圆轴扭转时的强度和刚度计算教育课件
合集下载
4.5圆轴扭转时的强度和刚度条件
《化工设备设计基础》
8
动脑又动笔
4.5 圆轴扭转时的强度和刚度条件
D1 d
D2
已知轴的 [τ] ,设计 如图结构中的轴径 d 。
1 1 T P D P2 D2 1 1 2 2
P1
P2
T P D P D 8P D P D 1 1 3 2 2 1 1 3 2 2 [ ] W 2 d 16 d
4
《化工设备设计基础》
4.5 圆轴扭转时的强度和刚度条件
例1 (续1)
《化工设备设计基础》
5
4.5 圆轴扭转时的强度和刚度条件 例1 (续2)
解:(1)外力偶矩和扭矩的计算。
实际功率
P Pe 22 0.9 19.8kW
P 19.8 m A 9.55 9.55 3.15kN m n 60
0.4 19.8 1.26kN m 60 0.6 19.8 mC 9.55 1.89kN m 60 m B 9.55
主动力偶矩
扭矩:
M T 1 mC 1.89 kNm
MT 2 mc mB 1.89 1.26 3.15kN m
《化工设备设计基础》
M T max N mm, G MPa N / mm 2 , I mm
4.5 圆轴扭转时的强度和刚度条件
例1
• 图示为带有搅拌器的反应釜简图。搅拌轴上装有 两层浆叶,已知电动机的功率Pe=22KW,搅拌轴 转速n=60r/min,机械传动效率 η=90% ,上、 下层搅拌浆叶所受的阻力不同,所消耗的功率各 占总功率的η=40% 和η=60% 。此轴采用 φ114×6mm的不锈钢管制成,材料性能参数 [τ]=60MPa,G=8X104MPa,[θ]=0.5°/m 。 试校核搅拌轴的强度和刚度。若将此轴改为相同 材料且与原来空心轴强度相同的实心轴,试确定 其直径,并比较两种轴的用钢量。
8
动脑又动笔
4.5 圆轴扭转时的强度和刚度条件
D1 d
D2
已知轴的 [τ] ,设计 如图结构中的轴径 d 。
1 1 T P D P2 D2 1 1 2 2
P1
P2
T P D P D 8P D P D 1 1 3 2 2 1 1 3 2 2 [ ] W 2 d 16 d
4
《化工设备设计基础》
4.5 圆轴扭转时的强度和刚度条件
例1 (续1)
《化工设备设计基础》
5
4.5 圆轴扭转时的强度和刚度条件 例1 (续2)
解:(1)外力偶矩和扭矩的计算。
实际功率
P Pe 22 0.9 19.8kW
P 19.8 m A 9.55 9.55 3.15kN m n 60
0.4 19.8 1.26kN m 60 0.6 19.8 mC 9.55 1.89kN m 60 m B 9.55
主动力偶矩
扭矩:
M T 1 mC 1.89 kNm
MT 2 mc mB 1.89 1.26 3.15kN m
《化工设备设计基础》
M T max N mm, G MPa N / mm 2 , I mm
4.5 圆轴扭转时的强度和刚度条件
例1
• 图示为带有搅拌器的反应釜简图。搅拌轴上装有 两层浆叶,已知电动机的功率Pe=22KW,搅拌轴 转速n=60r/min,机械传动效率 η=90% ,上、 下层搅拌浆叶所受的阻力不同,所消耗的功率各 占总功率的η=40% 和η=60% 。此轴采用 φ114×6mm的不锈钢管制成,材料性能参数 [τ]=60MPa,G=8X104MPa,[θ]=0.5°/m 。 试校核搅拌轴的强度和刚度。若将此轴改为相同 材料且与原来空心轴强度相同的实心轴,试确定 其直径,并比较两种轴的用钢量。
第4章圆轴扭转时的强度与刚度计算
圆轴扭转后横截面保持平面
第一个结论
圆轴扭转时,横截 面保持平面,平面上 各点只能在平面内转 动
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,A端观察 者看到的情形。
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,B端观察 者看到的情形。
圆轴扭转后横截面保持平面
最终结论
圆轴扭转时,横 截面 保持平面,并且 只能发生刚性转动。
圆轴扭转后横截面保持平面
变形协调方程
圆轴扭转时的变形协调方程
若将圆轴用同轴柱面分割成许多半径不等的圆柱,根据上述结论,在dx长度 上,虽然所有圆柱的两端面均转过相同的角度d,但半径不等的圆柱上产生的剪 应变各不相同,半径越小者剪应变越小。
其中P为功率,单位为千瓦(kW); n为轴的转速,单位为转/分(r/min)。
4.1外加扭力矩、扭矩与 扭矩图
P[马力]
Me
7024 n[r / min]
[N m]
若P为功率,单位为马力 (1马力=735.5 N•m/s )
n为轴的转速,单位为转/分(r/min)
4.1外加扭力矩、扭矩与 扭矩图
max
M x,max Wp
[ ]
[ ]为许用剪应力;是指圆轴所有横截面
上最大剪应力中的最大者,
钢 [ ] (0.5 ~ 0.6)[ ] 铸铁 [ ] (0.8 ~ 1)[ ]
例题1
已知:P=7.5kW, n=100r/min,最大剪应力不得超过40MPa,空心圆轴的内外直 径之比 = 0.5。二轴长度相同。
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的最大剪应力
扭转刚度计算.
例6-5 汽车传动轴AB由45号无缝钢管制成,外径D=90mm,
[ ] =1.0°/m,工作时最 内径d=85mm,许用切应力 [ ]=60MPa,
大力偶矩M =1500N· m,G =80GPa。
(1)试校核其强度及刚度。 (2)若将AB轴改为实心轴,试求其直径。 (3)比较空心轴和实心轴的重量。 解 (1)试校核其强度及刚度。
max 180M n /(GI P ) [θ ]
下列标准。 精密机械的轴 一般传动轴
(6-13)
[ ]的数值,可从有关手册中查得。一般情况下,可参照 [ ] =(0.25~0.5)°/m [ ] =(0.5~1.0) °/m [ ] =(1.0~2.5) °/m
精度要求不高的轴
根据扭转刚度条件,可以解决三类问题, 即校核刚度、 设计截面和确定许可载荷 。
M n Wn [ ] (0.2 403 109 60106 )N m 768N m
M M n 768N m
(2) 确定最大功率
由式(6-1)得
P M nn / 9550 (768 200/ 9550 )kW 16kW
二、刚度计算 圆轴扭转时,还要求不产生过大的扭转变形。即
第四节 圆轴扭转时的强度和刚度计算
,即
max M n/W n [ ]
(6-12)
例6-4 某传动轴,已知轴的直径d=40mm,转速n=200r/min, 材料的许用切应力 60MPa ,试求此轴可传递的最大功率。
解 (1)确定许可外力偶矩
由扭转强度条件得
0.8/m < [ ]
传动轴满足刚度要求。 (2)计算实心轴的直径
1)按强度条件设计(设直径为D1)。若实心轴与空心轴强
18圆轴扭转的强度和刚度计算
T
max
WP
[ ]
此时 T max 作用截面即为轴的危险截面;而对于变 截面圆轴,则要求:
max
T W P
[ ] max
此时,由于圆轴各段的抗扭截面系数不同,最大扭 矩作用截面不一定是危险截面。需要综合考虑扭矩和抗 扭截面系数的大小,判断可产生最大切应力的各横截面。 上面两式称为圆轴扭转强度条件。 11
17
巩固练习
18
巩固练习
【练习1】在例1中,若将该传动轴设计为空心轴,已
= 知:
di 0.9 ,试设计圆轴直径,并比较重量。 D
19
巩固练习
20
归纳总结 在在工程实际中,空心轴得到了广泛的应用,这主要是由 扭转切应力的分布规律决定的。 实心圆轴横截面上的扭转切应力分布如图(a)所示,当截面 周边处的切应力达到许用切应力时,圆心附近各点处的切应力 仍很小,这部分材料就没有充分发挥作用。所以,为了合理利 用材料,宜将材料放置在离圆心较远的部位,作成空心轴,此 时切应力分布规律如图(b)所示,其切应力和内力的力臂都将增 大,轴的抗扭能力将大大增强。
WP
D 3
16
d/D
IP 单位:mm4, WP单位:mm3
实例分析
扭转实验结果
4
任务十八 圆轴扭转时的强度和 刚度计算
教学目标
教学目标: (1)掌握基本概念; ( 2)掌握扭转变形时强度和刚度计算方法。 重点: (1)扭转变形时强度条件和刚度条件理解。 难点: (1)强度和刚度的计算方法应用。
扭转极限应力
由此可见,对于受扭 轴,塑性材料失效的标志 是屈服,试件屈服时横截 面上的最大切应力,即为 材料的扭转屈服应力,可 用 s 表示;脆性材料失效 的标志是断裂,试件断裂 时横截面上的最大切应力 即为材料的扭转强度极限, 用来 b 表示。
材料力学课件——扭转的强度与刚度计算
MMnMnⅢⅢMnMⅢMnDMⅢD DMD
351N· m
468N·
(+)m (-)
702N· m
解 (1)计算外力偶矩:
MA
9550 NA n
9550 36.75 300
1170N m
MB
MC
9550 NB n
9550 11 300
351N m
MD
9550 ND n
9550 14.7 300
P B mB
B
mB (a)
P
mB
B
(b)
本章主要内容
▪ 第一节 概述 ▪ 第二节 扭转时的内力 ▪ 第三节 纯剪切、剪应力互等定理、剪切胡
克定律 ▪ 第四节 圆轴扭转时的应力与变形 ▪ 第五节 圆轴扭转时的强度和刚度计算 ▪ 第六节 密圈螺旋弹簧应力及变形的计算 ▪ 第七节 非圆截面等直杆的纯扭转
扭矩
N(kW ) Me 9550 n(r / min ) (Nm)
•当N为马力 扭矩
N(Ps)
Me 7024 n(r / min )(N m)
二、扭矩 扭矩图
扭矩mn符号规定如下:按右手螺旋法则把mn 表示为矢量,当矢量方向与截面的外法线方向一
致时, mn为正;反之为负。
内力—扭矩
mn
j mn
t dy
nm
x 定理。(rocal
theorem of shear stresses )
dx
z
▪ 剪应力互等定理(Reciprocal theorem of shear stresses )
▪ 单元体上两个互垂面上剪应力的大小相等、方
向相反(共同指向交线或背离交线)
▪ 类似可证明 —— 每两个邻近边剪应力值相 等
材料力学-第4章圆轴扭转时的强度与刚度计算
B
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)
《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景
材
料
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景
材
料
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 一、扭转的概念 复习 Me
mA
阻抗力 偶
主动力 偶
me
受力特点:杆两端作用着大小相等、方向相反的力偶,且力 偶作用面垂直于杆的轴线。 变形特点:杆任意两截面绕轴线发生相对转动。 主要发生扭转变形的杆——轴。
Mx 16M x 16 1.5kN m 103 max= = 3 = =50.9MPa 3 4 -3 4 WP πD 1 π 90mm 10 1 0.9传动轴的强度是安全的。
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 2.确定实心轴的直径 根据实心轴与空心轴具有同样数值的最大剪应力的要求, 实心轴横截面上的最大剪应力也必须等于 50.9MPa 。若设实 心轴直径为d1,则有
b b
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 T 一、 扭转强度计算 变截面圆轴: max W [ ] 1、强度条件: p
max
max
对脆性材料 [ ] 对韧性材料 [ ]
b
nb
第9章圆轴扭转时的应力变形分析与强度刚度设计
P1=14kW, P2= P3= P1/2=7kW
n1=n2= 120r/min
转速与齿数成反比,所以有
1
36
3 =1 × = 120 ×
r/min=360r/min
3
12
2. 根据 = 9549
N ⋅ m 计算各轴的扭矩
3
Mx1=T1=1114 N.m
Mx2=T2=557 N.m
Mx3=T3=185.7 N.m
大连大学
10
9.1 工程上传递功率的圆轴及其扭转变形
A
B
D ▪ 不难看出,圆轴受扭后,将
产生扭转变形(twist
deformation),圆轴上的每
个微元的直角均发生变化,
这种直角的改变量即为切应
C'
变。这表明,圆轴横截面和
纵截面上都将出现切应力分
τ
别用 和 表示。
D'
A'
B'
大连大学
横截面上的切应力分布有着很大的差异。本章主要介绍圆轴扭转时的
应力变形分析以及强度设计和刚度设计。
▪ 分析圆轴扭转时的应力和变形的方法与分析梁的应力和变形的方法基
本相同。依然借助于平衡、变形协调与物性关系。
第9章 圆轴扭转时的应力变形分析与强度刚度设计
▪ 9.1 工程上传递功率的圆轴及其扭转变形
▪ 9.2 切应力互等定理
3. 设计螺栓等间距分布时的直径d
利用1中所得的结果,应用剪切假定计算的强度条件,有
2
=
=
≤
2
8××
4×
×
4
螺栓直径 ≥
大连大学
= 35.2mm
n1=n2= 120r/min
转速与齿数成反比,所以有
1
36
3 =1 × = 120 ×
r/min=360r/min
3
12
2. 根据 = 9549
N ⋅ m 计算各轴的扭矩
3
Mx1=T1=1114 N.m
Mx2=T2=557 N.m
Mx3=T3=185.7 N.m
大连大学
10
9.1 工程上传递功率的圆轴及其扭转变形
A
B
D ▪ 不难看出,圆轴受扭后,将
产生扭转变形(twist
deformation),圆轴上的每
个微元的直角均发生变化,
这种直角的改变量即为切应
C'
变。这表明,圆轴横截面和
纵截面上都将出现切应力分
τ
别用 和 表示。
D'
A'
B'
大连大学
横截面上的切应力分布有着很大的差异。本章主要介绍圆轴扭转时的
应力变形分析以及强度设计和刚度设计。
▪ 分析圆轴扭转时的应力和变形的方法与分析梁的应力和变形的方法基
本相同。依然借助于平衡、变形协调与物性关系。
第9章 圆轴扭转时的应力变形分析与强度刚度设计
▪ 9.1 工程上传递功率的圆轴及其扭转变形
▪ 9.2 切应力互等定理
3. 设计螺栓等间距分布时的直径d
利用1中所得的结果,应用剪切假定计算的强度条件,有
2
=
=
≤
2
8××
4×
×
4
螺栓直径 ≥
大连大学
= 35.2mm
10——扭转的强度和刚度计算
τ 1 = γτ max
其中 : WT = α b 2h
θ = Mx
GI T
, 其中 : IT = β b3h
对于狭长矩形 ( 即 : h ≥ 10 ) ; b
α ≈β ≈1
3
查表求α 和β 时一定要注意,表中α 和β 与那套公式对应。
[例] 一矩形截面等直钢杆,其横截面尺寸为:h = 100 mm, b=50mm,长度L=2m,杆的两端受扭转力偶 Mx =4000N·m 的作用 ,钢的G =80GPa ,试求此杆的剪应力和单位长度扭 转角。
T
Ip
≥
max
G[θ ]
T max ≤ GI p[θ ]
有时,还可依据此条件进行选材。
[例] 长为 L=2m 的圆杆受均布力偶 m=20Nm/m 的作用,
如图,若杆的内外径之比为α =0.8 ,G=80GPa ,许用剪应 力 [τ]=30MPa,试设计杆的外径;若[θ]=2º/m ,试校核此杆
的刚度,并求右端面转角。
石油钻机中的钻杆等。
扭转:外力的合力为一力偶,且力偶的作用面与直杆的轴线
垂直,杆发生的变形为扭转变形。
A
B O
A
γ ϕBO
m
m
工 程 实 例
单元体的四个侧面上只有剪应力而无正应力作用,这 种应力状态称为纯剪切应力状态。 四、剪切虎克定律:
T
T
τ =G⋅γ
式中:G是材料的一个弹性常数,称为剪切弹性模量,因γ 无量纲,故G的量纲与τ 相同,不同材料的G值可通过实验确定,
dx
τρ
=
Mx ⋅ρ
Ip
—横截面上距圆心为ρ处任一点剪应力计算公式。
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
材料力学课件 第四章扭转
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?
圆轴扭转时的强度和刚度计算
A1 / A2 = [π (D 2 − d 2 ) / 4] /(πD 2 2 / 4) = (90 2 − 852 ) / 612 = 0.235
传动轴满足强度要求。 2)刚度校核 传动轴的极惯性矩为
I P = 0.1D 4 (1 − a 4 ) = {0.1 × 90 4 [1 − (85 / 90 ) 4 ]}mm 4 = 134 × 10 4 mm 4 θ max = 180 M n /(πGI P )
= (180 × 1500 × 10 3 / 80 × 10 3 × 134 × 10 4 π ) × 10 3 °/m
= 0.8°/m < [θ ]
传动轴满足刚度要求。 (2)计算实心轴的直径
1)按强度条件设计(设直径为D1)。若实心轴与空心轴强 度相同,当材料相同时,它们的抗扭截面系数应相等,即
W n = πD 13 / 16 = πD 3 (1 Βιβλιοθήκη a 4 ) / 16由此得
D 1 = D3 1 − a 4 = [90 × 3 1 − (85 / 90) 4 ]mm = 53mm
根据扭转刚度条件,可以解决三类问题, 即校核刚度、 设计截面和确定许可载荷 。
例6-5 汽车传动轴AB由45号无缝钢管制成,外径D=90mm,
[ 内径d=85mm,许用切应力 [τ ]=60MPa,θ ] =1.0°/m,工作时最
大力偶矩M =1500N·m,G =80GPa。 (1)试校核其强度及刚度。 (2)若将AB轴改为实心轴,试求其直径。 (3)比较空心轴和实心轴的重量。 解 (1)试校核其强度及刚度。 1) 强度校核 传动轴各截面上的扭矩均为
θ max = 180M n /(πGI P ) ≤ [θ ]
(6-13)
第7章 扭转的强度和刚度计算
WP
D3
16
1
4
3 M nmax 16
14 76.7mm
21
M n21L GIP
0.00734rad
13 34
M n13L MGn3I4PL
GIP
0.00917rad 0.00275rad
第四章 扭转/四 圆轴扭转时的刚度计算
3 圆轴扭转时的刚度条件 要求单位长度的扭转角不超过某一许用值,即:
M n max GIP
1800
M n max
G d 4
1800
0 m
32
d
4
M nmax 180 32
G 2
4
7004 180 32
80109 2 0.3
0.114m 11.4 cm
由此应选直径 d maxd强,d刚=max9.6,11.411.4cm
2. 选择空心圆轴直径
• 按强度条件
Mn WP
实心圆截面 d
d
d
2
IP 2dA 2 2 d 2 3d
A
A
0
IP
d 4
32
WP
d 3
16
空心圆截面
D
d
D
IP
2
2 3d
D4 d4
d
32
d
D
2
IP
D4
32
1 4
WP
D3
16
1 4
第四章 扭转
四 圆轴扭转时的刚度计算
第7章 扭转的强度和刚度计算
1 扭转角 与剪切角
1.5KN·m,AB段的直径d1=4cm,BC段的直径d2=7cm。已知材料的剪切弹性模
量G=80GPa,试计算φAB和φAC。
工程力学基础课件:第7章 圆轴扭转时的应力变形分析及强度和刚度设计
实心圆截面
空心圆截面
薄壁圆环截面
t/R0<1/10
I p
d 2 23d D4
0
32
I
p
D4
32
(1
4)
I p R02 dA 2R03t
WT
D4
D
/ 32 2
D3
16
WT
I p D3 (1 4 )
D 2 16
WT
Ip R0
2R02t
例:由两种不同材料组成的圆轴,里层和外层材料的切变模
3. 静力学关系
G
G
d
dx
静力等效原理(合力矩定理)
分力系:分布于横截面上的剪应力
合力系:扭矩MT
A ( dA) MT
G
G
d
dx
MT
A ( dA)
(G d dA) G d
A dx
dx
2dA
A
引入记号
Ip
2dA
A
WT
Ip R
G
d
dx
G
MT GI p
max
MT R Ip
MT Ip /R
dx
扭转圆轴时横截面上距离圆心 处的剪应变
2. 物理关系
对线性弹性材料,根据剪切胡克定律,在弹性范围内有
G
G
d
dx
tan 1 G
O
推论一:圆轴扭转时横截面上只有垂直于半径方向的剪应力, 而无正应力。
推论二:横截面上各点剪应变与该点到轴心的距离成正比。
推论三:横截面上各点剪应力与该点到轴心的距离成正比。
d MT
dx GI p
MT
Ip
max
材料力学课件:第3章 圆轴扭转时的应力变形分析与强度刚度计算计算
韧性材料:不耐剪,最大剪应力所处截面是”最短木板”! 破坏方式是被剪断!
脆性材料:不耐拉,最大拉应力所处截面是”最短木板”! 破坏方式是被拉断!
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
与拉伸强度设计相类似,扭转强度设计时,首先需要根 据扭矩图和横截面的尺寸判断可能的危险截面;然后根据 危险截面上的应力分布确定危险点(即最大剪应力作用 点);最后利用试验结果直接建立扭转时的强度设计准则。
承受扭转时圆轴的强度设计 与刚度设计
扭转实验与扭转破坏现象
韧性材料与脆性材料扭 转破坏时,其试样断口有着 明显的区别。韧性材料试样 最后沿横截面剪断,断口比 较光滑、平整。
铸铁试样扭转破坏时沿 45°螺旋面断开,断口呈细 小颗粒状。
经济学术语中的“木桶效应”,是说对于一个沿口 不齐的木桶而言,它盛水的多少并不在于木桶上那 块最长的木板,而在于木桶上最短的那块木板。
已知:钢制空心圆轴的外直径D=100 mm,内直径d=50 mm。若要求轴在2 m长度内的最大相对扭转角不超过1.5(),材 料的切变模量G=80.4 GPa。
试: 1. 求该轴所能承受的最大扭矩; 2. 确定此时轴内最大剪应力。
解: 1.确定轴所能承受的最大扭矩 根据刚度设计准则,有
承受扭转时圆轴的强度设计 与刚度设计
=
max
Mx WP
=16M x πd13
=16
1.5kN πd13
m
103
=50.9
106
Pa
据此,实心轴的直径
d1=3
16 1.5kN m 103=53.1103 m=53.1mm π 50.9 106 Pa
脆性材料:不耐拉,最大拉应力所处截面是”最短木板”! 破坏方式是被拉断!
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
与拉伸强度设计相类似,扭转强度设计时,首先需要根 据扭矩图和横截面的尺寸判断可能的危险截面;然后根据 危险截面上的应力分布确定危险点(即最大剪应力作用 点);最后利用试验结果直接建立扭转时的强度设计准则。
承受扭转时圆轴的强度设计 与刚度设计
扭转实验与扭转破坏现象
韧性材料与脆性材料扭 转破坏时,其试样断口有着 明显的区别。韧性材料试样 最后沿横截面剪断,断口比 较光滑、平整。
铸铁试样扭转破坏时沿 45°螺旋面断开,断口呈细 小颗粒状。
经济学术语中的“木桶效应”,是说对于一个沿口 不齐的木桶而言,它盛水的多少并不在于木桶上那 块最长的木板,而在于木桶上最短的那块木板。
已知:钢制空心圆轴的外直径D=100 mm,内直径d=50 mm。若要求轴在2 m长度内的最大相对扭转角不超过1.5(),材 料的切变模量G=80.4 GPa。
试: 1. 求该轴所能承受的最大扭矩; 2. 确定此时轴内最大剪应力。
解: 1.确定轴所能承受的最大扭矩 根据刚度设计准则,有
承受扭转时圆轴的强度设计 与刚度设计
=
max
Mx WP
=16M x πd13
=16
1.5kN πd13
m
103
=50.9
106
Pa
据此,实心轴的直径
d1=3
16 1.5kN m 103=53.1103 m=53.1mm π 50.9 106 Pa
63扭转强度与刚度计算
8
2、强度校核
max1
MT1 WT 1 3000 16 3.14 (75 10 )
3 3
36.2( MPa) [ ]
max 2
MT 2 WT 2
1200 16 3.14 (50 10 )
3 3
48.9( MPa) [ ]
轴的强度足够!
180
7
例题2 已知阶梯轴如图示,m1=1800N.m; m2=1200N.m, G=80GPa,[τ]=80MPa, 1) 试求τmax的值,并作强度校核; 2)若 [θ] =1.5 o /m,试校核其刚度;3)轴的总变形。
m1
m2
50 75
750
50
MT x
-1200N.m -3000N.m
解:1、求内力,作扭矩图
3、刚度校核
1
d M T 1 dx GI P1
MT 2 d dx GI P 2
3000 80109
2
4、总变形
1 3.14 (75103 ) 4 32 1200 180 o 1.402( / m) [ ] 1 80109 3.14 (50103 ) 4 3
扭
转
§6–2 外力偶矩T和内力偶矩MT
§6–3 等直圆轴扭转时的应力和变形 §6–4 圆杆扭转时的强度与刚度计算 §6–5 切应力互等定律的证明 §6–6 矩形截面等直杆在自由扭转时的应力和变形
2
教学内容:
• 圆杆扭转时的强度和刚度条件;矩形截面等直杆 的自由扭转。
• 教学要求:
注意! h b 查表求 和 时一定要注意,表中 和 与那套公式对应。
14
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概述
本章重点介绍圆截面杆在扭矩作用 下其横截面剪应力
4.1 外加扭力矩、扭矩与 扭矩图
4.2 剪应力互等定理,剪切胡克定律
4.3 圆轴扭转时横截面上的剪应力 分析与强度设计
4.4 圆轴扭转时的变形与刚度条件 4.5 结论与讨论
4.1外加扭力矩、扭矩与 扭矩图
P kw M e 9549 nr / min [N m]
其中P为功率,单位为千瓦(kW); n为轴的转速,单位为转/分(r/min)。
4.1外加扭力矩、扭矩与 扭矩图
Me
7024 P[马力] n[r / min]
[N m]
若P为功率,单位为马力 (1马力=735.5 N•m/s )
n为轴的转速,单位为转/分(r/min)
4.1外加扭力矩、扭矩与 扭矩图
最终结论
圆轴扭转时,横 截面 保持平面,并且 只能发生刚性转动。
圆轴扭转后横截面保持平面
变形协调方程
圆轴扭转时的变形协调方程
若将圆轴用同轴柱面分割成许多半径不等的圆柱,根据上述结论,在dx长度 上,虽然所有圆柱的两端面均转过相同的角度d,但半径不等的圆柱上产生的剪 应变各不相同,半径越小者剪应变越小。
圆轴扭转时
的强度和刚 度计算PPT
讲座
概述
请判断哪一杆件 将发生扭转
当两只手用力相等时,拧紧 罗母的工具杆将产生扭转
概述
请判断哪一杆件 将发生扭转
拧紧罗母的工具杆不仅产生 扭转,而且产生弯曲
概述
请判断哪些零件 将发生扭转
传动轴
传动轴将 产生扭转
概述
请判断哪一杆件 将发生扭转
连接汽轮机和发电机的传动轴将产 生扭转
概述
对于实心截面杆件以及某些薄壁截 面杆件,当其横截面上仅有扭矩(Mx) 或 剪 力 ( FQy 或 FQz ) 时 , 与 这 些 内 力 分量相对应的分布内力,其作用面与 横截面重合。这时分布内力在一点处 的集度,即为剪应力。
概述
分析与扭矩和剪力对应的剪应力方 法不完全相同。对于扭矩存在的情形, 依然借助于平衡、变形协调与物性关系, 其过程与正应力分析相似。对于剪力存 在的情形,在一定的前提下,则可仅借 助于平衡方程。
4.3.2 横截面上的剪应力分布
剪应力沿半径方向分布 G G d
dx
静力学方程
A dA =M x
圆轴扭转时相对扭转角的表达式
A dA M x
G G d
dx
d M x
dx GI P
I P
2dA
A
GIP—扭转刚度
4.3.1 平面假定与剪应变分布规律
圆轴扭转变形特征-反对称性论证 圆轴扭转时横截面保持平面
运用反对称性分析,可以证明,圆轴受扭发生变形后,其横截面依 然保持平面。
圆轴扭转后横截面保持平面
根据圆 反轴 对的 称轴 要对 求称 ,C性、质DC两、点D不两
点 可必 能须 有具 轴有 向相 位同 移的 ,位因移而,必因须而仍然二 者 位必 于须 原位 来于 所同 在一 的圆周上。
P kw M e 9549 nr / min [N m]
外加扭力矩Me 确定后,应用 截面法可以确 定横截面上的 内力—扭矩Mx
例 4.1 变截面传动轴承受外加扭力矩作 用,如图4-2a所示。试画出扭矩图。
应用截面法,分 别确定AB和BC 段横截面上的内 力—扭矩Mx,绘出扭
矩图如(b) 所示。
剪应变沿半径方向分布
设到轴线任意远处的剪应变为 (பைடு நூலகம்),则从图中可得到如下几何关系:
d
dx
物性关系-剪切胡克定律
剪切胡克定律
G
剪应力沿半径方向分布
G
d
dx
G G d
dx
4.3.2 横截面上的剪应力分布
圆轴扭转时横截面上的最大剪应力
截面的极惯性矩与扭转截面系数
对于直径为 d 的实心圆截面
IP
π d4 32
,
WP
π d3 16
对于内、外直径分别为d 和 D 圆环截面
π
IP
D 4 1- 4
32
,
WP
π
D3 1- 4
16
=d/D
4.3.5 受扭圆轴的强度设计准则
两个互相垂直的平面上,剪应力必然成对存在,且数值相等,两者都垂直于两个平 面的交线,方向则共同指向或共同背离这一交线,这就是剪应力互等定理
4.2.2 剪切胡克定律
通过扭转试验,可以得到剪应 力 与剪应变 之间的关系曲线 (图a)。
Gr
其中G为材料的弹性常数,称为 剪切弹性模量或切变模量 (shear modulus)
max
M x max
IP
例 4.1 变截面传动轴承受外加扭力矩作 用,如图4-2a所示。试画出扭矩图。
扭矩图特征: 集中力偶作用 处,扭矩图有 突变,突变值 等于该集中力 偶数值。
4.2 剪应力互等定理,剪切胡克定律
4.2.1 剪应力互等定理
y
'
dy
dz x z dx
M z 0, ( dydz)dx ( dxdz)dy 0
G E 2(1 v)
4.3 圆轴扭转时横截面上的剪应力 分析与强度设计
平面假定
物性关系
变形
应变分布
应力分布
静力方程
应力分析方法与过程
应力公式
圆轴扭转变形特征-反对称性论证圆轴 扭转时横截面保持平面
变形协调方程 物性关系-剪切胡克定律 静力学方程 圆轴扭转时横截面上的剪应力表达式
圆轴扭转后横截面保持平面
第一个结论
圆轴扭转时,横截 面保持平面,平面上 各点只能在平面内转 动
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,A端观察 者看到的情形。
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,B端观察 者看到的情形。
圆轴扭转后横截面保持平面
圆轴扭转时横截面上的剪应力表达式
G G d
dx
d M x
dx GI P
M x
IP
圆轴扭转时横截面上的剪应力表达式
M x
IP
圆轴扭转时横截面上的最大剪应力
max
M x max
IP
Mx WP
Wp 扭转截面系数
WP
IP
max