

找规律(图形类)七年级数学

找规律(图形类)七年级数学

n=2, (3×2)×2 n=3, (4×3)×2

……
第n个, 2n (n+1)
【练11】(2010黑龙江哈尔滨)观察下列图形: 它们是按一定规律排列的,依照此规律, 第9个图形中共有 28 个★。
第1个图形 第2个图形
第3个图形
分析:
n=1, n=2, n=3, n=4,
……
n=9,
4 4+3 4+3+3 4+3+3+3
分析:
n=1
n=2
n=3
n=1, 1×4+1
n=2, 2×4+1+2
n=3, 3×4+1+2+2

……
第n个, n×4+1+(n −1)×2=6n −1
【练14】(2013重庆)下列图形都是由同样大小的棋子 按一定的规律组成,其中第①个图形有1颗棋子, 第②个图形一共有6颗棋子,第③个图形一共有16 颗棋子,…,则第⑥个图形中棋子的颗数为__76___
1×1+0×0 2×2+1×1 3×3+2×2 4×4+3×3
…… n=10, 10×10+9×9
第4个图案
【例4】(2010柳州)2010年广州亚运会吉祥物取名“乐羊羊”.下面各图 是按照一定规律排列的羊的组图,图①1有1只羊,图②有3只羊,……,
则图⑩有 55 只羊, 第n个图形有 2 n(n+1) 只羊.
n=3, 3×4+3×3

……
第n个, n× 4+n2=4n+n2
【例1】(2009年益阳市)下图是一组有规律的图案,第1

数学找规律题及答案

数学找规律题及答案

数学找规律题及答案【篇一:七年级上数学规律发现专题训练习题和答案】.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n)个图案中有白色地砖块。

..??2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。

”如图,在一个边长为1的正方形纸版上,依次贴上面积为1111,n2482第3题的矩形彩色纸片(n为大于1的整数)。

请你用“数形结合”的思想,依数形变化的规律,计算1111?????n。

24823.有一列数:第一个数为x1=1,第二个数为x2=3,第三个数开始依次记为x3,x4,?,xn;从第二个数开始,每个数是它相邻两个数和的一半。

(如:x2=x1?x3) 2(1)求第三、第四、第五个数,并写出计算过程; (2)根据(1)的结果,推测x8= ; (3)探索这一列数的规律,猜想第k个数xk=.(k是大于2的整数)4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕 .如果对折n次,可以得到条折痕 .5. 观察下面一列有规律的数123456,,,,,,??,根据这个规律可知第n个数是(n是正整数)38152435486.古希腊数学家把数1,3,6,10,15,21,??,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。

7. 按照一定顺序排列的一列数叫数列,一般用a1,a2,a3,?,an 表示一个数列,可简记为2{an}.现有数列{an}满足一个关系式:an+1=an-nan+1,(n=1,2,3,?,n),且a1=2.根据已知条件计算a2,a3,a4的值,然后进行归纳猜想an=_________.(用含n 的代数式表示)8.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式按照上述规律排下去,那么第10行从左边第9个数是 . -1 2-34 -56-7-9 10-1112-1314-15169.观察下列等式9-1=8 (8)16-4=12 25-9=16 36-16=20 ????这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为10.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色。

七年级数学找规律试卷答案

七年级数学找规律试卷答案

一、选择题(每题2分,共10分)1. 下列数列中,第10项是()A. 5B. 7C. 9D. 11答案:D解析:观察数列,每一项都比前一项多2,因此第10项为1+2×(10-1)=19。

2. 下列图形中,第5个图形是()A. 正方形B. 长方形C. 三角形D. 梯形答案:C解析:观察图形,每个图形都是由前一个图形加上一个相同的图形组成,因此第5个图形是三角形。

3. 下列数列中,下一个数是()1, 3, 6, 10, 15, ...A. 21B. 22C. 23D. 24答案:A解析:观察数列,每一项都是前一项加上一个递增的自然数,即1+2, 3+3, 6+4, 10+5, 15+6,所以下一个数是15+7=22。

4. 下列数列中,第8项是()2, 4, 8, 16, 32, ...A. 64B. 128C. 256D. 512答案:C解析:观察数列,每一项都是前一项的2倍,因此第8项是32×2=64。

5. 下列图形中,第4个图形是()A. 正方形B. 长方形C. 三角形D. 平行四边形答案:B解析:观察图形,每个图形都是前一个图形旋转90度,因此第4个图形是长方形。

二、填空题(每题3分,共9分)6. 数列1, 3, 5, 7, 9, ...的第n项是______。

答案:2n-1解析:观察数列,每一项都是前一项加上2,因此第n项为1+2×(n-1)=2n-1。

7. 图形序列中,每个图形都是前一个图形沿着中心旋转180度得到的,第6个图形是______。

答案:正方形解析:根据旋转规律,每个图形旋转6次后,又回到了正方形。

8. 数列2, 6, 18, 54, ...的第n项是______。

答案:2^n解析:观察数列,每一项都是前一项的3倍,因此第n项为2×3^(n-1)=2^n。

三、解答题(每题10分,共30分)9. 找出数列1, 4, 9, 16, 25, ...的规律,并写出第10项。

七年级上册数学找规律试卷

七年级上册数学找规律试卷

一、选择题(每题5分,共20分)1. 下列数列中,哪一项与其它项不同?A. 2, 4, 8, 16, 32B. 1, 4, 9, 16, 25C. 1, 3, 6, 10, 15D. 2, 6, 12, 18, 242. 数列 3, 6, 9, 12, ... 的下一项是:A. 15B. 18C. 21D. 243. 数列 5, 10, 17, 26, ... 的下一项是:A. 35B. 36C. 37D. 384. 数列 1, 1, 2, 3, 5, 8, ... 的下一项是:A. 13B. 14C. 15D. 165. 数列 2, 4, 8, 16, ... 的下一项是:A. 32C. 128D. 256二、填空题(每题5分,共20分)6. 数列 2, 4, 8, 16, ... 的第n项是______。

7. 数列 1, 1, 2, 3, 5, 8, ... 的第n项是______。

8. 数列 3, 6, 9, 12, ... 的公差是______。

9. 数列 5, 10, 17, 26, ... 的公差是______。

10. 数列 2, 6, 12, 18, 24, ... 的公差是______。

三、解答题(每题10分,共20分)11. 数列 1, 3, 5, 7, ... 的第10项是多少?12. 数列 2, 4, 8, 16, ... 的第n项与第n+1项的差是______。

四、应用题(每题10分,共20分)13. 数列 1, 1, 2, 3, 5, 8, ... 是著名的斐波那契数列,请找出第13项。

14. 小明发现了一个规律:数列 2, 5, 10, 17, 26, ... 的第n项等于n^2 + 1,请验证这个规律。

五、思考题(每题10分,共20分)15. 数列 3, 7, 11, 15, ... 的第n项是多少?16. 数列 4, 9, 16, 25, ... 的第n项是多少?答案:一、选择题1. B2. C3. A5. B二、填空题6. 2^n7. F(n)8. 39. 710. 4三、解答题11. 1912. 2n + 1四、应用题13. 23314. 证明:设数列的第n项为an,则有:an = n^2 + 1an+1 = (n+1)^2 + 1 = n^2 + 2n + 2所以,an+1 - an = 2n + 2 - 1 = 2n + 1因此,数列 4, 9, 16, 25, ... 的第n项确实等于n^2 + 1。

七年级上学期找规律训练题及答案

七年级上学期找规律训练题及答案

18○)七年级上学期找规律训练题一、数字排列规律题1、下面数列后两位应该填上什么数字呢?23581217____2请填出下面横线上的数字。

112358____3、有一串数字36101521___4、观察下面一列数,按某种规律在横线上填上适当的数3571,,,……则第n个数为;49165.观察下面一列有规律的数123456,,,,,, 第n个数是(n是正整数)38152435486.把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围一列,从上至下12365478910依次为1、5、13、…,则第10个数为____1514131211161719202128272625242322二、几何图形变化规律题7.拉面馆的师傅,能把一根很粗的面条,先两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多根细面条,如下面草图所示。

请问这样第_________次可拉出256根面条。

8、观察下列球的排列规律(其中●是实心球,是空心球○):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2016个球止,共有实心球个.9、观察下列图形排列规律(其中△是三角形,□是正方形,是圆,□△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2016个图形是长为1的正方形纸版上,依次贴上面积为1计算110.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n)个图案中有白色地砖块。

……11、用火柴棒按如下方式搭三角形:(1)第十个图形需要______根火柴棒(2)照这样的规律搭下去,搭n个这样的三角形需要______根火柴棒12、仔细观察下列图形(1)看图填表(2)当梯形的个数是n时,图形的周长是.13.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是。

七年级数学找规律题(含答案)

七年级数学找规律题(含答案)

七年级数学找规律题(含答案)1.观察下图,寻找规律,在“?”处填上的数字是( ). A.128 B.136 C.162 D.188 【答案】C2.寻找规律计算1 - 2+3 - 4+5 - 6+…+2015 - 2016等于 ( ) A.0 B.- 1 C.- 1008D.1008【答案】C3.找规律:21-20=20 ;22-21=21 ;23-22=2 2;………利用你的发现,求20+21+22+23+…+22018+22019的值是( ) A .22019 -1 B .22019 +1C .22020 -1D .22020 +1【答案】C4.先找规律,再填数:1111122+-=,111134212+-=,111156330+-=,111178456+-=,…,1120132014+-( )=()12014⨯.【答案】11007,2013. 5.找规律填上合适的数:﹣2,4,﹣8,16, ,64,… 【答案】﹣32.6.寻找规律,根据规律填空:31,152-,353,634-,995, ,…,第n 个数是 . 【答案】1436-14)1(21--+n n n (或:当n 时奇数时,142-n n;当n 时偶数时,142--n n )7.先找规律,再填数: 111111*********1,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】8.找规律填数:﹣1,2,﹣4,8,________ 【答案】﹣169.先找规律,再填数:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156,12011+12012-________=120112012⨯ 【答案】10.已知C 32=3×21×2=3, C 53=5×4×31×2×3=10,C 64 =6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 85=_____. 【答案】56.11.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .【答案】21012.观察下列各式并找规律,再猜想填空:()()()()223322332248a b a ab b a b x y x xy y x y +-+=++-+=+, ,则()()2223469a b a ab b +-+= ______ .【答案】33827a b + 13.观察下列计算:,,,……从计算结果中找规律,利用规律计算_______________ 【答案】14.已知: 233212C ⨯=⨯=3,35543123C ⨯⨯=⨯⨯=10,3565431234C ⨯⨯⨯=⨯⨯⨯=15,…,观察上面的计算过程,寻找规律并计算:34C =_____. 【答案】4. 15.已知:2332312C ⨯==⨯,3554310123C ⨯⨯==⨯⨯,466543151234⨯⨯⨯==⨯⨯⨯C ,…,观察上面的计算过程,寻找规律并计算C 106=_____. 【答案】21016.找规律:﹣12,2,﹣92,8,﹣252 ,18…,则第7个数为_____;第n 个数为_____(n 为正整数)【答案】﹣492 (﹣1)nn 22.17.观察烟花燃放图形,找规律:依此规律,第n 个图形中共有_________个★. 【答案】2+2n18.找规律,并按规律填上第五个数:,169,87,45,23-- . 【答案】-113219.观察下面的一列数,从中寻找规律,然后按规律填写接下去的3个数.12,34-,56,78-,910,________,________,________,… 【答案】1112-1314 1516- 20.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a b m -+=_____.【答案】4321.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c 的值为 .【答案】7622.观察下面的一列数,从中寻找规律,然后按规律写出接下去的三个数.12 ,-34 ,56 ,-78 ,910,… ________,…【答案】-1112;1314;−1516. 23.找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有________个.【答案】2n -124.观察下列各组勾股数,并寻找规律:①4,3,5; ②6,8,10; ③8,15,17; ④10,24,26 …… 请根据你发现的规律写出第⑦组勾股数:____________. 【答案】16,63,6525.用火柴棒按以下方式搭“小鱼” .…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为 . 【答案】62 26.观察下列计算111122=-⨯ ,1112323=-⨯,1113434=-⨯,1114545=-⨯,……, (1)第n 个式子是_____________________________________; (2)从计算结果中找规律,利用规律计算:112⨯+123⨯+134⨯+145⨯+…+120092010⨯ 【答案】(1)()11111n n n n =-++;(2)20092010. 27.探究:()21112222122-=⨯-⨯=, () 3222? 2-==, ()4322? 2-==,……(1)请仔细观察,写出第4个等式; (2)请你找规律,写出第n 个等式;(3)计算:012201620172018222222+++⋅⋅⋅⋅⋅⋅++-. 【答案】(1)544442222122-=⨯-⨯=;(2)12222122n n n n n +-=⨯-⨯=;(3)-128.阅读下文,寻找规律:已知1x ≠时, ()()2111x x x -+=-,()()23111x x x x -++=-, ()()234111x x x x x -+++=-……(1)填空: ()1(x - 5)1x =-. (2)观察上式,并猜想:①()()211n x x x x -+++⋅⋅⋅+= . ②()()10911x x x x -++⋅⋅⋅++= . (3)根据你的猜想,计算:①()()234512122222-+++++= . ②23420161+3+3+3+33⋅⋅⋅⋅⋅⋅=_____________________【答案】(1)2341+x x x x +++(2)11n x+-; 111x -(3)612- (或 -63); 20173-1229.小明同学在一次找规律的游戏中发现如下的数字和规律,请你按照所给的式子,解答下列问题:21342+== 213593++== 21357164+++== 213579255++++==()1试猜想:135791129++++++⋯+=①______.()()135********n n ++++++⋯+-++=②______.()2用上述规律计算:2123255759+++⋯++=______.【答案】(1)①225;②(n+1)²(2)80030.找规律并解答问题.(1)按下图方式摆放黑色围棋子,填一填,每个图共需几枚棋子.(2)根据你发现的规律,算一算第13个图,共需要( )枚棋子.【答案】(1)详见解析;(2)40枚.31.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a=,ba+= .表一表二表三【答案】17=a2372=+ba32.细观察,找规律.下列各图中的1MA与nNA平行.()1图①中的12A A∠+∠=______ 度,图②中的123A A A∠+∠+∠=______ 度,图③中的1234A A A A ∠+∠+∠+∠=______ 度, 图④中的12345A A A A A ∠+∠+∠+∠+∠=______ 度,⋯,第⑩个图中的12311A A A A ∠+∠+∠+⋯+∠=______ 度()2第n 个图中的1231n A A A A +∠+∠+∠+⋯+∠=______ ()3请你证明图②的结论.【答案】(1)180;360;540;720;1800;(2)180n °;(3)详见解析. 33.找规律:(1)填空:41=________;42=______;43=______;44=______;45=________;46=________;…(2)你发现4的幂的个位数字有什么规律? (3)4250的个位数是什么数字?为什么?【答案】(1)4, 16, 64,256,1224,4896;(2)是循环数;(3)6. 34.观察等式找规律: ①第1个等式:22﹣1=1×3; ②第2个等式:42﹣1=3×5; ③第3个等式:62﹣1=5×7; ……(1)写出第5个等式: ; 第6个等式: ;(2)写出第n 个等式(用字母n 表示): ; (3)求111113355740254027++++⨯⨯⨯⨯的值.【答案】(1)102﹣1=9×11;122﹣1=11×13;(2)4n 2﹣1=(2n ﹣1)(2n+1);(3)2013402735.观察表l ,寻找规律.表2是从表l 中截取的一部分,其中a ,b ,c 的值分别为( )A.20,25,24B.25,20,24C.18,25,24D.20,30,25【答案】A36.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)= .(2)根据你的猜想,计算:1+3+32+33…+3n= .(其中n是正整数)【答案】(1)1﹣x n+1,(2)﹣.37.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有_____个.【答案】9138.找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。

(完整版)七年级数学找规律题

(完整版)七年级数学找规律题

归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题 1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若…21010 参考答案:一、1、(1)1004的平方(2)n+1的平方2、23 30。

七年级数学找规律经典题型

七年级数学找规律经典题型

七年级数学找规律经典题型一、数字规律1. 数列规律例1:观察数列1,3,5,7,9,…,求第n个数。

解析:首先观察这个数列,发现相邻两个数的差值都是2。

第1个数是1 = 2×1 1;第2个数是3 = 2×2 1;第3个数是5 = 2×3 1;第4个数是7 = 2×4 1;第5个数是9 = 2×5 1。

所以可以得出第n个数为2n 1。

例2:观察数列2,4,8,16,32,…,求第n个数。

解析:这个数列中,后一个数都是前一个数的2倍。

第1个数是2 = 2^1;第2个数是4 = 2^2;第3个数是8 = 2^3;第4个数是16 = 2^4;第5个数是32 = 2^5。

所以第n个数为2^n。

2. 数字循环规律例:有一组数按照1, 1,1, 1,…的规律排列,求第n个数。

解析:观察这组数字,发现数字是1和 1交替出现。

当n为奇数时,第n个数为1;当n为偶数时,第n个数为 1。

可以用(-1)^(n + 1)来表示,当n = 1时,(-1)^(1+1)=1;当n = 2时,(-1)^(2 + 1)= 1。

二、图形规律1. 图形数量规律例1:用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴棒,…,求搭n个三角形需要多少根火柴棒。

解析:搭1个三角形需要3根火柴棒,即2×1+1;搭2个三角形时,第二个三角形和第一个三角形共用一条边,所以需要3 + 2 = 5根火柴棒,即2×2+1;搭3个三角形时,第三个三角形和前面的三角形共用两条边,所以需要3+2×2 = 7根火柴棒,即2×3 + 1。

所以搭n个三角形需要2n+1根火柴棒。

例2:观察下列图形的点数规律:第1个图形有1个点;第2个图形有1 + 3 = 4个点;第3个图形有1+3 + 5 = 9个点;第4个图形有1+3+5 + 7 = 16个点;求第n个图形的点数。

七年级数学有理数找规律题型

七年级数学有理数找规律题型

七年级数学有理数找规律题型一、数字规律。

题1。

观察下列数:1, -2, 3, -4, 5, -6,…,按照这样的规律,第100个数是多少?解析。

可以发现这些数的绝对值是连续的自然数,且奇数项为正,偶数项为负。

第100个数是偶数项,所以为 - 100。

题2。

给出一组数: - 1,2, - 4,8, - 16,32,…,则第7个数是多少?解析。

先看绝对值,后一个数是前一个数绝对值的2倍,再看符号,奇数项为负,偶数项为正。

第7个数是奇数项,绝对值为2^6=64,所以第7个数是 - 64。

题3。

有一列数:(1)/(2),(2)/(3),(3)/(4),(4)/(5),…,那么第n个数是多少?解析。

分子依次是1,2,3,4,…,n;分母依次是2,3,4,5,…,n + 1。

所以第n 个数是(n)/(n + 1)。

题4。

观察数:1,4,9,16,25,…,第10个数是多少?解析。

这组数是1^2,2^2,3^2,4^2,5^2,…,第n个数是n^2,所以第10个数是10^2=100。

题5。

数列:0,3,8,15,24,…,第n个数是多少?解析。

这组数可以写成1^2-1,2^2-1,3^2-1,4^2-1,5^2-1,…,第n个数是n^2-1。

二、算式规律。

题6。

观察下列算式:1 = 1^2;1+3 = 2^2;1 + 3+5=3^2;1+3 + 5+7 = 4^2;…,求1+3+5+·s+99的值。

解析。

从算式可以看出,从1开始连续奇数的和等于数的个数的平方。

1到99的奇数有50个,所以1+3+5+·s+99 = 50^2=2500。

题7。

观察算式:2^1=2,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,…,求2^20的个位数字是多少?解析。

通过观察2^n的个位数字依次是2、4、8、6循环。

20÷4 = 5,刚好整除,所以2^20的个位数字是6。

题8。

有这样一组算式:(1-(1)/(2))(1+(1)/(2))=(1)/(2)×(3)/(2)=(3)/(4);(1 -(1)/(3))(1+(1)/(3))=(2)/(3)×(4)/(3)=(8)/(9);(1-(1)/(4))(1+(1)/(4))=(3)/(4)×(5)/(4)=(15)/(16);…,求(1-(1)/(10))(1+(1)/(10))的值。

初一数学上册有理数找规律题型专题练习

初一数学上册有理数找规律题型专题练习

初一数学上册有理数找规律题型专题练习一、等差型数列规律1. 有一组数:1,2,3,4,5,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2. 有一组数:2,5,8,11,14,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.3.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4.有一组数:4,7,10,13,…请观察这组数的构成规律,用你发现的规律确定第n个数为.5.有一组数:11,20,29,38,…请观察这组数的构成规律,用你发现的规律确定第n个数为.二、等比型数列规律1.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定第n个数为.3. 有一组数:1,-1,1,-1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4. 有一组数:27,9,3,1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.三、含n2型数列规律1.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.3.有一组数:1,3,6,10,15,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4.有一组数:0,2,6,12,20,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.四、其它数列规律列举1.有一组数:1,2,3,5,8,…请观察这组数的构成规律,用你发现的规律 确定第7个数为 ,2.有一组数:-2,3,1,4,5,…请观察这组数的构成规律,用你发现的规律 确定第7个数为 ,3. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2013个数是___________4. 观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .5. 观察下列一组数:.,61,51,41,31,21,1 ---它们是按一定规律排列的. 那么这一组数的第2014个数是6.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的 第k 个数是五、循环型数列.1. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .2.已知21873,7293,2433,813,273,93,337654321=======…推测到203的个 位数字是 ;3. 若1113a =-,2111a a =-,3211a a =-,… ;则2014a 的值为 . 六、算式型规律1. 已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .2. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,…这样得到的20个数的积为_________________.3. 求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为:4. 研究下列算式,你会发现什么规律?1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52…………,(1)请用含n的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算11111(1)(1)(1)(1)(1)132********+++++⨯⨯⨯⨯⨯的值七、数列阵型1.观察下列三行数:(课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.2.观察下面一列数:1,2,3,4,5,6,7,...将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第4个数是:八、几何图形型1.观察下列图形:第1个图形 第2个图形 第3个图形 第4个图形它们是按一定规律排列的,依照此规律,第16个图形共有 个★.2.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按 照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .3.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.4.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.5. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是______,第n 个“广”字中的棋子个数是________6.同样大小的黑色棋子按如图所示的规律摆放:(1) 第5个图形有多少颗黑色棋子? 图案1 图案2 图案3 ……… … 第1幅 第2幅 第3幅 第n 幅 第1个 第2个 第3个 第4个(2)第几个图形有2013颗棋子?说明理由。

七年级数学上册有理数找规律题型专题练习

七年级数学上册有理数找规律题型专题练习

七年级数学上册有理数找规律题型专题练习一、等差型数列规律1. 有一组数:1,2,3,4,5,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:2,5,8,11,14,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .3.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4.有一组数:4,7,10,13,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .5.有一组数:11,20,29,38,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .二、等比型数列规律1.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定第n个数为 .3. 有一组数:1,-1,1,-1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4. 有一组数:27,9,3,1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .三、含n2型数列规律1.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .2.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .3.有一组数:1,3,6,10,15,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .4.有一组数:0,2,6,12,20,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .四、其它数列规律列举1.有一组数:1,2,3,5,8,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,2.有一组数:-2,3,1,4,5,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,3. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2013个数是___________4. 观察下列一组数:,,,,…… ,它们是按一定规律排列的. 那么这一组21436587数的第k 个数是 .5. 观察下列一组数:.,61,51,41,31,21,1 ---它们是按一定规律排列的. 那么这一组数的第2014个数是6.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是五、循环型数列.1. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .2.已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;3. 若,,,… ;则的值为 .1113a =-2111a a =-3211a a =-2014a 六、算式型规律1. 已知22223322333388+=⨯+=⨯,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .2. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,...这样得到的20个数的积为_________________.3. 求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为:4. 研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,(1)请用含n 的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算的值11111(1)(1)(1)132********+++++⨯⨯⨯⨯⨯ 七、数列阵型1.观察下列三行数: (课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?第1个图形第2个图形第3个图形第4个图形(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.2. 观察下面一列数:1,2,3,4,5,6,7,...将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第4个数是:八、几何图形型1.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有 个★.2.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按 照这样的规律摆下去,则第个n 图形需要黑色棋子的个数是 .3.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.4.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.图案1图案2图案3…………第1幅第2幅第3幅第n 幅5. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是______,第个“广”字中的棋子个数是________n 6.同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2013颗棋子?说明理由。

(完整版)七年级找规律经典题汇总带答案

(完整版)七年级找规律经典题汇总带答案

……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

七年级数学上册—找规律

七年级数学上册—找规律

七年级数学上册—找规律本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March七年级找规律—数与图形专题【典型例题】【例1】 观察下列算式:,65613,21873,7293,2433,813,273,93,3387654321========……用你所发现的规律写出20043的末位数字是__________。

【例2】观察下列式子:326241⨯==+⨯;4312252⨯==+⨯;5420263⨯==+⨯;6530274⨯==+⨯……请你将猜想得到的式子用含正整数n 的式子表示来__________。

【例3】 图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3—4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。

……(1)将下表填写完整(2)在第n个图形中有____________________个三角形(用含n 的式子表示)。

【例4】如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为1的矩形等分成两个面积为81的矩=+++++++25611281641321161814121 ①②③【例5】把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是【例6】观察下列图形并填表。

【巩固练习】1.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。

……2.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。

七年级上册找规律数学题

七年级上册找规律数学题

七年级上册找规律数学题一、数字规律题。

1. 观察下列数:1,4,9,16,25,…,按此规律,第n个数是()- 解析:- 第1个数是1 = 1^2;- 第2个数是4=2^2;- 第3个数是9 = 3^2;- 第4个数是16=4^2;- 第5个数是25 = 5^2。

- 所以第n个数是n^2。

2. 有一组数:1, - 2,3,-4,5,-6,·s,按此规律,第n个数是()- 解析:- 当n为奇数时,数为正数,即第n个数为n;- 当n为偶数时,数为负数,即第n个数为-n。

- 所以第n个数是( - 1)^n + 1n。

3. 观察数列:2,5,8,11,·s,则第n个数是()- 解析:- 可以发现每一个数都比前一个数大3。

- 第1个数2 = 3×1 - 1;- 第2个数5=3×2 - 1;- 第3个数8 = 3×3-1;- 所以第n个数是3n - 1。

4. 数列1,(1)/(2),(1)/(3),(1)/(4),(1)/(5),·s,第n个数是()- 解析:- 很明显,第n个数是(1)/(n)。

5. 找规律:0,3,8,15,24,·s,第n个数是()- 解析:- 第1个数0 = 1^2-1;- 第2个数3=2^2-1;- 第3个数8 = 3^2-1;- 第4个数15=4^2-1;- 第5个数24 = 5^2-1;- 所以第n个数是n^2-1。

二、图形规律题。

6. 用火柴棒按下图的方式搭三角形:- 照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?- 解析:- 搭1个三角形需要3根火柴棒;- 搭2个三角形需要3 + 2=5根火柴棒;- 搭3个三角形需要3+2×2 = 7根火柴棒;- 搭n个三角形需要3 + 2(n - 1)=2n + 1根火柴棒。

7. 观察下列图形的构成规律,根据此规律,第n个图形中有多少个圆?- 第1个图形有1个圆;- 第2个图形有1 + 2 = 3个圆;- 第3个图形有1+2 + 3=6个圆;- 第4个图形有1+2+3 + 4 = 10个圆;- 解析:- 第n个图形中圆的个数为1 + 2+3+·s+n=(n(n + 1))/(2)。

七年级数学找规律的题20道

七年级数学找规律的题20道

七年级数学找规律的题20道1、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1B .2C .3D .42、.计算20082007654321-++-+-+- 的结果是( ) A. -2008 B. -1004 C. -1 D. 03、如图,平面内有公共端点的六条射线OA 、OB 、OC 、OD 、OE 、OF ,从射线OA 开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2008”在( )A .射线OA 上B .射线OB 上C .射线OD 上 D .射线OF 上4、我国古代的“河图”是由3×3的方格构成,每个格内均有数目不等的点图,每一行、每一列以及每条对角线上的三个点图的点数之和均相等.如图,给出了“河图”的部分点图,请你推算出M 处所对应的点图( )A .·B .·C .D .5、 观察下面一列有规律的数 ,486,355,244,153,82,31, 根据这个规律可知第n个数是 (n 是正整数)6、古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 。

7、 按照一定顺序排列的一列数叫数列,一般用a 1,a 2,a 3,…,a n 表示一个数列,可简记为{a n }.现有数列{a n }满足一个关系式:a n +1=2n a -na n +1,(n =1,2,3,…,n ),且a 1=2.根据已知条件计算a 2,a 3,a 4的值,然后进行归纳猜想a n =_________.(用含n 的代数式表示)8、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.9、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 .10、观察下面一列数,按某种规律在横线上填上适当的数:1,43,95,167……则第n 个数为 ;11、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .12、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 .13、 “◆”代表甲种植物,“★”代表乙种植物,为美化环境,采用如图所示方案种植. 按此规律第六个图案中应种植乙种植物 _________ 株.★ ★ ★ ★★ ★ ★ ◆ ◆ ◆★ ★ ◆ ◆ ★ ★ ★ ★ ◆ ★ ★ ★ ◆ ◆ ◆ ★ ★ ◆ ◆ ★ ★ ★ ★ 图 1 ★ ★ ★ ◆ ◆ ◆图 2 ★ ★ ★ ★14、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示). (1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).15、用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示)………16、你到过县城的拉面馆吗?拉面馆的师傅,能把一根很粗的面条,先两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多根细面条,如下面草图所示。

七年级上册数学找规律试题

七年级上册数学找规律试题

七年级上册数学找规律试题题一:算盘在七年级上册数学课本中,我们学习了许多关于找规律的内容,其中一个有趣的问题是关于算盘的。

算盘是一种辅助计算工具,通过移动珠子来进行数学运算。

在这个问题中,我们需要找到算盘上任意一列珠子的规律。

将算盘的每一列依次编号为第一列、第二列、第三列...。

我们以算盘的第一列为例,假设我们从上到下的珠子数目分别为1、2、3、4、5、6、7,顺序编号为a1、a2、a3、a4、a5、a6、a7。

观察珠子从上到下的编号,我们可以发现一个规律:a(n) = n,表示第n颗珠子的编号等于n(n为正整数)。

同样的规律也适用于其他列的珠子。

例如,第二列的珠子按相同的顺序编号为b1、b2、b3、b4、b5、b6、b7,则有b(n) = n(n为正整数)。

通过这个例子,我们可以发现算盘上每一列的珠子都有相同的规律,即第n列的珠子按顺序编号为n(n为正整数)。

题二:数字图形在七年级上册数学课本中,还有一个有趣的环节是关于数字图形的。

在这个环节中,我们需要观察图形中数字的规律,并进行推理。

以一个简单的例子开始,我们观察一个数字图形:1121231234```可以看出,每一行数字都是顺序增加的。

第一行有1个数字,第二行有2个数字,第三行有3个数字...以此类推。

根据这个规律,可以预测如果再添加一行,那么这一行应该有4个数字。

通过这个例子,我们可以发现数字图形中数字数量的规律为逐行递增,每一行的数字数量等于该行的行号。

除了数字的数量规律外,我们还可以观察到数字的排列规律。

例如,在以下的数字图形中:```12345678910可以看出,每一行的数字也是按照顺序增加的。

第一行从1开始,第二行从2开始,第三行从4开始...以此类推。

根据这个规律,可以预测如果再添加一行,那么这一行的起始数字应该是11。

综上所述,数字图形中数字的排列规律是每一行从行号开始逐个增加。

题三:等差数列进一步地,在七年级上册数学课本中还有一个重要的知识点是等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上数学找规律题专题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN归纳—猜想---找规律一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个()5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,………根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n =观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯ ()3214323132⨯⨯-⨯⨯=⨯ ()4325433143⨯⨯-⨯⨯=⨯ 将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221 ⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n4,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a a ba b 则符合前面式子的规律,,若 (21010)1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

2. 观察下面一列有规律的数,486,355,244,153,82,31, 根据这个规律可知第n 个数是 (n 是正整数)3.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式按照上述规律排下去,那么第10行从左边第9个数是 . 4.观察下列等式9-1=816-4=12......16-1514-1312-1110-9-76-54-32-1第8题25-9=16 36-16=20 …………这些等式反映自然数间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示这个规律为.5.先观察321211⨯+⨯=)3121()2111(-+-=1-31=32 431321211⨯+⨯+⨯=)4131()3121()2111(-+-+-=1-41=43 再计算)1(1431321211+++⨯+⨯+⨯n n 的值.6.观察下列顺序排列的等式:9×0+1=1 9×1+2=11 9×2+3=21 9×4+5=41…,猜想:第21个等式应为:7.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6, 4!=4×3×2×1,…,则100!98!的值为1、.观察下列各数,按规律在横线上填上适当的数.(1)1,1,2,3,5,_____,13,21,34,_____,_____.(2)1,-2,4,-8,16,_____,_____.(3).观察下列数据,按某种规律在横线上填上适当的数:1,43-,95,167-, ,…(4)、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .(5).观察下列各数之间的关系,在空中填上适当的数:1,1,2,3,5,8,______.2、为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .26n +B .86n +C .44n +D .8n3,广西河3、(2007池非课改)填在下面三个田字格内的数有相同的规律,根据此规律,C = .CBA 5567532053135791※※※※※※※※※※※※※※※※※※※※※※※※※4、观察下列等式,并回答问题:23)31(6321⨯+==++ 24)41(104321⨯+==+++25)51(1554321⨯+==++++ ……=++++n 321 。

并求1000321++++ 的结果。

5、观察下列算式:21=2、22=4、23=8、24=16、55=32、26=64、27=128、28=256……。

观察后,用你所发现的规律写出223的末位数字是 。

6.探索规律:观察下面由※组成的图案和算式,解答问题:1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 1+3+5+7+9=25=52 (1)请猜想1+3+5+7+9+…+19= ;(只填数字,2分) (2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(只填乘方形式,3分)(3)请用上述规律.....计算:103+105+107+…+2003+20057、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____。

8、观察下列算式:21=2、22=4、23=8、24=16、55=32、26=64、27=128、28=256……。

观察后,用你所发现的规律写出223的末位数字是 。

9、已知:, ……,若符合前面式子的规律, 则 a + b = ___ ____.10,例 计算:1091431321211⨯++⨯+⨯+⨯ 解:1091431321211⨯++⨯+⨯+⨯ =⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-10191413131212111 =10910111=-. 观察上面的解题过程,请你用类似的方法计算:101991751531311⨯++⨯+⨯+⨯ .11、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____。

12.观察下面的一列数:21,-61,121,-201……请你找出其中排列的规律,并按此规律填空. (1)第9个数是________,第14个数是________. (2)若n 是大于1的整数,按上面的排列规律,写出第n 个数.13.按如图所示的方式搭正方形,则搭x 个正方形所需的火柴棒数是 根.14、(9分)树的高度与树生长的年数有关,测得某棵树的有关数据如下表(树苗原高100厘米)(1)用含有字母n 的代数式表示生长了n 年的树苗的高度a n 。

(2)生长了11年的树的高度是多少?参考答案(一):一、1、(1)21004(2)21n )(2、23 30。

数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7。

3、13。

这一数列后面一个数是前面相邻两个数的和。

4、34 。

考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个。

每个括号的第一个数分别是1,2,3,……因此第100个数必然是34。

5、28。

3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28。

其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1。

6、A7、33 二、 1、602 2、圆 三、1、2333331554321=++++ 2、100003、 ⑴343400 或10210110031⨯⨯⨯ ⑵()()2131++n n n ⑶()()()32141+++n n n n4、109.规律发现专题训练答案1.4n+22.13.(1)5;7;9 (2)15 (3)2n-14.15;5.n/n(n+2)6.457.n+18.909. 10.5 11.D 12.(1)12+2a;12+3a;12+a(n-1)(2)a=2;54 13.7;11;n/(n+1)+1 14.n/(n+1) 15.9×20+21=20116.(1)6;30(2)n+1;n(n+1)17.8 18.C 19.B 20.D 21.9900 22.C 23.(2)16;26;17824(1)13;16;(2)3n+1;(3)不能,3n+1=2009 3n=2008 因为2008不是3的倍数。

25.n ×n 26. 27.(2n-1)/n ×n。

相关文档
最新文档