上海市中考数学模拟试卷
2024年上海市徐汇区中考三模数学试卷含详解
初三数学摸拟试卷(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列各数中,与112282-相等的是()A.122B.126C.2D.42.某公司三月份的产值为a 万元,比二月份增长了%m ,那么二月份的产值(单位:万元)为()A.()1%+a m B.()1%-a m C.1%+a m D.1%-a m 3.下列二次根式里,被开方数中各因式的指数都为1的是()A.B.C.D.4.如果点C 是线段AB 的中点,那么下列结论正确的是()A .0AC BC +=uuu r uu u r B.0AC BC -=uuu r uu u r C.0AC BC += D.0AC BC -= 5.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h 和注水时间t 之间关系的是()A. B.C. D.6.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD BC ∥,下列判断中错误..的是()A.如果AB CD =,AC BD =,那么四边形ABCD 是矩形B.如果AB CD ∥,OA OB =,那么四边形ABCD 是矩形C.如果AD BC =,AC BD ⊥,那么四边形ABCD 是菱形D.如果OA OC =,AC BD ⊥,那么四边形ABCD 是菱形二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.当<2x -=________.8.不等式组10260x x -->⎧⎨--≤⎩的整数解是________.9.如果关于x 的方程210ax x -+=有实数根,那么a 的取值范围是________.10.在实数范围内分解因式,2231-+=x y xy ________.11.如果实数x 满足2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,那么1x x +的值是________.12.如果一次函数()211y m x m =-+-的图像一定经过第二、三象限,那么常数m 的取值范围为________.13.某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是一男一女的概率是________.14.一斜坡的坡角为α,坡长比坡高多100米,那么斜坡的高为________(用α的锐角三角比表示).15.在Rt ABC △中,90ACB ∠=︒,点G 是重心,如果3AG =,4BG =,那么CG =________.16.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是________.17.如图,在ABC 中,4AB AC ==,1cos 4B =,BD 是中线,将ABC 沿直线BD 翻折后,点A 落在点E ,那么CE 的长为________.18.在一个三角形中,如果一个内角是另一内角的n 倍(n 为整数),那么我们称这个三角形为n 倍三角形.如果一个三角形既是2倍角三角形,又是3倍角三角形,那么这个三角形最小的内角度数为________.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答应纸上]19.已知:1-==x y ,求:21122⎛⎫- ⎪⎝⎭x y 值.20.已知点()2,3A m +在双曲线my x=上.(1)求此双曲线的表达式与点A 的坐标;(2)如果点(),5B a a -在此双曲线上,图像经过点A 、B 的一次函数的函数值y 随x 的增大而增大,求此一次函数的解析式.21.已知:如图,在ABC 中,AB AC =,DC BC ⊥,2DC BC ==,90ADB ∠=︒,BD 与AC 相交于点G .求:(1)AB 的长;(2)AG 的长.22.20个集装箱装满了甲、乙、丙三种商品共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:商品类型甲乙丙每个集装箱装载量(吨)865每吨价值(万元)121520(1)如果甲种商品装x 个集装箱,乙种商品装y 个集装箱,求y 与x 之间的关系式;(2)如果其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.23.已知:如图,在梯形ABCD 中,AD BC ∥,AB CD AD ==,点E 在BA 的延长线上,AE BC =.(1)求证:2BCD AED ∠=∠;(2)当ED 平分BEC ∠时,求证:EBC 是等腰直角三角形.24.如图,抛物线2y ax bx c =++顶点为坐标原点O 、且经过点()3,3A ,直线经过点A 和点()0,6B .(1)求抛物线与直线的表达式;(2)如果将此抛物线平移,平移后新抛物线的顶点C 在原抛物线上,新抛物线的对称轴与直线AB 在原抛物线的内部相交于点D ,且45COD ∠=︒,求新抛物线的表达式.25.已知:O 的直径8AB B = ,与O 相交于点C 、D ,O 的直径CF 与B 相交于点E ,设B 的半径为x ,OE 的长为y .(1)如图,当点E 在线段OC 上时,求y 关于x 的函数解析式,并写出定义域;(2)当点E 在直径CF 上时,如果OE 的长为3,求公共弦CD 的长;(3)设B 与AB 相交于G ,试问OEG 能否为等腰三角形?如果能够,请直接写出BC 弧的长度(不必写过程);如果不能,请简要说明理由初三数学摸拟试卷(满分150分,100分钟完成)一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列各数中,与112282-相等的是()A.122B.126C.2D.4【答案】A【分析】本题考查了幂的乘方逆运算和同底数幂乘法的逆运算,正确运用公式是解题关键.先利用幂的乘方的逆运算将128的底变为2,再通过同底数幂乘法的逆运算变出122,即可计算.【详解】解:()111311111111322222222222822222222222+-=-=-=-=⨯-=,故选:A .2.某公司三月份的产值为a 万元,比二月份增长了%m ,那么二月份的产值(单位:万元)为()A.()1%+a mB.()1%-a m C.1%+a m D.1%-a m 【答案】C【分析】本题考查了列代数式,根据“三月份的产值为a 万元,比二月份增长了%m ”,得出答案即可,理解题意、正确列出代数式是解题的关键.【详解】解:∵三月份的产值为a 万元,比二月份增长了%m ,∴二月份的产值()1%1%aa m m =¸+=+,故选:C .3.下列二次根式里,被开方数中各因式的指数都为1的是()A.B.C.D.【答案】B【分析】根据二次根式的定义判断即可.【详解】解:A .x ,y 的指数分别为2,2,此选项错误;B .22xy +的指数为1,此选项正确;C .x +y 的指数为2,此选项错误;D .x ,y 的指数分别为1,2.此选项错误;故选:B .【点睛】本题主要考查了二次根式的定义,分清因数和指数是解答此题的关键.4.如果点C 是线段AB 的中点,那么下列结论正确的是()A.0AC BC +=uuu r uu u r B.0AC BC -=uuu r uu u r C.0AC BC += D.0AC BC -= 【答案】C【分析】根据点C 是线段AB 的中点,可以判断AC BC =,但它们的方向相反,继而即可得出答案.【详解】解:由题意,∵点C 是线段AB 的中点,∴AC BC= ∵AC 与BC为相反向量,∴0AC BC +=;故选:C .【点睛】本题考查了平面向量的知识,注意向量包括长度及方向,及0与0的不同.5.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h 和注水时间t 之间关系的是()A.B.C. D.【答案】C【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,每一段h 随t 的增大而增大,增大的速度是先快后慢.故选C .【点睛】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.6.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD BC ∥,下列判断中错误..的是()A.如果AB CD =,AC BD =,那么四边形ABCD 是矩形B.如果AB CD ∥,OA OB =,那么四边形ABCD 是矩形C.如果AD BC =,AC BD ⊥,那么四边形ABCD 是菱形D.如果OA OC =,AC BD ⊥,那么四边形ABCD 是菱形【答案】A【分析】本题考查了平行四边形、矩形、菱形、正方形的判定,根据平行四边形、矩形、菱形、正方形的判定方法逐项进行分析判定即可得答案.【详解】解:A 、如果AD BC ≠,AD BC ∥,那么四边形ABCD 是梯形,不是平行四边形也就不是矩形,故A 选项错误,符合题意;B 、如果AB CD ∥,AD BC ∥,则四边形ABCD 是平行四边形,则12OA AC =,12OB BD =,因为OA OB =所以AC BD =,那么平行四边形ABCD 是矩形,故B 选项正确,不符合题意;C 、如果AD BC =,AD BC ∥,则四边形ABCD 是平行四边形,又AC BD ⊥,那么平行四边形ABCD 是菱形,故C 选项正确,不符合题意;D 、如果AD BC ∥,OA OC =,则可以证得四边形ABCD 是平行四边形,又AC BD ⊥,那么平行四边形ABCD 是菱形,故D 选项正确,不符合题意,故选A .二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.当<2x -=________.【答案】12--x【分析】本题考查了二次根式的性质与化简,熟练掌握a =是解题的关键.a =的进行计算即可.12x ==+,∵<2x -,∴11<2022x -++<∴1122x x =+=--.故答案为:12--x .8.不等式组10260x x -->⎧⎨--≤⎩的整数解是________.【答案】3-,2-【分析】本题考查了解一元一次不等式组,整数解的问题,熟练掌握知识点是解题的关键.写解每一个不等式,再取解集的公共部分,然后即可求解.【详解】解:10260x x -->⎧⎨--≤⎩①②,由①得:1x <-,由②得:3x ≥-,∴原不等式的解集为:31x -≤<-,∴整数解为:3-,2-,故答案为:3-,2-.9.如果关于x 的方程210ax x -+=有实数根,那么a 的取值范围是________.【答案】14a ≤【分析】本题考查了一元二次方程的判别式,根据关于x 的方程210ax x -+=有实数根,得出240b ac ∆=-≥,代入数值进行计算,即可作答.【详解】解:∵关于x 的方程210ax x -+=有实数根,∴()2Δ1410a =--⨯≥,解得14a ≤,故答案为:14a ≤.10.在实数范围内分解因式,2231-+=x y xy ________.【答案】3322⎛⎫⎛⎫+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭xy xy 【分析】本题考查因式分解,二次根式的乘法,熟练掌握公式法进行因式分解是解决本题的关键.根据题意,利用十字相乘因式分解.【详解】解:2231x y xy -+()233322xy xy ⎛⎫⎛⎫+-=-+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3322xy xy ⎛⎫⎛⎫+-=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭.11.如果实数x 满足2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,那么1x x +的值是________.【答案】3【分析】本题主要考查了用换元法解一元二次方程、解分式方程,利用完全平方公式把方程变形是解题的关键.利用完全平方公式把方程变形为211230x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎪⎝⎭⎝⎭,利用换元法,设1x m x +=,则2230m m --=,转化为解一元二次方程,求出1x x+可能的值,分别得出分式方程,计算检验是否有解,即可得出答案.【详解】解:∵2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,∴22112230x x xx 骣÷ç++-+-=÷ç÷ç桫,211230x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎝⎭⎝⎭,设1x m x+=,则2230m m --=,因式分解得:()()310m m -+=,∴30m -=或10m +=,解得:3m =或1m =-,当3m =时,则13x x+=,整理得:2310x x -+=,∴439435222b x a -===,解得:1352x +=,2352x -=,经检验,1352x +=,2352x =都是方程13x x +=的解,∴1x x+的值为3;当1m =-时,则11x x+=-,整理得:210x x ++=,241430b ac ∆=-=-=-<,∴11x x+=-时,方程无解.综上所述,1x x+的值为3,故答案为:3.12.如果一次函数()211y m x m =-+-的图像一定经过第二、三象限,那么常数m 的取值范围为________.【答案】1m >-且1m ≠【分析】本题考查一次函数的图像与性质,运用数形结合思想解题是解题的关键,根据“一次函数()211y m x m =-+-的图像一定经过第二、三象限”可知,此图像与x 轴的交点在原点的左边,即与x 轴交点的横坐标小于0,从而得解.【详解】解:∵一次函数()211y m x m =-+-的图像一定经过第二、三象限,∴此图像与x 轴的交点在原点的左边,且10m -≠,即1m ≠,∴此图像与与x 轴交点的横坐标小于0,令()2110y m x m =-+-=,解得:21101m x m m -=-=--<-,解得:1m >-,∴常数m 的取值范围为1m >-且1m ≠,故答案为:1m >-且1m ≠.13.某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是一男一女的概率是________.【答案】35##0.6【分析】本题考查的是画树状图法求概率.树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.先画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得到答案.【详解】解:根据题意画图如下:共有20种等可能的情况数,选出的2位同学恰好为一男一女的有12种,则主持人是一男一女的概率为123205=.故答案为:35.14.一斜坡的坡角为α,坡长比坡高多100米,那么斜坡的高为________(用α的锐角三角比表示).【答案】100sin 1sin -αα【分析】本题考查了正弦函数的应用.利用所给角的正弦函数求解.【详解】解:如图所示.由题意得100AB BC =+,∵90C ∠=︒,sin sin A A BC B α==,∴0s n 10i BC BC α+=,整理得100sin 1sin BC αα=-,∴斜坡的高为100sin 1sin -αα米.故答案为:100sin 1sin -αα.15.在Rt ABC △中,90ACB ∠=︒,点G 是重心,如果3AG =,4BG =,那么CG =________.【答案】【分析】本题考查了重心的定义与性质,结合勾股定理,直角三角形斜边中线的性质,关键是掌握重心性质并运用勾股定理列式求解是解题关键.本题先利用重心求出AD 和BE ,再利用勾股定理列式整体法求出AB ,最后利用直角三角形斜边中线性质和重心性质求出CG .【详解】解:如图,设AG 延长线交BC 于点D ,BG 延长线交AC 于点E ,CG 延长线交AB 于点F ,∵点G 是重心,3AG =,4BG =,∴3922AD AG ==,362BE BG ==,∵90ACB ∠=︒,∴222AD AC CD =+,222BE CE BC =+,∴22222292262BC AC AC BC ⎧⎛⎫⎛⎫=+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩①②,①+②得:22815536444AC BC +=+,化简得:2245AC BC +=,∴22245AB AC BC =+=,∴AB =,∵点G 是重心,90ACB ∠=︒,∴12CF AB ==∴23CG CF ==,.16.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是________.【答案】32或92.【分析】根据两圆内切时圆心距=两圆半径之差的绝对值,分两种情况求解即可.【详解】当点O 在点A 左侧时,⊙O 半径r=101922-=,当点O 在点B 右侧时,⊙O 半径r=107322-=.故填92或32.【点睛】此题考查圆与圆之间的位置关系,解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量之间的联系.17.如图,在ABC 中,4AB AC ==,1cos 4B =,BD 是中线,将ABC 沿直线BD 翻折后,点A 落在点E ,那么CE 的长为________.【答案】6【分析】本题考查三角形的翻折综合计算,涉及三角函数,等腰三角形,平行四边形及勾股定理,能正确进行线段的转换及作辅助线解非直角三角形是解题关键.本题先过点A 作AM BC ⊥于点M ,计算得出AD CD DE BC ===,再证明四边形BCED 是平行四边形,得CE BD =,再在BCD △中求解BD 即可.【详解】解:如图,过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,∵4AB AC ==,∴BM CM =,∵1cos 44BM BM B AB ===,∴1BM CM ==,∴2BC =,∵BD 是中线,∴122CD AD AC ===,由翻折知2AD DE ==,∴AD CD DE BC ===,∴CBD CDB ∠=∠,设DCB α∠=,∴1802CDB α︒-∠=,∴1801809022ADB αα︒-∠=︒-=︒+,由翻折知902EDB ADB α∠=∠=︒+,∴1809022EDC EDB CDB ααα︒-∠=∠-∠=︒+-=,∴EDC DCB ∠=∠,∴DE BC ∥,∴四边形BCED 是平行四边形,∴CE BD =,∵DN BC ⊥,∴1cos cos 24CN CN C B CD ====,∴12CN =,∴13222BN BC CN =-=-=,152DN ==,∴BD ==∴CE BD ==,.18.在一个三角形中,如果一个内角是另一内角的n 倍(n 为整数),那么我们称这个三角形为n 倍三角形.如果一个三角形既是2倍角三角形,又是3倍角三角形,那么这个三角形最小的内角度数为________.【答案】30︒或20︒或18︒或360(11°【分析】根据n 倍三角形的定义结合三角形内角和定理,进行分类讨论计算即可.【详解】设最小的内角为x ︒.分类讨论:①当2倍角为2x ︒,3倍角为3x ︒时,可得:23180x x x ︒+︒+︒=︒,解得30x =.②当2倍角为2x ︒,3倍角为6x ︒时,可得:26180x x x ︒+︒+︒=︒,解得20x =.③当3倍角为3x ︒,2倍角为6x ︒时,可得:36180x x x ︒+︒+︒=︒,解得18x =.④当3x ︒即是2倍角又是三倍角时,即另一个内角为32x ︒,可得:331802x x x ︒+︒+︒=︒,解得36011x =.综上可知,最小的内角为30︒或20︒或18︒或360()11°.【点睛】本题考查三角形内角和定理.理解题干中n 倍三角形的定义以及利用分类讨论的思想是解答本题的关键.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答应纸上]19.已知:1-==x y ,求:21122⎛⎫- ⎪⎝⎭x y 值.【答案】2【分析】本题考查了负整数指数幂、分母有理化以及完全平方公式的运算,先整理得出2x =+,2y =-1xy =,再运用完全平方公式展开代入数值,进行计算即可作答.【详解】解:∵1-==x y∴2x =+,2y =1xy=.∴21111122222222212x y x y x y ⎛⎫-=+-=+⨯= ⎪⎝⎭20.已知点()2,3A m +在双曲线m y x=上.(1)求此双曲线的表达式与点A 的坐标;(2)如果点(),5B a a -在此双曲线上,图像经过点A 、B 的一次函数的函数值y 随x 的增大而增大,求此一次函数的解析式.【答案】(1)6y x =-,()2,3A -;(2)1y x 42=-.【分析】(1)把点A (2,m +3)代入m y x =求得m ,即可求出结果;(2)把点B (a ,5-a )代入m y x =求得a 得到B 点的坐标,根据A 点坐标和函数的增减性排除掉不符合题意的点,再由待定系数法求出一次函数解析式.【详解】解:(1)∵点A (2,m +3)在双曲线m y x=上,∴.32m m +=,解得:m =-6,∴m +3=-3,∴此双曲线的表达式为6y x -=,点A 的坐标为(2,-3);(2)∵点B (a ,5-a )在此双曲线6y x -=上,∴6.5a a--=,解得:a =-1或a =6,经检验:1,6a a =-=都是原方程的根,且符合题意,∴点B 的坐标为(-1,6)或(6,-1),∵一次函数的函数值y 随x 的增大而增大,由(1)知A (2,-3),∴点B 的坐标只能为(6,-1),设一次函数的解析式为y =kx +b ,∴3216k b k b -=+⎧⎨-=+⎩,解得:124k b ⎧=⎪⎨⎪=-⎩,∴一次函数的解析式为1y x 42=-.【点睛】本题主要考查了待定系数法求反比例函数解析式和一次函数解析式以及一次函数的性质,熟练掌握待定系数法求解析式是解题的关键.21.已知:如图,在ABC 中,AB AC =,DC BC ⊥,2DC BC ==,90ADB ∠=︒,BD 与AC 相交于点G.求:(1)AB 的长;(2)AG 的长.【答案】(1)AB =(2)AG =【分析】(1)过点A 作AE BC ⊥于E ,交BD 于F .则45CDB CBD ∠=∠=︒,由勾股定理得,BD =.由AB AC =,AE BC ⊥,可得112BE BC ==,45EFB EBF ∠=︒=∠,则1EF BE ==,45AFD EFB ∠=∠=︒,AD DF =,由勾股定理得,BF =,则AD DF BD BF ==-=,由勾股定理得,AB =,计算求解即可;(2)由题意知,2cos 45DF CD AF ===︒,证明()AAS AGF CGD ≌,则AG CG =,由AG CG +=可求AG .【小问1详解】解:过点A 作AE BC ⊥于E ,交BD 于F .∵90BCD ∠=︒,2BC CD ==,∴45CDB CBD ∠=∠=︒,由勾股定理得,BD ==.∵AB AC =,AE BC ⊥,∴112BE BC ==,45EFB EBF ∠=︒=∠,∴1EF BE ==,45AFD EFB ∠=∠=︒,∴45DAF AFD ∠=︒=∠,∴AD DF =,由勾股定理得,BF ==∴AD DF BD BF ==-=由勾股定理得,AB ==∴AB =;【小问2详解】解:由题意知,2cos 45DF CD AF ===︒,又∵45AFG CDG ∠=︒=∠,AGF CGD ∠=∠,∴()AAS AGF CGD ≌,∴AG CG =,∵AG CG +=∴102AG GC ==,∴102AG =.【点睛】本题考查了等腰三角形的判定与性质,勾股定理,余弦,全等三角形的判定与性质等知识.熟练掌握等腰三角形的判定与性质,勾股定理,余弦,全等三角形的判定与性质是解题的关键.22.20个集装箱装满了甲、乙、丙三种商品共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:商品类型甲乙丙每个集装箱装载量(吨)865每吨价值(万元)121520(1)如果甲种商品装x 个集装箱,乙种商品装y 个集装箱,求y 与x 之间的关系式;(2)如果其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.【答案】(1)320y x =-+(2)每个集装箱装载商品总价值的中位数是98万元【分析】本题考查了根据实际问题列函数关系式及中位数,正确认识题中图表及理解题意是解题关键.(1)先列出三种商品装集装箱的个数的式子,再利用三种商品共120吨列式即可;(2)先得出三种商品装载集装箱的个数,再得出20个集装箱装载商品总价值分别是多少,利用中位数定义即可求解.【小问1详解】解:∵甲种商品装x 个集装箱,乙种商品装y 个集装箱,一共20个集装箱,∴丙种商品装()20x y --个集装箱,∴由题意得:()86520120x y x y ++--=,化简得:320y x =-+;【小问2详解】当5x =时,35205y =-⨯+=,20205510x y --=--=,∴甲、乙、丙三种商品装载集装箱个数分别是5、5、10,由表可知每个甲集装箱装载商品总价值为81296⨯=(万元),每个乙集装箱装载商品总价值为61590⨯=(万元),每个丙集装箱装载商品总价值为520100⨯=(万元),∴20个集装箱装载商品总价值有5个90万元,5个96万元,10个100万元,∴这20个数据从小到大排列后第10、11个数据分别是96、100万元,∴每个集装箱装载商品总价值的中位数是96100982+=(万元).23.已知:如图,在梯形ABCD 中,AD BC ∥,AB CD AD ==,点E 在BA 的延长线上,AE BC =.(1)求证:2BCD AED ∠=∠;(2)当ED 平分BEC ∠时,求证:EBC 是等腰直角三角形.【答案】(1)见解析(2)见解析【分析】(1)连接AC ,由梯形ABCD ,AD BC ∥,可得EAD B ∠=∠,DAC BCA ∠=∠.证明()SAS DEA ACB ≌.则AED BCA ∠=∠.由AD CD =,可得DCA DAC BCA ∠=∠=∠.进而可得22BCD DCA BCA BCA AED ∠=∠+∠==∠.(2)由ED 平分BEC ∠,可得2AEC AED ∠=∠.即AEC BCD ∠=∠,由梯形ABCD ,AD BC ∥,AB CD =,可得EAD B BCD AEC ∠=∠=∠=∠.则CE BC AE ==.证明()SSS AED CED ≌,则ECD EAD B ∠=∠=∠,由180AEC ECD BCD B ∠+∠+∠+∠=︒,可求45AEC ECD BCD B ∠=∠=∠=∠=︒,进而可得90ECB ECD BCD ∠=∠+∠=︒,进而结论得证.【小问1详解】证明:连接AC ,∵梯形ABCD ,AD BC ∥,∴EAD B ∠=∠,DAC BCA ∠=∠.又∵AE BC =,AD AB =,∴()SAS DEA ACB ≌.∴AED BCA ∠=∠.∵AD CD =,∴DCA DAC BCA ∠=∠=∠.∴22BCD DCA BCA BCA AED ∠=∠+∠==∠,∴2BCD AED ∠=∠.【小问2详解】证明:∵ED 平分BEC ∠,∴2AEC AED ∠=∠.∵2BCD AED ∠=∠,∴AEC BCD ∠=∠,∵梯形ABCD ,AD BC ∥,AB CD =,∴EAD B BCD AEC ∠=∠=∠=∠.∴CE BC AE ==.∵AE CE DE DE AD CD ===,,,∴()SSS AED CED ≌,∴ECD EAD B ∠=∠=∠,∵180AEC ECD BCD B ∠+∠+∠+∠=︒,∴45AEC ECD BCD B ∠=∠=∠=∠=︒,∴90ECB ECD BCD ∠=∠+∠=︒,∴EBC 是等腰直角三角形.【点睛】本题考查了等腰梯形的性质,平行线的性质,角平分线,全等三角形的判定与性质,三角形内角和定理,等腰三角形的判定等知识.熟练掌握等腰梯形的性质,平行线的性质,角平分线,全等三角形的判定与性质,三角形内角和定理,等腰三角形的判定是解题的关键.24.如图,抛物线2y ax bx c =++顶点为坐标原点O 、且经过点()3,3A ,直线经过点A 和点()0,6B .(1)求抛物线与直线的表达式;(2)如果将此抛物线平移,平移后新抛物线的顶点C 在原抛物线上,新抛物线的对称轴与直线AB 在原抛物线的内部相交于点D ,且45COD ∠=︒,求新抛物线的表达式.【答案】(1)抛物线表达式为213y x =,直线的表达式为6y x =-+(2)新抛物线的表达式2133324y x ⎛⎫=-+ ⎪⎝⎭或21335935322y x ⎛--=-+ ⎝⎭【分析】(1)利用待定系数法求解即可;(2)设直线6y x =-+与x 轴交于点E ,求出()6,0E ,设点D 的坐标为(),6m m -+,则点C 的坐标为21,3m m ⎛⎫ ⎪⎝⎭,分①当点D 在线段AB 上时,②当点D 在AB 延长线上时两种情况讨论即可;本题考查二次函数的图象与性质,相似三角形的判定与性质,熟练掌握知识点的应用是解题的关键.【小问1详解】∵抛物线2y ax bx c =++顶点为坐标原点O ,∴0b =,0c =,∵点()3,3A 在二次函数图象上,∴39a =,∴13a =,∴抛物线表达式为213y x =,设直线的表达式为1y kx b =+,∵直线经过点A 和点()0,6B ,∴113306k b k b =+⎧⎨=+⎩,∴116k b =-⎧⎨=⎩,∴直线的表达式为6y x =-+;【小问2详解】设直线6y x =-+与x 轴交于点E ,∴当0y =时,6x =,∴()6,0E ,∴6OE OB ==,∴45EBO ∠=︒,设点D 的坐标为(),6m m -+,∴点C 的坐标为21,3m m ⎛⎫ ⎪⎝⎭,∵CD y ∥轴,∴∠=∠BOD ODC ,当点D 在线段AB 上时,如图,∵45=︒=∠∠DBO COD ,∴∽△△CDO DOB ,∴=CD DO DO OB,∴2=⋅C D D O OB ,∴()2222621236OD m m m m =+-=-+,2163=-+-CD m m ,∴22121236663m m m m ⎛⎫-+=-+-⎪⎝⎭,∴2460m m -=,∵0m ≠,∴32m =,∴点C 的坐标为33,24⎛⎫ ⎪⎝⎭,∴新拋物线的表达式2133324y x ⎛⎫=-+ ⎪⎝⎭,当点D 在AB 延长线上时,延长DC 交x 轴于点H ,在DH 的延长线上截取HF HO =,连接FO ,如图,则45==∠∠∠︒=HFO HOF COD ,662=--=-DF m m m ,∵∠=∠ODF CDO ,∴△∽△CDO ODF ,∴=CD DO DO DF,∴2=⋅C D D O DF ,∴()221212366263m m m m m ⎛⎫-+=--+- ⎪⎝⎭,∴32390--=m m m ,∵0m ≠,∴32±=m (正值不符合题意,舍去),∴点C 的坐标为335935,22⎛-- ⎝⎭.∴新抛物线的表达式2139322y x ⎛--=-+ ⎝⎭.25.已知:O 的直径8AB B = ,与O 相交于点C 、D ,O 的直径CF 与B 相交于点E ,设B 的半径为x ,OE 的长为y .(1)如图,当点E 在线段OC 上时,求y 关于x 的函数解析式,并写出定义域;(2)当点E 在直径CF 上时,如果OE 的长为3,求公共弦CD 的长;(3)设B 与AB 相交于G ,试问OEG 能否为等腰三角形?如果能够,请直接写出BC 弧的长度(不必写过程);如果不能,请简要说明理由【答案】(1)()214044y x x =-<≤(21537(3)OEG 能为等腰三角形, BC 的长度为45π或127π【分析】本题主要考查了垂径定理、相似三角形的性质与判定,解直角三角形,圆的基本知识,做题时一定要分析各种情况,不要遗漏.(1)欲求y 关于x 的函数解析式,连接BE ,证明BCE OCB ∽即可;(2)求公共弦CD 的长,作BM CE ⊥,垂足为M .通过圆的知识得出12BM CD =,转化为求BM 的长;分为两种情况:点E 在线段OC 上时;点E 在线段OF 上时,求出BM 的长;(3)OEG 为等腰三角形,分为两种情况:点E 在线段OC 上时;点E 在线段OF 上时,根据角的关系先求出角的度数,从而求出 BC的长度.【小问1详解】解:连接BE ,∵O 的直径8AB =,∴142OC OB AB ===.∵BC BE OC OB ==,,∴BEC C CBO ∠=∠=∠.∴BCE OCB ∽.∴CE BC CB OC=.∵–4CE OC OE y ==-,∴44y x x -=.∴y 关于x 的函数解析式为()214044y x x =-<≤;【小问2详解】解:如图所所示,当点E 在线段OC 上时,作BM CE ⊥,垂足为M ,∵43OC OE ==,,∴1CE =,∴1122EM CE ==,∴72OM =,∴152B M ===;设两圆的公共弦CD 与AB 相交于H ,则AB 垂直平分CD .∴sin sin OC COB OB COB B C M H ⋅∠=⋅∠==.∴22CD CH BM ===.当点E 在线段OF 上时,作BM CE ⊥,垂足为M ,∵7OE OC OE =+=,∴1722EM CE ==∴–71322OM EM OE ==-=,∴372B M ==.同理可得2237CD CH BM ===综上所述,CD 1537【小问3详解】解:如图所示,当点E 在线段OC 上时,∵BG BE =,∴BEG BGE ∠=∠,∵180180BEG OEG BGE OGE +≠︒+=︒∠∠,∠∠,∴OEG OGE ≠∠∠,即OE OG ≠;∵180EOB OEB EBG ++=︒∠∠∠,∴180EOB OEG BEG EBG +++=︒∠∠∠∠,又∵180EGO BGE +=︒∠∠,∴EGO EOB OEG EBO =++∠∠∠∠,∴EOG EGO ≠∠∠,即OE GE ≠;当OG EG =时,设2OEG EOG x ==∠∠,∴4BEG BGE OEG EOG x ==+=∠∠∠∠,∴1801808OBE OEB EOB x =︒--=︒-∠∠∠,由(1)得180902BOC BEC OCB CBO x ︒-∠=∠=∠==︒-∠,∴1802CBE BEC BCE x =︒--=∠∠∠,∴1808290x x x ︒-+=︒-,解得18x =︒,∴36BOC ∠=︒,∴ BC 的长为36441805ππ⨯⨯=;如图所示,当点E 在线段OF 上时,同理可证明OG OE OG GE ≠≠,,当OE GE =时,设EOG EGO x ==∠∠,则1802GEO x =︒-∠,∵BG BE =,∴BEG BGE x ==∠∠,∴1801802GBE BGE BEG x =︒--=︒-∠∠∠;∵BC BE =,∴3180BCE BEC BEG GEO x ==-=-︒∠∠∠∠,∴1805406CBE BEC BEC x =︒--=︒-∠∠∠,∵OC OB =,∴3180OBC OCB x ==-︒∠∠,∴318018025406x x x -︒+︒-=︒-,解得5407x ⎛⎫=︒ ⎪⎝⎭,∴ BC 的长为54041271807ππ⨯⨯=;45π或127π.综上所述,OEG能为等腰三角形, BC的长度为。
上海市中考数学模拟试题及答案八套
第15题图 第18题图上海市中考数学模题(一)一、选择题:(本大题共6题,每题4分,满分24分) 1、计算3)2(-的结果是( )A 、6;B 、6-;C 、8;D 、8-; 2、下列根式中,与3是同类二次根式的是( )A 、6;B 、12;C 、23; D 、18; 3、不等式042≤+x 的解集在数轴上表示正确的是( )A 、 ;B 、 ;C 、 ;D 、 ;4、李老师对某班学生“你最喜欢的体育项目是什么?”的问题进行了调查,每位同学都选择了其中的一项,现把所得的数据绘制成频数分布直方图(如图).如图中的信息可知,该班学生最喜欢足球的频率是( )A 、12;B 、3.0;C 、4.0;D 、40;5、如图所示的尺规作图的痕迹表示的是( )A 、尺规作线段的垂直平分线;B 、尺规作一条线段等于已知线段;C 、尺规作一个角等于已知角;D 、尺规作角的平分线; 6、下列命题中,真命题是( )A 、四条边相等的四边形是正方形;B 、四个角相等的四边形是正方形;C 、对角线相等的平行四边形是正方形;D 、对角线相等的菱形是正方形;二、填空题:(本大题共12题,每题4分,满分48分) 7、当1=a 时,3-a 的值为 ; 8、方程x x =+32的根是 ;9、若关于x 的方程022=+-m x x 有两个不相等的实数根,则m 的取值范围是 ;10、试写出一个二元二次方程,使该方程有一个解是⎩⎨⎧=-=21y x ,你写的这个方程是 (写出一个符合条件的即可);11、函数121-=x y 的定义域是 ; 12、若),23(1y A -、),52(2y B 是二次函数3)1(2+--=x y 图像上的两点,则1y 2y (填“>”或“<”或“=”);13、一个不透明纸箱中装有形状、大小、质地等完全相同的7个小球,分别标有数字1、2、3、4、5、6、7,从中任意摸出一个小球,这个小球上的数字是奇数的概率是 ; 14、已知某班学生理化实验操作测试成绩的统计结果如下表:则这些学生成绩的众数是分;15、如图,在梯形ABCD ∆中,E 、F 分别为腰AD 、BC 的中点,若3=DC m ,5=EF m ,则向量=AB(结果用m 表示);16、若两圆的半径分别为cm 1和cm 5,圆心距为cm 4,则这两圆的位置关系是 ; 17、设正n 边形的半径为R ,边心距为r ,如果我们将rR的值称为正n 边形的“接近度”,那么正六边形的“接近度”是 (结果保留根号);18、已知ABC ∆中,5==AC AB ,6=BC (如图所示),将ABC ∆沿射线BC 方向平移m 个单位得到DEF ∆,顶点A 、B 、C 分别与D 、E 、F 对应,若以点A 、D 、E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是 ;三、解答题:(本大题共7题,满分78分)19、(10分)先化简,再求值:4216442+÷-+-x x x x ,其中8=x ;第23题图第21题图第24题图图1第25题图图220、(10分,第(1)小题满分6分,第(2)小题满分4分)已知一个二次函数的图像经过)10(-,A 、)51(,B 、)31(--,C 三点.(1)求这个二次函数的解析式;(2)用配方法...把这个函数的解析式化为k m x a y ++=2)(的形式;21、(10分)如图,在∆ABC 中,CD 是边AB 上的中线,B ∠是锐角,且22sin =B ,21tan =A ,22=BC ,求边AB 的长和CDB ∠cos 的值;22、(10分)社区敬老院需要600个环保包装盒,原计划由初三(1)班全体同学制作完成。
2024年上海中考数学模拟练习卷四及参考答案
上海市2024年中考数学模拟练习卷3(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列运算正确的是()A =B .3412a a a ⋅=C .()222ab a b -=-D .()32628a a -=-2.(本题4分)当使用换元法解方程2()2(3011x x x x --=++时,若设1x y x =+,则原方程可变形为()A .2230y y ++=B .2230y y -+=C .2230y y +-=D .2230y y --=3.(本题4分)下列说法正确的是()A .函数2y x =的图象是过原点的射线B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<,y 随x 增大而增大D .函数23y x =-,y 随x 增大而减小4.(本题4分)甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.根据统计图,下列结论正确的是()A .甲的射靶成绩的平均数大于乙的射靶成绩的平均数B .甲的射靶成绩比乙的射靶成绩稳定C .甲的射靶成绩比乙的射靶成绩好些D .在射靶上,甲比乙更有潜力5.(本题4分)如图,依次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,添加的条件不正确的是()A .90FEH ∠=︒B .AC BD =C .EG FH =D .AC BD⊥6.(本题4分)如图,已知等腰梯形ABCD ,AB ∥CD ,AD =BC ,AC ⊥BC ,BE ⊥AB 交AC 的延长线于E ,EF ⊥AD 交AD 的延长线于F ,下列结论:①BD ∥EF ;②∠AEF =2∠BAC ;③AD =DF ;④AC =CE +EF .其中错误的结论有()A .0个B .1个C .2个D .3个第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2116x -=.8.(本题4分)计算:211x x x x +=--.9.(本题40的解是.10.(本题4分)函数y =的定义域是.11.(本题4分)若关于x 的一元二次方程()25220k x x --+=无实数根,则整数k 的最小值为.12.(本题4分)一个不透明的袋子中装有12个白球、9个黄球和若干个黑球,它们除颜色外,完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.4,则可判断袋子中黑球的个数为.13.(本题4分)如果一个正多边形的中心角为72°,则该正多边形的对角线条数为.14.(本题4分)下面是三位同学对某个二次函数的描述.甲:图象的形状、开口方向与22y x =的相同;乙:顶点在x 轴上;丙:对称轴是=1x -请写出这个二次函数解析式的一般式:.15.(本题4分)如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 交于点O ,14AOD BOC S S =△△.设AD a = ,AB b = ,则AO = .(用含a 、b的式子表示)16.(本题4分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,被调查的学生中骑车的有21人,则下列四种说法:①被调查的学生有60人;②被调查的学生中,步行的有27人;③被调查的学生中,骑车上学的学生比乘车上学的学生多20人;④扇形图中,乘车部分所对应的圆心角为54︒.其中正确的说法有.(填写序号)17.(本题4分)如图,在Rt ABC △中,90C ∠=︒,35A ∠=︒,点O 在边AC 上,且2OA OC =,将OA 绕着点O 逆时针旋转,点A 落在ABC 的一条边上的点D 处,那么旋转角AOD ∠的度数是.18.(本题4分)如图,在平面直角坐标系中,有7个半径为1的小圆拼在一起,下面一行的4个小圆都与x 轴相切,上面一行的3个小圆都在下一行右边3个小圆的正上方,且相邻两个小圆只有一个公共点,从左往右数,y 轴过第2列两个小圆的圆心,点P 是第3列两个小圆的公共点.若过点P 有一条直线平分这7个小圆的面积,则该直线的函数表达式是.三、解答题(共78分)19.(本题6分)计算:(1)|2|123--(2))103120231|32|85-⎛⎫-++- ⎪⎝⎭20.(本题8分)解不等式组:213132514x x x x+-⎧≥⎪⎨⎪-<+⎩.21.(本题10分)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若55,sin 25AF ABD =∠=O 的半径.22.(本题12分)在一次实验中,小李把一根弹簧的上端固定,在其下端悬挂质量为x kg 的物体,如图所示,弹簧的长度y (cm )与所挂物体的质量x (kg )的几组对应值如下表:(1)当所挂物体的质量为4kg 时,弹簧长______cm ;不挂重物时弹簧长_____cm ;(2)写出弹簧长度y (cm )与所挂物体质量x (kg )之间的函数关系式;(3)当弹簧长度为36cm 时,求所挂物体的质量.23.(本题12分)如左图,为探究一类矩形ABCD 的性质,小明在BC 边上取一点E ,连接DE ,经探究发现:当DE 平分ADC ∠时,将ABE 沿AE 折叠至AFE △,点F 恰好落在DE 上,据此解决下列问题:(1)求证:AFD DCE ≌△△;(2)如图,延长CF 交AE 于点G ,交AB 于点H .①求证:··EF DF GF CF =;②求:GE GC 的值24.(本题14分)已知在平面直角坐标系xOy 中,拋物线212y x bx c =-++与x 轴交于点()1,0A -和点B ,与y 轴交于点()02C ,,点P 是该抛物线在第一象限内一点,联结,,AP BC AP 与线段BC 相交于点F .(1)求抛物线的表达式;(2)设抛物线的对称轴与线段BC 交于点E ,如果点F 与点E 重合,求点P 的坐标;(3)过点P 作PG x ⊥轴,垂足为点,G PG 与线段BC 交于点H ,如果PF PH =,求线段PH 的长度.25.(本题16分)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周.(1)在旋转过程中,①连接BE 与DG ,结合图1,探究线段BE 与DG 的数量关系______,线段BE 与DG 的位置关系______;②连接BE 与CF ,结合图2,试探究线段BE 与CF 的数量关系,并说明理由.(2)在旋转过程中,连接CF ,取CF 中点M ,①连接BM GM 、,结合图3,试探究BM 与GM 的关系,并说明理由;②将正方形AEFG 绕点A 旋转一周,若3,2AB AE ==,请直接写出点M 在这个过程中的运动路径长______.参考答案第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列运算正确的是()A =B .3412a a a ⋅=C .()222ab a b -=-D .()32628a a -=-2.(本题4分)当使用换元法解方程2()2(3011x x x x --=++时,若设1x y x =+,则原方程可变形为()A .2230y y ++=B .2230y y -+=C .2230y y +-=D .2230y y --=3.(本题4分)下列说法正确的是()A .函数2y x =的图象是过原点的射线B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<,y 随x 增大而增大D .函数23y x =-,y 随x 增大而减小【答案】C 【分析】根据一次函数的图象与性质、反比例函数的图象与性质逐项判断即可得.4.(本题4分)甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.根据统计图,下列结论正确的是()A.甲的射靶成绩的平均数大于乙的射靶成绩的平均数B.甲的射靶成绩比乙的射靶成绩稳定C.甲的射靶成绩比乙的射靶成绩好些D.在射靶上,甲比乙更有潜力5.(本题4分)如图,依次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,添加的条件不正确的是()A .90FEH ∠=︒B .AC BD =C .EG FH =D .AC BD⊥依题意,,FG DB EH ∥∥∴,EH FG EF GH ∥∥,EH∴四边形EFGH 是平行四边形,A.添加90FEH ∠=︒,则四边形EFGH 为矩形,故该选不符合题意;B.添加AC BD =,可得四边形EFGH 为菱形,符合题意;C.添加EG FH =,可得四边形EFGH 为矩形,故该选不符合题意;D.添加AC BD ⊥,则EF FG ⊥,可得四边形EFGH 为矩形,故该选不符合题意;故选:B .【点评】本题考查了三角形中位线的性质,平行四边形的性质与判定,菱形的判定,矩形的判定,掌握矩形的判定定理是解题的关键.6.(本题4分)如图,已知等腰梯形ABCD ,AB ∥CD ,AD =BC ,AC ⊥BC ,BE ⊥AB 交AC 的延长线于E ,EF ⊥AD 交AD 的延长线于F ,下列结论:①BD ∥EF ;②∠AEF =2∠BAC ;③AD =DF ;④AC =CE +EF .其中错误的结论有()A .0个B .1个C .2个D .3个【答案】A 【分析】根据等腰梯形的性质结合全等三角形的判定与性质、平行线的判定与性质、等腰三角形的判定、三角形的外角性质、三角形的中位线等知识进行逐个判断解答即可.【解析】解:∵四边形ABCD 是等腰梯形,∴AC =BD ,又AD =BC 、AB =AB ,∴△ABC ≌△BAD (SSS ),∴∠BAC =∠ABD ,∠ADB =∠BCA ,又AC ⊥BC ,∴OA =OB ,OC =OD ,∠ADB =∠BCA =90°即BD ⊥AD ,∵EF ⊥AD ,∴BD ∥EF ,故①正确;∴∠AEF =∠AOD =∠BAC +∠ABD ,∴∠AEF =2∠BAC ,故②正确;∵BE ⊥AB ,∴∠BAC +∠AEB =∠ABD +∠OBE =90°,∴∠AEB =∠OBE ,∴OB =OE ,∴AO =OE ,又OD ∥EF ,∴AD =DF ,故③正确;∴EF =2OD =2OC ,∵OA =OE =OC +CE ,∴AC =OA +OC =OC +CE +OC =2OC +CE =EF +CE ,故④正确,综上,正确的结论有4个,即错误的结论有0个,故选:A .【点评】本题考查等腰梯形的性质、全等三角形的判定与性质、平行线的判定与性质、等腰三角形的判定、三角形的外角性质、三角形的中位线性质等知识,熟练掌握相关知识的联系与运用是解答的关键.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2116x -=.8.(本题4分)计算:11x x x x +=.9.(本题40的解是.【答案】无解【分析】先把无理方程转化成有理方程,求出方程的解,再进行检验即可.【解析】解:两边平方得:()()540x x --=,解得:15=x ,24x =,2x 的定义域是.11.(本题4分)若关于x 的一元二次方程()25220k x x --+=无实数根,则整数k 的最小值为.12.(本题4分)一个不透明的袋子中装有12个白球、9个黄球和若干个黑球,它们除颜色外,完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.4,则可判断袋子中黑球的个数为.13.(本题4分)如果一个正多边形的中心角为72°,则该正多边形的对角线条数为.14.(本题4分)下面是三位同学对某个二次函数的描述.甲:图象的形状、开口方向与22y x =的相同;乙:顶点在x 轴上;丙:对称轴是=1x -请写出这个二次函数解析式的一般式:.【答案】2242y x x =++【分析】根据已知条件知,此二次函数解析式为()2y a x h =-,且2a =,1h =-,据此可得;【解析】解:设函数解析式为()2y a x h =-,根据题意得,2,1a h ==-,二次函数解析式是:()221y x =+()2221x x =++2242x x =++,故答案为:2242y x x =++.【点评】本题主要考查待定系数法求二次函数解析式,解题的关键是掌握二次函数的图象和性质及其解析式的形式.15.(本题4分)如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 交于点O ,14AOD BOC S S =△△.设AD a = ,AB b =,则AO = .(用含a 、b 的式子表示)16.(本题4分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,被调查的学生中骑车的有21人,则下列四种说法:①被调查的学生有60人;②被调查的学生中,步行的有27人;③被调查的学生中,骑车上学的学生比乘车上学的学生多20人;④扇形图中,乘车部分所对应的圆心角为54︒.其中正确的说法有.(填写序号)【答案】①②④【分析】利用骑车的人数除以其所占的百分比求出调查的总人数,再求出步行所占的百分比,利用总人数乘以步行所占的百分比求得步行的人数,然后利用乘车所占的百分比乘以总人数求得乘车的人数,再与骑车的人数相比即可,最后利用乘车所占的百分比乘以360︒即可求得乘车所对应的圆心角.【解析】解:由题意可得,参与调查的总人数为:2135%60÷=(人),故①正确;∵步行所占的百分比为:135%15%5%=45%---,∴步行的人数为:6045%=27⨯(人),故②正确;∵乘车的人数为:15%60=9⨯(人),21912-=(人),∴骑车上学的学生比乘车上学的学生多12人,故③错误,乘车部分所对应的圆心角为:15%36054⨯︒=︒,故④正确,故答案为:①②④.【点评】本题考查扇形统计图,熟练掌握频数除以总人数等于其所占的百分比,求圆心角的方法是解题的关键.17.(本题4分)如图,在Rt ABC △中,90C ∠=︒,35A ∠=︒,点O 在边AC 上,且2OA OC =,将OA 绕着点O 逆时针旋转,点A 落在ABC 的一条边上的点D 处,那么旋转角AOD ∠的度数是.【答案】110︒或120︒【分析】分类讨论:当点D 在AB 上,根据等边对等角和三角形内角和即可求得;当点D 在BC 上,根据30度所对的直角边是斜边的一半和三角形的外角性质即可求得.【解析】当点D 在AB 上,如图:∵AO OD =,∴35A ADO ∠=∠=︒,∴1803535110AOD ∠=︒-︒-︒︒=,当点D 在BC 上,如图:∵2AO OD OC ==,∴30ODC ∠=︒,∴9030120AOD ∠=︒+︒=︒,故答案为:110︒或120︒【点评】本题考查旋转的性质,等边对等角,三角形内角和,30度角的直角三角形性质,三角形的外角性质,解题的关键是分类讨论思想的运用.18.(本题4分)如图,在平面直角坐标系中,有7个半径为1的小圆拼在一起,下面一行的4个小圆都与x 轴相切,上面一行的3个小圆都在下一行右边3个小圆的正上方,且相邻两个小圆只有一个公共点,从左往右数,y 轴过第2列两个小圆的圆心,点P 是第3列两个小圆的公共点.若过点P 有一条直线平分这7个小圆的面积,则该直线的函数表达式是.∵右边6个小圆关于点P中心对称,直线y经过点∴直线y平分右边6个小圆的面积,∵直线y经过左边小圆的圆心,∴直线y平分⊙N的面积,∴直线y平分7个小圆的面积,NF⊥x轴,GO⊥x轴,则NF∥GO,【点评】本题考查了中心对称图形的特征,直线和圆的位置关系,圆和圆的位置关系,一次函数解析式;掌握中心对称图形的特征是解题关键.三、解答题(共78分)19.(本题6分)计算:(1)|2|--(2))1011|2|5-⎛⎫-++ ⎪⎝⎭20.(本题8分)解不等式组:32514x x+-⎧≥⎪⎨⎪-<+.解不等式②得:2x >-,∴不等式组的解集为21x -<≤.【点评】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.21.(本题10分)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若5,sin 2AF ABD =∠=O 的半径.22.(本题12分)在一次实验中,小李把一根弹簧的上端固定,在其下端悬挂质量为x kg 的物体,如图所示,弹簧的长度y (cm )与所挂物体的质量x (kg )的几组对应值如下表:(1)当所挂物体的质量为4kg 时,弹簧长______cm ;不挂重物时弹簧长_____cm ;(2)写出弹簧长度y (cm )与所挂物体质量x (kg )之间的函数关系式;(3)当弹簧长度为36cm 时,求所挂物体的质量.【答案】(1)24;18(2)182y x=+(3)9【分析】(1)根据弹簧的长度y (cm )与所挂物体的质量x (kg )的对应值表格,即可直接得出答案;(2)由表格可知,所挂物体的质量每增加1kg ,弹簧的长度就会增加2cm ,据此即可写出弹簧长度y (cm )与所挂物体质量x (kg )之间的函数关系式;(3)把36y =代入(2)中函数关系式即可解答.【解析】(1)根据弹簧的长度y (cm )与所挂物体的质量x (kg )的对应值表格,可知:当所挂物体的质量为4kg 时,弹簧长24cm ;不挂重物时弹簧长18cm ;故答案是24;18;(2)根据弹簧的长度y (cm )与所挂物体的质量x (kg )的对应值表格,可知所挂物体的质量每增加1kg ,弹簧的长度就会增加2cm ,∴182y x =+.故答案是182y x =+;(3)当36y =时,18236x +=,∴9x =.即当弹簧长度为36cm 时,求所挂物体的质量为9kg .【点评】本题主要考查了一次函数的应用,解答本题的关键在于熟读题意,分析表格中的数据之间的数量关系,求出弹簧长度与所挂物体质量之间的函数关系式.23.(本题12分)如左图,为探究一类矩形ABCD 的性质,小明在BC 边上取一点E ,连接DE ,经探究发现:当DE 平分ADC ∠时,将ABE 沿AE 折叠至AFE △,点F 恰好落在DE 上,据此解决下列问题:(1)求证:AFD DCE ≌△△;(2)如图,延长CF 交AE 于点G ,交AB 于点H .①求证:··EF DF GF CF =;②求:GE GC 的值24.(本题14分)已知在平面直角坐标系xOy 中,拋物线22y x bxc =-++与x 轴交于点()1,0A -和点B ,与y 轴交于点()02C ,,点P 是该抛物线在第一象限内一点,联结,,AP BC AP 与线段BC 相交于点F .(1)求抛物线的表达式;(2)设抛物线的对称轴与线段BC 交于点E ,如果点F 与点E 重合,求点P 的坐标;(3)过点P 作PG x ⊥轴,垂足为点,G PG 与线段BC 交于点H ,如果PF PH =,求线段PH 的长度.设213(,2)22P t t t -++,则1(,2)2H t t -+,2122PH t t ∴=-+,设直线AP 的解析式为11y k x b =+,∴11211013222k b k t b t t -+=⎧⎪⎨+=-++⎪⎩,25.(本题16分)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)在旋转过程中,①连接BE与DG,结合图1,探究线段BE与DG的数量关系______,线段BE与DG的位置关系______;②连接BE 与CF ,结合图2,试探究线段BE 与CF 的数量关系,并说明理由.(2)在旋转过程中,连接CF ,取CF 中点M ,①连接BM GM 、,结合图3,试探究BM 与GM 的关系,并说明理由;②将正方形AEFG 绕点A 旋转一周,若3,2AB AE ==,请直接写出点M 在这个过程中的运动路径长______.∵点M为CF的中点,试卷31。
2023年上海市中考数学模拟试题(一)含答案
2023年上海市中考数学模拟试题(一)含答案第一部分选择题1. 一项研究表明,四年级的学生睡眠不足30分钟会影响他们的研究。
如果260个四年级学生中有16个学生睡眠不足30分钟,那么这份研究的结论是:A. 经不起考验B. 足够可靠C. 没有明确结果D. 需要更多数据才能结论明确答案:B2. 一个正方形的周长是16,这个正方形面积是多少?A. 4B. 8C. 16D. 32答案:B3. 若$x=2 $,$y=3$,$z=4$,那么$5x-2y+3z=$A. $13$B. $23$C. $18$D. $20$答案:C第二部分解答题1. (10分)请计算并简化:$2x+5(x-3)-3(2x+1)$。
解答:首先将$x$的系数(或者没有系数的)项加在一起,得到$2x+5x-15-6x-3$,接着将有$x$(或者没有$x$但带有别的字母)的项加在一起,得到$x-18$。
2. (15分)证明:$ab+bc\leq\frac{a^2}{4}+\frac{4b^2}{4}+\frac{9c^2}{4}$。
(其中$a,b,c$为任意实数)解答:首先将右边的项合并:$\frac{a^2+4b^2+9c^2}{4}$。
接着利用均值不等式,得到:$(\frac{a}{2})^2+2(\frac{2b}{2})^2+3(\frac{3c}{2})^2\geq2\sqrt{(\frac{a}{2})^2\cdot2(\frac{2b}{2})^2}+2\sqrt{(\frac{a}{2})^2\cdot3(\frac{3c}{2})^2}+2\sqrt{2(\frac{2b}{2})^2\cdot3(\frac{3c}{2})^2}}$,简化得到:$a^2+4b^2+9c^2\geq 4ab+6ac$。
进一步简化为两边同时减去$4ab+6ac$,得到$ab+bc\leq\frac{a^2}{4}+\frac{4b^2}{4}+\frac{9c^2}{4}$。
上海市中考数学模拟训练试卷(1)
上海市中考数学模拟训练试卷(1)一.选择题(共6小题,满分24分,每小题4分)1.(4分)﹣的相反数是()A.﹣2B.C.﹣5D.﹣0.22.(4分)下列运算正确的是()A.2x2+3x3=5x5B.(﹣2x)3=﹣6x3C.(x+y)2=x2+y2D.(3x+2)(2﹣3x)=4﹣9x23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)根据某市统计局发布的该市近5年的年度GDP增长率的有关数据,经济学家评论说,该市近5年的年度GDP增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的()比较小.A.中位数B.平均数C.众数D.方差5.(4分)下列命题的逆命题成立的是()A.如果两个实数是负数,它们的积是正数B.对顶角相等C.顶角是100°的等腰三角形是钝角三角形D.两直线平行,同旁内角互补6.(4分)下列类似雪花的图案都是由字母“m”形状的图形经过变形,旋转组合这计而成的,其中旋转72°就能与其自身重合的是()A.B.C.D.二.填空题(共12小题,满分48分,每小题4分)7.(4分)若单项式与的差仍是单项式,则m﹣2n=.8.(4分)已知函数f(x)=,那么f(3)=.9.(4分)已知,则x2+9y2=.10.(4分)若关于x的一元二次方程x2+2x+m=0有两个不相等的实数根,则m的最大整数值为.11.(4分)在﹣1,2,3三个数中任取两个数相乘,积为正数的概率为.12.(4分)每个季节都有专属于这个季节的美食,青团无疑是专属于春天的美食.某甜品店销售三种口味青团:芝麻馅,豆沙馅,肉松馅.且芝麻馅和豆沙馅的成本相同,豆沙馅和肉松馅每盒的成本之比为4:5.店长发现当芝麻馅,豆沙馅,肉松馅的销量之比为3:2:1时,总利润率为40%;过节促销时每个产品每盒都降价一元销售,当三者销量之比仍然为3:2:1时,总利润率为32%,已知销售一盒豆沙馅所得利润为50%,销售一盒肉松馅所得利润不低于50%且不高于70%.已知青团的价格均为整数,则三种口味青团各销售一盒可获得利润元.13.(4分)超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如图的频数分布直方图(图中等待时间1﹣2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为.14.(4分)已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1 y2(填>、<或=).15.(4分)如图,在平行四边形ABCD中,点E是边CD的中点,如果,,用含、的式子表示向量=.16.(4分)如图,水管横截面⊙O半径为13cm,水面宽AB=24cm,则水的最大深度cm.17.(4分)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG 的交点.若AC=6,则DH=.18.(4分)已知⊙O的直径是10,经过⊙O上一点的直线L与⊙O相切,点O到直线L的距离是.三.解答题(共7小题,满分78分)19.(10分)利用幂的性质计算:×÷.20.(10分)解不等式组.21.(10分)在平面直角坐标系xOy中,已知点A(3,4),B(2,m).(1)若点A,B在同一个反比例函数y1=的图象上,求m的值;(2)若点A,B在同一个一次函数y2=ax+b的图象上,①若m=2,求这个一次函数的解析式;②若当x>2时,不等式mx+1<ax+b始终成立,结合函数图象,直接写出m的取值范围.22.(10分)如图.某大街水平地画有两路灯灯杆AB=CD=10米,小明晚上站在两灯杆的正中位置观察眼睛处影子的俯角∠MEG=∠NEH=11.31°,已知底面到小明眼睛处的高度EF=1.5米;(1)求两灯杆的距离DB;(2)其县在一条长760m的大街P﹣K﹣Q上安装12根灯杆(含两端),其中PK为休闲街,按(1)中的灯杆距离安装灯杆,KQ为购物街,灯杆距离比(1)中的少35m,求休闲街和购物街分别长多少米.(参考数据:tan78.69°≈5.00,tan11.31≈0.20,cos78.69≈0.20,cos11.31≈0.98,可使用科学计算器)23.(12分)如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在边BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.(1)当CD=时,求点E的坐标;(2)设CD=t,四边形COEB的面积为S,求S的最大值及此时t的值.24.(12分)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“完美四边形”.(1)在“平行四边形、梯形、菱形、正方形”中,一定不是“完美四边形”的有;(2)如图1,“完美四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC为直径,AP=1,PC=5,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“完美四边形”ABCD的四个顶点A(﹣3,0)、C(2,0),B在第三象限,D在第一象限,AC与BD交于点O,直线BD的解析式为y =x,且四边形ABCD的面积为15,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.。
2024年上海中考数学模拟练习卷十及参考答案
上海市2024年中考数学模拟练习卷10(本试卷共25题,150分)一、选择题:(本大题共6题,每题4分,共24分)1.(2022中,有理数是()A B C .D2.(2023•成都)近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数():33AQI ,27,34,40,26,则这组数据的中位数是()A .26B .27C .33D .343.(2023•泰安)为了解学生的身体素质状况,国家每年都会进行中小学生身体素质抽测.在今年的抽测中,某校九年级二班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.根据这组数据判断下列结论中错误的是()A .这组数据的众数是11B .这组数据的中位数是10C .这组数据的平均数是10D .这组数据的方差是4.64.(2021•桂林)下列根式中,是最简二次根式的是()AB C D 5.(2023•常德)下列命题正确的是()A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形6.(2023•宿迁)在同一平面内,已知O 的半径为2,圆心O 到直线l 的距离为3,点P 为圆上的一个动点,则点P 到直线l 的最大距离是()A .2B .5C .6D .8二、填空题:(本大题共12题,每题4分,共48分)7.(2023•青岛)计算:328(2)x y x ÷=.8.(2023•齐齐哈尔)在函数12y x =+-中,自变量x 的取值范围是.9.(2023•内江)分解因式:32x xy -=.10.(2023•贵州)若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是.11.(20233=的解是.12.(2021•达州)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为.13.(2023•山西)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.14.(2023•新疆)如图,在平面直角坐标系中,OAB ∆为直角三角形,90A ∠=︒,30AOB ∠=︒,4OB =.若反比例函数(0)k y k x =≠的图象经过OA 的中点C ,交AB 于点D ,则k =.15.(2023•湖州)某数学兴趣小组测量校园内一棵树的高度,采用以下方法:如图,把支架()EF 放在离树()AB 适当距离的水平地面上的点F 处,再把镜子水平放在支架()EF 上的点E 处,然后沿着直线BF 后退至点D 处,这时恰好在镜子里看到树的顶端A ,再用皮尺分别测量BF ,DF ,EF ,观测者目高()CD 的长,利用测得的数据可以求出这棵树的高度.已知CD BD ⊥于点D ,EF BD ⊥于点F ,AB BD ⊥于点B ,6BF =米,2DF =米,0.5EF =米, 1.7CD =米,则这棵树的高度(AB 的长)是米.16.(2020•荆州)我们约定:(a ,b ,)c 为函数2y ax bx c =++的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m ,2m --,2)的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为.17.(2023•浦东新区校级模拟)如图,已知在ABC ∆中,点D 在边AC 上,2AD DC =,AB a = ,AC b = ,那么BD = .(用含向量a ,b的式子表示)18.(2023•内蒙古)如图,在Rt ABC ∆中,90ACB ∠=︒,3AC =,1BC =,将ABC ∆绕点A 逆时针方向旋转90︒,得到△AB C ''.连接BB ',交AC 于点D ,则AD DC 的值为.三、解答题:(本大题共7题,10+10+10+10+12+12+14,共78分)19.(2023•恩施州)先化简,再求值:22(1)42x x x ÷---,其中52x =-.20.(2023•常德)解方程组:213423x y x y -=⋯⎧⎨+=⋯⎩①②.21.(2023•宁波)某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程()t h的函数关系如图2所示.s km与所用时间()(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.22.(2023•苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为)H,在B,C处与篮板连接(BC所在直线垂直于)MN,EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD BC=,∠=︒时,点C离地面的高度为288cm.调节伸缩臂EF,将GAE∠由60︒调节为GAEDH cm=,测得60208︒≈,54︒,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8︒≈cos540.6)23.(2023•杨浦区二模)已知:在直角梯形ABCD 中,//AD BC ,90A ∠=︒,ABD ∆沿直线BD 翻折,点A 恰好落在腰CD 上的点E 处.(1)如图,当点E 是腰CD 的中点时,求证:BCD ∆是等边三角形;(2)延长BE 交线段AD 的延长线于点F ,联结CF ,如果2CE DE DC =⋅,求证:四边形ABCF 是矩形.24.(2023•鞍山)如图1,抛物线253y ax x c =++经过点(3,1),与y 轴交于点(0,5)B ,点E 为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线243y x =-与x 轴交于点A ,与y 轴交于点D ,过点E 作直线EF x ⊥轴,交AD 于点F ,连接BE ,当BE DF =时,求点E 的横坐标.(3)如图2,点N 为x 轴正半轴上一点,OE 与BN 交于点M ,若OE BN =,3tan 4BME ∠=,求点E 的坐标.25.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:ABE ADE∆≅∆;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF BE⊥.判断FBG∆的形状并说明理由;(3)在第(2)题的条件下,2BE BF==.求AEAB的值.参考答案一、选择题:(本大题共6题,每题4分,共24分)123456C C BD A B二、填空题:(本大题共12题,每题4分,共48分)7.2xy .8.1x >且2x ≠.9.()()x x y x y +-.10.94.11.5y =12.2.13.1614.4.15. 4.116.23a b -+ .17.(1,0)、(2,0)和(0,2)18.5三、解答题:(本大题共7题,共78分)解答应写出文字说明、证明过程或演算步骤.19.(10分)解:22(1)42x x x ÷---22(2)(2)2x x x x x --=÷+--22(2)(2)2x x x -=⋅+--12x =-+,当2x =-时,原式5===.20.(10分)解:①2⨯+②得:525x =,解得:5x =,将5x =代入①得:521y -=,解得:2y =,所以原方程组的解是52x y =⎧⎨=⎩.21.(10分)解:(1)由函数图象可得,大巴速度为602040(/)1km h -=,2040s t ∴=+;当100s =时,1002040t =+,解得2t =,2a ∴=;∴大巴离营地的路程s 与所用时间t 的函数表达式为2040s t =+,a 的值为2;(2)由函数图象可得,军车速度为60160(/)km h ÷=,设部队官兵在仓库领取物资所用的时间为x h ,根据题意得:60(2)100x -=,解得:13x =,答:部队官兵在仓库领取物资所用的时间为13h .22.(10分)解:点C 离地面的高度升高了,理由:如图,当60GAE ∠=︒时,过点C 作CK HA ⊥,交HA 的延长线于点K ,BC MN ⊥ ,AH MN ⊥,//BC AH ∴,AD BC = ,∴四边形ABCD 是平行四边形,//AB CD ∴,60ADC GAE ∴∠=∠=︒,点C 离地面的高度为288cm ,208DH cm =,28820880()DK cm ∴=-=,在Rt CDK ∆中,80160()1cos602DKCD cm ===︒,如图,当54GAE ∠=︒,过点C 作CQ HA ⊥,交HA 的延长线于点Q,在Rt CDQ ∆中,160CD cm =,cos541600.696()DQ CD cm ∴=⋅︒≈⨯=,968016()cm ∴-=,∴点C 离地面的高度升高约16cm .23.(12分)证明:(1)由折叠得:ADB BDE ∠=∠,90A DEB ∠=∠=︒,点E 是腰CD 的中点,BE ∴是DC 的垂直平分线,DB BC ∴=,BDE C ∴∠=∠,BDE C ADB ∴∠=∠=∠,//AD BC ,180ADC C ∴∠+∠=︒,180BDE C ADB ∴∠+∠+∠=︒,60BDE C ADB ∴∠=∠=∠=︒,BCD ∴∆是等边三角形;(2)过点D 作DH BC ⊥,垂足为H ,90DHB DHC∴∠=∠=︒,//AD BC,90A∠=︒,18090ABC A∴∠=︒-∠=︒,∴四边形ABHD是矩形,AD BH∴=,AB DH=,由折叠得:90A DEB∠=∠=︒,AB BE=,18090BEC DEB∴∠=︒-∠=︒,DH BE=,90BEC DHC∠=∠=︒,BCE DCH∠=∠,()BCE DCH AAS∴∆≅∆,DC BC∴=,CE CH=,//AD BC,DFE EBC∴∠=∠,FDE ECB∠=∠,FDE BCE∴∆∆∽,∴CE BC DE DF=,2CE DE DC=⋅,∴CE DC DE CE=,∴BC DC DF CE=,DF CE∴=,CH DF∴=,AD DF BH CH∴+=+,AF BC∴=,∴四边形ABCF是平行四边形,90A∠=︒,∴四边形ABCF 是矩形.24.(12分)解:(1)2223(1)4y x x x =--=-- ,∴抛物线1L 的顶点坐标(1,4)P -,1m = ,点P 和点D 关于直线1y =对称,∴点D 的坐标为(1,6);(2) 抛物线1L 的顶点(1,4)P -与2L 的顶点D 关于直线y m =对称,(1,24)D m ∴+,抛物线222:(1)(24)223L y x m x x m =--++=-+++,∴当0x =时,(0,23)C m +,①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴于N ,(1,24)D m + ,(0,24)N m ∴+,(0,23)C m + ,1DN NC ∴==,45DCN ∴∠=︒,90BCD ∠=︒ ,45BCO ∴∠=︒,直线//l x 轴,90BOC ∴∠=︒,45CBO BCO ∴∠=∠=︒,BO CO =,3m - ,(23)3BO CO m m m ∴==+-=+,(3,)B m m ∴+,点B 在223y x x =--的图象上,2(3)2(3)3m m m ∴=+-+-,0m ∴=或3m =-,当3m =-时,得(0,3)B -,(0,3)C -,此时,点B 和点C 重合,舍去,当0m =时,符合题意;将0m =代入22:223L y x x m =-+++得22:23L y x x =-++,②当90BDC ∠=︒,如图2,过B 作BT ND ⊥交ND 的延长线于T ,同理,BT DT =,(1,24)D m ∴+,(24)4DT BT m m m ∴==+-=+,1DN = ,1(4)5NT DN DT m m ∴=+=++=+,(5,)B m m ∴+,当B 在223y x x =--的图象上,2(5)2(5)3m m m ∴=+-+-,解得3m =-或4m =-,3m - ,3m ∴=-,此时,(2,3)B -,(0,3)C -符合题意;将3m =-代入22:223L y x x m =-+++得,22:23L y x x =-+-,③易知,当90DBC ∠=︒,此种情况不存在;综上所述,2L 所对应的函数表达式为223y x x =-++或223y x x =-+-;(3)由(2)知,当90BDC ∠=︒时,3m =-,此时,BCD ∆的面积为1,不合题意舍去,当90BCD ∠=︒时,0m =,此时,BCD ∆的面积为3,符合题意,由题意得,EF FG CD ===EF 的中点Q ,在Rt CEF ∆中可求得122CQ EF ==,在Rt FGQ ∆中可求得2GQ =,当Q ,C ,G 三点共线时,CG.25.(14分)(1)证明: 四边形ABCD 是正方形,AB AD CB CD ∴===,90ABC ADC ∠=∠=︒,45BAC BCA DAC DCA ∴∠=∠=∠=∠=︒,在ABE ∆和ADE ∆中,AB ADBAE DAE AE AE=⎧⎪∠=∠⎨⎪=⎩,()ABE ADE SAS ∴∆≅∆.(2)解:FBG ∆是等腰三角形,理由如下:ABE ADE ∆≅∆ ,ABE ADE ∴∠=∠,ABC ABE ADC ADE ∴∠-∠=∠-∠,EBC EDC ∴∠=∠,//AB CD ,FGB EDC ∴∠=∠,FGB EBC ∴∠=∠,BF BE ⊥ ,90FBE ∴∠=︒,90FBG EBC ABE ∴∠=∠=︒-∠,FGB FBG ∴∠=∠,BF GF ∴=,FBG ∴∆是等腰三角形.(3)解:2BE BF == ,90FBE ∠=︒,45F BEF ∴∠=∠=︒,BAC F ∴∠=∠,AEG AGF BAC AGF F FBG ∴∠=∠-∠=∠-∠=∠,AGE FGB ∠=∠ ,且FGB FBG ∠=∠,AGE AEG ∴∠=∠,AE AG ∴=,EF == 2BF GF ==,2GE EF GF ∴=-=-,ABE ADE ∆≅∆ ,2BE DE ∴==,//AG CD ,AGE CDE ∴∆∆∽,∴1AG GECD DE ==,∴1AEAB =-,∴AEAB 1-.。
2024年上海中考数学模拟练习卷六及参考答案
上海市2024年中考数学模拟练习卷5一、选择题:(本大题共6题,每题4分,满分24分)1.下列计算正确的是()A .50= B.155-=- C.624555÷= D.()24655=2.下列函数中,y 随x 的增大而减小的是()A.3y x= B.3y x=- C.23y x = D.23y x =-3.如果实数a 、b 在数轴上的对应点如图所示,那么下列等式中正确的是()A.a a =B.b b =-C.a b a b+=+ D.a b b a-=-4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A .0.1B.0.17C.0.33D.0.45.如果斜坡的坡度为,那么这条斜坡的坡角为()A.75度B.60度C.45度D.30度6.已知正多边形的边数是素数,那么下列命题中,真命题是()A.这个正多边形是轴对称图形,但不是中心对称图形B.这个正多边形不是轴对称图形,但是中心对称图形C.这个正多边形既是轴对称图形,也是中心对称图形D.这个正多边形既不是轴对称图形,也不是中心对称图形二、填空题:(本大题共12题,每题4分,满分48分)7._______8.计算:()232m m n +-=___________.9.方程24022x x x+=--的解是___________.10.已知()62f x x =+,那么(4)f -=___________.11.已知正比例函数图像与反比例函数图像都经过点()3,5-,那么这两个函数图象必都经过另一个点的坐标为___________.12.如果直线l 与直线21y x =+平行,且直线l 在y 轴上的截距为5-,那么直线l 的表达式是___________.13.口袋中放有3只红球和9只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是___________.14.一双皮鞋原价是m 元,如果以9折降价出售,那么这双皮鞋的售价是___________元.15.如图,直线EF 分别交直线、AB CD 于点P 和点Q ,点R 在直线CD 上,且RQ PQ =,如果,40AB CD APQ ∠=︒∥,那么BPR ∠=___________度.16.已知1O 与2O 内切,1O 的半径为4,12O O 的长等于6,那么2O 的半径等于___________.17.已知ABC 的三条中线AD BE CF 、、相交于点G ,9,12,15AD BE CF ===,那么ABC 的面积等于___________.18.已知在平行四边形ABCD 中,5760AB BC B ==∠=︒,,,P 是边CD 上一点,将BCP 沿直线BP 折叠,点C 落在这个平行四边形的内部,那么CP 长的范围是___________.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:22213431121x x x x x x x +++-÷+--+,其中.20.解方程组:224321x y x y ⎧-=⎨+=⎩21.已知:如图,M 是AB 的中点,过点M 的弦MN 交弦AB 于点C ,设O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离;(2)求ACN ∠的度数.22.已知货船B 在观测站A 的北偏西30︒的方向上,灯塔C 在观测站A 的北偏西60︒方向上,且与观测站A 的距离为20海里,在货船B 上测得灯塔C 在它的南偏西15︒方向上,求观测站A 与货船B 之间的距离(精确到0.1 1.41= 1.73=).23.已知:如图,在等腰梯形ABCD 中,AD BC ∥,E 是下底BC 延长线上一点,且CE AD =.(1)求证:BDE △是等腰三角形;(2)如果P 是线段DE 上的点,连接CP ,AD DE BC PE ⋅=⋅,求证:CP AB ∥.24.将抛物线1C :2=23y x x --沿x 轴翻折,得到抛物线2C .(1)求抛物线2C 的表达式;(2)将抛物线1C 向左平移m 个单位,与x 轴相交于点A 和点B (点A 在点B 的左边),顶点为M ;将抛物线2C 向右平移2m 个单位,与x 轴相交于点D 和点E (点D 在点E 的左边),顶点为N .①当AB BE =时,求m 的值;②当AM AN ⊥时,求m 的值.25.已知:在ABC 中,AB AC =,将ABC 绕点C 旋转使点B 落在直线AB 上的点D 处,点A 落在点E 处,直线DE 与直线BC 相交于点F ,射线AC 与射线DE 相交于点P ,6BC =.(1)如图,连接AE ,当6AB >时,求证:①四边形ADCE 是等腰梯形;②PE 是PD 与PF 的比例中项.(2)当点D 与点A 的距离为5时,求CP 的长.参考答案:一、选择题:(本大题共6题,每题4分,满分24分)1.下列计算正确的是()A.050= B.155-=- C.624555÷= D.()24655=【答案】C 【解析】【分析】本题考查了零指数幂、负整数指数幂、同底数幂的除法等知识.结合选项分别依据零指数幂、负整数指数幂、同底数幂的除法运算法则以及幂的乘方法则进行计算,然后选择正确选项.【详解】解:A 、0510=≠,本选项不符合题意;B 、11555-=≠-,本选项不符合题意;C 、624555÷=,本选项符合题意;D 、()2468555=≠,本选项不符合题意;故选:C .2.下列函数中,y 随x 的增大而减小的是()A.3y x =B.3y x=- C.23y x = D.23y x =-【答案】B 【解析】【分析】本题考查了二次函数,正比例函数的图象与性质,根据正比例函数y kx =,0k <时,y 随x 的增大而减小,0k >时,y 随x 的增大而增大,二次函数()20y axa =¹,0a >时,开口向上,在0x <上,y 随x 的增大而减小,在0x >上,y 随x 的增大而增大,a<0时,开口向下,在0x <上,y 随x 的增大而增大,在0x >上,y 随x 的增大而减小,解答即可.【详解】解:A 、正比例函数3y x =的y 随x 的增大而增大,故A 错误;B 、正比例函数3y x =-的y 随x 的增大而减小,故B 正确;C 、二次函数23y x =的对称轴为0x =,且开口向上,0x <时,y 随x 的增大而减小,0x >时,y 随x 的增大而增大,故C 错误;D 、二次函数23y x =-的对称轴为0x =,且开口向下,0x <时,y 随x 的增大而增大,0x >时,y 随x 的增大而减小,故D 错误;故选:B .3.如果实数a 、b 在数轴上的对应点如图所示,那么下列等式中正确的是()A.a a =B.b b =-C.a b a b +=+D.a b b a-=-【答案】B 【解析】【分析】此题考查实数与数轴,解决此题的关键是掌握数轴的特征,再结合加减运算,绝对值的概念判断即可,先根据数轴判断出a 、b 的正负情况,然后根据有理数的加、减运算法则及绝对值的意义对各选项分析判断求解.【详解】解:根据题意得:0b a <<,b a ∴>,A 、a a a =-≠,故错误,不符合题意;B 、b b =-,故正确,符合题意;C 、()a b a b a b +=-+≠+,故错误,不符合题意;D 、a b a b -=-,故错误,不符合题意;故选:B .4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A.0.1B.0.17C.0.33D.0.4【答案】A 【解析】【分析】先计算出仰卧起座次数在15~20次之间的人数,根据频率=频数总数计算即可【详解】解:仰卧起座次数在15~20次之间的人数为30-10-12-5=3,∴仰卧起座次数在15~20次之间的频率是330=0.1,故选:A【点睛】此题考查了频率,熟练掌握频率的定义是解题的关键.5.如果斜坡的坡度为,那么这条斜坡的坡角为()A.75度B.60度C.45度D.30度【答案】D 【解析】【分析】本题考查了解直角三角形的应用坡度坡角问题.根据坡角的正切=坡度,列式可得结果.【详解】解:设这个斜坡的坡角为α,由题意得:3tan 3α==,30α∴=︒.故选:D .6.已知正多边形的边数是素数,那么下列命题中,真命题是()A.这个正多边形是轴对称图形,但不是中心对称图形B.这个正多边形不是轴对称图形,但是中心对称图形C.这个正多边形既是轴对称图形,也是中心对称图形D.这个正多边形既不是轴对称图形,也不是中心对称图形【答案】A 【解析】【分析】本题考查了命题的概念,正多边形:各边相等,各角也相等,,轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;及中心对称图形的概念:把一个图形绕某点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,根据真命题和假命题的概念结合正多边形的对称性即可解答.【详解】解: 奇数边的正多边形是轴对称图形,不是中心对称图形,偶数边的正多边形既是轴对称图形,又是中心对称图形.∴这个正多边形一定是轴对称图形,正多边形的边数是素数,除2以外的素数都是奇数.∴当这个多边形的边形为奇数时,则不是中心对称图形,∴正多边形的边数是素数时,一定不是中心对称图形,故选:A .二、填空题:(本大题共12题,每题4分,满分48分)7._______【答案】3【解析】【分析】根据算术平方根的定义计算即可.3=.故答案为:3.【点睛】本题主要考查了算术平方根,掌握算术平方根的求法是解答本题的关键.8.计算:()232m m n +-=___________.【答案】56m n - ##65n m-+【解析】【分析】本题考查了向量的线性运算,熟练掌握运算法则是解题关键.先去括号,再计算向量的加减运算即可得.【详解】解:()232m m n +-236m m n =+- 56m n =- .故答案为:56m n -.9.方程24022x x x+=--的解是___________.【答案】2x =-【解析】【分析】本题主要考查了解分式方程,按照解分式方程的步骤解方程即可.【详解】解:2422x x x+=--去分母得:240x -=,移项得:24x =,∴12x =,22x =-,经检验:12x =是原分式方程的增根,22x =-是原分式方程的根.故答案为:2x =-.10.已知()62f x x =+,那么(4)f -=___________.【答案】3-【解析】【分析】本题考查了求函数的值.把4x =-代入求值即可.【详解】解:∵()62f x x =+,∴4(4)66322f =-=--=-+,故答案为:3-.11.已知正比例函数图像与反比例函数图像都经过点()3,5-,那么这两个函数图象必都经过另一个点的坐标为___________.【答案】()3,5-【解析】【分析】本题考查了正比例函数图象、反比例函数图象的对称性,熟记才能灵活运用.根据反比例函数的图象与正比例函数图象的两个交点一定关于原点对称即可求解.【详解】解:∵反比例函数的图象与正比例函数图象的两个交点一定关于原点对称,∴另一个交点的坐标与点()3,5-关于原点对称,即该点的坐标为()3,5-.故答案为:()3,5-.12.如果直线l 与直线21y x =+平行,且直线l 在y 轴上的截距为5-,那么直线l 的表达式是___________.【答案】25y x =-【解析】【分析】本题主要考查了一次函数图像平移的问题,根据直线l 与直线21y x =+平行,所以得到两个函数的k 值相同,再根据截距是5-,可得=5b -,即可求解.【详解】解:∵直线l 与直线21y x =+平行,∴设直线l 的解析式为:2y x b =+,∵在y 轴上的截距是5-,∴=5b -,∴直线l 的表达式为:25y x =-.故答案为:25y x =-.13.口袋中放有3只红球和9只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是___________.【答案】34【解析】【分析】本题考查了根据概率公式求概率,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()mP A n=,据此即可求解.【详解】解:口袋中放有3只红球和9只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,共有12种等可能性,其中取到黄球的可能性有3种,∴取到黄球的概率是93=124P =.故答案为:3414.一双皮鞋原价是m 元,如果以9折降价出售,那么这双皮鞋的售价是___________元.【答案】0.9m ##90%m ##9m 10【解析】【分析】本题考查了列代数式,根据售价等于原价乘以折扣列出代数式即可.【详解】解:根据题意得:这双皮鞋的售价是0.9m ,故答案为:0.9m .15.如图,直线EF 分别交直线、AB CD 于点P 和点Q ,点R 在直线CD 上,且RQ PQ =,如果,40AB CD APQ ∠=︒∥,那么BPR ∠=___________度.【答案】70【解析】【分析】本题考查了等腰三角形的性质,平行线的性质,邻补角,根据等腰三角形的性质得到QRP QPR ∠=∠,由平行线的性质得到BPR QRP ∠=∠,进而得到BPR QPR ∠=∠,再根据40APQ ∠=︒,由邻补角的定义即可求解.【详解】解: RQ PQ =,∴QRP QPR ∠=∠,AB CD ∥,∴BPR QRP ∠=∠,∴BPR QPR ∠=∠,40APQ ∠=︒,180140BPQ APQ ∴∠=︒-∠=︒,∴1702BPR QPR BPQ ∠=∠=∠=︒,故答案为:70.16.已知1O 与2O 内切,1O 的半径为4,12O O 的长等于6,那么2O 的半径等于___________.【答案】10【解析】【分析】本题考查两圆的位置关系.根据圆心距和两圆半径之间的关系:1212()d r r r r =->即可得出.【详解】解:∵1O 与2O 内切,1O 的半径为4,设2O 的半径为2r ,12O O 的长等于6,46<,∴只可能是264r =-∴2O 的半径为24610r =+=.故答案为:1017.已知ABC 的三条中线AD BE CF 、、相交于点G ,9,12,15AD BE CF ===,那么ABC 的面积等于___________.【答案】72【解析】【分析】如图,首先把BDG 绕点D 作中心对称变换得到CDM V ,然后根据重心的性质可以分别得到22110,8,26333CG CF CM BG BE GM GD AD ========,由此利用勾股定理的逆定理可以证明GCM 是直角三角形,即90GMC ∠=︒,再利用三角形的面积公式求出GCM S ,最后可以得到24BGC GCM S S == ,而3ABC BGC S S =△△,由此即可求解.【详解】解:如图,把BDG 绕点D 作中心对称变换得到CDM V ,∴22210,8,26333CG CF CM BG BE GM GD AD ========,222100GM CM CG +== ,∴GCM 是直角三角形,即90GMC ∠=︒,1242GCM S CM GM ∴=⋅= 24BGC GCM S S ∴== ,∴372ABC BGC S S == ,故答案为:72.【点睛】此题分别考查了旋转的性质、直角三角形的性质、勾股定理的逆定理及三角形的面积公式,其中对于中线问题一般可以尝试中心变换,此题把三条中线的有关线段集中在一起,构造出一个规则图形--直角三角形.18.已知在平行四边形ABCD 中,5760AB BC B ==∠=︒,,,P 是边CD 上一点,将BCP 沿直线BP 折叠,点C 落在这个平行四边形的内部,那么CP 长的范围是___________.【答案】702CP <<【解析】【分析】本题主要考查了相似三角形的性质与判定,平行四边形的性质,等边三角形的性质与判定等等,如图所示,当点C 的对应点E 切换在AD 上时,如图所示,在AD 上取一点H 使得DH DP =,连接PH ,先由平行四边形的性质得到57CD AB AD BC ====,,60D ABC ∠=∠=︒,120A C ∠=∠=︒;再证明DPH △是等边三角形,得到60DHP PH DH PD =︒==∠,,由折叠的性质可得7120PE PC BE BC BEP C =====︒,,∠∠,设CP EP y AE t ===,,则5DH PH y ==-,则2EH t y =-+,证明ABE HEP △∽△,得到2557t y y y t -+-==,求出2147y t +=,则521477y yy -=+,解方程即可得到答案.【详解】解:如图所示,当点C 的对应点E 在AD 上时,如图所示,在AD 上取一点H 使得DH DP =,连接PH ,∵四边形ABCD 是平行四边形,∴57CD AB AD BC ====,,60D ABC ∠=∠=︒,AD BC ∥,∴18060120A ∠=︒-︒=︒,同理可得120C ∠=︒,又∵DH DP =,∴DPH △是等边三角形,∴60DHP PH DH PD =︒==∠,,由折叠的性质可得7120PE PC BE BC BEP C =====︒,,∠∠,∴60ABE AEB AEB HEP +=︒=+∠∠∠∠,∴ABE HEP =∠∠;设CP EP y AE t ===,,则5DH PH y ==-,∴2EH t y =-+,又∵120A EHP ==︒∠∠,∴ABE HEP △∽△,∴EH PH PE AB AE BE ==,即2557t y y yt -+-==,∴14775t y y -+=,即2147y t +=,∴521477y yy -=+,∴解得72y =或35y =-(舍去),经检验,72y =是原方程的解,∴将BCP 沿直线BP 折叠,点C 落在这个平行四边形的内部,那么CP 长的范围是702CP <<,故答案为:702CP <<.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:22213431121x x x x x x x +++-÷+--+,其中【答案】22,1(1)x +.【解析】【分析】首先把除法运算转化成乘法运算,分式的分子、分母能分解因式的先分解因式,进行约分,然后进行减法运算,最后代值计算.【详解】原式=11x +﹣()()311x x x ++-•()()2(1)13x x x -++=11x +﹣21(1)x x -+=21(1)x x ++﹣21(1)x x -+=22(1)x +,当﹣1时,原式==22=1.故答案为()22,11x +【点睛】这是个分式混合运算题,运算顺序是先乘除后加减,加减法时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.20.解方程组:224321x y x y ⎧-=⎨+=⎩【答案】212x y =⎧⎪⎨=-⎪⎩【解析】【分析】本题考查了二元二次方程组的解法,方程组中第一个方程可因式分解为两个二元一次方程,再把第二个方程整体代入第一个方程,再利用加减消元法求解即可.【详解】解:第一个方程可化为()()223x y x y +-=,把第二个方程代入第一个方程,得23x y -=,解方程组2321x y x y -=⎧⎨+=⎩①②,由①得32x y =+,代入②得:3221y y ++=,解得:12y =-,将12y =-代入①得:13222x ⎛⎫=+⨯-= ⎪⎝⎭,∴212x y =⎧⎪⎨=-⎪⎩.21.已知:如图,M 是 AB 的中点,过点M 的弦MN 交弦AB 于点C ,设O 的半径为4cm,MN =.(1)求圆心O 到弦MN 的距离;(2)求ACN ∠的度数.【答案】(1)2cm (2)120︒【解析】【分析】本题考查了垂径定理、勾股定理、解直角三角形,熟练掌握垂径定理和勾股定理是解题的关键.(1)过点O 作OD MN ⊥,垂足为点D ,由垂径定理,得MD ND =,由43cm MN =,得到3cm MD =,根据4cm OM =,利用勾股定理即可求解出OD ,即可得出结果;(2)根据点M 是 AB 的中点,得到OM AB ⊥,根据3cos 2MD OMD OM ∠==,得到30OMD ∠=︒,进而得到60ACM ∠=°,即可求出ACN ∠的度数.【小问1详解】解:过点O 作OD MN ⊥,垂足为点D ,连接OM ,∴MD ND =,∵3cm MN =,∴23cm MD =,又∵4cm OM =,∴222cm OD OM MD =-=,即圆心O 到弦MN 的距离为2cm ;【小问2详解】解:∵点M 是 AB 的中点,∴OM AB ⊥.∵cos 2MD OMD OM ∠==,∴30OMD ∠=︒.∴60ACM ∠=°.∴120ACN ∠=︒.22.已知货船B 在观测站A 的北偏西30︒的方向上,灯塔C 在观测站A 的北偏西60︒方向上,且与观测站A 的距离为20海里,在货船B 上测得灯塔C 在它的南偏西15︒方向上,求观测站A 与货船B 之间的距离(精确到0.1 1.41= 1.73=).【答案】观测站A 与货船B 之间的距离为27.3海里【解析】【分析】本题考查了解直角三角形的实际应用-方位角的应用,作CH AB ⊥,垂足为点H .在Rt ACH 中,求出,CH AH ,在Rt BCH △中,求出BH ,即可得出结果.【详解】解:作CH AB ⊥,垂足为点H .由题意,得30,45,20BAC ABC AC ∠=︒∠=︒=海里.在Rt ACH 中,∵90,30,20AHC BAC AC ∠=︒∠=︒=海里,∴1102CH AC ==海里,sin 30AH AC =⋅︒=在Rt BCH △中,∵90,45BHC ABC ∠=︒∠=︒,∴10BH CH ==.∴1027.3AB =≈(海里).答:观测站A 与货船B 之间的距离为27.3海里.23.已知:如图,在等腰梯形ABCD 中,AD BC ∥,E 是下底BC 延长线上一点,且CE AD =.(1)求证:BDE △是等腰三角形;(2)如果P 是线段DE 上的点,连接CP ,AD DE BC PE ⋅=⋅,求证:CP AB ∥.【答案】(1)见解析(2)见解析【解析】【分析】(1)利用平行线的性质得到180A ABC ∠+∠=︒,进而得到A DCE ∠=∠,由等腰梯形的性质得到AB CD =,证明ABD CDE ≌△△,得到BD DE =,即可证明结论;(2)根据AD DE BC PE ⋅=⋅结合,AD CE DE BD ==得到CE PEBC BD=,由E DBC ∠=∠,证明CEP CBD ∽ ,得到PCE BCD ∠=∠,根据BCD ABC ∠=∠,推出PCE ABC ∠=∠,即可证明结论.【小问1详解】证明:在等腰梯形ABCD 中,∵AD BC ∥,∴180A ABC ∠+∠=︒.又∵,180ABC BCD BCD DCE ∠=∠∠+∠=︒,∴A DCE ∠=∠.∵,AD CE AB CD ==,∴()SAS ABD CDE ≌ ,∴BD DE =,即BDE △是等腰三角形;【小问2详解】证明:∵AD DE BC PE ⋅=⋅,∴AD PEBC DE=,∵,AD CE DE BD ==,∴CE PEBC BD=,∵BD DE =,∴E DBC ∠=∠,∴CEP CBD ∽ ,∴PCE BCD ∠=∠,BCD ABC ∠=∠,∴PCE ABC ∠=∠,∴CP AB ∥.【点睛】本题主要考查等腰梯形的性质,全等三角形的判定与性质,等腰三角形的判定与性质,相似三角形的判定和性质,解题的关键是证明三角形全等,三角形相似.24.将抛物线1C :2=23y x x --沿x 轴翻折,得到抛物线2C .(1)求抛物线2C 的表达式;(2)将抛物线1C 向左平移m 个单位,与x 轴相交于点A 和点B (点A 在点B 的左边),顶点为M ;将抛物线2C 向右平移2m 个单位,与x 轴相交于点D 和点E (点D 在点E 的左边),顶点为N .①当AB BE =时,求m 的值;②当AM AN ⊥时,求m 的值.【答案】(1)223y x x =-++(2)①43m =,②2m =【解析】【分析】(1)抛物线翻折前后顶点关于x 轴对称,a 互为相反数,据此即可解答;(2)对于抛物线1C :2=23y x x --,令0y =,求出抛物线1C 与x 轴的两个交点坐标,进而根据平移的坐标变化可得点A ,B ,M ,D ,E ,N 的坐标.①根据两点间的距离可表示出AB ,BE 的长,根据AB BE =即可列得方程,求解即可;②根据两点间的距离公式可表示出MN ,AM ,AN 的长,根据勾股定理即可列得方程,求解即可.【小问1详解】∵抛物线1C :()22=23=14y x x x ----,∴抛物线1C 的顶点坐标为()1,4-,抛物线1C 沿x 轴翻折,得到抛物线2C ,则抛物线2C 的顶点坐标为()1,4,∴抛物线2C 的表达式为2(1)4y x =--+,即223y x x =-++.【小问2详解】对于抛物线1C :2=23y x x --,令0y =,则2230x x --=,解得11x =-,23x =,∴抛物线1C 与x 轴的两个交点坐标是()1,0-和()3,0,∴()1,0A m --,()3,0B m -,()1,4M m --,对于抛物线2C :223y x x =-++,令0y =,则2230x x -++=,解得11x =-,23x =,∴抛物线2C 与x 轴的两个交点坐标是()1,0-和()3,0,∴()12,0D m -+,()32,0E m +,()12,4N m +,①()()314AB m m =----=,()()3233BE m m m =+--=,当AB BE =时,43m =,解得43m =;②MN =AM =,AN =,当AM AN ⊥时,根据勾股定理,得222MN AM AN =+,∴229642091220m m m +=+++,解得2m =.【点睛】本题考查关于x 轴对称的图象特征,抛物线与x 轴的交点,平移的坐标变化,两点间的距离,勾股定理,熟练掌握关于x 轴对称的图象特征和平移的坐标变化,运用方程思想是解决问题的关键.25.已知:在ABC 中,AB AC =,将ABC 绕点C 旋转使点B 落在直线AB 上的点D 处,点A 落在点E 处,直线DE 与直线BC 相交于点F ,射线AC 与射线DE 相交于点P ,6BC =.(1)如图,连接AE ,当6AB >时,求证:①四边形ADCE 是等腰梯形;②PE 是PD 与PF 的比例中项.(2)当点D 与点A 的距离为5时,求CP 的长.【答案】(1)①见解析,②见解析(2)8114CP =或16CP =【解析】【分析】(1)①证明ACB ECD ∠=∠,CBD CDB ∠=∠,再证明BCD BAC ECA ∠=∠=∠,可得AD CE ∥,证明AE 与CD 不平行,结合AC DE =,可得梯形ADCE 是等腰梯形.②证明PD AP PE PC=,PE AP PF PC =,可得PD PE PE PF =,即PE 是PD 与PF 的比例中项.(2)分两种情况讨论:(i )当6AB >时,点D 在边AB 上.证明CBD ABC ∽,可得2BC BD BA =⋅.求解4BD =(负根舍去),证明APD CPE ∽,再利用相似三角形的性质可得答案,(ii )当6AB <时,点D 在边BA 的延长线上.同理可得答案.【小问1详解】证明:①由旋转条件,得CD CB =,ACB ECD ∠=∠,∴CBD CDB ∠=∠.∵AB AC =,∴A ABC CB =∠∠.∴BCD BAC ECA ∠=∠=∠.∴AD CE ∥.∵AD AB AC CE DE <===,∴AE 与CD 不平行.∴四边形ADCE 是梯形.∵AC DE =,∴梯形ADCE 是等腰梯形.②∵AD CE ∥,∴ADP CEP △∽△,∴PD AP PE PC =.∵AB CE =,AB CE ∥,∴四边形ABCE 是平行四边形.∴AE BC ∥.∴APE CPF ∽,∴PE AP PF PC =.∴PD PEPE PF =,即PE 是PD 与PF 的比例中项.【小问2详解】(i )当6AB >时,点D 在边AB 上.∵ABC ACB CDB ∠=∠=∠,∴CBD ABC ∽,∴BD BC BC BA =,∴2BC BD BA =⋅.∵6BC =,5AD =,∴()536BD BD +=,∴4BD =(负根舍去),∴9AB AC CE DE ====.∵AD CE ∥,∴APD CPE ∽,∴CP CE AP AD =,即995CP CP =-.解得8114CP =.(ii )当6AB <时,点D 在边BA 的延长线上.同理可得:9BD =.∴4AB AC CE ===.∵AD CE ∥,∴PCE PAD ∽,∴CP CEAP AD =,即445CPCP =+.解得16CP =.综上所述,8114CP =或16CP =.。
2023年上海市中考数学模拟试题及答案5套
2023年上海市中考数学模拟试题及答案5套目录1. 套题一2. 套题二3. 套题三4. 套题四5. 套题五套题一题目1. 计算:\[2 \times (3 + 5)\]2. 现有一组数:\[4, 7, 2, 9, 1\],请将其按照从小到大的顺序排列。
答案1. 解答:\[2 \times (3 + 5) = 2 \times 8 = 16\]2. 解答:\[1, 2, 4, 7, 9\]套题二题目1. 用\[ \frac{5}{8} \]表示小数形式。
2. 已知一个三角形的底边长为5cm,高为12cm,请计算其面积。
答案1. 解答:\[ \frac{5}{8} = 0.625\]2. 解答:三角形的面积为\[ \frac{1}{2} \times 5 \times 12 = 30 \]平方厘米。
套题三题目1. 甲、乙两个数的和是18,且乙比甲大2,请计算甲、乙各是多少。
2. 若\[ x + 5 = 12 \],求x的值。
答案1. 解答:设甲为x,则乙为\[ x + 2\]。
由题意可得:\[ x + (x + 2) = 18 \],解得:\[ x = 8 \]。
因此甲为8,乙为10。
2. 解答:\[ x + 5 = 12 \],移项可得:\[ x = 12 - 5 = 7 \]。
因此x 的值为7。
套题四题目1. 一个矩形的长为6cm,宽为4cm,请计算其周长。
2. 若\[ \frac{3}{4}x = 6 \],求x的值。
答案1. 解答:矩形的周长为\[ 2 \times (6 + 4) = 20 \]厘米。
2. 解答:将方程两边同时乘以\[ \frac{4}{3} \],可得:\[ x = 8 \]。
因此x的值为8。
套题五题目1. 用\[ \pi \]表示圆周率。
2. 若\[ 2x - 3 = 9 \],求x的值。
答案1. 解答:\[ \pi = 3.14 \](常量)。
2. 解答:将方程两边同时加上3,可得:\[ 2x = 12 \],再除以2,可得:\[ x = 6 \]。
初中数学上海市中考模拟数学考试题考试卷及答案Word版.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列实数中,是有理数的为………………………………………………………………()A、;B、;C、π;D、0.试题2:当a>0时,下列关于幂的运算正确的是………………………………………………()A、a0=1;B、a-1=-a;C、(-a)2=-a2;D、.试题3:下列y关于x的函数中,是正比例函数的为…………………………………………()A、y=x2;B、y=;C、y=;D、y=.试题4:如果一个正多边形的中心角为72°,那么这个正多边形的边数是……………………()A、4;B、5;C、6;D、7.试题5:下列各统计量中,表示一组数据波动程度的量是……………………………………()A、平均数;B、众数;C、方差;D、频率.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是………………………………………………()A、AD=BD;B、OD=CD;C、∠CAD=∠CBD;D、∠OCA=∠OCB.试题7:计算:_______.试题8:方程的解是_______________.试题9:如果分式有意义,那么x的取值范围是____________.试题10:如果关于x 的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是________.试题11:同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32.如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.试题12:如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是_______________.试题13:某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是__________.已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:11 12 13 14 15年龄(岁)人数 5 5 16 15 12那么“科技创新社团”成员年龄的中位数是_______岁.试题15:如图,已知在△ABC中,D、E分别是边AB、边AC的中点,,,那么向量用向量、表示为______________.试题16:已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.试题17:在矩形ABCD中,AB=5,BC=12,点A在⊙B上.如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于___________.(只需写出一个符合要求的数)试题18:已知在△ABC中,AB=AC=8,∠BAC=30°.将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处.延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于___________.21·世纪*教育网试题19:(本题满分10分)先化简,再求值:,其中.试题20:解不等式组:,并把解集在数轴上表示出来.试题21:已知:如图,在平面直角坐标系xOy 中,正比例函数y=x的图像经过点A,点A的纵坐标为4,反比例函数y=的图像也经过点A,第一象限内的点B在这个反比例函数的图像上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式; (2)直线AB的表达式.试题22:如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.www-2-1-cnjy-com(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米) (参考数据:≈1.7)2-1-c-n-j-y试题23:已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE; (2)如果OE⊥CD,求证:BD·CE=CD·DE .试题24:已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,AB=2.点P在抛物线上,线段AP与y轴的正半轴交于点C ,线段BP与x轴相交于点D.设点P的横坐标为m.21教育网(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC=时,求∠PAD的正弦值.试题25:已知:如图,AB是半圆O的直径,弦CD∥AB,动点P、Q分别在线段OC、CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、D不重合),AB=20,cos∠AOC=.设OP=x,△CPF的面积为y.(1)求证:AP=OQ;(2)求y 关于x的函数关系式,并写出它的定义域;(3)当△OPE 是直角三角形时,求线段OP的长.试题1答案:D试题2答案:A试题3答案:C试题4答案: B试题5答案: C试题6答案: B试题7答案: 4试题8答案:试题9答案:试题10答案:试题11答案:试题12答案:试题13答案:试题14答案:试题15答案:试题16答案:试题17答案:试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:试题23答案:试题24答案:试题25答案:。
(上海卷)中考数学模拟考试(含答案)
中考数学模拟考试(上海卷)(本卷共25小题,满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅰ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷(选择题,共24分)一、选择题(本大题共6个小题,每小题4分,共24分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列二次根式中,不能与3合并的是()A.27B.12C.18D.482.某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()A.0.4B.18C.0.6D.273.已知抛物线223y x x =--经过A (-2,1y ),B (-1,2y ),C (1,3y )三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y >>B .213y y y >>C .132y y y >>D .321y y y >>4.点G 是ABC 的重心,设AB a =,AC b =,那么AG 关于a 和b 的分解式是( ) A .1122a b +B .1122a b -C .1133a b +D .1133a b -.5.下列各式中,不是同类项的是( ) A .﹣1和5B .24x yz -和24xy z -C .2x y -和22yxD .322a -和23a6.已知点()4,0A ,()0,3B ,如果⊙A 的半径为2,⊙B 的半径为7,那么⊙A 与⊙B 的位置关系( ) A .内切B .外切C .内含D .外离第Ⅰ卷(非选择题,共126分)二、填空题(本大题共12个小题,每小题4分,共48分,答案写在答题卡上)7.已知f (x )=321x x -+,那么f (12)=___. 8.如果关于x 的不等式mx ﹣2m >x ﹣2的解集是x <2,那么m 的取值范围是______. 9.已知α∠与β∠互余,且3812α'∠=︒,则β∠=____________.101=的根是______.11.已知关于x 的一元二次方程(a ﹣3)x 2﹣4x +3=0有实数根,则a 的值为__.12.一次函数23y kx k =+-的图象经过第一、三、四象限,则k 的取值范围是______________.13.如图,△ABC ,△FGH 中,D ,E 两点分别在AB ,AC 上,F 点在DE 上,G ,H 两点在BC 上,且DE ∥BC ,FG ∥AB ,FH ∥AC ,若BG :GH :HC =4:6:5,△FGH 的面积是4,则△ADE 的面积是______.14.如图,半径为 2 的⊙O 与正六边形 ABCDEF 相切于点 C ,F ,则图中阴影部分的面积为____.15.若3x ﹣2=y ,则8x ÷2y =_____.16.从3-,0,1,2这四个数中任取一个数,作为关于x 的方程2320ax x ++=中a 的值,则该方程有实数根的概率为_________.17.某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是__________元.18.如图,在ABC 中,90ACB ∠=︒,2AC 22BC =将ABC 绕点C 按逆时针方向旋转得到DEC ,连接AD ,BE ,直线AD ,BE 相交于点F ,连接CF ,在旋转过程中,线段CF 的最大值为__________.三、解答题(本大题共7个小题,19-22题每小题10分,23、24题每小题12分,25题14分,共78分,解答过程写在答题卡上) 19.计算:()02sin 4521182π︒+--+-.20.解方程组:()()222320240x y x y x xy y ⎧---+=⎪⎨++-=⎪⎩. 21.“菊润初经雨,橙香独占秋”,如图,橙子是一种甘甜爽口的水果,富含丰维生素C .某水果商城为了了解两种橙子市场销售情况,购进了一批数量相等的“血橙”和“脐橙”供客户对比品尝,其中购买“脐橙”用了420元,购买“血橙”用了756元,已知每千克“血橙”进价比每千克“脐橙”贵8元.(1)求每千克“血橙”和“脐橙”进价各是多少元?(2)若该水果商城决定再次购买同种“血橙”和“脐橙”共40千克,且再次购买的费用不超过600元,且每种橙子进价保持不变.若“血橙”的销售单价为24元,“脐橙”的销售单价为14元,则该水果商城应如何进货,使得第二批的“血橙”和“脐橙”售完后获得利润最大?最大利润是多少?22.如图,在数学综合实践活动课上,两名同学要测量小河对岸大树BC 的高度,甲同学在点A 测得大树顶端B 的仰角为45°,乙同学从A 点出发沿斜坡走5D ,在此处测得树顶端点B 的仰角为26.7°,且斜坡AF 的坡度为1:2.(1)求乙同学从点A到点D的过程中上升的高度;(2)依据他们测量的数据求出大树BC的高度.(参考数据:sin26.7°≈0.45,cos26.7°≈0.89,tan26.7°≈0.50)23.矩形ABCD中,AB=2,AD=4,动点E在边BC上,不与点B、C重合,过点A作DE的垂线,交直线CD于点F,交射线BC于点G.(1)如图,当点G在BC延长线上时,求ECDF的值;在点E的运动过程中,ECDF的值是否发生改变?(2)设BE=m,含m的代数式表示段CG的长;(3)如果点G在BC延长线上,当△DBE与△DFG相似时,求DF的长.24.如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点B(3,1)、C(﹣2,6),与y轴交于点A,对称轴为直线x=1.(1)求抛物线的表达式;(2)求△ABM的面积;(3)点P是抛物线上一点,且∠PMB=∠ABM,试直接写出点P的坐标.25.如图1,在长方形ABCD中,F是DA延长线上一点,CF交AB于点E,G是CF上一点.给出下列三个关系:①∠GAF=∠F,②AC=AG,③∠ACB=3∠BCE.(1)选择其中两个作为条件,一个作为结论构成一个真命题,并说明理由;(2)在(1)的情况下,∠BCE=22.5°.①当AD=1时,求点G到直线AF的距离;②在△ACE中,易得2∠CAE+∠ACE=90°.像这样,一个三角形中有两个内角α、β满足α+2β=90°,称这个三角形为“近直角三角形”.如图2,在Rt△PMN中,∠PMN=90°,PM=6,MN=8.在线段MN上找点Q,使得△PQN是“近直角三角形”,求MQ的值.数学·参考答案一、选择题二、填空题 7.54或114或1.258.m <1 9.5148'︒ 10.x =−2 11.133a且3a ≠ 12.302k <<或0 1.5k << 13.91443π15.4 16.34或0.7517.180018 三、解答题19.【分析】根据特殊角的三角函数值,化简绝对值,二次根式的性质化简,零次幂进行计算即可. 【详解】解:()02sin 4512π︒-211=-=【点睛】本题考查了特殊角的三角函数值,化简绝对值,二次根式的性质化简,零次幂,牢记特殊角的三角函数值是解题的关键.20.02x y =⎧⎨=-⎩,3212x y ⎧=⎪⎪⎨⎪=⎪⎩,20x y =⎧⎨=⎩,1232x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 【分析】根据十字相乘法和公式法将方程左边因式分解,进而列出关于,x y 的二元一次方程组,解二元一次方程组即可. 【详解】()()222320240x y x y x xy y ⎧---+=⎪⎨++-=⎪⎩①② 由Ⅰ得(2)(1)0x y x y ----= 20x y ∴--=或10x y --=由Ⅰ得22()20x y +-= 即(2)(2)0x y x y +++-= 20x y ∴++=或20x y +-=∴2020x y x y --=⎧⎨++=⎩,解得02x y =⎧⎨=-⎩ 1020x y x y --=⎧⎨+-=⎩,解得3212x y ⎧=⎪⎪⎨⎪=⎪⎩ 2=02=0x y x y --⎧⎨+-⎩,解得20x y =⎧⎨=⎩ 1020x y x y --=⎧⎨++=⎩,解得1232x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴原方程组的解为:02x y =⎧⎨=-⎩,3212x y ⎧=⎪⎪⎨⎪=⎪⎩,20x y =⎧⎨=⎩,1232x y ⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元二次方程组,将将方程的左边因式分解是解题的关键. 21.(1)每千克“血橙”为18元,每千克“脐橙”为10元(2)该水果商城购买25千克“血橙”,15千克“脐橙”,获得利润最大,最大利润是210元 【分析】(1)设每千克“脐橙”为x 元,则每千克“血橙”是(8)x +元,然后根据“购进了一批数量相等的“血橙”和“脐橙”列分式方程求解即可;(2)设可再购买a 千克“血橙”,则购买(40)a -千克“脐橙”,再根据“再次购买的费用不超过600元”列不等式求得a 的取值范围确定“血橙”和“脐橙”的利润,设总利润为w 元并列出表达式,最后根据一次函数的性质即可解答 (1)解:设每千克“脐橙”为x 元,则每千克“血橙”是(8)x +元,根据题意,得4207568x x =+,解得10x =,经检验,10x =是原方程的解,810818x +=+=, 答:每千克“血橙”为18元,每千克“脐橙”为10元. (2)解:设可再购买a 千克“血橙”,则购买(40)a -千克“脐橙”, 根据题意,得1810(40)600a a +-≤,解得25a ≤; 每千克“血橙”的利润为:24186-=(元), 每千克“脐橙”的利润为:14104-=(元), 设总利润为w 元,根据题意,得 64(40)2160w a a a =+-=+,因为20k =>,所以w 随a 的增大而增大,所以当25a =时,w 有增大值,225160210w =⨯+=最大,此时,4015a -=,答:该水果商城购买25千克“血橙”,15千克“脐橙”,获得利润最大,最大利润是210元. 【点睛】本题主要考查了分式方程的应用、一次函数的应用、不等式的应用等知识点,考查知识点较多,灵活应用所学知识成为解答本题的关键. 22.(1)6米 (2)24米 【分析】(1)作DH ⅠAE 于H ,解Rt ⅠADH ,即可求出DH ;(2)过点D 作DG ⅠBC 于点G ,设BC =x 米,用x 表示出BG 、DG ,根据tan ⅠBDG =BGDG列出方程,解方程得到答案. (1)解:作DHⅠAE于H,如图所示:在RtⅠADH中,Ⅰ12 DHAH,ⅠAH=2DH,ⅠAH2+DH2=AD2,Ⅰ(2DH)2+DH2=(65)2,ⅠDH=6(米).答:乙同学从点A到点D的过程中,他上升的高度为6米;(2)如图所示:过点D作DGⅠBC于点G,设BC=x米,在RtⅠABC中,ⅠBAC=45°,ⅠAC=BC=x,由(1)得AH =2DH =12,在矩形DGCH 中,DH =CG =6,DG =CH =AH +AC =x +12,在Rt ⅠBDG 中,BG =BC ﹣CG =BC ﹣DH =x ﹣6,ⅠtanⅠBDG =BG DG, Ⅰ6tan 26.70.512x x -=︒≈+, 解得:x ≈24,答:大树的高度约为24米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,作辅助线DH 和DG 构造直角三角形ADH 和直角三角形BDG 是解决本题的关键.23.(1)在点E 的运动过程中,EC DF 的值不发生改变; (2)124(03)4m CG m m -=<<- (3)DF 的长为85或43. 【分析】(1)分点G 在BC 延长线上、点G 在BC 上两种情况,证明ⅠDCE ⅠⅠADF ,根据相似三角形的性质解答;(2)分点G 在BC 延长线上、点G 在BC 上两种情况,根据平行线分线段成比例定理得到AD DF CG FC=,把已知数据代入计算,得到答案; (3)分ⅠDEB ⅠⅠGFD 、ⅠDEB ⅠⅠDFG 两种情况,根据相似三角形的性质计算即可.(1)如图1,设DE 与AG 交于点H ,当点G在BC延长线上时,ⅠⅠADC=90°,ⅠⅠADH+ⅠCDE=90°,ⅠDEⅠAG,ⅠⅠADH+ⅠDAH=90°,ⅠⅠCDE=ⅠDAF,ⅠⅠDCE=ⅠADF=90°,ⅠⅠDCEⅠⅠADF,Ⅰ2142 EC CDDF AD===;如图2,当点G在BC上时,同理可证,△DCEⅠⅠADF,Ⅰ12 ECDF=,综上所述,在点E的运动过程中,ECDF的值不发生改变;(2)如图1,当点G在BC延长线上时,ⅠBE=m,BC=4,ⅠEC=4-m,由(1)可知:DF=2EC=8-2m,ⅠFC=DC-DF=2-(8-2m)=2m-6,ⅠAD//CG,ⅠAD DFCG FC⋅=,即48226mCG m-=-,解得:412(34)4mCG mm-=<<-,如图2,当点G在BC上时,ⅠBE=m,BC=4,ⅠEC=4-m,由(1)可知:DF=2EC=8-2m,ⅠFC=DF-DC=(8-2m)-2=6-2m,ⅠAD//CG,ⅠAD DFCG FC=,即48262mCG m-=-,解得:124(03)4mCG mm-=<<-;(3)如图3,当△DEBⅠⅠGFD时,ⅠGDF=ⅠDBE,ⅠⅠDCG=ⅠBCD,ⅠⅠDCGⅠⅠBCD,Ⅰ12 CG CDCD BC==,ⅠCG=1,ⅠAD DF CG FC=,Ⅰ412DFDF=-,解得:85 DF=;当△DEBⅠⅠDFG时,设DF=a,则FC=2-a,EC12a =,Ⅰ142BE a=-,ⅠAD//CG,ⅠDF AFFC FG=,即2162a aa+=-,解得:2(2)16a a FG-+=ⅠⅠDEBⅠⅠDFG,ⅠDF FG DE BE =142a a =-, 整理得:3a 2+8a -16=0, 解得:124,43a a ==-(舍去), 综上所述:当△DBE 与△DFG 相似时,DF 的长为85或43. 【点睛】本题考查的是相似三角形的判定和性质、矩形的性质,掌握相似三角形的判定定理、灵活运用分情况讨论思想是解题的关键.24.(1)y =x 2-2x -2(2)3(3)(8,46)或(2,-2)【分析】(1)由题意设抛物线解析式为y =ax 2+bx +c ,依题意得出三元一次方程组,解方程得出a 、b 、c 的值,即可求出抛物线的解析式;(2)根据题意连接AB ,过点M 作y 轴的平行线交AB 于点Q ,连接AM 、BM ,求出直线AB 的解析式,求出点Q 的坐标,得出MQ 的长,再利用S △ABM =S △MQA +S △MQB ,即可求出ⅠABM 的面积;(3)根据题意分PM 在AB 的左侧和右侧两种情况进行讨论,即可得出点P 的坐标.(1)解:(1)设抛物线解析式为y =ax 2+bx +c ,Ⅰ抛物线经过点B (3,1)、C (-2,6),对称轴为直线x =1,Ⅰ93112426a b cbaa b c++=⎧⎪⎪-=⎨⎪-+=⎪⎩,解得:122abc=⎧⎪=-⎨⎪=-⎩,Ⅰ设抛物线解析式为:y=x2-2x-2.(2)如图1,连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,当x=0时,y=-2,当x=1时,y=-3,ⅠA(0,-2),M(1,-3),设直线AB的解析式为y=mx+n,把A(0,-2),B(3,1)代入得:231nm n=-⎧⎨+=⎩,解得:12mn=⎧⎨=-⎩,Ⅰy=x-2,当x=1时,y=-1,ⅠQ(1,-1),ⅠMQ=-1-(-3)=2,ⅠS△ABM=S△MQA+S△MQB=12•MQ•|xB-xA|=12×2×|3-0|=3.(3)如图2,分两种情况分类讨论:Ⅰ当PM在AB的左侧时,PM交AB于点D,设D(t,t-2),ⅠB(3,1)、M(1,-3),Ⅰ2222()()()2)32113(BD t t MD t t-+--=-+-+,ⅠⅠPMB=ⅠABM,ⅠBD=MD,2222(2)()()()32113t t t t-+---+-+解得:t=43,ⅠD(43,23-),设直线MD 的解析式为y =kx +b , Ⅰ42333k b k b ⎧+=-⎪⎨⎪+=-⎩,解得:710k b =⎧⎨=-⎩, Ⅰ直线MD 的解析式为y =7x -10,Ⅰ271022y x y x x =-⎧⎨=--⎩, 解得:1113x y =⎧⎨=-⎩ (舍去),22846x y =⎧⎨=⎩, ⅠP (8,46),Ⅰ当PM 在AB 的右侧时,PM 交抛物线于点P ,ⅠⅠPMB =ⅠABM ,ⅠAB ⅠPM ,Ⅰ设直线MP 的解析式为y =x +d ,把M (1,-3)代入得:-3=1+d ,Ⅰd =-4,Ⅰ直线MP 的解析式为y =x -4,Ⅰ2422y x y x x =-⎧⎨=--⎩, 解得:1113x y =⎧⎨=-⎩ (舍去),2222x y =⎧⎨=-⎩, ⅠP (2,-2),综上所述,点P 的坐标为(8,46)或(2,-2).【点睛】本题考查二次函数综合题,熟练掌握并利用待定系数法和分类讨论的思想进行分析是解决问题的关键.25.(1)选ⅠⅠ作为条件,Ⅰ作为结论,见解析;(2)Ⅰ1;Ⅰ3或9 2【分析】(1)选ⅠⅠ作为条件,Ⅰ作为结论;根据长方形的性质得到AD BC∥,推出ⅠF=ⅠBCE,由AC=AG,得到ⅠACG=ⅠAGC,理由三角形外角的性质得到ⅠACF=2ⅠF,由此得到ⅠACB=3ⅠBCE.(2)Ⅰ过点G作GHⅠAF于H,证明ⅠACBⅠⅠFGH,推出GH=CB=AD=1;Ⅰ当Ⅰ作ⅠMPN的角平分线,交MN于点Q,过点Q作QRⅠNP于R,由ⅠN+ⅠMPN=90°,证得ⅠN+2ⅠNPQ=90°,得到ⅠPQN是“近直角三角形”,利用勾股定理求出NP,证明ⅠMPQⅠⅠRPQ,推出PR=PM=6,MQ=RQ,结合勾股定理得222NR RQ NQ+=,求出MQ;当2ⅠN+ⅠNPQ=90°,ⅠPQN也是“近直角三角形”,如图,延长NM到H,使MH=MN=8,延长NP到E,证明ⅠPMHⅠⅠPMN(SAS)得HP=NP=10,ⅠH=ⅠN,根据三角形的外角性质得到ⅠHPE=2ⅠN,进而证得∠QPH=90°,由QP2=MQ2+MP2=QH2-HP2求出MQ即可.(1)解:选ⅠⅠ作为条件,Ⅰ作为结论;理由如下:Ⅰ在长方形ABCD中,AD BC∥,ⅠABC=90°,BC=AD,ⅠⅠF=ⅠBCE,ⅠAC=AG,ⅠⅠACG=ⅠAGC,ⅠⅠGAF=ⅠF,ⅠⅠACG=ⅠAGC=2ⅠF,ⅠⅠACB=3ⅠBCE.(2)解:ⅠⅠⅠBCE=22.5°,ⅠⅠF=ⅠBCE=22.5°,ⅠACB=3ⅠBCE =67.5°,过点G作GHⅠAF于H,则ⅠFGH=90°-ⅠF=67.5°=ⅠACB,ⅠAC=AG,ⅠAC=GF,又ⅠABC=ⅠFHG=90°,ⅠⅠACBⅠⅠFGH(AAS)ⅠGH=CB=AD=1,即点G到直线AF的距离是1;Ⅰ如图,作ⅠMPN的角平分线,交MN于点Q,过点Q作QRⅠNP于R,ⅠⅠM=90°,ⅠⅠN+ⅠMPN=90°,ⅠⅠN+2ⅠNPQ=90°,ⅠⅠPQN是“近直角三角形”,在RtⅠPMN中,ⅠPMN=90°,PM=6,MN=8.Ⅰ22228610NP MN MP =+=+=,ⅠPQ 平分ⅠMPN ,ⅠⅠMPQ =ⅠRPQ ,ⅠQR ⅠNP ,ⅠⅠPRQ =ⅠM =90°,ⅠPQ=PQ ,ⅠⅠMPQ ⅠⅠRPQ ,ⅠPR=PM =6,MQ=RQ ,ⅠNR =10-6=4,Ⅰ在RtⅠNQR 中,222NR RQ NQ +=,Ⅰ()22248MQ MQ +=-,解得MQ =3;当2ⅠN +ⅠNPQ =90°,ⅠPQN 也是“近直角三角形”,如图,延长NM 到H ,使MH =MN =8,延长NP 到E ,ⅠMH=MN ,ⅠPMH =ⅠPMN =90°,MP=MP ,ⅠⅠPMH ⅠⅠPMN (SAS ),ⅠHP=NP=10,ⅠH=ⅠN,ⅠⅠHPE=2ⅠN,Ⅰ2ⅠN+ⅠNPQ=90°,ⅠⅠHPE +ⅠNPQ=90°,Ⅰ∠QPH=90°,由勾股定理得:QP2=MQ2+MP2=QH2-HP2,ⅠMQ2+62=(8+MQ)2-102,解得:MQ=92,综上,MQ=3或92.【点睛】此题考查了长方形的性质、平行线的性质、三角形的外角性质、等边对等角求角度、直角三角形的两锐角互余、角平分线定义、全等三角形的判定及性质、勾股定理、解一元一次方程等知识,熟练掌握全等三角形的判定与性质是解题的关键.。
2024年上海中考数学模拟练习卷五及参考答案
上海市2024年中考数学模拟练习卷5(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列式子,成立的是()A .2a a≥B .824a a a ÷=C .()3236928a b a b --=D ()0.20a a =>2.(本题4分)解方程2221x x x x++=+时.如果设2y x x =+,那么原方程可化为()A .220y y +-=B .220y y -+=C .220y y ++=D .220y y --=3.(本题4分)下列函数中,y 随着x 增大而减小而的是()A .3y x=B .2y x =-C .1y x=D .32y x =--4.(本题4分)为备战杭州2022年第19届亚运会,甲、乙两名运动员进行射击训练,在相同条件下,两人各射击10次,射击的成绩如图所示,以下判断正确的是()A .甲的平均成绩大于乙的平均成绩B .乙的平均成绩大于甲的平均成绩C .甲的成绩比乙的成绩更稳定D .乙的成绩比甲的成绩更稳定5.(本题4分)如图,要使平行四边形ABCD 为矩形,则可添加下列哪个条件()A .BO DO =B .AC BD ⊥C .AB BC =D .AO DO=6.(本题4分)如图,在等腰梯形ABCD 中,AB ∥CD ,6cm AD BC ==,60A ∠=︒,BD 平分ABC ∠,那么这个梯形的周长为()A .18B .24C .30D .36第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2116x -=.8.(本题4分)计算1122a a a ++++的结果是.9.(本题4211x -=的根是.10.(本题4分)函数21x y x +=-的定义域是.11.(本题4分)关于x 的一元二次方程2(2)20k x kx k --+=有实数根,则k 的取值范围是12.(本题4分)一个不透明的袋中装有除颜色外大小形状都相同的三种球,其中红球、黄球、黑球的个数之比为5:3:2.从袋子中任意摸出1个球,结果是红球的概率为.13.(本题4分)圆的内接正多边形中,正多边形的一条边所对的圆心角是72︒,则正多边形的边数是14.(本题4分)已知一个二次函数的二次项的系数是1,且经过点(-1,0),请写一个符合上述条件的二次函数表达式.15.(本题4分)如图,AD BC ∥,AC 、BD 交于点O ,2BO OD =,设AD a = ,AB b = ,那么向量OC 用向量a 、b表示为.16.(本题4分)某校七年级计划开设花样剪纸、诗歌欣赏、中华武术、科技创新四门特色校本课程,每名学生都将选择其中一门课程.为了解七年级学生对这四门课程的选择情况,学校随机抽取100名学生进行调查,并把调查结果绘制成如图所示的扇形图,根据这个扇形图可以估计七年级1200名学生中选择花样剪纸的学生约为名.17.(本题4分)如图,将 ABC 绕点A 逆时针旋转角()0180αα︒<<︒得到 ADE ,点B 的对应点D 恰好落在BC 边上,若DE AC ⊥,20CAD ∠=︒,则旋转角α的度数是.18.(本题4分)如图,在126⨯的网格图中(每个小正方形的边长均为1个单位),A 的半径为1B ,的半径为2,要使A 与静止的B 相切,那么A 由图示位置需向右平移个单位.三、解答题(共78分)19.(本题6()21273123-⎛⎫-⎪⎝⎭.20.(本题8分)解不等式组21122133x x -⎧>⎪⎪⎨-⎪>-⎪⎩.21.(本题10分)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=5,AC=3.(1)求tanA的值;(2)若D为 AB的中点,连接CD、BD,求弦CD的长.22.(本题12分)某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费30元,另外,每通话1分钟交费0.5元.(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式.(2)某手机用户这个月通话时间为140分,他应缴费多少元?(3)如果该手机用户本月预支200元的话费,那么该手机用户本月通话多长时间?=,连接23.(本题12分)如图,在矩形ABCD中,点E在边AD的延长线上,DE DC=.BE,分别交边DC、对角线AC于点F,G,AD FD∠的度数;(1)求AGE(2)求证:CF AC=.DF BE24.(本题14分)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(30),.(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果DE AC ∥,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q 的坐标.25.(本题16分)如图,半径为1的⊙O与过点O的⊙P相交,点A是⊙O与⊙P的一个公共点,点B是直线AP与⊙O的不同于点A的另一交点,联结OA,OB,OP.(1)当点B在线段AP上时,①求证:∠AOB=∠APO;②如果点B是线段AP的中点,求△AOP的面积;(2)设点C是⊙P与⊙O的不同于点A的另一公共点,联结PC,BC.如果∠PCB=α,∠APO=β,请用含α的代数式表示β.参考答案一、单选题(共24分)1.(本题4分)下列式子,成立的是()A .2a a≥B .824a a a ÷=C .()3236928a b a b --=D ()0.20a a =>2.(本题4分)解方程2221x x x x++=+时.如果设2y x x =+,那么原方程可化为()A .220y y +-=B .220y y -+=C .220y y ++=D .220y y --=3.(本题4分)下列函数中,随着x 增大而减小而的是()A .3y x =B .2y x =-C .1y x=D .32y x =--【答案】D【分析】根据一次函数和反比例函数的性质逐个判断求解即可.【详解】解:A 、3y x =中k =3>0,∴y 随着x 增大而增大,不符合题意;B 、2y x =-中k =1>0,4.(本题4分)为备战杭州2022年第19届亚运会,甲、乙两名运动员进行射击训练,在相同条件下,两人各射击10次,射击的成绩如图所示,以下判断正确的是()A.甲的平均成绩大于乙的平均成绩B.乙的平均成绩大于甲的平均成绩C.甲的成绩比乙的成绩更稳定D.乙的成绩比甲的成绩更稳定大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.(本题4分)如图,要使平行四边形ABCD 为矩形,则可添加下列哪个条件()A .BO DO =B .AC BD ⊥C .AB BC =D .AO DO=【答案】D【分析】根据矩形的判定方法逐项进行判断即可.【详解】解:A .∵四边形ABCD 是平行四边形,∴BO DO =,再添加BO DO =也无法判断平行四边形ABCD 为矩形,故A 错误;B .∵对角线互相垂直的平行四边形是菱形,∴添加AC BD ⊥,无法判断四边形ABCD 是矩形,故B 错误;C .∵有一组邻边相等的平行四边形是菱形,∴添加AB BC =无法判断四边形ABCD 是矩形,故C 错误;D .∵四边形ABCD 是平行四边形,∴AO OC =,BO DO =,∵AO DO =,∴AC BD =,∴平行四边形ABCD 是矩形(对角线相等的平行四边形是矩形),∴添加AO DO =能够使平行四边形ABCD 为矩形,故D 正确.故选:D .【点评】本题主要考查了平行四边形的性质,矩形的判定,解题的关键是熟练掌握对角线相等的平行四边形是矩形.6.(本题4分)如图,在等腰梯形ABCD 中,AB ∥CD ,6cm AD BC ==,60A ∠=︒,BD 平分ABC ∠,那么这个梯形的周长为()A .18B .24C .30D .36【答案】C【分析】根据等腰梯形性质求出60CBA A ∠=∠=︒,求出30DBA CBD ∠=∠=︒,求出CDB CBD ∠=∠,推出6cm DC BC ==,求出90ADB ∠=︒,根据含30度角的直角三角形性质求出AB ,即可求出答案.【详解】解: 等腰梯形ABCD 中,//AB CD ,6AD BC cm ==,60A ∠=︒,60CBA A ∴∠=∠=︒,CDB DBA ∠=∠,BD Q 平分ABC ∠,30DBA CBD ∴∠=∠=︒CDB CBD ∴∠=∠,6cmDC BC ∴==60A ∠=︒ ,30DBA ∠=︒,90ADB ∴∠=︒,212cmAB AD ∴==∴梯形ABCD 的周长是6661230cm AD DC BC AB +++=+++=,故选:C .【点评】本题考查了等腰梯形性质,平行线性质,含30度角的直角三角形性质,等腰三角形的性质和判定的应用,关键是能求出DC 和AB 的长.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2116x -=.8.(本题4分)计算22a a ++的结果是.故答案为:1.【点评】此题主要考查了分式的加减,正确掌握相关运算法则是解题关键.9.(本题41=的根是.10.(本题4分)函数1y x +=-的定义域是.【答案】1x ≠【分析】根据分式有意义的条件是分母不为0,分析原函数式可得关系式10x -≠,解可得自变量x 的取值范围.【详解】解:根据题意有10x -≠,解可得1x ≠.故答案为:1x ≠.【点评】本题考查函数定义域,解题的关键是掌握理解分式有意义的条件是分母不等于0.11.(本题4分)关于x 的一元二次方程2(2)20k x kx k --+=有实数根,则k 的取值范围是【答案】0k ≥且2k ≠【分析】根据二次项系数非零结合根的判别式△0≥,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解: 关于x 的一元二次方程2(2)20k x kx k --+=有实数根,∴220(2)4(2)0k k k k -≠⎧⎨=---≥⎩ ,解得:0k ≥且2k ≠.故答案为:0k ≥且2k ≠.【点评】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△0≥,列出关于k 的一元一次不等式组是解题的关键.12.(本题4分)一个不透明的袋中装有除颜色外大小形状都相同的三种球,其中红球、黄球、黑球的个数之比为5:3:2.从袋子中任意摸出1个球,结果是红球的概率为.13.(本题4分)圆的内接正多边形中,正多边形的一条边所对的圆心角是72︒,则正多边形的边数是14.(本题4分)已知一个二次函数的二次项的系数是1,且经过点(-1,0),请写一个符合上述条件的二次函数表达式.【答案】y =x 2+2x +1(答案不唯一)【分析】由待定系数法可设出函数的表达式,代入点坐标即可求得系数的关系式,进而可得到答案.【详解】解:设二次函数的表达式为2y x bx c=++∵二次函数过点(-1,0)∴1c b -=-令1c =,则2b =∴二次函数的表达式为221y x x =++故答案为:221y x x =++.【点评】本题考查待定系数法求二次函数的解析式,熟练掌握相关知识是解题的关键.15.(本题4分)如图,AD BC ∥,AC 、BD 交于点O ,2BO OD =,设AD a = ,AB b = ,那么向量OC 用向量a 、b 表示为.16.(本题4分)某校七年级计划开设花样剪纸、诗歌欣赏、中华武术、科技创新四门特色校本课程,每名学生都将选择其中一门课程.为了解七年级学生对这四门课程的选择情况,学校随机抽取100名学生进行调查,并把调查结果绘制成如图所示的扇形图,根据这个扇形图可以估计七年级1200名学生中选择花样剪纸的学生约为名.【答案】360【分析】用整体1分别减去其它课程所占的百分比,求出花样剪纸所占的百分比,再用该学校1200名学生乘以花样剪纸所占的百分比即可得出答案.【详解】解:根据题意得:1200×(1-15%-35%-20%)=360(名),估计七年级1200名学生中选择花样剪纸的学生约为360名.故答案为:360.【点评】此题考查了用样本估计总体,依据扇形统计图求出做豆腐所占的百分比是解题的关键.17.(本题4分)如图,将 ABC 绕点A 逆时针旋转角()0180αα︒<<︒得到 ADE ,点B 的对应点D 恰好落在BC 边上,若DE AC ⊥,20CAD ∠=︒,则旋转角α的度数是.【答案】40︒/40度【分析】先求出70ADE ∠=︒,再利用旋转的性质求出70B ∠=︒,AB AD =,然后利用等边对等角求出70ADB ∠=︒,最后利用三角形的内角和定理求解即可.【详解】解:如图,,∵DE AC ⊥,∴90AFD ∠=︒,∵20CAD ∠=︒,∴18070ADE CAD AFD ∠=︒-∠-∠=︒,∵旋转,∴70B ADE ∠=∠=︒,AB AD =,∴70ADB B ∠=∠=︒,∴18040BAD B ABD ∠=︒-∠-∠=︒,即旋转角α的度数是40︒.故答案为:40︒.【点评】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理等,掌握等边对等角是解题的关键.18.(本题4分)如图,在126⨯的网格图中(每个小正方形的边长均为1个单位),A 的半径为1B ,的半径为2,要使A 与静止的B 相切,那么A 由图示位置需向右平移个单位.【答案】2,4,6或8【分析】由A 的半径为1B ,的半径为2,要使A 与静止的B 相切,分内切和外切两种情况可求得A 由图示位置需向右平移的单位长度.【详解】∵A 的半径为1B ,的半径为2,,∴要使A 与静止的B 相切,当内切时,211AB =-=;即A 由图示位置需向右平移的单位长为4或6个单位长度,当外切时,213AB =+=,即A 由图示位置需向右平移的单位长为2或8个单位长度,∴A 由图示位置需向右平移的单位长为2,4,6或8个单位长度,故答案为:2,4,6或8.【点评】本题考查了圆与圆的位置关系,解题的关键是注意掌握两圆相切与圆心距、两圆半径的数量关系间的联系.三、解答题(共78分)19.(本题6)20112-⎛⎫- ⎪⎝⎭.20.(本题8分)解不等式组21122133x x -⎧>⎪⎪⎨-⎪>-⎪⎩.21.(本题10分)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =5,AC =3.(1)求tanA的值;(2)若D为 AB的中点,连接CD、BD,求弦CD的长.【答案】(1)4 tan3A=(2)722【分析】(1)根据直径所对的圆周角是90°可判断∠ACB=90º,再根据勾股定理求得BC 的长度,从而可求得tanA的值;(2)过点B作BE⊥CD于E,根据相等的弧对应圆周角相等可得∠ACD=∠BCD=45º,从而可得Rt△BCE为直角三角形,求得BE的值,再根据同弧所对的圆周角相等可得∠A=∠D,利用(1)中所求正切值即可求得DE的值,从而求得CD的值.【详解】(1)解:∵AB为⊙O的直径,∴∠ACB=90º,∵AB=5,AC=3,∴BC=4,∴4 tan3A=.(2)解:过点B作BE⊥CD于E,∵D为 AB的中点,∴AD BD=,∴∠ACD=∠BCD=45º,22.(本题12分)某电信公司手机的A 类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费30元,另外,每通话1分钟交费0.5元.(1)写出每月应缴费用y (元)与通话时间x (分)之间的关系式.(2)某手机用户这个月通话时间为140分,他应缴费多少元?(3)如果该手机用户本月预支200元的话费,那么该手机用户本月通话多长时间?【答案】(1)0.530y x =+(2)100元(3)340分钟【分析】(1)根据每月应缴纳的费用=月租费+通话费就可以求出解析式;(2)把140x =代入()1的解析式求出y 值即可;(3)当200y =时代入解析式求出x 的值即可.【详解】(1)解:由题意,得0.530y x =+,y ∴与x 之间的函数关系式为:0.530y x =+;(2)当140x =时,0.514030100y =⨯+=元.答:他应缴费100元;(3)当200y =时,2000.530x =+,x=.解得:340答:预交了200元的话费,那么该用户本月可通话时间为340分钟.【点评】本题考查了一次函数的解析式的运用,根据一次函数的解析式求自变量的值和函数值的运用,解答时求出函数的解析式是关键.=,连接23.(本题12分)如图,在矩形ABCD中,点E在边AD的延长线上,DE DC=.BE,分别交边DC、对角线AC于点F,G,AD FD∠的度数;(1)求AGE(2)求证:CF AC=.DF BE24.(本题14分)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(30),.(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果DE AC ∥,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q 的坐标.②设DC 的解析式为y mx c =+,把D (0330c m c =⎧⎨+=⎩,解得31c m =⎧⎨=-⎩,DC 的解析式为3y x =-+,点E 的纵坐标为1-,代入3y x =-+,解得,4x =,点E 的坐标为(41)-,,当DE EQ =时,DQE CDQ ∠=∠,因为点E 的坐标为(41)-,,点D 的坐标为所以224442DE =+=,点Q 在平移后抛物线的对称轴上,点Q 【点评】本题考查了求二次函数解析式和二次函数平移,出二次函数解析式,根据平移求出平移后的二次函数的顶点坐标.25.(本题16分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B是直线AP与⊙O的不同于点A的另一交点,联结OA,OB,OP.(1)当点B在线段AP上时,①求证:∠AOB=∠APO;②如果点B是线段AP的中点,求△AOP的面积;(2)设点C是⊙P与⊙O的不同于点A的另一公共点,联结PC,BC.如果∠PCB=α,∠APO=β,请用含α的代数式表示β.【点评】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。
2024年上海中考数学模拟练习卷十一及参考答案
上海市2024年中考数学模拟练习卷11(本试卷共25题,150分)一、选择题:(本大题共6题,每题4分,共24分)1.(2022•桂林)化简12的结果是()A .23B .3C .22D .22.(2021•河池)下列各式中,与22a b 为同类项的是()A .22a b -B .2ab -C .22ab D .22a 3.(2023•宁夏)劳动委员统计了某周全班同学的家庭劳动次数x (单位:次),按劳动次数分为4组:03x < ,36x < ,69x < ,912x < ,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是()A .0.6B .0.5C .0.4D .0.324.(2023•西藏)将抛物线2(1)5y x =-+平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度5.(2021•上海)如图,在平行四边形ABCD 中,已知AB a = ,AD b = ,E 为AB 中点,则1(2a b += )A .ECB .CEC .ED D .DE6.(2022•松江区校级模拟)已知ABC ∆,10AB cm =,6BC cm =,以点B 为圆心,以BC 为半径画圆B ,以点A 为圆心,半径为r ,画圆A .已知A 与B 外离,则r 的取值范围为()A ..04r <B ..04rC ..04r <<D ..04r <二、填空题:(本大题共12题,每题4分,共48分)7.(2023•青岛)计算:328(2)x y x ÷=.8.(2023•大洼区校级一模)关于x 的方程2310ax x --=有实数根,则a 的取值范围是.9.(2023•荆州)若2|1|(3)0a b -+-=a b +=.10.(2023•大连)不等式39x ->的解集是.11.(2022•连云港)已知A ∠的补角为60︒,则A ∠=︒.12.(2023•湖北)有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为.13.(2023•盐城)我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为.14.(2023•衡阳)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是.15.(2021•达州)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为.16.(2023•苏州)已知一次函数y kx b =+的图象经过点(1,3)和(1,2)-,则22k b -=.17.(2023•虹口区一模)我们规定:如果一个三角形一边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.如图,已知直线12//l l ,1l 与2l 之间的距离是3,“等高底”ABC ∆的“等底”BC 在直线1l 上(点B 在点C 的左侧),点A 在直线2l 上,AB =,将ABC ∆绕点B 顺时针旋转45︒得到△11A BC ,点A 、C 的对应点分别为点1A 、1C ,那么1A C 的长为.18.(2023•浦东新区模拟)如图,已知Rt ABC ∆中,90B ∠=︒,60A ∠=︒,10AC =,点M 、N 分别在线段AC 、AB 上,将ANM ∆沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当DCM ∆为直角三角形时,折痕MN 的长为.三、解答题:(本大题共7题,10+10+10+10+12+12+14,共78分)19.(2023•深圳)计算:0(1)2|3|2sin 45π++--+︒.20.(2023•兰州)解不等式组:312(1)223x xx x->+⎧⎪+⎨>-⎪⎩.21.(2024•新泰市一模)为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.22.(2023•成都)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16︒,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45︒时,求阴影CD的长.(结果精确到0.1米;参考数据:sin160.28︒≈,cos160.96︒≈,tan160.29)︒≈23.(2023•普陀区二模)已知:如图,四边形ABCD中,//∠=︒,对角线AC、BD相交BADAB CD,90于点O,点E在边BC上,AE BD⊥,垂足为点F,AB DC BF BD⋅=⋅.(1)求证:四边形ABCD为矩形;(2)过点O作OG AC=.⊥交AD于点G,求证:2EC DG24.(2023•凉山州)如图,已知抛物线与x轴交于(1,0)=-+A和(5,0)y xB-两点,与y轴交于点C.直线33过抛物线的顶点P.(1)求抛物线的函数解析式;(2)若直线(50)=-<<与抛物线交于点E,与直线BC交于点F.x m m①当EF取得最大值时,求m的值和EF的最大值;②当EFC∆是等腰三角形时,求点E的坐标.25.(2023•福建)如图1,在ABC ∆中,90BAC ∠=︒,AB AC =,D 是AB 边上不与A ,B 重合的一个定点.AO BC ⊥于点O ,交CD 于点E .DF 是由线段DC 绕点D 顺时针旋转90︒得到的,FD ,CA 的延长线相交于点M .(1)求证:ADE FMC ∆∆∽;(2)求ABF ∠的度数;(3)若N 是AF 的中点,如图2,求证:ND NO =.参考答案一、选择题:(本大题共6题,每题4分,共24分)123456A A A D A C二、填空题:(本大题共12题,每题4分,共48分)7.2xy .8.94a - .9.210.3x <-11.12012.16.13.7人14.10.15.216.6-.17.3-或18.103或-三、解答题:(本大题共7题,共78分)解答应写出文字说明、证明过程或演算步骤.19.(10分)解:0(1)2|3|2sin 45π++--+︒12322=+-+⨯0=+=20.(10分)解:()3121223x x x x ⎧->+⎪⎨+>-⎪⎩①②,由①得:3x >,由②得:4x <,则不等式组的解集为34x <<.21.(10分)解:(1)设纽荷尔每箱a 元,则默科特每箱(20)a +元,由题意得:30040020a a =+,解得:60a =,经检验,60a =是原分式方程的解,2080a ∴+=,答:纽荷尔每箱60元,默科特每箱80元;(2)设购买纽荷尔x 箱,则购买默科特(150)x -箱,所需费用为w 元,由题意得:6010(150)2012000w x x x =+-=-+,2(150)x x - ,100x ∴ 200-< ,w ∴随x 的增大而减小,∴当100x =时,w 取得最大值,此时201001200010000w =-⨯+=,答:购买总费用的最大值为10000元.22.(10分)解:过A 作AT BC ⊥于T ,AK CE ⊥于K ,如图:在Rt ABT ∆中,sin 5sin16 1.4BT AB BAT =⋅∠=⨯︒≈(米),cos 5cos16 4.8AT AB BAT =⋅∠=⨯︒≈(米),90ATC C CKA ∠=∠=∠=︒ ,∴四边形ATCK 是矩形,4.8CK AT ∴==米,4 1.4 2.6AK CT BC BT ==-=-=(米),在Rt AKD ∆中,45ADK ∠=︒ ,2.6DK AK ∴==米,4.8 2.6 2.2CD CK DK ∴=-=-=(米),∴阴影CD 的长约为2.2米.23.(12分)(1)证明://AB CD ,ABF CDB ∴∠=∠,AB DC BF BD ⋅=⋅ ,ABF BCD ∴∆∆∽,AFB BCD ∴∠=∠,AE BD ⊥ ,90AFB BCD ∴∠=∠=︒//AB CD ,90BAD ∠=︒,90ADC BAD ∴∠=∠=︒,∴四边形ABCD 为矩形;(2)证明: 四边形ABCD 为矩形,OA OB OC OD ∴===,OAD ODA OBC OCB ∴∠=∠=∠=∠,OG OA ⊥ ,AF BF ⊥,GOA OAG BFE FBE ∴∠+∠=∠+∠,OGD AEC ∴∠=∠,AEC OGD ∴∆∆∽,::2:1AC OD EC GD ∴==,即2EC DG =.24.(12分)解:(1) 抛物线与x 轴交于(1,0)A 和(5,0)B -两点,∴抛物线对称轴为直线1522x -==-,在33y x =-+中,令2x =-得9y =,∴抛物线顶点为(2,9)-,设抛物线函数解析式为2(2)9y a x =++,将(1,0)A 代入得:099a =+,解得1a =-,∴抛物线函数解析式为22(2)945y x x x =-++=--+;(2)①如图:在245y x x =--+中,令0x =得5y =,(0,5)C ∴,由(5,0)B -,(0,5)C 得直线BC 解析式为5y x =+,2(,45)E m m m ∴--+,(,5)F m m +,22252545(5)5()24EF m m m m m m ∴=--+-+=--=-++,10-< ,∴当52m =-时,EF 取最大值254,m ∴的值为52-,EF 的最大值为254;②2(,45)E m m m --+ ,(,5)F m m +,(0,5)C ,222(5)EF m m ∴=+,2222(4)EC m m m =++,222FC m =;若EF EC =,则22222(5)(4)m m m m m +=++,解得0(m E =与C 重合,舍去)或4m =-,(4,5)E ∴-;若EF FC =,则222(5)2m m m +=,解得0m =(舍去)或5m =-或5m =-(不符合题意,舍去),5E ∴-,2-+;若EC FC =,则2222(4)2m m m m ++=,解得0m =(舍去)或3m =-或5m =-(不符合题意,舍去),(3,8)E ∴-;综上所述,E 的坐标为(4,5)-或5-,2-+或(3,8)-.25.(14分)(1)证明:如图:DF 是由线段DC 绕点D 顺时针旋转90︒得到的,90FDC ∴∠=︒,FD CD =,45DFC ∠=︒,AB AC = ,AO BC ⊥,∴12BAO BAC ∠=∠.90BAC ∠=︒ ,45BAO ABC ∴∠=∠=︒,BAO DFC ∴∠=∠,90EDA ADM ∠+∠=︒ ,90M ADM ∠+∠=︒EDA M ∴∠=∠,ADE FMC ∴∆∆∽;(2)解:设BC 与DF 的交点为I ,如图:45DBI CFI∠=∠=︒,BID FIC∠=∠,BID FIC∴∆∆∽,∴BI DIFI CI=,即BI FIDI Cl=,BIF DIC∠=∠,BIF DIC∴∆∆∽,IBF IDC∴∠=∠,90IDC∠=︒,90IBF∴∠=︒,45ABC∠=︒,135ABF ABC IBF∴∠=∠+∠=︒;(3)证明:延长ON交BF于点T,连接DT,DO,如图:90FBI BOA∠=∠=︒,//BF AO∴,FTN AON∴∠=∠.N是AF的中点,AN NF∴=,TNF ONA∠=∠,()TNF ONA AAS∴∆≅∆,NT NO∴=,FT AO=,90BAC∠=︒,AB AC=,AO BC⊥,AO CO∴=,FT CO∴=,由(2)知,BIF DIC∆∆∽,DFT DCO∴∠=∠.DF DC=,()DFT DCO SAS∴∆≅∆,DT DO∴=,FDT CDO∠=∠,FDT FDO CDO FDO∴∠+∠=∠+∠,即ODT CDF∠=∠,90CDF∠=︒,90ODT CDF∴∠=∠=︒,∴12ND TO NO==.。
2024年中考数学第一次模拟试卷(上海卷)(全解全析)
2024年中考第一次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列二次根式中,与3是同类二次根式的是()A .6B .9C .13D .18【答案】C【解析】A 、6与3不是同类二次根式,B 、93=与3不是同类二次根式,C 、1333=与3是同类二次根式,D 、1832=与3不是同类二次根式.故选C .2.将抛物线2y x =向左平移2个单位后,所得新抛物线的解析式是()A .22y x =-B .22y x =+C .2(2)y x =-D .2(2)y x =+【答案】D【解析】由“左加右减”的原则可知,将抛物线y =x 2向左平移2个单位,所得抛物线的解析式为:y =(x +2)2,故选D .3.已知在四边形ABCD 中,AB CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A .AD BC =B .AC BD=C .A C∠=∠D .A B∠=∠【答案】C【解析】A 、B.∵在四边形ABCD 中,AB CD ,∴AD BC =或AC BD =,都不能判定四边形ABCD 为平行四边形,故A 、B 错误;C.∵AB CD ,∴180B C ∠+∠=︒,∵A C ∠=∠,∴180A B ∠+∠=︒,∴AD BC ∥,∴四边形ABCD 为平行四边形,故C 正确.D.当A B ∠=∠时,无法判定四边形ABCD 为平行四边形,故D 错误.故选C.4.在线段、等边三角形、等腰梯形、平行四边形中,一定是轴对称图形的个数有()A.1个B.2个C.3个D.4个【答案】C【解析】①线段是轴对称图形,②等边三角形是轴对称图形,③等腰梯形是轴对称图形,④平行四边形不是轴对称图形,综上所述,一定是轴对称图形的是①②③共3个.故选C.5.对于数据:6,3,4,7,6,0,9.下列判断中正确的是()A.这组数据的平均数是6,中位数是6B.这组数据的平均数是6,中位数是7C.这组数据的平均数是5,中位数是6D.这组数据的平均数是5,中位数是7【答案】C【解析】对于数据:6,3,4,7,6,0,9,这组数据按照从小到大排列是:0,3,4,6,6,7,9,这组数据的平均数是:034667957++++++=,中位数是6,故选C.6.如图,在△ABC中,∠C=90°,AC=3,BC=4,⊙B的半径为1,已知⊙A与直线BC相交,且与⊙B没有公共点,那么⊙A的半径可以是()A.4B.5C.6D.7.【答案】D【解析】根据勾股定理得:AB=5,根据题意,⊙A与直线BC相交,所以⊙A的半径的取值范围是大于3;又⊙A 与⊙B 没有交点,则r <5-1=4或r >5+1=6,∴3<r <4或r >6.故选D .二、填空题(本大题共12个小题,每小题4分,共48分)7.52的相反数是.【答案】-52【解析】52的相反数是﹣52,故答案为﹣52.8.在四边形ABCD 中,向量AB 、CD 满足AB=-4CD ,那么线段AB 与CD 的位置关系是.【答案】平行【解析】∵AB =-4CD ,∴AB 与CD 是共线向量,由于AB 与CD没有公共点,∴AB ∥CD ,故答案为平行.9.如图,已知在△ABC 中,AB =3,AC =2,∠A =45o ,将这个三角形绕点B 旋转,使点A 落在射线AC上的点A 1处,点C 落在点C 1处,那么AC 1=.【答案】22【解析】如图,连接AC 1,由旋转知,△ABC ≌△A 1BC 1,∴AB =A 1B =3,AC =A 1C 1=2,∠CAB =∠C 1A 1B =45°,∴∠CAB =∠CA 1B =45°,∴△ABA 1为等腰直角三角形,∠AA 1C 1=∠CA 1B+∠C 1A 1B =90°,在等腰直角三角形ABA 1中,AA 1=2AB =32,在Rt △AA 1C 1中,22221111AC AA A C (32)222=+=+=.故答案为22.10.计算:32()m m ¸-=.【答案】m【解析】m 3÷(-m )2=m 3÷m 2=m .故答案为m .11.不等式组10,25x x ->⎧⎨<⎩的整数解是.【答案】x =2【解析】1025x x -⎧⎨⎩>①<②,由①得x >1,由②得x <52,∴1<x <52,∵x 取整数,∴x =2.故答案为x =2.12.方程10x x -=g 的根是.【答案】x=1【解析】原方程变形为x (x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.13.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是.【答案】k>3【解析】因为正比例函数y=(k-3)x 的图象经过第一、三象限,所以k-3>0,解得:k >3,故答案为k >3.14.如图,某水库大坝的横断面是梯形ABCD ,坝顶宽AD 是6米,坝高4米,背水坡AB 和迎水坡CD 的坡度都是1:0.5,那么坝底宽BC 是米.【答案】10【解析】过点A 作AE ⊥BC ,DF ⊥BC ,由题意可得:AD=EF=6m ,AE=DF=4m ,∵背水坡AB 和迎水坡CD 的坡度都是1:0.5,∴BE=FC=2m ,∴BC=BE+FC+EF=6+2+2=10(m ).故答案为10.15.已知△ABC ,点D 、E 分别在边AB 、AC 上,DE//BC ,13DE BC =.如果设AB a = ,DE b = ,那么AC =.(用向量a 、b的式子表示)【答案】3a b+【解析】如图,//DE BC ,13DE BC =,DE b = ,∴3BC b =,AC AB BC =+,∴3AC a b =+,故答案为3a b +r r.16.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,掷一次骰子,掷的点数大于2的概率是.【答案】23【解析】∵在这6种情况中,掷的点数大于2的有3,4,5,6共4种结果,∴掷的点数大于2的概率为4263=,故答案为:23.17.如图,将ABC ∆沿BC 边上的中线AD 平移到'''A B C ∆的位置,已知ABC ∆的面积为16,阴影部分三角形的面积为9,如果'1AA =,那么'A D 的长为.【答案】3【解析】如图,∵S △ABC =16、S △A′EF =9,且AD 为BC 边的中线,∴14.52A DE A EF S S ''== ,182ABD ABC S S == ,∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DE ADBS A D AD S '⎛⎫ ⎝⎭'⎪ =,24.518A D A D '⎛⎫ ⎪'+⎝⎭=,解得A′D=3或37A D ¢=-(舍),故答案为3.18.如果当a≠0,b≠0,且a≠b 时,将直线y=ax+b 和直线y=bx+a 称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:.【答案】3,31y x y x =+=+【解析】把(1,4)代入y ax b =+得:a+b=4又因为0a ≠,0b ≠,且a b ≠,所以当a=1是b=3所以“对偶点”为(1,4)的一对“对偶直线”可以是:3,31y x y x =+=+故答案为3,31y x y x =+=+.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10分)计算:11213812221-⎛⎫+-+- ⎪-⎝⎭.【解析】原式=23(21)2221++-+-=2+32+3﹣222+﹣1=224+.(10分)20.(10分)已知:如图,在平面直角坐标系xOy 中,双曲线y =6x经过第一象限内的点A ,延长OA 到点B ,使得BA =2AO ,过点B 作BH ⊥x 轴,垂足为点H ,交双曲线于点C ,点B 的横坐标为6.求:(1)点A 的坐标;(2)将直线AB 平移,使其经过点C ,求平移后直线的表达式.【解析】(1)作AD ⊥x 轴,垂足为D ,∵BH ⊥x 轴,AD ⊥x 轴,∴∠BHO =∠ADO =90°,∴AD ∥BH ,∵BA =2AO ,12OD OA DH AB ∴==,∵点B 的横坐标为6,∴OH =6,∴OD =2,∵双曲线y =6x经过第一象限内的点A ,可得点A 的纵坐标为3,∴点A 的坐标为(2,3);(2)∵双曲线y =6x上点C 的横坐标为6,∴点C 的坐标为(6,1),由题意得,直线AB 的表达式为32y x =,∴设平移后直线的表达式为32y x =+b ,∵平移后直线32y x =+b 经过点C (6,1),∴3162=⨯+b 解得b =﹣8,∴平移后直线的表达式32y x =-8.21.(10分)如图是某地下停车库入口的设计示意图,已知坡道AB 的坡比i =1:2.4,AC 的长为7.2米,CD 的长为0.4米.按规定,车库坡道口上方需张贴限高标志,根据图中所给数据,确定该车库入口的限高数值(即点D 到AB 的距离).【解析】如图,延长CD 交AB 于E ,∵i =1:2.4,∴15tan CAB 2.412∠==,∴512CE AC =,∵AC =7.2,∴CE =3,∵CD =0.4,∴DE =2.6,过点D 作DH ⊥AB 于H ,∴∠EDH =∠CAB ,∵5tan CAB 12∠=,∴12cos EDH cos CAB 13∠=∠=,12DH DE cos EDH 2.6 2.413=⨯∠=⨯=.答:该车库入口的限高数值为2.4米.22.(10分)已知:如图,在矩形ABCD 中,过AC 的中点M 作EF AC ⊥,分别交AD 、BC 于点E 、F .(1)求证:四边形AECF 是菱形;(2)如果2·CD BF BC =,求BAF ∠的度数.【解析】()1证明: 四边形ABCD 为矩形,//AD BC ∴,12∠∠∴=,点M 为AC 的中点,AM CM ∴=.在AME 与CMF 中,12AM CM AME CMF ∠∠∠∠=⎧⎪=⎨⎪=⎩,AME ∴≌()CMF ASA ,ME MF ∴=.∴四边形AECF 为平行四边形,又EF AC ⊥ ,∴平行四边形AECF 为菱形;()2解:2CD BF BC =⋅ ,CD BC BFCD∴=,又 四边形ABCD 为矩形,AB CD ∴=,AB BCBF AB∴=又ABF CBA ∠∠= ,ABF ∴ ∽CBA ,23∠∠∴=,四边形AECF 为菱形,14∠∠∴=,即134∠∠∠==,四边形ABCD 为矩形,13490BAD ∠∠∠∠∴=++=,∴即130∠= .23.(12分)如图,已知四边形ABCD 菱形,对角线AC BD 、相交于点O ,DH AB ⊥,垂足为点H ,交AC于点E ,连接HO 并延长交CD 于点G .(1)求证:12DHO BCD ∠=∠;(2)求证:2HG AE DE CG = .【解析】(1)∵四边形ABCD 是菱形,//,,,AB CD AB CD AC BD DO BO ∴=⊥=,12ACD BCD ∠=∠,DH AB ⊥ ,90DHA DHB ∴∠=∠=︒,//AB CD ,90DHA HDC ∴∠=∠=︒,90BDH BDC ∴∠+∠=︒,90COD ∠=︒ ,90ACD BDC ∴∠+∠=︒,90,DHB DO BO ∴∠=︒=,OD OH ∴=,BDH DHO ∴∠=∠,12DHO BCD ∴∠=∠.(2)//AB CD ,1HO OB OG OD ∴==,12OH OG HG ∴==, AD CD =,DCA DAC ∴∠=∠,,AED HDC DCA HGC HDC DHG ∠=∠+∠∠=∠+∠ ,又DHO DCA ∠=∠ ,AED HGC ∴∠=∠,AED ∴∆∽CGO ∆,OG CGDE AE∴=,••OG AE CG DE ∴=,1••2HG AE DE CG ∴=,∴2HG AE DE CG = .24.(12分)已知:抛物线2y x bx c =-++,经过点A(-1,-2),B(0,1).(1)求抛物线的关系式及顶点P 的坐标.(2)若点B′与点B 关于x 轴对称,把(1)中的抛物线向左平移m 个单位,平移后的抛物线经过点B′,设此时抛物线顶点为点P′.①求∠P′B B′的大小.②把线段P′B′以点B′为旋转中心顺时针旋转120°,点P′落在点M 处,设点N 在(1)中的抛物线上,当△MN B′的面积等于63时,求点N 的坐标.【解析】(1)把点A (-1,-2),B (0,1),代入2y x bx c =-++得2=11b c c ---+⎧⎨=⎩,解得=21b c ⎧⎨=⎩,∴抛物线的关系式为:221y x x =-++,得y=-(x-1)2+2;∴顶点坐标为()12P ,.(2)①设抛物线平移后为()2112y x m =--++,代入点B’(0,-1)得,-1=-(m-1)2+2解得131m =+,231m =-+(舍去);∴()2132y x =-++,得顶点()3,2P '-连结P B ',P’B’,作P’H ⊥y 轴,垂足为H ,得3P H '=,HB=1,P’B=31+=2∵tan 3P HP BH BH ∠='=',∴60P BH ∠=' ,∴18060120P BB ∠=-=''.②∵2BB '=,2P B '=即BB P B '=',∴30BP B P B B ''''∠=∠= ;∵线段P B ''以点B '为旋转中心顺时针旋转120 ,点P '落在点M 处;∴90OB M ∠=' ,B M B P '=''∴//MB x '轴,23B M B P ''='=;设MNB ∆'在B M '边上的高为h ,得:632MNB B M h S '∆⋅'==,解得6h =;∴设()7N a -,或()5N a ,分别代入221y x x =-++得2721a a -=-++解得:4a =或2a =-∴()47N -,或()27N --,,2521a a =-++方程无实数根舍去,∴综上所述:当63MNB S '∆=时,点N 的坐标为()47N -,或()27N --,.25.(14分)如图,已知△ABC ,AB=2,3BC =,∠B=45°,点D 在边BC 上,联结AD ,以点A 为圆心,AD 为半径画圆,与边AC 交于点E ,点F 在圆A 上,且AF ⊥AD .(1)设BD 为x ,点D 、F 之间的距离为y ,求y 关于x 的函数解析式,并写出定义域;(2)如果E 是 DF 的中点,求:BD CD 的值;(3)联结CF ,如果四边形ADCF 是梯形,求BD 的长.【解析】(1)过点A 作AH ⊥BC ,垂足为点H .∵∠B =45°,AB =2,∴·cos 1BH AH AB B ===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+.联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴2442cos ADDF x x ADF ==-+∠.∴2442y x x =-+.()03x ≤≤;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .∵BC=3,∴312HC =-=.∴225AC AH HC =+=.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQDCQ CQ ∠=.在Rt △AHC 中,90AHC ∠=︒,1tan 2AHACH HC ∠==.∵DCQ ACH ∠=∠,∴12DQCQ =.设,2DQ k CQ k ==,AQ DQ k ==,∵35k =,53k =,∴2253DC DQ CQ =+=.∵43BD BC DC =-=,∴4:5BD CD =.(3)如果四边形ADCF 是梯形则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合.∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴ABADDF DC =.∵2DF AD =,DC BC BD =-.∴2AD BC BD =-.即()222-23x x x +=-,整理得210x x --=,解得152x ±=(负数舍去).综上所述,如果四边形ADCF 是梯形,BD 的长是1或1+52.。
上海市2024届杨浦区中考数学一模
一、选择题1. 上海市2024届杨浦区中考数学一模将抛物线=y x 22向右平移3个单位,所得抛物线的表达式是( )A . =+y x 232)(B . =−y x 232)(C . =−y x 232D . =+y x 2322. 如果将一个锐角ABC 的三边的长都扩大为原来的2倍,那么锐角A 的正切值( )A . 扩大为原来的2倍B . 缩小为原来的21C . 没有变化D . 不能确定3. 已知P 是线段AB 的黄金分割点,且AP >BP ,那么下列等式能成立的是( )A . =AP BP AB AP B . =BP AP AB BP C. =BP AB D. =AP AB 4. 如果两个非零向量a 与b 的方向相反,且a b ≠,那么下列说法错误的是( )A . a b −与a 是平行向量B . a b −的方向与b 的方向相同C . 若2a b =−,则2a b =D . 若2a b =,则2a b =−5. 如图,为了测量学校教学楼的高度,在操场的C 处架起测角仪,测角仪的高CD =1.4米,从点D 测得教学大楼顶端A 的仰角为α,测角仪底部C 到大楼底部B 的距离是25米,那么教学大楼AB 的高是( )A . +α1.425sinB . +α1.425cosC . +α1.425tanD . +α1.425cot6. 如图,锐角ABC 中,AB >AC >BC ,现想在边AB 上找一点D ,在边AC 上找一点E ,使得∠ADE 与∠C 相等,以下是甲、乙两位同学的作法:(甲)分别过点B 、C 作AC 、AB 的垂线,垂足分别是E 、D ,则D 、E 即所求;(乙)取AC 中点F ,作⊥DF AC ,交AB 于点D ,取AB 中点H ,作⊥EH AB ,交AC 于点E ,则D 、E 即所求,对于甲、乙两位同学的作法,下列判断正确的是( )A . 甲正确乙错误B . 甲错误乙正确C . 甲、乙皆正确D . 甲、乙皆错误二、填空题7. 已知线段=a 3厘米,c =12厘米,如果线段b 是线段a 和c 的比例中项,那么b =____________厘米8. 计算:123a b b ⎛⎫+−= ⎪⎝⎭2_____________ 9. 二次函数=−−y x x 342的图像与y 轴的交点坐标是____________10. 已知抛物线=−−−y m x x 2312)(的开口向上,那么m 的取值范围是____________ 11. 如果点−A y 5,1)(和点B y 5,2)(是抛物线=−+y x m 2(m 是常数)上的两点,那么y 1__________y 2 12. 在Rt ABC 中,∠ABC =90°,⊥BD AC ,垂足为点D ,如果AB =5,BD =2,那么cosC =____________13. 小华沿着坡度i =1:3的斜坡向上行走了____________米14. 写出一个经过坐标原点,且在对称轴左侧部分是下降的抛物线的表达式,这个抛物线的表达式可以是____________15. 如图,在ABC 中,点G 是重心,过点G 作GD //BC ,交边AC 于点D ,联结BG ,如果ABC S=36,那么形边四=S BGDC ____________16. 有一座抛物线型拱桥,在正常水位时,水面AB 宽20米,拱桥的最高点O 到水面AB 的距离是4米,如图建立直角坐标平面xOy ,如果水面上升了1米,那么此时水面的宽度是____________米(结果保留根号)17. 如图,已知ABC 与ABD 相似,∠ACB =∠ABD =90°,==AC BC ,BD <AB ,联结CD ,交边AB 于点E ,那么线段AE 的长是____________18. 如图,已知在菱形ABCD 中,=B 3cos 1,将菱形ABCD 绕点A 旋转,点B 、C 、D 分别旋转至点E 、F 、G ,如果点E 恰好落在边BC 上,设EF 交边CD 于点H ,那么DHCH 的值是_____________三、解答题19. 如图,已知在ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,DE //BC ,AB =15,=EC AE 32. (1)求AD 的长;(2)如果BF =4,CF =6,求四边形BDEF 的周长.20. 已知二次函数=−+−y x x 432.(1)用配方法将函数=−+−y x x 432的解析式化为=++y a x m k 2)(的形式,并指出该函数图像的对称轴和顶点坐标;(2)设该函数的图像与x 轴交于点A 、B ,点A 在点B 左侧,与y 轴交于点C ,顶点记作D ,求四边形ADBC 的面积.21. 如图,在ABC 中,AB =AC =4,=B 4cos 1,AB 的垂直平分线交边AB 于点D ,交边AC 于点F ,交BC 的延长线于点E .(1)求CE 的长;(2)求∠EFC 的正弦值.22. 周末,小李计划从家步行到图书馆看书,如图,小李家在点A 处,现有两条路线:第一条是从家向正东方向前进200米到路口B ,再沿B 的南偏东45°方向到图书馆D ;第二条是从家向正南方向前进600米到路口C ,再沿C 的南偏东60°方向到图书馆D ,假设小李步行的速度大小保持不变,那么选择哪条路线更快到达图书馆? ≈≈≈1.41 2.45)23. 已知:如图,在等腰梯形ABCD 中,AD //BC ,AB =CD ,点E 在边AB 上,AC 与DE 交于点F ,∠ADE =∠DCA .(1)求证:⋅=⋅AF AC AE CD ;(2)如果点E 是边AB 的中点,求证:=⋅AB DF DE 22.24. 已知在平面直角坐标系xOy 中,抛物线()2230y ax ax a =−−≠与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠P AC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果1tan 2PEF ∠=,求平移后抛物线的表达式.25. 如图,已知正方形ABCD ,点P 是边BC 上的一个动点(不与点B 、C 重合),点E 在DP 上,满足AE =AB ,延长BE 交CD 于点F .(1)求证:∠BED =135°;(2)联结CE .①当CE BF ⊥时,求BP PC的值; ②如果CEF 是以CE 为腰的等腰三角形,求∠FBC 的正切值.。
2024年上海中考数学模拟练习卷十二及参考答案
上海市2024年中考数学模拟练习卷12(本试卷共25题,150分)一、选择题:(本大题共6题,每题4分,共24分)1.(2020•济宁)下列各式是最简二次根式的是()A .13B .12C .3aD .532.(2023•徐州)下列运算正确的是()A .236a a a ⋅=B .422a a a ÷=C .325()a a =D .224235a a a +=3.(2023•青浦区二模)下列关于x 的方程一定有实数解的是()A .2490x +=B .220x x +-=C .21x x-=-D .1211x x x +=--4.(2023•阜新)某中学甲、乙两支国旗护卫队的队员身高(单位:)cm 数据如下:甲队:178,177,179,179,178,178,177,178,177,179;乙队:178,177,177,176,178,175,177,181,180,181.若要判断哪支护卫队队员身高更为整齐,应该比较两组数据的()A .平均数B .众数C .中位数D .方差5.(2023秋•徐汇区月考)如图,在平行四边形ABCD 中,4AB =,6BC =,将线段AB 水平向右平移a 个单位长度得到线段EF ,若四边形ECDF 为菱形时,则a 的值为()A .1B .2C .3D .46.(2023•牡丹江)如图,正方形ABCD 的顶点A ,B 在y 轴上,反比例函数ky x=的图象经过点C 和AD 的中点E ,若2AB =,则k 的值是()A .3B .4C .5D .6二、填空题:(本大题共12题,每题4分,共48分)7.(2023•西藏)函数15y x =-中自变量x 的取值范围是.8.(2023•鞍山)因式分解:239x x -=.9.(2023•辽宁)如图,等边三角形ABC 是由9个大小相等的等边三角形构成,随机地往ABC ∆内投一粒米,落在阴影区域的概率为.10.(2023•常德)若关于x 的一元二次方程220x x a -+=有两个不相等的实数根,则实数a 的取值范围是.11.(2023231x -=的根是.12.(2023•新疆)若一个正多边形的每个内角为144︒,则这个正多边形的边数是.13.(2023•东营)如图,一束光线从点(2,5)A -出发,经过y 轴上的点(0,1)B 反射后经过点(,)C m n ,则2m n -的值是.14.(2023•虹口区二模)如图,在ABCD 中,点E 在边AD 上,且2AE ED =,CE 交BD 于点F ,如果AB a =,AD b = ,用向量a、b 表示向量DF =.15.(2023•长宁区一模)已知抛物线222(0)y ax ax a =-+>经过点1(1,)y -,2(2,)y ,试比较1y 和2y 的大小:1y 2y (填“>”,“<”或“=”).16.(2023•徐汇区二模)如图,已知O 的内接正方形ABCD ,点F 是 CD的中点,AF 与边DC 交于点E ,那么EFAE=.17.(2023秋•普陀区校级期末)已知,如图,正方形ABCD ,点E 、F 分别是边BC 、CD 上的两个动点,如果EAF ∠的大小始终保持45︒不变.将ABE ∆绕着点A 顺时针方向旋转90︒,点B 、E 的对应点分别为点G 、H .如果AE =,那么AEH ∆的面积为2m .18.(2023•宝山区二模)如果一个三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“倍角互余三角形”.已知在Rt ABC ∆中,90ACB ∠=︒,4AC =,5BC =,点D 在边BC 上,且ABD ∆是“倍角互余三角形”,那么BD 的长等于.三、解答题:(本大题共7题,10+10+10+10+12+12+14,共78分)19.(2023•内蒙古)计算:021|2|(2023)()2cos 602π--+-+--︒.20.(2023•松江区二模)解方程组:2221024x y x xy y --=⎧⎨++=⎩①②.21.(2023•丽水)我市“共富工坊”问海借力,某公司产品销售量得到大幅提升.为促进生产,公司提供了两种付给员工月报酬的方案,如图所示,员工可以任选一种方案与公司签订合同.看图解答下列问题:(1)直接写出员工生产多少件产品时,两种方案付给的报酬一样多;(2)求方案二y 关于x 的函数表达式;(3)如果你是劳务服务部门的工作人员,你如何指导员工根据自己的生产能力选择方案.22.(2023•内蒙古)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A 点为出发点,途中设置两个检查点,分别为B 点和C 点,行进路线为A B C A →→→.B 点在A 点的南偏东25︒方向处,C 点在A 点的北偏东80︒方向,行进路线AB 和BC 所在直线的夹角ABC ∠为45︒.(1)求行进路线BC 和CA 所在直线的夹角BCA ∠的度数;(2)求检查点B 和C 之间的距离(结果保留根号).23.(2023•杨浦区二模)已知:在直角梯形ABCD 中,//AD BC ,90A ∠=︒,ABD ∆沿直线BD 翻折,点A 恰好落在腰CD 上的点E 处.(1)如图,当点E 是腰CD 的中点时,求证:BCD ∆是等边三角形;(2)延长BE 交线段AD 的延长线于点F ,联结CF ,如果2CE DE DC =⋅,求证:四边形ABCF 是矩形.24.(2023•随州)如图1,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -,(2,0)B 和(0,2)C ,连接BC ,点(P m ,)(0)n m >为抛物线上一动点,过点P 作PN x ⊥轴交直线BC 于点M ,交x 轴于点N .(1)直接写出抛物线和直线BC 的解析式;(2)如图2,连接OM ,当OCM ∆为等腰三角形时,求m 的值;(3)当P 点在运动过程中,在y 轴上是否存在点Q ,使得以O ,P ,Q 为顶点的三角形与以B ,C ,N 为顶点的三角形相似(其中点P 与点C 相对应),若存在,直接写出点P 和点Q 的坐标;若不存在,请说明理由.25.(2023•上海)如图(1)所示,已知在ABC ∆中,AB AC =,O 在边AB 上,点F 是边OB 中点,以O 为圆心,BO 为半径的圆分别交CB ,AC 于点D ,E ,连接EF 交OD 于点G .(1)如果OG DG =,求证:四边形CEGD 为平行四边形;(2)如图(2)所示,连接OE ,如果90BAC ∠=︒,OFE DOE ∠=∠,4AO =,求边OB 的长;(3)连接BG ,如果OBG ∆是以OB 为腰的等腰三角形,且AO OF =,求OGOD的值.参考答案一、选择题:(本大题共6题,每题4分,共24分)123456ABBDBB二、填空题:(本大题共12题,每题4分,共48分)7.5x ≠.8.3(3)x x -9.59.10.1a <11.2x =.12.10.13.1-.14.1144a b -15.>16..17.5.18.或95三、解答题:(本大题共7题,共78分)解答应写出文字说明、证明过程或演算步骤.19.(10分)解:原式121422=++-⨯2141=++-2=+.20.(10分)解:由方程②得:2()4x y +=,2x y +=,2x y +=-,即组成方程组212x y x y -=⎧⎨+=⎩或212x y x y -=⎧⎨+=-⎩,解这两个方程组得:5313x y ⎧=⎪⎪⎨⎪=⎪⎩或11x y =-⎧⎨=-⎩,即原方程组的解为:5313x y ⎧=⎪⎪⎨⎪=⎪⎩或11x y =-⎧⎨=-⎩.21.(10分)解:(1)观察图象得:方案一与方案二相交于点(30,1200),∴员工生产30件产品时,两种方案付给的报酬一样多;(2)设方案二的函数图象解析式为y kx b =+,将点(0,600)、点(30,1200)代入解析式中:301200600k b b +=⎧⎨=⎩,解得:20600k b =⎧⎨=⎩,即方案二y 关于x 的函数表达式:20600y x =+;(3)由两方案的图象交点(30,1200)可知:若生产件数x 的取值范围为030x <,则选择方案二,若生产件数30x =,则选择两个方案都可以,若生产件数x 的取值范围为30x >,则选择方案一.22.(10分)解:(1)由题意得:80NAC ∠=︒,25BAS ∠=︒,18075CAB NAC BAS ∴∠=︒-∠-∠=︒,45ABC ∠=︒ ,18060ACB CAB ABC ∴∠=︒-∠-∠=︒,∴行进路线BC 和CA 所在直线的夹角BCA ∠的度数为60︒;(2)过点A 作AD BC ⊥,垂足为D ,在Rt ABD ∆中,AB =,45ABC ∠=︒,2sin 453()2AD AB km ∴=⋅︒=,cos 453()2BD AB km =⋅︒==,在Rt ADC ∆中,60ACB ∠=︒,)tan 60AD CD km ===︒,(3BC BD CD km ∴=+=+,∴检查点B 和C 之间的距离(3km +.23.(12分)证明:(1)由折叠得:ADB BDE ∠=∠,90A DEB ∠=∠=︒, 点E 是腰CD 的中点,BE ∴是DC 的垂直平分线,DB BC ∴=,BDE C ∴∠=∠,BDE C ADB ∴∠=∠=∠,//AD BC ,180ADC C ∴∠+∠=︒,180BDE C ADB ∴∠+∠+∠=︒,60BDE C ADB ∴∠=∠=∠=︒,BCD ∴∆是等边三角形;(2)过点D 作DH BC ⊥,垂足为H ,90DHB DHC ∴∠=∠=︒,//AD BC ,90A ∠=︒,18090ABC A ∴∠=︒-∠=︒,∴四边形ABHD 是矩形,AD BH ∴=,AB DH =,由折叠得:90A DEB ∠=∠=︒,AB BE =,18090BEC DEB ∴∠=︒-∠=︒,DH BE =,90BEC DHC ∠=∠=︒ ,BCE DCH ∠=∠,()BCE DCH AAS ∴∆≅∆,DC BC ∴=,CE CH =,//AD BC ,DFE EBC ∴∠=∠,FDE ECB ∠=∠,FDE BCE ∴∆∆∽,∴CE BCDE DF =,2CE DE DC =⋅ ,∴CE DCDE CE =,∴BC DCDF CE =,DF CE ∴=,CH DF ∴=,AD DF BH CH ∴+=+,AF BC ∴=,∴四边形ABCF 是平行四边形,90A ∠=︒ ,∴四边形ABCF 是矩形.24.(12分)解:(1) 抛物线2y ax bx c =++过点(1,0)A -,(2,0)B ,∴抛物线的表达式为(1)(2)y a x x =+-,将点(0,2)C 代入得,22a =-,1a ∴=-,∴抛物线的表达式为(1)(2)y x x =-+-,即22y x x =-++.设直线BC 的表达式为y kx t =+,将(2,0)B ,(0,2)C 代入得,202k t t +=⎧⎨=⎩,解得12k t =-⎧⎨=⎩,∴直线BC 的表达式为2y x =-+.(2) 点M 在直线BC 上,且(,)P m n ,∴点M 的坐标为(,2)m m -+,2OC ∴=2222(0)(22)2CM m m m ∴=-+-+-=,2222(2)244OM m m m m =+-+=-+,当OCM ∆为等腰三角形时,①若CM OM =,则22CM OM =,即222244m m m =-+,解得1m =;②若CM OC =,则22CM OC =,即224m =,解得m =或m =;③若OM OC =,则22OM OC =,即22444m m -+=,解得2m =或0m =(舍去).综上,1m =或m =2m =.(3) 点P 与点C 相对应,POQ CBN ∴∆∆∽或POQ CNB ∆∆∽,①若点P 在点B 的左侧,则45,2,CBN BN m CB ∠=︒=-=,当POQ CBN ∆∆∽,即45POQ ∠=︒时,直线OP 的表达式为y x =,22m m m ∴-++=,解得m =或m =,∴2224OP =+=,即2OP =,∴OP OQBC BN =解得1OQ =-,∴1)P Q -,当POQ CNB ∆∆∽,即45PQO ∠=︒时,22,222PQ OQ m m m m m ==-+++=-++,∴PQ OQCB BN =2222m m m -++=-,解得1m =(舍去).当POQ CNB ∆∆∽,即45PQO ∠=︒时,PQ =,22(2)2OQ m m m m =--++=-,∴PQ OQCB BN =222m m -=-,解得m =,(负值舍去),113713(,)39P ++∴,4213(0.9Q -.②若点P 在点B 的右侧,则135CBN ∠=︒,2BN m =-,当POQ CBN ∆∆∽,即135POQ ∠=︒时,直线OP 的表达式为y x =-,22m m m ∴-++=-,解得1m =或1m =-(舍去),∴OP ==+∴OPOQBC BN ==解得1OQ =,∴(11(0,1)P Q +--,当POQ CNB ∆∆∽,即135PQO ∠=︒时,PQ =,22|2|22OQ m m m m m =-+++=--,∴PQ OQCB BN =2222m m m --=-,解得1m =或1m =-,∴(13(0,2)P Q +---,综上,P ,1)Q -或P ,Q 或(11P +--,(0,1)Q 或(13P --,(0,2)Q -.25.(14分)(1)证明:如图:AC AB = ,ABC C ∴∠=∠,OD OB = ,ODB ABC ∴∠=∠,C ODB ∴∠=∠,//OD AC ∴,F 是OB 的中点,OG DG =,FG ∴是OBD ∆的中位线,//FG BC ∴,即//GE CD ,∴四边形CEGD 是平行四边形;(2)解:如图:由OFE DOE ∠=∠,4AO =,点F 边OB 中点,设OFE DOE α∠=∠=,OF FB a ==,则2OE OB a ==,由(1)可得//OD AC ,AEO DOE α∴∠=∠=,OFE AEO α∴∠=∠=,A A ∠=∠ ,AEO AFE ∴∆∆∽,∴AE AO AF AE=,即2AE AO AF =⋅,在Rt AEO ∆中,222AE EO AO =-,22EO AO AO AF ∴-=⨯,22(2)44(4)a a ∴-=⨯+,解得:1332a +=或1332a -=(舍去),2133OB a ∴==(3)解:①当OG OB =时,点G 与点D 重合,不符合题意,舍去;②当BG OB =时,延长BG 交AC 于点P ,如图所示,点F 是OB 的中点,AO OF =,AO OF FB ∴==,设AO OF FB a ===,//OG AC ,BGO BPA ∴∆∆∽,∴2233OG OB aAP AB a ===,设2OG k =,3AP k =,//OG AE ,FOG FAE ∴∆∆∽,∴122OG OF aAE AF a ===,24AE OG k ∴==,PE AE AP k ∴=-=,设OE 交PG 于点Q ,//OG PE ,QPE QGO ∴∆∆∽,∴22GO QG OQkPE PQ EQ k ====,13PQ a ∴=,23QG a =,24,33EQ a OQ a ==,在PQE ∆与BQO ∆中,13PQ a =,28233BQ BG QG a a a =+=+=,∴14PQ QE OQ BQ ==,又PQE BQO ∠=∠,PQE OQB ∴∆∆∽,∴14 PEOB=,∴1 24 ka=,2a k∴=,2OD OB a==,2OG k=,∴2122 OG k kOD a a===,∴OGOD的值为12.。
2024年上海中考数学模拟练习卷十三及参考答案
上海市2024年中考数学模拟练习卷13(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:(本大题共6题,每题4分,共24分.下列各题四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上.)1.下列实数中,有理数是()A .2πB C .227D .122.下列计算中,正确的是()A .3362a a a +=B .()336a a =C .34a a a ⋅=D .222()a b a b -=-3.下列各统计量中,表示一组数据波动程度的量是()A .方差B .众数C .平均数D .频数4.平面直角坐标系xOy 中,若点12(),A x 和2(,4)B x 在反比例函数(0)ky k x=>图像上,则下列关系式正确的是()A .120x x >>B .210x x >>C .120x x <<D .210x x <<5.下列命题中正确的是()A .对角线相等的四边形是矩形.B .对角线互相垂直平分且相等的四边形是正方形C .对角线互相垂直的四边形是菱形D .一组对边相等,另一组对边平行的四边形是平行四边形6.如图,在梯形ABCD 中,已知AD BC ∥,3AD =,9BC =,6AB =,4CD =,分别以AB 、CD 为直径作圆,这两圆的位置关系是()A .内切B .外切C .相交D .外离二、填空题:(本大题共12题,每题4分,共48分.)7.当1x <时,化简:1x -=.8.已知()(1)f x x x =-,那么(3)f =.9.如果一个等腰直角三角形的面积是5,那它的直角边长是.10.如果将抛物线()2213y x =-+向左平移2个单位,那么所得新抛物线的表达式是.11.用换元法解方程221201x x x x -++=-时,如果设21x y x -=,那么原方程可化为关于y 的整式方程为.12.一个袋子里装有10个材质均匀,大小相同,颜色不同的球,每个球上面都标有0到9中任意一个数字.现从中任意摸取一个球,摸取到数字是合数的球的概率是.13.如图,已知AD BE CF ∥∥,它们依次交直线1l 于点A B C 、、,交直线2l 于点D E F 、、,已知:3:510AB AC DF ==,,那么EF 的长为.14.已知一斜坡的坡比为1:2,坡角为α,那么sin α=.15.如图,在方格纸上建立的平面直角坐标系中,将Rt △ABC 绕点C 按顺时针方向旋转90°,得到Rt △FEC ,则点A 的对应点F 的坐标是.16.如图,已知点O 是正六边形ABCDEF 的中心,记OD π= ,OF n =,那么OB =(用向量π 、n表示).17.新定义:函数图象上任意一点()P x y ,,y x -称为该点的“坐标差”,函数图象上所有点的“坐标差”的最大值称为该函数的“特征值”.一次函数()2321y x x =+-≤≤的“特征值”是.18.如图,在直角梯形ABCD 中,90A B ∠=∠=︒,ADC ∠与BCD ∠的平分线恰好交于AB 边上的点E 处,将CBE △绕点E 逆时针旋转至EFG ,点B 落在线段EC 上的点F 处,点C 落在点G 处,EG 、FG 分别与CD 交于M 、N ,2AB =,2BC =:DM MN 的值为.三、解答题:(本大题共7题,第19-22每题10分,第23-24每题12分,第25题14分,共78分.解答应写出文字说明,证明过程或演算步骤.)19.先化简,再求值:21232()222x x x x x++÷+-+,其中23x =+20.解方程组:2233021x y y x y ⎧--+=⎨-=⎩.21.A 、B 两城间的铁路路程为1800千米.为了缩短从A 城到B 城的行驶时间,列车实施提速,提速后速度比提速前速度每小时增加20千米.(1)如果列车提速前速度是每小时80千米,提速后从A 城到B 城的行驶时间减少t 小时,求t 的值;(2)如果提速后从A 城到B 城的行驶时间减少3小时,又这条铁路规定:列车安全行驶速度不超过每小时140千米.问列车提速后速度是否符合规定?请说明理由.22.如图,AD AE 、分别是ABC 边BC 上的高和中线,已知8BC =,1tan 3B =,45C ∠=︒.(1)求AD 的长;(2)求sin BAE ∠的值.23.已知:如图,点E 为□ABCD 对角线AC 上的一点,点F 在线段BE 的延长线上,且EF=BE ,线段EF与边CD 相交于点G .(1)求证:DF //AC ;(2)如果AB=BE ,DG=CG ,联结DE 、CF ,求证:四边形DECF 是矩形.24.如图,已知在平面直角坐标系xOy 中,抛物线212y x bx c =-++与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,2C .(1)求这条抛物线的表达式;(2)如果将抛物线向下平移m 个单位,使平移后的抛物线的顶点恰好落在线段BC 上,求m 的值;(3)如果点P 是抛物线位于第一象限上的点,联结PA ,交线段BC 于点E ,当:4:5PE AE =时,求点P 的坐标.25.如图,已知半圆O 的直径4AB =,C 是圆外一点,ABC ∠的平分线交半圆O 于点D ,且90BCD ∠=︒,连接OC 交BD 于点E .(1)当=45ABC ∠︒时,求OC 的长;(2)当60ABC ∠=︒时,求OEEC的值;(3)当BOE △为直角三角形时,求sin OCB ∠的值.参考答案:一、选择题:(本大题共6题,每题4分,共24分.下列各题四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上.)123456CCAABD二、填空题:(本大题共12题,每题4分,共48分.)7.1-x 8.6910.()2213y x =++11.y 2+2y +1=012.25/0.413.41415.()1,2-16.nπ-- 17.418.1:2三、解答题:(本大题共7题,第19-22每题10分,第23-24每题12分,第25题14分,共78分.解答应写出文字说明,证明过程或演算步骤.)19.解:21232()222x x x x x ++÷+-+=32(2)(2)(2)32x x x x x x ++⋅+-+=2x x -.当2x =+时,原式=20.解:2233021x y y x y ⎧--+=⎨-=⎩①②由②得y =2x ﹣1.③把③代入①,得3x 2﹣(2x ﹣1)2﹣(2x ﹣1)+3=0.整理后,得x 2﹣2x ﹣3=0.解得x 1=﹣1,x 2=3.把x 1=﹣1代入③,得y 1=﹣3.把x 2=3代入③,得y 2=5.所以,原方程组的解是1335x x y y =-=⎧⎧⎨⎨=-=⎩⎩;.21.(1)解:由题意得:提速前从A 城到B 城的所用时间为:18008022.5÷=(小时),提速后的速度为100千米/小时,∴提速后从A 城到B 城的所用时间为:180010018÷=(小时),∴提速后从A 城到B 城的行驶时间减少22.518 4.5t -==(小时);(2)解:设列车提速前速度是每小时x 千米,则180018003+20x x -=解得:120x =(舍去),x 100=,∴提速后的速度为100+20120140=<,符合规定.22.(1)解:∵AD 是ABC 边BC 上的高,∴90ADC ADB ∠=∠=︒,∵1tan 3B =,45C ∠=︒,∴3,BD AD CD AD==,∵48BC BD CD AD =+==,∴2AD =;(2)解:过点E 作EF AB ⊥于点F ,∵AE 分别是ABC 边BC 上的中线,∴142CE BE BC ===,∵1tan 3B =,∴13=EF BF ,∴3BF EF =,∵222BF EF BE +=,∴221016EF BE ==,∴5EF =,∵2CD AD ==,∴2DE CE CD =-=,∴AE ===∴5sin 5EF BAE AE ∠==.23.证明:(1) 四边形ABCD 是平行四边形,BO DO ∴=.EF BE = ,OE ∴是BDF V 的中位线.//DF OE ∴,即//AC DF .(2)AB BE = ,BAE BEA ∴∠=∠.四边形ABCD 是平行四边形,//AB CD ∴.BAE GCE ∴∠=∠.又BEA GEC ∠=∠ ,GEC GCE ∴∠=∠.GE CG ∴=.//DF AC ,∴△DFG ∽△CEG ,DG FGCG GE∴=.DG CG = ,FG GE ∴=.∴四边形DECF 是平行四边形.DG CG = ,FG GE =,GE CG =.DG CG FG GE ∴===.DC EF ∴=.∴四边形DECF 是矩形.24.解:(1)212y x bx c =-++ 与x 轴交于点(1,0)A -,与y 轴交于点(0,2)C .∴2102c b c =⎧⎪⎨=--+⎪⎩,解得:322b c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为213222y x x =-++;(2)221313252()22228y x x x =-++=--+,∴顶点坐标为3(2,258,213222y x x =-++ 与x 轴交于点A ,点B ,2130222x x ∴=-++,11x ∴=-,24x =,∴点(4,0)B ,设直线BC 解析式为y kx n =+,204n k n =⎧⎨=+⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线BC 解析式为122y x =-+,当32x =时,54y =,25515848m ∴=-=;(3)如图,过点E 作EF AB ⊥于F ,过点P 作PH AB ⊥于H ,//EF PH ∴,AEF APH ∴∆∆∽,∴AE AF EFAP AH PH==,:4:5PE AE = ,∴59AE AF EF AP AH PH ===,5AF x ∴=,9AH x =,51OF x ∴=-,91OH x =-,∴点191(51)22P x x ⎛⎫---+ ⎪⎝⎭,,,点21351(91)(91)222E x x x ⎛⎫---+-+ ⎪⎝⎭,,,1(51)22EF x ∴=--+,213(91)(91)222PH x x =--+-+,∴21(51)252139(91)(91)222x x x --+=--+-+,13x ∴=,∴点(2,3)P .25.(1)解:作OM BC ⊥于M,联结OD ,∵90BCD ∠=︒,∴OM DC ∥,∵BD 是ABC ∠的平分线,∴ABD CBD ∠=∠,∵OD OB =,∴ABD ODB ∠=∠,∴CBD ODB ∠=∠,∴∥OD BC ,∴四边形OMCD 是平行四边形,又90BCD ∠=︒,∴四边形OMCD 是矩形,∴122CM OD OB AB ====,∵=45ABC ∠︒,∴OBM 是等腰直角三角形,∴OM BM ===∴OC =;(2)解:作OM BC ⊥于M ,联结OD ,同理四边形OMCD 是矩形,∴122CM OD OB AB ====,∵60ABC ∠=︒,∴30BOM ∠=︒,∴112BM OB ==,∴213BC =+=,∵∥OD BC ,∴DOE BCE ∽△△,∴23OE OD EC BC ==;(3)解:作OM BC ⊥于M ,联结OD ,同理四边形OMCD 是矩形,∴122CM OD OB AB ====,试卷11当90EOB ∠=︒时,∵90COM BOM ∠+∠=︒,90OCB COM ∠+∠=︒,∴OCB BOM ∠=∠,又90COB OMB ∠=∠=︒,∴OCB BOM ∽△△,∴OB BC BM OB =,即222BMBM +=,解得1BM =(负值已舍),∴1BC CM BM =+=+,∴1sin 2OB OCB BC ∠==;当90OEB ∠=︒时,由垂径定理得DE BE =,∴OE 是线段BD 的垂直平分线,∴DC BC =,∴1452DCO BCO DCB ∠=∠=∠=︒,∴sin sin 452OCB ∠=︒=;综上,sin OCB ∠.。
上海市中考数学模拟训练试卷(3)
上海市中考数学模拟训练试卷(3)一.选择题(共6小题,满分24分,每小题4分)1.(4分)下列各组数中,互为相反数的是()A.﹣(﹣5)和﹣5B.2和﹣C.﹣|﹣0.31|和0.3D.﹣(+6)和+(﹣6)2.(4分)下列运算正确的()A.3m3﹣2m2=m B.2m2•m3=2m5C.(﹣2a﹣b)(2a+b)=4a2﹣b2D.(﹣2x2y3)2=4x4y53.(4分)对于反比例函数y=,下列说法正确的是()A.这个函数的图象分布在第二、四象限B.这个函数的图象既是轴对称图形又是中心对称图形C.点(﹣1,4)在这个函数图象上D.y随x的增大而增大4.(4分)某同学对数据16,20,20,36,5■,51进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.中位数B.平均数C.方差D.众数5.(4分)下列命题的逆命题是真命题的是()A.等边三角形是锐角三角形B.如果两个实数相等,那么它们的平方相等C.两直线平行,同位角相等D.如果两个角是直角,那么它们相等6.(4分)2022年2月4日﹣2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片.旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转()A.180°B.120°C.90°D.60°二.填空题(共12小题,满分48分,每小题4分)7.(4分)计算:﹣2a2b+5a2b=.8.(4分)已知f(x)=,f()+f()+⋯⋯+f()+f()+f()+ ++f()+⋯⋯+f()的值等于.9.(4分)方程组的解是.10.(4分)关于x的一元二次方程(x﹣2)2=a﹣1有实数根,则a的取值范围是.11.(4分)为迎接理化生实验操作考试,某校成立了物理、化学、生物实验兴趣小组,要求每名学生从物理、化学、生物三个兴趣小组中随机选取一个参加,则小华和小强都选取生物小组的概率是.12.(4分)一个农业合作社以64000元的成本收获了某种农产品80吨,目前可以以1200元/吨的价格售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.那么储藏个星期再出售这批农产品可获利122000元.13.(4分)某校对同学每周课外阅读时间进行统计,得到频数分布直方图(每组含前一个边界值,不含后一个边界值).如图所示,课外阅读时间不少于6小时的学生人数是人.14.(4分)已知点A(x1,y1)、B(x1﹣3,y2)在直线y=﹣2x+3上,则y1y2(用“>”、“<”或“=”填空)15.(4分)如图,已知点E在▱ABCD的边AD上,若=,=,=,那么=.16.(4分)如图所示,圆形水管的截面图中,若⊙O的半径OA=13m,水面宽AB=24m,则水的深度CD是m.17.(4分)如图,已知在△ABC中,D,E分别是AB,AC上的点,DE∥BC,=.若DE=2,则BC的长是.18.(4分)直线和圆有,即直线和圆相切时,这条直线叫做圆的切线.三.解答题(共7小题,满分78分)19.(10分)计算下列各题:(1)+﹣+(﹣)4;(2)﹣2×(﹣)÷().20.(10分)解不等式组.21.(10分)(1)已知一次函数的图象经过点(0,1)和(1,3),求这个函数的表达式.(2)已知y是x的反比例函数,且当x=2时,y=3,求当x=﹣3时y的值.22.(10分)如图,已知电线杆AB上有一盏路灯A.灯光下,身高1.2米的小明在点C处时,他的影子是CD,他从C处沿BC方向行走2.1米,到点E处时,他的影子是EF.在A处测得D、F的俯角分别是53°、37°.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)(1)影子长CD、EF分别是多少米?(2)求电线杆AB的高度.23.(12分)如图,在△ABC中,AB=AC,D是BC上一点、E是AD上一点,恰使∠CED =2∠BED=∠A.(1)探究∠BAD与∠ECA的关系并说明理由;(2)探究BD与CD的数量关系并说明理由;(3)若∠BAC=60°,DE=2,直接写出BC的长为:.24.(12分)如图1,抛物线y=﹣x2+bx+5与y轴相交于点A,过点A的直线y=﹣x+m 与抛物线相交于点B,且点B的横坐标为3.(1)求抛物线的解析式;(2)如图2,点D为对称轴右侧直线AB上方抛物线上一点,连接AD、BD,点D的横坐标为t,△ABD的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,点E为x轴上一点,连接AE、OD,AE与OD相交于点F,若AE=OD,tan∠AFD=,求△ABD的面积.25.(14分)如图,在平行四边形ABCD中,AB=4,BC=6,∠B=45°,点E为CD 上一动点,经过A、C、E三点的⊙O交BC于点F.(1)【操作与发现】当E运动到AE⊥CD处,利用直尺与圆规作出点E与点F.(保留作图痕迹)(2)在(1)的条件下,证明=.(3)【探索与证明】点E运动到任何一个位置时,求证=.(4)【延伸与应用】点E在运动的过程中,直接写出EF的最小值.。
2023年上海市中考模拟数学试卷及答案详解(精校打印)
2023年上海地区中考模拟卷(1)一.选择题(本大题共6题,每题4分,满分24分)1.6-的绝对值是()A .16-B .6-C .6D .162.下列运算正确的是()A .639a a a +=B .3412a a a ⋅=C .()2211a a +=+D .()2510a a =3.若点(),2A a -,(),3Bb -,(),2Cc 在反比例函数21m y x--=(m 是常数)的图像上,则a ,b ,c 的大小关系是()A .a b c >>B .a c b >>C .c a b >>D .b a c>>4.已知一组数据:20,23,25,25,27,这组数据的平均数和中位数分别是()A .24,25B .24,24C .25,24D .25,255.能说明“相等的角是对顶角”是假命题的一个反例是()A .B .C .D .6.如图所示,平面直角坐标系中点A 为y 轴上一点,且AO =AO 为底构造等腰ABO ,且120ABO ∠=︒,将ABO 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2023次平移结束时,点B 的对应点坐标为()A .()2022B .(C .(2023,D .(2024,二.填空题(本大题共12题,每题4分,满分48分)7.若单项式57x a b 与2y a b 为同类项,则x y +=_____.8.在平面直角坐标系xOy 中,给出如下定义:点A 到x 轴、y 轴距离的较大值,称为点A 的“长距”,当点P 的“长距”等于点Q 的“长距”时,称P ,Q 两点为“等距点”.若()13P k -+,,()443Q k -,两点为“等距点”,则k 的值为_______.9.如果4a -和2-互为相反数,那么=a ___________.10.已知实数m 、n 满足28m n -=,则代数式22314m n m -+-的最小值是_____.11.一个不透明的袋子里装有11个球,其中有5个红球和6个白球,这些球除颜色外无其他差别.从袋中随机取出一个球,则它是红球的概率为________.12.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.13.某校学生“数学速算”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有______人.14.将函数12y x =-的图象沿y 轴向上平移6个单位后,与反比例函数k y x =的图象交于点(,3)A n ,则k 的值为__.15.如图,在Rt ABC △中90ACB ∠=︒,30A ∠=︒,4AC =,以点A 为圆心,AC 为半径画弧交AB 于点D ,以点B 为圆心,BC 为半径画弧交AB 于点E ,则图中阴影部分的面积是_______(结果保留π)16.如图,在Rt ABC △中,90C ∠=︒,4BC =,43AC =C 的半径长为2,P 是ABC 边上一动点(可以与顶点重合),并且点P 到C 的切线长为m .若满足条件的点P 的位置有4个,则m 的取值范围是_____.17.如图,在平面直角坐标系中,将等边三角形ABC 的顶点B 与原点重合,边BC 放在x 轴上,顶点A 在第一象限内,点M 是线段BC 的中点,且2OM =,将ABC 绕点O 旋转30︒,记点M 的对应点为点N ,则点N 的坐标为_____.18.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+83=_____.三.解答题(本大题共7题,满分78分)19.(本大题满分10113012-⎛⎫︒-+- ⎪⎝⎭20.(本大题满分10份)已知:221111a P a a a a ⎛⎫=⋅- ⎪+--⎝⎭.(1)化简P ;(2)当a 满足不等式组10,26a a ->⎧⎨<⎩且a 为整数时,求P 的值.21.(本大题满分10分)【阅读理解】若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外x ,y ,z 构成“黄金数组”.【问题解决】(1)请你写出三个能构成“黄金数组”的实数;(2)已知三点A (m ,y 1),B (m +1,y 2),C (m +3,y 3)同在某一函数图像上,且三点的纵坐标恰好构成“黄金数组”.①当该函数为一次函数y x =,且m >0时,求实数m 的值;②当该函数为反比例函数4y x=时,求实数m 的值.22.(本大题满分10分)如图,OM 为一盏路灯的灯杆,已知该路灯的灯泡P 位于灯杆OM 上,地面上竖立着一个矩形单杠ABCD ,已知单杠右侧CD 杆在路灯灯泡P 的照射下的影子末端位于点E 处,已知O 、B 、C 、E 在一条直线上,且MO OE ⊥,AB OE ⊥,DC OE ⊥.(1)请在图中找出路灯灯泡P 的位置,并画出单杠左侧AB 杆在灯泡P 的照射下的影子BF ;(2)经测量4OB =米,2BF =米,单杠的高度2AB =米,请你计算路灯灯泡距地面的高度OP .23.(本大题满分12分,第(1)、(2)问满分各6分)如图,四边形ABCD 是平行四边形,E 为线段CB 延长线上一点,连结DE 交对角线AC 于点F ,ADE BAC ∠=∠.(1)求证:CF CA CB CE ⋅=⋅;(2)如果AC DE =,35BAC ∠=︒,则DFC ∠=______度.24.(本大题满分13分)如果一个函数的图象由两支组成,且每一支都满足y 随x 的增大而减小,那么称这个函数为“双减函数”,例如,我们学过的反比例函数6y x =就是“双减函数”.(1)已知“双减函数”a y x=的图象经过点()1b ,和()14--,b ,求该“双减函数”的解析式;(2)若关于x 的函数()()()3201(0)k x c x y k x c x ⎧-+≥⎪=⎨-+-<⎪⎩是“双减函数”(k 为整数),与直线y d =(d 为常数)有两个交点A B ,,且A B ,两点间的距离为定值6,求d 的取值范围;(3)若关于x 的函数()22(0)20x n x y x n x ⎧+<⎪=⎨-+-≥⎪⎩是“双减函数”,当0x ≠时,函数的图象关于原点对称.当2t x t ≤≤+时,y 的最大值为M ,y 的最小值为N ,且18M N -=,求t 的值.25.(本大题满分13分)长方形AOCD 在平面直角坐标系中的位置如图:()0,A a ,(),0C b ,满足100b -=.(1)求a ,b 的值;(2)点E 有边CD 上运动,将长方形AOCD 沿直线AE 折叠.①如图①,折叠后点D 落在边OC 上的点F 处,求点E 的坐标;②如图②.折叠后点D 落在x 轴下方的点F 处,AF 与OC 交于点M ,EF 与OC 交于点N ,且NC NF =,求DE 的长.参考答案1.C【分析】根据绝对值的定义即可求解.解:6-的绝对值是6,故选:C .【点拨】本题考查了求一个数的绝对值,熟练掌握绝对值的意义是解题的关键.2.D【分析】分别根据合并同类项、同底数幂的乘法、完全平方公式、幂的乘方等知识逐项判断即可求解.解:A.6a 和3a 不是同类项,不能合并,故原选项计算错误,不合题意;B.347a a a ⋅=,故原选项计算错误,不合题意;C.()22211a a a ++=+,故原选项计算错误,不合题意;D.()2510a a =,故原选项计算正确,符合题意.故选:D【点拨】本题考查了合并同类项、同底数幂的乘法、完全平方公式、幂的乘方等知识,熟知相关计算法则是解题关键.3.A【分析】由210m --<可知,反比例函数21(m y m x--=是常数)的图象在第二、四象限,在每一象限内y 随x 的增大而增大;由20-<,3-可知A ,B 在第四象限,且0a b >>,由20>可知:C 在第二象限,0c <,综上所述,结论可得.解:210m --< ,∴反比例函数21(m y m x--=是常数)的图象在第二、四象限,在每一象限内y 随x 的增大而增大.20-< ,30-<,A ∴,B 在第四象限,且0a b >>.20> ,C ∴在第二象限.0c ∴<.∴a b c >>.故选:A .【点拨】本题主要考查了反比例函数的性质,反比例函数图象上点的坐标的特征.熟记反比例函数图象的性质并熟练运用是解题的关键.4.A【分析】根据平均数及中位数的求法可进行求解.解:这组数据的平均数为2023252527245++++=,这组数据总共有5个,所以中位数为从小到大排列后的最中间的一个数据,故该组中位数为25;故选A .【点拨】本题主要考查平均数及中位数,熟练掌握平均数及中位数是解题的关键.5.A【分析】判断“相等的角是对顶角”什么情况下不成立,即找出两个相等的角不是对顶角即可.解:A 选项中两个角均为30︒,但不是对顶角,故符合题意;B 选项中两个角均为30︒,是对顶角,故不符合题意;C 、D 选项中两个角不相等,故不符合题意,故选:A .【点拨】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理.6.B12B B B ⋯⋯、、的坐标,从而得到平移的规律.解:作BC AO ⊥于点C ,∵120ABO ∠=︒,∴OC =,60OBC ∠=︒,∴在Rt OBC △中,tan 301BC OC =⋅︒=,∴由图观察可知,第1次平移相当于点B 向右平移1个单位,第2次平移相当于点B向上平移2个单位,⋅⋅⋅∵点B 的坐标为(,∴第n 次平移后点B 的对应点坐标为(1,1n n ⎡++⎣,按此规律可得第2023次平移后点B 的坐标为(;故选B .【点拨】本题考查了等腰三角形的性质和在平面直角坐标系中的平移规律,掌握等腰三角形的性质是解题的关键.7.7【分析】根据同类项的字母及相同字母的指数都相同,求出未知数的值后计算即可.解: 单项式57x a b 与2y a b 是同类项,2x ∴=,5y =,257x y +=+= .故答案为:7.【点拨】本题主要考查同类项的概念,能够熟练得到未知数的值是解题关键.8.1或2/2或1【分析】根据点到x 轴的距离为纵坐标的绝对值,点到y 轴的距离为横坐标的绝对值分两种情况:3434k k +=-≥或34k +=且434k -≤,据此讨论求解即可.解:∵()13P k -+,,()443Q k -,两点为“等距点”,∴3434k k +=-≥或34k +=且434k -≤,当3434k k +=-≥时,∴343k k +=-或343k k +=-+,解得2k =或0k =(舍去);当34k +=且434k -≤,∴34k +=或34k +=-,解得1k =或7k =-(舍去);综上所述,1k =或2k =,故答案为:1或2.【点拨】本题主要考查了点到坐标轴的距离,解绝对值方程,正确理解题意利用分类讨论的思想求解是解题的关键.9.6【分析】根据相反数的定义求解即可.解:∵4a -和2-互为相反数∴420a --=解得6a =故答案为6.【点拨】本题主要考查了相反数的定义,熟知互为相反数的两个数和为零是解题的关键.10.58【分析】根据题意把原式变形,根据配方法把原式写成含有完全平方的形式,根据8m ≥,即可求解.解:∵28m n -=,∴28n m =-,8m ≥,则22314m n m -+-()23814m m m =--+-232414m m m =-++-2210m m =-+()219m =-+∵8m ≥∴当8m =时取得最小值,最小值为()281958-+≥,故答案为:58.【点拨】本题考查配方法的应用和非负数的性质,解题的关键是掌握配方法的应用和非负数的性质.11.511【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求解.解:从袋中随机取出一个球,则它是红球的概率为511.故答案为:511.【点拨】本题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.12.4510【分析】设有x 棵树,根据“四只栖一树,五只没处去,五只栖一树,闲了一棵树”列出方程求解即可.解:设有x 棵树,由题意,4555x x +=-,∴10x =,∴4545x +=,故答案为:45;10.【点拨】本题考查了一元一次方程的应用,解题关键是读懂题意,找出相等关系,本题的相等关系为鸦的数量.13.135【分析】根据题意和直方图中的数据可以求得成绩在80分及以上的学生人数,本题得以解决.解:由直方图可得,成绩为在80分及以上的学生有:9045135+=(人),故答案为:135.14.18【分析】将函数12y x =-的图象沿y 轴向上平移6个单位后,得到的图象函数解析式为162y x =-+,把(,3)A n 代入162y x =-+得6n =,即()6,3A ,再把(6,3)A 代入k y x =即可得出答案.解:将函数12y x =-的图象沿y 轴向上平移6个单位后,得到的图象函数解析式为162y x =-+,把(,3)A n 代入162y x =-+得:16=32n -+,解得6n =,∴()6,3A ,把(6,3)A 代入k y x=得:=63=18k ⨯,解得18k =,故答案为:18.【点拨】本题考查一次函数与反比例函数的交点问题,一次函数图象的平移,熟练掌握函数图象上点的坐标特征是解题的关键.15.20π9【分析】根据扇形的面积公式分别计算出BCE S 扇形,ACD S 扇形,并且求出ABC 的面积,最后由ABC BCE ACD S S S S =+-阴影部分扇形扇形 即可得到答案.解:∵Rt ABC △中90ACB ∠=︒,30A ∠=︒,4AC =,∴=60B ∠︒,tan 433BC AC A =⋅∠=⨯=,∴BCE S =扇形2260π60π3π39360608BC ︒⨯⨯︒⨯⨯⎝⎭︒==︒,ACD S =扇形2230π30π44π3603603AC ︒⨯⨯︒⨯⨯︒==︒,ABC S =11422AC BC ⋅=⨯∴ABC BCE ACD S S S S =+-阴影部分扇形扇形8420πππ939=+=故答案为:20π9【点拨】本题考查了扇形的面积公式:2π360S n r =︒(其中n 为扇形的圆心角的度数,R 为圆的半径),观察所给图形得出ABC BCE ACD S S S =+-阴影部分扇形扇形 是解题的关键.16.m <<【分析】过点C 作CE AB ⊥于点E ,作EF 切C 于点F ,连接EF ,由勾股定理可得8AB =,再利用面积法求得CE =,然后根据勾股定理可得EF =BD 切C 于点D,求得BD =可知,点P 的位置有4个需要满足的条件是EF m BD <<,即m的取值范围是m <<解:如下图,过点C 作CE AB ⊥于点E ,作EF 切C 于点F ,连接EF,则2CF =,∵90C ∠=︒,4BC =,AC =∴8AB ,∵1122ABC S AC BC AB CE =⋅=⋅△,即114822CE ⨯=⨯⨯,∴CE =∵EF 是C 切线,∴EF CF ⊥,即90CFE ∠=︒,∴EF =作BD 切C 于点D ,则2CD =,BD CD ⊥,∴90CDB ∠=︒,∴BD ===,观察图形可知,点P 的位置有4个需要满足的条件是EF m BD <<,∴m 的取值范围是m <<故答案为:m <<【点拨】本题主要考查了切线的性质、勾股定理、利用面积法求线段的长度等知识,正确作出所需要的辅助线是解题的关键.17.)或)1-/)1-或)【分析】根据旋转性质,如图所示,2ON OM ==,分两种情况:①顺时针旋转30︒;②逆时针旋转30︒;作出图形,数形结合,利用含30︒特殊直角三角形三边关系求解即可得到答案.解:根据旋转变换的性质可知:2ON OM ==,分两种情况讨论:①将ABC 绕点O 逆时针旋转30︒,过点N 作NE x ⊥轴于点E ,如图1所示:∴在Rt ONE △中,90,30,2NEO NOE ON ∠=︒∠=︒=,则11,2NE ON OE ===,∴点N 的坐标为);②将ABC 绕点O 顺时针旋转30︒,过点N 作NF x ⊥轴于点F ,如图2所示:∴在Rt ONF △中,90,30,2NFO NOF ON ∠=︒∠=︒=,则11,2NF ON OF ===∴点N 的坐标为)1-;综上所述,点N 的坐标为)或)1-,故答案为:)或)1-.【点拨】本题考查旋转性质求点的坐标,涉及含30︒特殊直角三角形三边关系,熟练掌握含30︒直角三角形中30︒所对直角边是斜边的一半是解决问题的关键.18.236【分析】通过观察得到规律:左边是从1开始的连续自然数的立方和,右边是底数是从1开始的连续自然数的和,指数为2;根据此规律即可计算结果.解:由题意得:333322123836++++= =(1+2+3++8)故答案为:236.【点拨】本题是数字规律问题的探索,考查了有理数的运算及观察归纳能力.找到规律是问题的关键.19【分析】先计算特殊角的正切值、负整数指数幂、二次根式化简和去绝对值,再进行实数的加减运算,即可作答.113012-⎛⎫︒-+- ⎪⎝⎭)21=+121=-+=【点拨】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式、绝对值、特殊角的三角函数值等考点的运算.20.(1)1a ;(2)12【分析】(1)根据分式的混合运算进行计算即可求解.(2)先解不等式组,求得不等式组的整数解,代入(1)中结果,进行计算即可求解.(1)解:221111a P a a a a ⎛⎫=⋅- ⎪+--⎝⎭()21111a a a a -=+-()()()111=11a a a a a +-⋅+-1a =;(2)解:1026a a ->⎧⎨<⎩①②解不等式①得:1a >,解不等式②得:3a <∴不等式组的解集为:13a <<∴整数解2a =,∴112P a ==.【点拨】本题考查了分式的化简求值,求不等式组的解集,熟练掌握分式的化简求值,解一元一次不等式组是解题的关键.21.(1)2,3,65(答案不唯一);(2)①m =;②实数m 的值为-4或-2或2【分析】(1)任意选择两个数,根据定义计算即可;(2)①根据定义列得11113m m m =+++,计算即可;②根据定义分三种情况列方程解答.解:(1)∵115236+=,∴2,3,65三个数能构成“黄金数组”,故答案为:2,3,65;(2)①∵m >0,∴1m >11m +>13m +>0,由已知,有11113m m m =+++,解得m =经检验符合方程;②∵14y m =,241y m =+,343y m =+,当13444m m m ++=+时,解得4m =-,当13444m m m ++=+时,解得2m =-,当31444m m m ++=+时,解得2m =,∴实数m 的值为-4或-2或2.【点拨】此题考查了一元一次方程的应用,分式方程的应用,反比例函数的性质,正确理解题中的新定义,列出方程是解题的关键.22.(1)见分析;(2)6米【分析】(1)连接ED 并延长交OM 于点P ,连接PA 并延长交OE 于F ,点P 和BF 即为所求;(2)先求出6OF =米,证明ABF POF △∽△,得到AB BF PO OF=,即226PO =,则6PO =米.(1)解:如图所示,点P 和BF 即为所求;(2)解:∵4OB =米,2BF =米,∴6OF OB BF =+=米,∵MO OE ⊥,AB OE ⊥,即PO AB ∥,∴ABF POF △∽△,∴AB BF PO OF =,即226PO =,∴6PO =米,∴路灯灯泡距地面的高度OP 为6米.【点拨】本题主要考查了相似三角形的应用举例,熟知相似三角形的性质与判定条件是解题的关键.23.(1)见详解;(2)70【分析】(1)利用平行四边形性质,得到ADE E ∠=∠.结合已知找到BAC E ∠=∠.即可证明ACB ECF ∽.从而得到结论.(2)先证明ADF CEF △∽△.利用对应边成比例,结合已知AC DE =,得EF CF =,由三角形的外角定理得出结果.解:(1)证明: 四边形ABCD 是平行四边形,AD BC ∴∥,ADE E ∴∠=∠,ADE BAC ∠=∠ ,BAC E ∴∠=∠,ACB ECF ∠=∠ ,∴ACB ECF ∽,::AC EC CB CF ∴=,CF CA CB CE ∴⋅=⋅;(2)解:由(1)知ADE E ∠=,DFA EFC ∠=∠ ,∴ADF CEF △∽△,∴DF AF EF CF =,∴EF CF DE AC=,AC DE = .EF CF ∴=.E ACB ∴∠=∠,35BAC E ∠=∠=︒ ,70DFC E ACE ∴∠=∠+∠=︒,故答案为:70.【点拨】本题考查相似三角形的判定和性质,平行四边形性质等知识,关键在于熟悉各个知识点在本题中运用.24.(1)2y x =;(2)24d -<≤;(3)72或112-.【分析】(1)根据反比例函数经过点()1b ,和()14--,b 列方程即可解答;(2)根据双减函数的定义求出k 的值,再根据函数与y d =有两个交点并且交点距离是一个定值即可解答;(3)根据题意求出双减函数的解析式,再利用函数的性质分三种情况分别得到t 的值.(1)解:依题意得11(4)a b a b =⋅⎧⎨=-⋅-⎩,即4a b a b =⎧⎨=-+⎩,解得22a b =⎧⎨=⎩,∴该“双减函数”的解析式为2y x=.(2)解:依题意得3010k k -<⎧⎨-+<⎩解得13k <<,又∵k 为整数,∴2k =,∴2(0)(0)x c x y x c x -+≥⎧=⎨--<⎩,①当0c ≥时,如图1.由2y x c y d =-+⎧⎨=⎩,解得2x c d y d =-⎧⎨=⎩,由y x c y d =--⎧⎨=⎩,解得x c d y d=--⎧⎨=⎩∴()()236AB c d c d c =----==,∴2c =,由图象可得,2c d c -<≤,∴24d -<≤;②当0c <时,如图2.()20(0)x c x y x c x ⎧-+≥=⎨--<⎩的图象与直线y d =(d 为常数)没有两个交点,∴不符合要求.综上所述,d 的取值范围是24d -<≤.(3)解:根据题意可知:当1x =时,123y n n =-+-=-;当=1x -时,()211y n n =-+=+.∵当0x ≠时,函数的图象关于原点对称,∴()()310n n -++=,解得1n =,∴()221(0)10x x y x x ⎧+<⎪=⎨--≥⎪⎩函数图象如图3.①当0t ≥时:当x t =时,y 最大;当2x t =+时,y 最小,∴21M t =--,22(2)145N t t t =-+-=---,∵18M N -=,∴22(1)(45)18t t t ------=,解得72t =;②当20t -≤<时:当x t =时,y 最大;当2x t =+时,y 最小,∴21M t =+,22(2)145N t t t =-+-=---,∵18M N -=,∴22(1)(45)18t t t +----=,2260t t +-=,解得1t =-±(舍去);③当2t <-时:当x t =时,y 最大:当2x t =+时,y 最小,∴21M t =+,22(2)145N t t t =++=++.∵18M N -=,∴22(1)(45)18t t t +-++=,解得112t =-,综上所述,t 的值为72或112-.【点拨】本题考查了新定义双减函数,一次函数性质和图象,反比例函数的性质和图象,二次函数的25.(1)8,10a b ==;(2)①(103),②203【分析】(1)根据非负数的性质求解即可;(2)①设CE x =,根据折叠和勾股定理得出8DE EF x ==-,4FC =,再根据勾股定理列出方程即可;②根据NC NF =,证明MFN ECN ≅ ,设DE m =,可知CM EF m ==,8FM CE m ==-,2AM m =+,根据勾股定理列出方程即可.(1100b -=,∴80,100a b -=-=,∴8,10a b ==.(2)解:①由(1)得()0,8A ,()10,0C ,∴810OA CD DA CO ====,,21由折叠可知,10FA AD ==,DE EF =,∴6OF =,4CF OC OF =-=,设CE x =,则8DE EF x ==-,∴2224(8)x x +=-,解得,3x =,所以,点E 的坐标为(103),.②∵NC NF =,MNF ENC ∠=∠,90F ECN ∠=∠=︒,∴MFN ECN ≅ ,∴EC MF =,NE NM =,设DE m =,则8EC MF m ==-,DE EF MC m ===,2AM AF FM m =-=+,10OM OC MC m =-=-,∴222(10)8(2)m m -+=+,解得,203m =;DE 的长为203.【点拨】本题考查了矩形的性质和勾股定理,解题关键是根据折叠找出线段之间的等量关系,利用勾股定理列出方程.22。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年上海市中考数学模拟试卷(5月份)一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)如果a与3互为相反数,那么a等于()A.3 B.﹣3 C.D.2.(4分)下列根式中,最简二次根式是()A.B.C.D.3.(4分)下列事件中,属于随机事件的是()A.()2=aB.若a>b(ab≠0),则<C.|a|?|b|=|ab|D.若m为整数,则(m+)2+是整数4.(4分)抛物线y=(x+5)2﹣1先向右平移4个单位,再向上平移4个单位,得到抛物线的解析式为()A.y=x2+18x+84 B.y=x2+2x+4 C.y=x2+18x+76 D.y=x2+2x﹣2 5.(4分)若一个正n变形(n为大于2的整数)的半径为r,则这个正n变形的边心距为()A.r?sin B.r?cos C.r?sin D.r?cos6.(4分)下列命题中真命题的个数是()①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.A.1个B.2个C.3个D.4个二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:a6(﹣a2)= .8.(4分)一次函数y=﹣kx+2k(k<0)的图象不经过第象限.9.(4分)实数范围内因式分解:2x2+4xy﹣3y2= .10.(4分)若关于x的一元二次方程x2+2x=m有两个实数根,则实数m的取值范围是.11.(4分)正方形有条对称轴.12.(4分)如图,直线AB分别交直线a和直线b于点A,B,且a∥b,点C在直线b上,且它到直线a和到直线AB的距离相等,若∠ACB=77°,则∠ABC= .13.(4分)某次对中学生身高的抽样调查中测得5个同学的身高如下(单位:cm):172,171,175,174,178,则这组数据的方差为.14.(4分)一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若对这两题均每题随机选择其中任意一个选项作为答案,则2道选择题答案全对的概率为.15.(4分)点A,B分别是双曲线y=(k>0)上的点,AC⊥y轴正半轴于点C,BD⊥y轴于点D,联结AD,BC,若四边形ACBD是面积为12的平行四边形,则k= .16.(4分)△ABC中,点D在边AB上,点E在边AC上,联结DE,DE是△ABC的一条中位线,点G是△ABC的重心,设=,=,则= (用含,的式子表示)17.(4分)我们把有一条边是另一条边的2倍的梯形叫做“倍边梯形”,在⊙O中,直径AB=2,PQ是弦,若四边形ABPQ是“倍边梯形”,那么PQ的长为.18.(4分)在矩形ABCD中,P在边BC上,联结AP,DP,将△ABP,△DCP分别沿直线AP,DP翻折,得到△AB1P,△DC1P,且点B1,C1,P在同一直线上,线段C1P交边AD于点M,联结AC1,若∠AC1D=135°,则= .三、解答题(本大题共7小题,共78分)19.(10分)计算:×cot30°﹣8+|cos30°﹣2|×20170.20.(10分)解不等式组:,并把解集在数轴上表示出来.21.(10分)如图,在△ABC中,∠A=90°,AB=3,AC=4,点D,E,F分别在边AB,BC,AC上,且四边形ADEF是正方形,联结AE.(1)求AE的长;(2)求∠AEB的正弦值.22.(10分)小金到一文具店用12元钱买某种练习本若干本,隔了一段时间他再去那个店,发现这种练习本正在“让利销售”中,每1本降价元,这样用12元可以比上次多买3本,求小金第一次买的练习本的数量.23.(12分)如图,四边形ABCD是菱形,点E在AB延长线上,联结AC,DE,DE分别交BC,AC于点F,G,且CD?AE=AC?AG.求证:(1)△ABC∽△AGE;(2)AB2=GD?DE.24.(12分)如图,已知在平面直角坐标系xOy中,O为坐标原点,点A,B分别在x轴上(点A在原点左侧,点B在原点右侧),OB=4OA,经过点A,B的抛物线交y轴于点C(0,2),且∠ACB=90°.(1)求抛物线的解析式;(2)点N为该抛物线第一象限上一点,满足∠NOC=∠CBO,联结BN,NO,求△BON的面积;(3)点D为抛物线对称轴上一点,且在x轴下方,点E在y轴负半轴上,当以B,E,D为顶点的三角形与△ABC相似时(∠DBE与∠ABC为对应角),求点D的坐标.25.(14分)如图,在⊙O中,半径OA长为1,弦BC∥OA,射线BO,射线CA交于点D,以点D为圆心,CD为半径的⊙D交BC延长线于点E.(1)若BC=,求⊙O与⊙D公共弦的长;(2)当△ODA为等腰三角形时,求BC的长;(3)设BC=x,CE=y,求y关于x的函数关系式,并写出定义域.2017年上海市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)如果a与3互为相反数,那么a等于()A.3 B.﹣3 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:如果a与3互为相反数,那么a等于﹣3,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)下列根式中,最简二次根式是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数不含能开得尽方的因数或因式,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.(4分)下列事件中,属于随机事件的是()A.()2=aB.若a>b(ab≠0),则<C.|a|?|b|=|ab|D.若m为整数,则(m+)2+是整数【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、()2=a是必然事件,故A不符合题意;B、若a>b>0时(ab≠0),则<,a>0>b时,>,是随机事件,故B符合题意;C、|a|?|b|=|ab是必然事件,故C不符合题意;D、若m为整数,则(m+)2+=m2+m+2是整数是必然事件,故D不符合题意;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(4分)抛物线y=(x+5)2﹣1先向右平移4个单位,再向上平移4个单位,得到抛物线的解析式为()A.y=x2+18x+84 B.y=x2+2x+4 C.y=x2+18x+76 D.y=x2+2x﹣2【分析】先确定出原抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后根据顶点式解析式写出解析式即可.【解答】解:抛物线y=(x+5)2﹣1的顶点坐标为(﹣5,﹣1),∵向右平移4个单位,再向上平移4个单位,∴平移后的抛物线顶点坐标为(﹣1,3),∴所得抛物线的解析式是y=(x+1)2+3=x2+2x+4.故选:B.【点评】本题考查了二次函数图象与几何变换,利用顶点的变换确定抛物线的变换是解题的关键.5.(4分)若一个正n变形(n为大于2的整数)的半径为r,则这个正n 变形的边心距为()A.r?sin B.r?cos C.r?sin D.r?cos【分析】先根据题意画出图形,根据正n边形的半径为r,得出圆的半径为r,由垂径定理及锐角三角函数的定义即可求解.【解答】解:如图所示,过点O作OF⊥AB于点F交圆O于点E,设正n边形的半径为r,则圆的半径为r,∵∠AOF==,∴OF=rcos ,边心距为r=rcos ,n故选:D.【点评】本题考查的是正多边形和圆、垂径定理及锐角三角函数的定义,根据题意画出图形,利用数形结合是解答此题的关键.6.(4分)下列命题中真命题的个数是()①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【解答】解:①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选:B.【点评】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:a6(﹣a2)= ﹣a8.【分析】根据同底数幂的乘法法则即可求出答案.【解答】解:原式=﹣a8,故答案为:﹣a8【点评】本题考查同底数幂的乘法,解题的关键是熟练运用同底数幂的乘法法则,本题属于基础题型.8.(4分)一次函数y=﹣kx+2k(k<0)的图象不经过第二象限.【分析】根据一次函数的性质即可得到结论.【解答】解:当k<0时,﹣k>0,函数图象经过第一三四象限,不经过第二象限,故答案为二.【点评】本题考查了一次函数的性质,对于一次函数y=kx+b,k>0时,函数图象经过第一三象限,y随x的增大而增大;k<0时,函数图象经过第二四象限,y随x的增大而减小.9.(4分)实数范围内因式分解:2x2+4xy﹣3y2= (x+)(x﹣).【分析】将原式在实数范围内分解即可.【解答】解:令2x2+4xy﹣3y2=0,解得:x==,则原式=(x+)(x﹣),故答案为:(x+)(x﹣)【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.10.(4分)若关于x的一元二次方程x2+2x=m有两个实数根,则实数m的取值范围是m≥﹣1 .【分析】将原方程变形为一般式,由方程有两个实数根,可得出△=4+4m ≥0,解之即可得出实数m的取值范围.【解答】解:原方程可变形为x2+2x﹣m=0.∵方程x2+2x=m有两个实数根,∴△=22+4m=4+4m≥0,解得:m≥﹣1.故答案为:m≥﹣1.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有两个实数根”是解题的关键.11.(4分)正方形有 4 条对称轴.【分析】根据正方形是轴对称图形的性质分析.【解答】解:根据正方形的性质得到,如图:正方形的对称轴是两组对边中线所在直线和两组对角线所在直线,共有4条.故答案为:4.【点评】此题主要考查正方形的性质.12.(4分)如图,直线AB分别交直线a和直线b于点A,B,且a∥b,点C在直线b上,且它到直线a和到直线AB的距离相等,若∠ACB=77°,则∠ABC= 26°.【分析】根据平行线的性质求出∠MAC,根据角平分线性质求出∠BAC,根据三角形内角和定理求出即可.【解答】解:∵a∥b,∠ACB=77°,∴∠MAC=∠ACB=77°,∵点C在直线b上,且它到直线a和到直线AB的距离相等,∴∠BAC=∠MAC=77°,∴∠ABC=180°﹣∠BAC ﹣∠ACB=26°, 故答案为:26°.【点评】本题考查了角平分线性质和平行线的性质,能根据角平分线性质求出∠BAC=∠MAC 是解此题的关键.13.(4分)某次对中学生身高的抽样调查中测得5个同学的身高如下(单位:cm ):172,171,175,174,178,则这组数据的方差为 6 .【分析】先由平均数的公式计算出这组数据的平均数,再根据方差的公式计算即可得出答案.【解答】解:这组数据的平均数是:(172+171+175+174+178)÷5=174(cn ), 则这组数据的方差为S 2=[(172﹣174)2+(171﹣174)2+(175﹣174)2+(174﹣174)2+(178﹣174)2]=6; 故答案为:6.【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(4分)一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若对这两题均每题随机选择其中任意一个选项作为答案,则2道选择题答案全对的概率为.【分析】根据题意可以写出所有的可能性,从而可以求得2道选择题答案全对的概率.【解答】解:假设第1道选择题选项分别为A、B、C、D,选项A是正确的,第2道选择题选项分别为A、B、C、D,选项A是正确的,如图所示:出现的可能性是16种,则2道选择题答案全对的概率为.故答案为:.【点评】本题考查列表法与树状图法,解答此类问题的关键是明确题意,写出所有的可能性.15.(4分)点A,B分别是双曲线y=(k>0)上的点,AC⊥y轴正半轴于点C,BD⊥y轴于点D,联结AD,BC,若四边形ACBD是面积为12的平行四边形,则k= 6 .【分析】先根据四边形ACBD为平行四边形的性质和反比例函数的对称性得到A点与点B关于原点对称,然后根据平行四边形的性质和k的几何意义求解.【解答】解:∵点A,B分别是双曲线y=(k>0)上的点,AC⊥y轴正半轴于点C,BD⊥y轴于点D,∴AC∥BD,∵四边形ACBD是面积为12的平行四边形,∴AC=BD,∴A点与点B关于原点对称,∴OA=OB,OC=OD,∴S四边形ACBD =4S△AOC=12,∴S△AOC=3,∴k=6,故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,平行四边形的性质,正确的理解题意是解题的关键.16.(4分)△ABC中,点D在边AB上,点E在边AC上,联结DE,DE是△ABC的一条中位线,点G是△ABC的重心,设=,=,则=﹣(用含,的式子表示)【分析】延长AG交BC于点F,根据重心的性质可得出=,由DE为△ABC的中位线可得出=,根据=,结合=﹣,即可用含,的式子表示出.【解答】解:延长AG交BC于点F,如图所示.∵点G是△ABC的重心,∴=2,∴=+=.∵DE是△ABC的一条中位线,∴===﹣=﹣.故答案为:﹣.【点评】本题考查了三角形的重心、三角形中位线定理以及平面向量,根据三角形重心的性质找出=是解题的关键.17.(4分)我们把有一条边是另一条边的2倍的梯形叫做“倍边梯形”,在⊙O中,直径AB=2,PQ是弦,若四边形ABPQ是“倍边梯形”,那么PQ的长为 1 .【分析】由梯形知AB∥PQ,据此可得AQ=BP,即四边形ABPQ是等腰梯形,再根据“倍边梯形”的定义分AB=2PQ和AB=2AQ两种情况求解可得.【解答】解:如图,∵四边形ABPQ是梯形,∴PQ∥AB,∴AQ=PB,∵四边形ABPQ是“倍边梯形”,且AB=2,∴当AB=2PQ时,PQ=1;当AB=2AQ=2时,AQ=PB=1,∵OA=OQ=OP=OB=1,∴△AOQ、△BOP均为等边三角形,∴∠AOQ=∠BOP=60°,则∠POQ=60°,∵OQ=OP=1,∴△POQ也是等边三角形,∴PQ=1; 综上,PQ=1, 故答案为:1.【点评】本题主要考查垂径定理定理,解题的关键是掌握垂径定理、等腰梯形的判定与性质、等边三角形的判定与性质等知识点.18.(4分)在矩形ABCD 中,P 在边BC 上,联结AP ,DP ,将△ABP ,△DCP 分别沿直线AP ,DP 翻折,得到△AB 1P ,△DC 1P ,且点B 1,C 1,P 在同一直线上,线段C 1P 交边AD 于点M ,联结AC 1,若∠AC 1D=135°,则=.【分析】先设BP=B 1P=1,CP=C 1P=x ,则B 1C 1=x ﹣1,AD=BC=1+x ,根据题意得到Rt △ABP 中,AP 2=AB 2+BP 2=(x ﹣1)2+12,Rt △DCP 中,DP 2=PC 2+CD 2=x 2+(x ﹣1)2,Rt △ADP 中,AD 2=AP 2+DP 2,进而得出AD 2=AB 2+BP 2+PC 2+CD 2,据此可得方程(1+x )2=(x ﹣1)2+12+x 2+(x ﹣1)2,求得PC=,BC=AD=1+=,再根据△DC 1M ≌△AB 1M (AAS ),可得DM=AM=AD=,最后计算的值即可.【解答】解:如图,设BP=B 1P=1,CP=C 1P=x ,则B 1C 1=x ﹣1,AD=BC=1+x ,由折叠可得,∠PC 1D=∠C=90°,而∠AC 1D=135°, ∴∠AC 1P=135°﹣90°=45°,当点B 1,C 1,P 在同一直线上时,由∠B=∠AB 1P=90°,可得∠AB 1C 1=90°, ∴△AB 1C 1是等腰直角三角形,即AB 1=B 1C 1=x ﹣1, ∴AB=AB 1=x ﹣1=CD ,由折叠可得,∠APD=∠APM+∠DPM=∠BPM+∠CPM=∠BPC=90°,∵Rt △ABP 中,AP 2=AB 2+BP 2=(x ﹣1)2+12, Rt △DCP 中,DP 2=PC 2+CD 2=x 2+(x ﹣1)2, Rt △ADP 中,AD 2=AP 2+DP 2, ∴AD 2=AB 2+BP 2+PC 2+CD 2,即(1+x )2=(x ﹣1)2+12+x 2+(x ﹣1)2, 解得x 1=,x 2=(舍去),∴PC=,BC=AD=1+=,由折叠可得,AB=AB 1=CD=CD 1,∠DC 1M=90°=∠AB 1M , 在△DC 1M 和△AB 1M 中,∴△DC 1M ≌△AB 1M (AAS ), ∴DM=AM=AD=,∴==,故答案为:.【点评】本题属于折叠问题,主要考查了矩形的性质,轴对称的性质,勾股定理的运用以及等腰直角三角形的判定的综合应用,解决问题的关键是设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题(本大题共7小题,共78分)19.(10分)计算:×cot30°﹣8+|cos30°﹣2|×20170.【分析】原式利用特殊角的三角函数值,分数指数幂,以及零指数幂法则计算即可得到结果.【解答】解:原式=1﹣2+2﹣=1﹣.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(10分)解不等式组:,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式+<,得:x<1,解不等式+1≤,得:x≥,∴不等式组的解集为≤x<1,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(10分)如图,在△ABC中,∠A=90°,AB=3,AC=4,点D,E,F分别在边AB,BC,AC上,且四边形ADEF是正方形,联结AE.(1)求AE的长;(2)求∠AEB的正弦值.【分析】(1)根据题意和相似三角形的对应边的比相等,可以求得AE的长;(2)根据题意可以求得BC的长,然后根据题意即可求得BC边上的高,进而可以求得∠AEB的正弦值.【解答】解:(1)∵四边形ADEF是正方形,∴AD=DE=EF=FA,设AD=x,则BD=3﹣x,DE=x,∵∠BDE=∠BAC=90°,AB=3,AC=4,∴DE∥AC,∴△BDE∽△BAC,∴,即,解得,x=,∴AD=DE=,∵∠BAC=90°,∴AE=;(2)作AH⊥BC于点H,∵∠BAC=90°,AB=3,AC=4,∴BC=5,∴,即,解得,AH=,∵AE=,AH⊥BC,∴∠AHE=90°,∴sin∠AEB=.【点评】本题考查相似三角形的判定与性质、解直角三角形、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(10分)小金到一文具店用12元钱买某种练习本若干本,隔了一段时间他再去那个店,发现这种练习本正在“让利销售”中,每1本降价元,这样用12元可以比上次多买3本,求小金第一次买的练习本的数量.【分析】设小金第一次买了x本,则第二次买了(x+3)本,然后依据第二次每本比第一次每本降价元,列方程求解即可.【解答】解:设小金第一次买了x本,则第二次买了(x+3)本.根据题意得:﹣=,解得:x=12或x=﹣15(舍去).经检验,x=12是原方程的解,答:小金第一次买了12本练习本.【点评】本题主要考查的是分式方程的应用,依据题意列出关于x的分式方程是解题的关键.23.(12分)如图,四边形ABCD是菱形,点E在AB延长线上,联结AC,DE,DE分别交BC,AC于点F,G,且CD?AE=AC?AG.求证:(1)△ABC∽△AGE;(2)AB2=GD?DE.【分析】(1)只要证明=,又∠BAC=∠GAE,即可证明△ABC∽△AGE;(2)只要证明△ADG∽△EDA,可得=,推出AD2=DE?DG即可证明;【解答】证明:(1)∵CD?AE=AC?AG.∴=,∵四边形ABCD是菱形,∴AB=CD,∴=,∵∠BAC=∠GAE,∴△ABC∽△AGE,(2)∵△ABC∽△AGE,∴∠ACB=∠E,∵四边形ABCD是菱形,∴AB=AD,BC∥AD,∴∠ACB=∠CAD=∠E,∵∠ADG=∠ADE,∴△ADG∽△EDA,∴=,∴AD2=DE?DG,∴AB2=DE?DG.【点评】本题考查相似三角形的性质、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(12分)如图,已知在平面直角坐标系xOy中,O为坐标原点,点A,B分别在x轴上(点A在原点左侧,点B在原点右侧),OB=4OA,经过点A,B的抛物线交y轴于点C(0,2),且∠ACB=90°.(1)求抛物线的解析式;(2)点N为该抛物线第一象限上一点,满足∠NOC=∠CBO,联结BN,NO,求△BON的面积;(3)点D为抛物线对称轴上一点,且在x轴下方,点E在y轴负半轴上,当以B,E,D为顶点的三角形与△ABC相似时(∠DBE与∠ABC为对应角),求点D的坐标.【分析】(1)如图1中,由题意OB=4OA,设OA=m,则OB=4m易知△ACO∽△CBO,可得OC2=OA?OB,推出m=1或(﹣1舍弃),可得A(﹣1,0),B (4,0),设抛物线的解析式为y=a(x+1)(x﹣4),把(0,2)代入得到a=﹣即可解决问题;(2)想办法求出直线ON的解析式,利用方程组求出交点N的坐标即可解决问题;(3)分两种情形讨论:①如图2中,当∠BED=90°时,△BED∽△BCA,②如图3中,当∠EDB=90°时,△BDE∽△BCA,分别求解即可;【解答】解:(1)如图1中,由题意OB=4OA,设OA=m,则OB=4m,∵∠ACB=90°,易知△ACO∽△CBO,∴可得OC2=OA?OB,∴4m2=4,∴m=1或(﹣1舍弃),∴A(﹣1,0),B(4,0),设抛物线的解析式为y=a(x+1)(x﹣4),把(0,2)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+x+2.(2)如图1中,设ON交BC于M.作MH⊥AB于H.∵∠COM=∠CBO,∠COM=∠OCB,∴△OCM∽△BCO,∴OC2=CM?CB,∴4=CM?2,∴CM=,MB=,∵MH∥OC,∴==,∴==,∴MH=,BH=,OH=,∴M(,),∴直线ON的解析式为y=2x,由,解得,或,∴N(,﹣1+),∴S=×4×(﹣1+)=﹣2+2.△OBN(2)①如图2中,当∠BED=90°时,△BED∽△BCA,∴BE:DE=BC:AC=2:1,作DH⊥y轴于H.易证△DHE∽△EOB,∴OE:DH=BE:DE=2:1,∵DH=,∴OE=3,EH=OB=2,∴D(,﹣5).②如图3中,当∠EDB=90°时,△BDE∽△BCA,∴BD:DE=BC:AC=2:1,作DH⊥y轴于H,BN⊥DH于N.由△HDE∽△NBD,可得BN:DH=BD:DE=2:1,∴BN=3,∴D(,﹣3),综上所述,满足条件的点D的坐标为(,﹣5)或(,﹣3).【点评】本题考查二次函数综合题、相似三角形的判定和性质、一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25.(14分)如图,在⊙O中,半径OA长为1,弦BC∥OA,射线BO,射线CA交于点D,以点D为圆心,CD为半径的⊙D交BC延长线于点E.(1)若BC=,求⊙O与⊙D公共弦的长;(2)当△ODA为等腰三角形时,求BC的长;(3)设BC=x,CE=y,求y关于x的函数关系式,并写出定义域.【分析】(1)如图1中,设CM是两圆的公共弦,CM交BD于N,交OA于K,BD交⊙O于G,连接OC、CG交OA于H.首先证明OH是三角形中位线,根据△GCN∽△GOH,可得=,由此求出相关线段即可解决问题;(2)只要证明△OCA∽△DCO,设AC=x,则有OC2=CA?CD,可得1=x(x+1),即可解决问题;(3)首先证明BD=BE,再利用平行线的性质求出DG即可解决问题;【解答】解:(1)如图1中,设CM是两圆的公共弦,CM交BD于N,交OA 于K,BD交⊙O于G,连接OC、CG交OA于H.∵BG是直径,∴∠BCG=90°,∵BC∥OA,∴∠OHG=∠BCG=90°,∴OA⊥CG,∴CH=HG,∵CM⊥BD,∴∠ONK=∠CHK=90°,∵∠OKN=∠CKH,∴∠KON=∠KCH,∵OG=OB,CH=HG,∴OH=BC=,∵OC=1,∴CH=HG==,∵∠OGH=∠CGN,∠GCN=∠GOH,∴△GCN∽△GOH,∴=,∴=,∴CN=,∴CM=2CN=.(2)如图2中,当△OAD是等腰三角形时,观察图形可知,只有OA=AD,∴∠AOD=∠ADO=∠COA,∵∠OCA=∠OCD,∴△OCA∽△DCO,设AC=x,则有OC2=CA?CD,∴1=x(x+1),∴x=或(舍弃),∴CD=CA+AD=,∵OA∥BC,∴∠AOD=∠B=∠ODA,∴BC=CD=.(3)如图3中,作DN⊥CE于N.∵DC=DE,∴∠DCE=∠E,∵BC∥OA,∴∠OAC=∠DCE=∠OCA,∴∠AOC=∠CDE=∠B,∴∠E=∠BDE,∴BE=BD,∵CG⊥BE,DN⊥BE,∴CG∥DN,∴=,∴=,∴DG=,∵BD=BE,∴2+=x+y,∴y=(1<x<2)【点评】本题考查圆综合题、垂径定理、勾股定理、平行线的性质、相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考压轴题.。