传感器及基本特性(第四章 )

合集下载

第四篇力敏传感器

第四篇力敏传感器

第四章力敏传感器教学目标:1.了解弹性敏感元件的特性和要求。

2.了解几种常用测力称重传感器的特点、3.掌握电阻应变效应及半导体的压阻效应4.了解电桥电路的作用。

5.掌握单臂、双臂和全桥测量电路的异同点。

6.理解压电式传感器的工作原理。

了解它的特点。

7.了解它们的应用。

力敏传感器是使用很广泛的一种传感器。

它是生产过程中自动化检测的重要部件。

它的种类很多,有直接将力变换为电量的如压电式、压阻式等,有经弹性敏感元件转换后再转换成电量的如电阻式、电容式和电感式等。

它主要用于两个方面:测力和称重。

本章介绍电阻应变式传感器、压阻式和压电式传感器。

§4-1(传感器中的)弹性敏感元件一、弹簧管压力表的组成:(如图4-1)图4-1弹簧管压力表的组成框图弹簧管——弹性敏感元件:将输入压力转换成自身的变形量(应变、位移或转角)。

二、弹性元件的基本特性:1.变形:物体在外力作用下改变原来尺寸或形状的现象。

2.弹性:物体因受外力作用而产生变形,外力去掉后又恢复原状的特性。

3.弹性元件:具有弹性变形特性的物体。

4.弹性变形:弹性元件受外力作用而产生的变形。

5.弹性特性:作用在元件上的外力与相应变形(应变、位移或转角)之间的关系。

(1)刚度:弹性元件产生单位变形所需的力。

(2)灵敏度:在单位力作用下弹性元件产生的变形。

刚度和灵敏度表示了弹性元件的软硬程度。

元件越硬,刚度越大,单位力作用下变形越小,灵敏度越小。

6.线性弹性元件:刚度和灵敏度为常数,作用力F与变形X成线性关系。

三、弹性敏感元件的基本要求及类型:弹性元件在传感器技术中占有极其重要的地位。

它首先把力、力矩或压力转换成相应的应变或位移,然后配合各种形式的传感元件,将被测力、力矩或压力变换成电量。

基本要求:(1)具有良好的机械特性(强度高、抗冲击、韧性好、疲劳强度高等)和良好的机械加工及热处理性能。

(2)良好的弹性特性(弹性极限高、弹性滞后和弹性后效小等)。

(3)弹性模量的温度系数小且稳定,材料的线膨胀系数小且稳定。

第四章传感器原理习题

第四章传感器原理习题

第四章 传感器原理习题4-1以阻值R =120Ω,灵敏系数K =2.0的电阻应变片与阻值120Ω的固定电阻组成电桥,供桥电压为3V ,并假定负载电压为无穷大,当应变片的应变为2με和2000με时,分别求出单臂、双臂差动电桥的输出电压,并比较两种情况下的灵敏度。

4-2 在材料为钢的实心圆柱试件上,沿轴线和圆周方向各贴一片电阻为Ω120的金属应变片R 1和R 2,把这两片应变片接入差动电桥(题图4-2)。

若钢的泊松比μ=0.285,应变片的灵敏系数K =2,电桥的电源电压U i=2V ,当试件受轴向拉伸时,测得应变片R 1的电阻变化值∆R =0.48Ω,试求电桥的输出电压U 0;若柱体直径d =10mm ,材料的弹性模量211N/m 102E ⨯=,求其所受拉力大小。

题图4-2 差动电桥电路4-3 一台采用等强度的梁的电子称,在梁的上下两面各贴有两片电阻应变片,做成称重量的传感器,如习题图4-3所示。

已知l =10mm ,b 0=11mm ,h =3mm , 24N/mm 102.1E ⨯=,K =2,接入直流四臂差动电桥,供桥电压6V ,求其电压灵敏度(K u=U 0/F)。

当称重0.5kg 时,电桥的输出电压U 0为多大?题图4-3悬臂梁式力传感器4-4 有四个性能完全相同的应变片(K =2.0),将其贴在习题图4-4所示的压力传感器圆板形感压膜片上。

已知膜片的半径R =20mm ,厚度 h =0.3mm ,材料的泊松比μ=0.285,弹性模量211N/m 102E ⨯=。

现将四个应变片组成全桥测量电路,供桥电压U i=6V 。

求:(1)确定应变片在感压膜片上的位置,并画出位置示意图;(2)画出相应的全桥测量电路图;(3)当被测压力为0.1MPa 时,求各应变片的应变值及测量桥路输出电压U 0;(4)该压力传感器是否具有温度补偿作用?为什么?(5)桥路输出电压与被测压力按是否存在线性关系?题图4-4 膜片式压力传感器4-5一测量线位移的电位器式传感器,测量范围为0~10mm ,分辨力为0.05mm ,灵敏度为2.7V/mm ,电位器绕线骨架外径d =0.5mm ,电阻丝材料为铂铱合金,其电阻率为mm Ω103.25ρ4⋅⨯=-。

传感器第四章思考题与习题

传感器第四章思考题与习题

第四章 思考题与习题1、如何改善单组式变极距型电容传感器的非线性答:对于变极距单组式电容器由于存在着原理上的非线性,所以在实际应用中必须要改善其非线性。

改善其非线性可以采用两种方法。

(1)使变极距电容传感器工作在一个较小的范围内(μm 至零点几毫米),而且最大△δ应小于极板间距δ的1/5—1/10。

(2)采用差动式,理论分析表明,差动式电容传感器的非线性得到很大改善,灵敏度也提高一倍。

2、单组式变面积型平板形线位移电容传感器,两极板相对覆盖部分的宽度为4mm ,两极板的间隙为,极板间介质为空气,试求其静态灵敏度若两极板相对移动2mm ,求其电容变化量。

(答案为mm,) 已知:b =4mm ,δ=,ε0=×10-12F/m 求:(1)k=;(2)若△a=2mm 时 △C=。

解:如图所示∵ δεδεab S C ==; a Ck ∆∆=;pF mm mmmm mm pF a b b a a ab C 142.05.024/1085.8)(3000=⨯⨯⨯=∆=∆--=∆-δεδεδε mm pF mmpFa C k /07.02142.0=∆∆=3、画出并说明电容传感器的等效电路及其高频和低频时的等效电路。

答:电容传感器的等效电路为:其中:r :串联电阻(引线、焊接点、板极等的等效电阻); L :分布电感(引线、焊接点、板极结构产生的);CP :引线电容(引线、焊接点、测量电路等形成的总寄生电容) C0:传感器本身电容;Rg :漏电阻(极板间介质漏电损耗极板与外界的漏电损耗电阻) 低频时等效电路和高频时等效电路分别为图(a )和图(b):4、设计电容传感器时主要应考虑哪几方面因素答:电容传感器时主要应考虑四个几方面因素:(1)减小环境温度湿度等变化所产生的影响,保证绝缘材料的绝缘性能;(2)消除和减小边缘效应;(3)减小和消除寄生电容的影响;(4)防止和减小外界干扰。

5、何谓“电缆驱动技术”采用它的目的是什么答:电缆驱动技术,即:传感器与测量电路前置级间的引线为双屏蔽层电缆,其内屏蔽层与信号传输线(即电缆芯线)通过1 :1放大器而为等电位,从而消除了芯线与内屏蔽层之间的电容。

《传感器及其应用》第四章习题答案

《传感器及其应用》第四章习题答案

第四章 思考题与习题1、简述磁电感应式传感器的工作原理。

磁电感应式传感器有哪几种类型?答:磁电感应式传感器是以电磁感应原理为基础的,根据法拉第电磁感应定律可知,N 匝线圈在磁场中运动切割磁力线或线圈所在磁场的磁通量变化时,线圈中所产生的感应电动势e 的大小取决于穿过线圈的磁通φ的变化率,即:dtd Ne Φ-= 根据这个原理,可将磁电感应式传感器分为恒定磁通式和变磁通式两类。

2、某些磁电式速度传感器中线圈骨架为什么采用铝骨架?答:某些磁电式速度传感器中线圈采用铝骨架是因为线圈在磁路系统气隙中运动时,铝骨架中感应产生涡流,形成系统的电磁阻尼力,此阻尼起到衰减固有振动和扩展频率响应范围的作用。

3、何谓磁电式速度传感器的线圈磁场效应,如何补偿?答:线圈磁场效应是指磁电式速度传感器的线圈中感应电流产生的磁场对恒定磁场作用,而使其变化。

如公式v BlN e 0-=知,由于B 的变化而产生测量误差。

补偿方法通常是采用补偿线圈与工作线圈串接,来抵消线圈中感应电流磁场对恒定磁场的影响。

4、为什么磁电感应式传感器在工作频率较高时的灵敏度,会随频率增加而下降? 答:由理论推到可得传感器灵敏度与频率关系是:42020220220)(1)(1)2()1()(ωωωωξωωξωωωω-===+-=NBl v e k v NBl e v 取 当振动频率低于传感器固有频率时,这种传感器的灵敏度是随振动频率变化;当振动频率远大于固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随振动频率增加而下降。

5、变磁通式传感器有哪些优缺点?答:变磁通式传感器的优点是对环境条件要求不高,能在-150—+900C 的温度条件下工作,而不影响测量精度,也能在油、水雾、灰尘等条件下工作。

缺点主要是它的工作频率下限较高,约为50Hz ,上限可达100kHz ,所以它只适用于动态量测量,不能测静态量。

(完整版)第4章应变式传感器习题及解答

(完整版)第4章应变式传感器习题及解答

第 4 章 应变式传感器、单项选择题1、为减小或消除非线性误差的方法可采用()。

A. 提高供电电压B. 提高桥臂比2、全桥差动电路的电压灵敏度是单臂工作时的()。

A. 不变B. 2 倍C. 4 倍D. 6 倍3、电阻应变片配用的测量电路中,为了克服分布电容的影响,多采用( )8、当应变片的主轴线方向与试件轴线方向一致,且试件轴线上受一维应力作用时,应变片灵敏系数 K 的定义是()。

A .应变片电阻变化率与试件主应力之比B .应变片电阻与试件主应力方向的应变之比C .应变片电阻变化率与试件主应力方向的应变之比D .应变片电阻变化率与试件作用力之比9、制作应变片敏感栅的材料中,用的最多的金属材料是()。

A .两个桥臂都应当用大电阻值工作应变片B .两个桥臂都应当用两个工作应变片串联C .两个桥臂应当分别用应变量变化相反的工作应变片C. 提高桥臂电阻值D.提高电压灵敏度A .直流平衡电桥BC .交流平衡电桥D4、通常用应变式传感器测量 ( )A. 温度 BC .加速度D5、影响金属导电材料应变灵敏系数A .导电材料电阻率的变化BC .导电材料物理性质的变化D6、产生应变片温度误差的主要原因有( A .电阻丝有温度系数BC .电阻丝承受应力方向不同 D7、电阻应变片的线路温度补偿方法有( A .差动电桥补偿法B C .补偿线圈补偿法DK 的主要因素是( .直流不平衡电桥 .交流不平衡电桥.密度 .电阻)。

.导电材料几何尺寸的变化 .导电材料化学性质的变化)。

.试件与电阻丝的线膨胀系数相同.电阻丝与试件材料不同)。

.补偿块粘贴补偿应变片电桥补偿法 .恒流源温度补偿电路法A .铜B .铂C .康铜D .镍铬合金10、利用相邻双臂桥检测的应变式传感器, 为使其灵敏度高、 非线性误差小 ()。

D .两个桥臂应当分别用应变量变化相同的工作应变片 在金属箔式应变片单臂单桥测力实验中不需要的实验设备是( A .直流稳压电源 B .低通滤波器 C .差动放大器D .电压表关于电阻应变片,下列说法中正确的是( ) A .应变片的轴向应变小于径向应变B .金属电阻应变片以压阻效应为主C .半导体应变片以应变效应为主D .金属应变片的灵敏度主要取决于受力后材料几何尺寸的变化 金属丝的电阻随着它所受的机械变形 ( 拉伸或压缩 )的大小而发生相应的变化的现象称为 金属的( )。

传感器原理及应用第四章 电容式传感器

传感器原理及应用第四章 电容式传感器

11
电容式油量表
电容 传感器
油箱
液 位 传 感 器
12
同轴连接器 刻度盘
伺服电动机
电容式压差传感器




应Leabharlann 用1-硅油 2-隔离膜 3-焊接 密封圈 4-测量膜片(动电
测 量 液
极) 5-固定电极

13
电容式加速度传感器
结构 1-定极板 2-质量块 3-绝缘体 4-弹簧片
钻地导弹
14
轿车安全气囊
ΔC U0 C0 U
差动脉冲调宽测量转换电路
初始时,C1=C2,输出电压平均值为零。 测量时, C1≠C2 ,输出电压Uo与电容的
差值成正比。
7
差动脉冲调宽测量转换电路
与电桥电路相比,差动脉宽电路只采用 直流电源,不需要振荡器,只要配一个 低通滤波器就能工作,对矩形波波形质 量要求不高,线性较好,不过对直流电 源的电压稳定度要求较高。
16
指纹识 别手机
汽车防盗 指纹识别
趣味小制作-电容式接近开关
电阻 电容 三极管 二极管 电感 继电器 电极片 电源 开关、导线。
17
制作提示
为了较好地演示制作好的电路,将继电 器触点(虚线所连的触点)所在的控制 电路接上,为了直观,控制对象可选择 灯或喇叭。 接近开关的检测物体,并不限于金属导 体,也可以是绝缘的液体或粉状物体。 制作时要考虑环境温度、电场边缘效应 及寄生电容等不利因素的存在。
8
运算放大器式测量转换电路
输出电压
Uo
C Cx
Ui
如果传感器为平板形
电容器,则
Uo
CU i
A
d
此电路能解决变极距型电容式传感器的

04第四章 电涡流传感器

04第四章 电涡流传感器

第四节 电涡流传感器的应用
一、位移测量
电涡流位移传感器是一种输出为 模拟电压 的电子器 件。接通电源后,在电涡流探头的有效面(感应工作面) 将产生一个 交变磁场 。当金属物体 接近此感应面时,金 属表面将 吸取 电涡流探头中的高频振荡能量,使振荡器 的输出幅度线性地 衰减,根据衰减量的变化,可地计算 出与被检物体的距离、振动等参数。这种位移传感器属 于非接触测量 ,工作时不受灰尘等非金属因素的影响, 寿命较长,可在各种恶劣条件下使用。
当电涡流线圈与 金属板的距离 x 减小 时,电涡流线圈的等 效电感L 减小,等效 电阻R 增大。感抗XL 的变化比 R 的变化大 得多,流过电涡流线 圈的 电流 i1增大 。
电涡流式传感器原理图
上图为电涡流式传感器的原理图,该图由传感器线
圈和被测导体组成线圈 —导体系统。当传感器线圈通以
交变电流
1、位移测量仪
位移测量:偏心、间隙、位置、倾斜、弯曲、变形、移动、圆度、 冲击、偏心率、冲程、宽度等。来自不同应用领域的许多量都可 归结为位移或间隙变化。
电流 型电 涡流 位移 传感 器
V系列齐 平式传感 器安装时 可以不高 出安装面, 不易被损 害。
V系列电涡流位移传感器性能一览表
V系列电涡流位移传感器机械图
并联谐振回路的谐振频率:
设电涡流线圈的电感量 L=0.8mH ,微调电容 C0=200pF,求振荡器的频率 f 。
鉴频器特性
使用鉴频器可以将 ? f 转换为电压 ? Uo
鉴输出电压与输入频率成正比
设电路参数如上图,计算电涡流线圈未接近金属时的 鉴频器输出电压 Uo;若电涡流线圈靠近金属后,电涡流 探头的输出频率 f上升为500kHz ,? f为多少?输出电压 Uo又为多少?

传感器及基本特性(第四章 )解读

传感器及基本特性(第四章 )解读

描述传感器输入一输出关系的方法有两种:一是传 感器的数学模型;二是传感器的各种基本特性指标。两 者都可用于描述传感器的输入、输出关系及其特性。
14
一、传感器静态特性一般知识
传感器的静态特性是指传感器在静态工作
状态下的输入输出特性。所谓静态工作状态是
指传感器的输入量恒定或缓慢变化而输出量也
达到相应的稳定值时的工作状态。这时输出量


13
第二节 传感器的静态特性
传感器所测量的量(物理量、化学量及生物量等)经 常会发生各种各样的变化。例如,在测量某一液压系统 的压力时,压力值在一段时间内可能很稳定,而在另一 段时间内则可能有缓慢起伏,或者呈周期性的脉动变化, 甚至出现突变的尖峰压力。传感器主要通过其两个基本 特性—静态特性和动态特性,来反映被测量的这种变动 性。
4
举例:测量压力的电位器式压力传感器
1-弹簧管 2-电位器
5
弹性敏感元件(弹簧管)
敏感元件在传感器中直接感受被测量, 并转换成与被测量有确定关系、更易于转换 的非电量。
6
弹性敏感元件(弹簧管)
在下图中,弹簧管将压力转换为角位移α
7
弹簧管放大图
当被测压力p增大时,弹簧管撑直,通过齿 条带动齿轮转动,从而带动电位器的电刷产生 角位移。
接地
11
测量转换电路的作用是将传感元件输出 的电参量转换成易于处理的电压、电流或频 率量。 在左图中,当电 位器的两端加上电源 后,电位器就组成分 压比电路,它的输出 量是与压力成一定关 系的电压Uo 。
12
二、传感器分类
传感器的种类名目繁多,分类不尽相 同。常用的分类方法有: 1)按被测参数分类:可分为位移、力、 力矩、转速、振动、加速度、温度、压力、 流量、流速等传感器。 2)按测量原理分类:可分为电阻、电容、 电感、光栅、热电耦、超声波、激光、红 外、光导纤维等传感器。

第4章 电感式传感器

第4章 电感式传感器
(c) 四节式
3
(d) 五节式
图4.12 差动变压器线圈各种排列形式 1 一次线圈;2 二次线圈;3 衔铁
三节式的零点电位较小,二节式比三节式灵敏度高、线性范 围大,四节式和五节式改善了传感器线性度。
2.2 工作原理
以三节式差动变压器为例,将两个匝数相等的次级绕组的 同名端反向串联,当初级绕组W1加以激磁电压时,根据变压器 的作用原理在两个次级绕组W2a和W2b中就会产生感应电势,如 果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平 衡位置时,输出电压为零。
U1 U 2 j ( M 1 M 2 ) R1 jL1 其有效值为: (M1 M 2 )U1 U2 R12 (L1 ) 2
.
E 21 jM 1 I.1 . E 22 jM 2 I1
.
.
R1
M1
.
. U1 ~ M2
L21 L22 R22
U2
. ~ E22
(c)、(d) 螺线管式差动变压器
(e)、(f) 变面积式差动变压器
二次绕组
二次绕组 衔铁
一次绕组
图4.11 螺线管式差动变压器的结构示意图
螺管型差动变压器根据初、次级排列不同有二节式、三节 式、四节式和五节式等形式。 1 1 1 1 2 1 2 1 2 1 2
2
(a) 二节式
3
(b) 三节式
2
II. 变面积型灵敏度较小,但线性较好,量程较大; III.螺管型灵敏度较低,但量程大且结构简单。
1.4 差动式自感传感器
由于线圈中通有交流励磁电流,因而衔铁始终承受电 池吸力,会引起振动和附加误差,而且非线性误差较大。 外界的干扰、电源电压频率的变化、温度的变化都会 使输出产生误差。

《测试技术》第四章传感器的基本类型及其工作原理解读

《测试技术》第四章传感器的基本类型及其工作原理解读

三、电位计式传感器
令 R / RL m, Rx / R x
(x 0时, Rx 0; x 1时,
UL
U
1
x mx(1
x)
Rx R)得
U L 与 x 呈非线性关系
电位计式传感器原理图
U Rx
x
R
a
RL UL
非线性相对误差 为:
b
(UL )m0 (UL )m0 100% [1 (UL )m0 ]100%
第一节. 概 述 传感器的组成
敏感元件
被测量
转换元件 辅助电源
基本转换电路
电量
敏感元件,是直接感受被测量,并输出与被测量成确定关 系的 某一物理量的元件。
转换元件,敏感元件的输出就是它的输入,它把输入转换成电 路参量。
基本转换电路:上述电路参数接入基本转换电路(简称转换电 路),便可转换成电量输出。
第四节. 电容式传感器
三、变介电常数型电容传感器
C 2 h11 2 (h h1)2
ln R
ln R
r
r
2 h2 2 h1(1 2)
ln R
ln R
r
r
容器内介质的介电常数 1
容器上面气体介质介电常数 2
输出电容C与液面高度成线性关系
第四节. 电容式传感器
三、变介电常数型电容传感器 — 应用
积变化 △AA ,电阻率的变化为 △ρ ,相应的电阻变化为 dRdR。对
式 R l 全微分得电阻变化率 dR//RR 为:
s
dR dl 2 dr d Rl r
上式中:dl l 为导体的轴向应变量 l ;dr / r 为导体的横向应变量 r
由材料力学得:l r
式中:μ为材料的泊松比,大多数金属材料的泊松比为 0.3~0.5 左右

现代传感器-第四章(压力传感器)

现代传感器-第四章(压力传感器)

压电式传感器的测量电路(7 压电式传感器的测量电路(7)
电荷放大器
Cr
-A
q
Ca
Ce
Ci
uo
电荷放大器的等效电路
压电式传感器的测量电路(8 压电式传感器的测量电路(8)
电荷放大器常作为压电传感器的输入电路,由一个 反馈电容C 反馈电容CF和高增益运算放大器构成。 运算放大器输入阻抗极高, 放大器输入端几乎没 有分流,故可略去R 有分流,故可略去Ra和Ri并联电阻:
压电材料
石英晶体, 压电陶瓷, 压电薄膜等
石英晶体的压电效应(1)
用三条互相垂直的轴来表示石英晶体的各方向。 其中, 纵向轴称为光轴(z轴); 经过棱线并垂直于光轴的称为电 轴(x轴); 与光轴、 电轴同时垂直的称为机械轴(y轴)。 如图4-1(b)所示。按照与z轴的不同夹角,多种切片可 形成一个系列家族,切片长边平行于y轴的称为X切族,平 行于x轴的称为Y切族。
1 q′ = q;U ′ = 2U;C ′ = C 2
压电传感器的等效电路(1 压电传感器的等效电路(1)
当压电晶体承受应力作用时,在它的两个极面上 出现极性相反但电量相等的电荷。故可把压电传 感器看成一个电荷源与一个电容并联的电荷发生 器。 其电荷容量为:
ε S ε rε 0 S Ca = = δ δ
压电式压力传感器的应用(5 压电式压力传感器的应用(5)
压电声传感器在超声速测量实验中的应用
示波器 S2 l S1 频率计
游标卡尺 超声速测量实验装置
信号发生器
压电式压力传感器的应用(6 压电式压力传感器的应用(6)
当信号发生器产生的正弦交流信号加在压电陶瓷 片两端面时,压电陶瓷片将产生机械振动,在空 气中激发出声波。所以,换能器S1是声频信号发 生器。 当S发出的声波信号经过空气传播到达换能器S2 时,空气振动产生的压力作用在S2的压电陶瓷片 上使之出现充、放电现象,在示波器上就能检测 出该交变信号。所以,换能器S2是声频信号接收 器。

部分习题参考答案(传感器原理及应用,第4章)

部分习题参考答案(传感器原理及应用,第4章)

部分习题参考答案第4章 电容式传感器如何改善单极式变极距型电容传感器的非线性答:非线性随相对位移0/δδ∆的增加而增加,为保证线性度应限制相对位移的大小;起始极距0δ与灵敏度、线性度相矛盾,所以变极距式电容传感器只适合小位移测量;改善方法:(1) 使用运算放大器构成的基本测量电路(2)变极距式电容传感器一般采用差动结构。

为什么高频工作时的电容式传感器连接电缆的长度不能任意变化 低频时容抗c X 较大,传输线的等效电感L 和电阻R 可忽略。

而高频时容抗c X 减小,等效电感和电阻不可忽略,这时接在传感器输出端相当于一个串联谐振,有一个谐振频率0f 存在,当工作频率0f f ≈谐振频率时,串联谐振阻抗最小,电流最大,谐振对传感器的输出起破坏作用,使电路不能正常工作。

通常工作频率10MHz 以上就要考虑电缆线等效电感0L 的影响。

差动式变极距型电容传感器,若初始容量1280C C pF ==,初始距离04mm δ=,当动极板相对于定极板位移了0.75mm δ∆=时,试计算其非线性误差。

若改为单极平板电容,初始值不变,其非线性误差有多大解:若初始容量1280C C pF ==,初始距离04mm δ=,当动极板相对于定极板位移了0.75mm δ∆=时,差动电容式传感器非线性误差为:2200.75()100%()100% 3.5%4L δγδ∆=⨯=⨯= 改为单极平板电容,初始值不变,其非线性误差为:00.75100%100%18.75%4L δγδ∆=⨯=⨯= 电容式传感器有哪几类测量电路各有什么特点差动脉冲宽度调制电路用于电容传感器测量电路具有什么特点答:参照课件和讲课内容自己回答,要求掌握。

一平板式电容位移传感器如图4-5所示,已知:极板尺寸4a b mm ==,极板间隙00.5mm δ=,极板间介质为空气。

求该传感器静态灵敏度;若极板沿x 方向移动2mm ,求此时电容量。

动极板2图4-5 平板电容器基本原理 解:对于平板式变面积型电容传感器,它的静态灵敏度为:012111088.85107.0810g C b k Fm a εδ---===⨯⨯=⨯ 极板沿x 方向相对移动2mm 后的电容量为:12130()8.85100.0042 1.416100.5b a x C F εδ---∆⨯⨯⨯===⨯ 已知:圆盘形电容极板直径D=50mm ,间距δ0=0.2mm ,在电极间置一块厚0.1mm 的云母片(εr=7),空气(εr=1)。

第四章 常用传感器原理及应用

第四章 常用传感器原理及应用
q
Ca
Cc
R0
★ 由于后继电路的输入阻抗不可能为无穷大,而且压 电元件本身也存在漏电阻,极板上的电荷由于放电而无 法保持不变,从而造成测量误差。因此,不宜利用压电 式传感器测量静态或准静态信号,而适宜做动态测量。
★ 压电晶片有方形、圆形、圆环形等各种,而且往往 是两片或多片进行串联或并联。
+
并联:适于测缓变信号和以电荷为 输出量的场合
3、介电常数变化型 此类传感器可用来测量液体的液位和材料的厚度等。
两圆筒间的电容为:空气的介
21 L C ln(R r )
外电极 内半径
电常数
电极 长度
内电极 内半径
如果电极的一部分被非导电性液 体所浸没时,则会有电容量的增 量∆C产生:
2 ( 2 1 )l C ln(R r )
线圈
铁芯
衔铁
由于 δ 很小,可认为气隙磁场是均匀的 ,若忽略磁路的铁损,则总磁阻为:
线圈 铁芯
衔铁
l 2 Rm A 0 A0
由于铁心磁阻与气隙相比要小得多,可以忽略
2 Rm 0 A0
N 0 A0 L 2
传感器灵敏度: K
2
dL
N 2 0 A0 2
2
d
N 2 0 A0 2 2
这种传感器适用于较小位移 的测量,测量范围约在 0.001~1mm左右。
2、变面积式 原理:气隙长度不变,铁心与衔铁之间相 对而言覆盖面积随被测量的变化而改,导致 线圈的电感量发生变化。 特点:灵敏度比变气隙型的低,但其灵敏 度为一常数,因而线性度较好,量程范围可 取大些,自由行程可按需要安排,制造装配 也较方便,因而应用较为广泛。 3、螺管式 原理:衔铁随被测对象移动,线圈 磁力线路径上的磁阻发生变化,线圈 电感量也因此而变化。 特点:灵敏度更低,但测量范围大 ,线性也较好,同时自由行程可任意 安排,制造装配方便,应用较广泛。

(完整版)第4章应变式传感器习题及解答

(完整版)第4章应变式传感器习题及解答

(完整版)第4章应变式传感器习题及解答第4章应变式传感器⼀、单项选择题1、为减⼩或消除⾮线性误差的⽅法可采⽤()。

A. 提⾼供电电压B. 提⾼桥臂⽐C. 提⾼桥臂电阻值D. 提⾼电压灵敏度2、全桥差动电路的电压灵敏度是单臂⼯作时的()。

A. 不变B. 2倍C. 4倍D. 6倍3、电阻应变⽚配⽤的测量电路中,为了克服分布电容的影响,多采⽤( )。

A.直流平衡电桥 B.直流不平衡电桥C.交流平衡电桥 D.交流不平衡电桥4、通常⽤应变式传感器测量( )。

A. 温度 B.密度C.加速度 D.电阻5、影响⾦属导电材料应变灵敏系数K的主要因素是()。

A.导电材料电阻率的变化 B.导电材料⼏何尺⼨的变化C.导电材料物理性质的变化 D.导电材料化学性质的变化6、产⽣应变⽚温度误差的主要原因有()。

A.电阻丝有温度系数 B.试件与电阻丝的线膨胀系数相同C.电阻丝承受应⼒⽅向不同 D.电阻丝与试件材料不同7、电阻应变⽚的线路温度补偿⽅法有()。

A.差动电桥补偿法 B.补偿块粘贴补偿应变⽚电桥补偿法C.补偿线圈补偿法 D.恒流源温度补偿电路法8、当应变⽚的主轴线⽅向与试件轴线⽅向⼀致,且试件轴线上受⼀维应⼒作⽤时,应变⽚灵敏系数K的定义是()。

A.应变⽚电阻变化率与试件主应⼒之⽐B.应变⽚电阻与试件主应⼒⽅向的应变之⽐C.应变⽚电阻变化率与试件主应⼒⽅向的应变之⽐D.应变⽚电阻变化率与试件作⽤⼒之⽐9、制作应变⽚敏感栅的材料中,⽤的最多的⾦属材料是()。

10、利⽤相邻双臂桥检测的应变式传感器,为使其灵敏度⾼、⾮线性误差⼩()。

A.两个桥臂都应当⽤⼤电阻值⼯作应变⽚B.两个桥臂都应当⽤两个⼯作应变⽚串联C.两个桥臂应当分别⽤应变量变化相反的⼯作应变⽚D.两个桥臂应当分别⽤应变量变化相同的⼯作应变⽚11、在⾦属箔式应变⽚单臂单桥测⼒实验中不需要的实验设备是()。

A.直流稳压电源 B.低通滤波器C.差动放⼤器 D.电压表12、关于电阻应变⽚,下列说法中正确的是()A.应变⽚的轴向应变⼩于径向应变B.⾦属电阻应变⽚以压阻效应为主C.半导体应变⽚以应变效应为主D.⾦属应变⽚的灵敏度主要取决于受⼒后材料⼏何尺⼨的变化13、⾦属丝的电阻随着它所受的机械变形(拉伸或压缩)的⼤⼩⽽发⽣相应的变化的现象称为⾦属的()。

第四章 位移传感器

第四章 位移传感器

第一节 电容式传感器 (capacitive sensors) 特点:结构简单、灵敏度高、动态响应好、可实现非接触 测量、具有平均效应,能在高温、辐射等恶劣条件工作。 应用:可用来检测位移 、压力等参量。 一、工作原理 从结构上来分有:平板式、园柱式电容器。以平板式电容 器为例:平板电容器的容量
C r 0
螺管式 L=KX 几十毫米 线性灵敏度小
二、互感式传感器(差动变压器) (LVDT) 1.原理: 衔铁位移x变化=>互感(M1,M2)变化,如图所示。
I 1 + U 1 L1
x
R1
M1 L21 + U - 21 + U o L22 M2 + U 22 -
说明: (1)与变压器的区别:变压器:闭合磁路,M 为常数; M f ( x) 。 差动变压器:开磁路, (2)输出端采用“反向串联”:其输出为电压,和差动电 桥方式相比,后者灵敏度低一倍: 反向串联与交流电桥的比较如图所示。
(2)相敏检波电路 交流电桥输出的相量可反映被测量的大小和方向,但用一般 的指示仪表却丢失了方向信号。 当衔铁居中时,Z1=Z2。当Z1↑,Z2↓时:
正半周 Ua正,Ub负 VD1、VD4导通 Ua负,Ub正 VD2、VD3导通
AECB支路: Uc↓ AFDB支路: Ud↑ BCFA支路: ↓ BDEA支路: ↑
E Z1 A +
Z2 U
u0 负 u0
u0 负
负半周

同理,当Z1↓,Z2↑时, UO 为正。故UO不仅反映线 圈阻抗变化大小,还能反映 变化方向。
VD1 VD2
C Z3 + B U o Z4 D -
A VD3 F VD4

遥感传感器本章主要内容41遥感传感器的-遥感技术基础

遥感传感器本章主要内容41遥感传感器的-遥感技术基础

《遥感技术基础》-第四章 遥感传感器
§ 4.3扫描成像类型的传感器 4.3.1对物面扫描的成像仪
2. Mss多光谱扫描仪 <3> Mss多光谱扫描仪的成像过程 地面光讯号经扫描反射镜,反射至第一和第二 反射镜组成的光学聚焦系统,聚焦在光学纤维板上。 光学纤维板上各像元的光讯号经滤光器分光后,由光 学纤维板传导至探测元件,并由中继光学系统传入构 成光阑的探测器中。
《遥感技术基础》-第四章 遥感传感器
§ 4.3扫描成像类型的传感器 4.3.1对物面扫描的成像仪
机载红外扫描仪
Mss多光谱扫描仪
TM专题制图仪 ETM+专题制图仪
《遥感技术基础》-第四章 遥感传感器
§ 4.3扫描成像类型的传感器 4.3.1对物面扫描的成像仪
1.机载红外扫描仪 <1>机载红外扫描仪结构
2. Mss多光谱扫描仪 <4> TM专题制图仪
ETM+增强型专题制图仪与TM相比在以下三方面作了改
进: (1)增加PAN (全色)搜段,分醉率为15m,因而使数据速率增加; (2)采用双增盖技术使远红外波段6分辨率提高到60m,也增加 了数据率; (3)改进后的太阳定标器使卫星的辐射定标误差小于5%,及其精 度比Landsat-5 约提高1倍。 辐射校正有了很大改进。
2.传感器的分类: 传感器的分类:光学摄影类型、扫描成像类型、雷达成像类 型及非图象类型。
图4-1-1传感器的组成部分 无论哪种类型遥感传感器,他们都是由图4-1-1所示的基本 部分组成。
《遥感技术基础》-第四章 遥感传感器

§ 4.2光学摄影类型的传感器
1.单镜头画幅式摄影机 主要由收集器—物镜和探测器—感光胶片组成。另外还需要 有暗盒,快门,光栏,机械传动装臵等,曝光后的底片上只有一 个潜像,须经摄影处理后才能显示出来影像。 2.缝隙摄影机 在摄影机焦面前放臵一开缝档板,将缝隙外的影像全挡去, 摄影瞬间所获取的影像,是与航向垂直,且与缝隙等宽的一条地 面影像。 3.全景摄影机 在物镜焦面上,平行于飞行方向设臵一狭缝,并随物镜作垂 直航线方向扫描,得到一幅扫描成的影像图。 4.多光谱摄影机 对同一地区,在同一瞬间摄取多个波段影像的摄影机。其目 的是充分利用地物在不同光谱区,有不同的反射特征,来增多获 取目标的信息量,以便提高影像的判读和识别能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
39
2) 一阶系统
方程式中的系数除了 a0 、a1 与 b0 之外,其它的系数均为零,
则微分方程为
dy (t ) a1 a0 y (t ) b0 x (t ) dt dy (t ) y (t ) kx(t ) dt
静态灵敏度则说明其静态特性。用方程式描述其动态特性的传 感器就称为一阶系统,一阶系统又称为惯性系统。
36
一、动态参数测试的特殊性
T/℃ T 1
动态误差
T 0 o
测试曲线
0
/s
图3.6 热电偶测温过程的动态特性
热电偶测温过程的动态特性
37
二、传感器的动态模型
1、微分方程 传感器的种类和形式很多,但它们的动态特性一 般都可以用下述的微分方程来描述:
dny d n 1 y dy an n an 1 n 1 a1 a0 y dt dt dt d x d x dx bm m bm1 m1 b1 b0 x dt dt dt
Lmax L 100% ymax ymin
19
作图法求线性度演示
( 1—拟合曲线 2—实际特性曲线 )
20
由于实际遇到的传感器大多为非线性。 在实际使用中,为了标定和数据处理的方便, 希望得到线性关系。 因此引入各种非线性补偿环节,如采用 非线性补偿电路或计算机软件进行线性化处理, 从而使传感器的输出与输入关系为线性或接近 线性,但如果传感器非线性的方次不高, 输入 量变化范围较小时,可用一条直线(切线或割 线)近似地代表实际曲线的一段,使传感器输 入输出特性线性化,所采用的直线称为拟合直 线。
1
第一节 传感器的定义、组成与分类 一、传感器的定义
国家标准中传感器(Transducer/Sensor)的定义: 能够感受规定的被测量并按照一定规律转换成可用 输出信号的器件或装置。
①传感器是测量装置,能完成检测任务; ②输入量是某一被测量,可能是物理量,也可能是化学 量、生物量等; ③输出量是某种物理量,便于传输、转换、处理、显示 等,可以是气、光、电物理量,主要是电物理量; ④输出输入有对应关系,且应有一定的精确程度。 传感器名称:敏感元件、变送器、换能器、检测器、探头
40
时间常数τ 具有时间的量纲,它反映传感器的惯性的大小,
对于常见的传感器,其动态模型通常可用零阶、一阶或二 阶的常微分方程来描述,分别称为零阶系统、一阶系统和二阶系 统。 在实际中,经常遇到的是—阶和二阶环节的传感器。
38
m
m 1
1) 零阶系统
在方程式中的系数除了a0、b0之外,其它的系数均为零,则 微分方程就变成简单的代数方程, 即
a0y(t)=b0x(t)
为输入量的确定函数。
15
对静态特性而言,传感器的输入量x与输出量y
之间的关系通常可用一个如下的多项式表示:
y a0 a1 x a2 x an x
2
n
实际使用中的大多数传感器,其用代数多项式表示 的特性方程的次数并不高,一般不超过五次。根据传 感器的实际特性所呈现的特点和实际应用场合的具体 需要,其静特性方程并非一定要表示成上式所确定的 完整形式。
2
二、传感器的组成
被测量
敏感元件
转换元件 辅助电源
基本转换电路
电量
传感器组成框图
3
敏感元件:是直接感受被测量,并输出与被测 量成确定关系的某一物理量的元件。 转换元件:敏感元件的输出就是它的输入,它 把输入转换成电路参量。 基本转换电路:上述电路参数接入基本转换电 路(简称转换电路),便可转换成电量输出。 应该指出的是,并不是所有的传感器都必须 包括敏感元件和转换元件。如果敏感元件直接输 出的是电量,它就同时兼为转换元件。
16
传感器的静态特性指标主要是通过校准试验来获取 的。所谓校准试验,就是在规定的试验条件下,给传 感器加上标准的输入量而测出其相应的输出量。在传 感器的研制过程中可以通过其已知的元部件的静特性, 采用图解法或解析法而求出传感器可能具有的静态特 性。
传感器除了描述输出输入关系的特性之外,还有 与使用条件、使用环境、使用要求等有关的特性。
24
显然灵敏度表示静态特性曲线上相应点的斜率。 对线性传感器,灵敏度为一个常数;对于非线性传感 器,灵敏度则为一个变量,随着输入量的变化而变化,
25
迟滞:
传感器在输入量由小到大(正行程)及 输入量由大到小(反行程)变化期间其输入输 出特性曲线不重合的现象称为迟滞。也就是说, 对于同一大小的输入信号,传感器的正反行程 输出信号大小不相等,这个差值称为迟滞差值。 传感器在全量程范围内最大的迟滞差值 H max 与满量程输出值之比称为迟滞误差,即
21
直线拟合方法 a)理论拟合 b)过零旋转拟合 c)端点连线拟合 d)端点连线平移拟合
22
最小二乘法拟合
设拟合直线方程:
y=kx+b
y yi y=kx+b 0
若实际校准测试点有n个,则第i 个校准数据与拟合直线上响应 值之间的残差为
xI 最小二乘拟合法
Δ i=yi-(kxi+b)
2 最小二乘法拟合直线的原理就是使 i 为最小值,即
34
准确度高而精密度低
准确度低而精密度高
精确度高
35
第三节
传感器的动态特性
传感器测量静态信号时,由于被测量不随时 间变化,测量和记录的过程不受时间限制,但 是实际检测中的大量被测量是随时间变化的动 态信号,传感器的输出不仅需要能精确地显示 被测量的大小,而且还能显示被测量随时间变 化的规律,即被测量的波形。传感器能测量动 态信号的能力用动态特性来表示。
29
分辨力:
指传感器能检出被测信号的最
小变化量。当被测量的变化小于分
辨力时,传感器对输入量的变化无
任何反应。对数字仪表而言,如果
没有其他附加说明,可以认为该表
的最后一位所表示的数值就是它的
分辨力。一般地说,分辨力的数值 小于仪表的最大绝对误差。
30
漂移:
传感器的漂移是指在输入量不变的情况下,传感 器输出量随着时间变化,此现象称为漂移。产生漂移 的原因有两个方面: 一是传感器自身结构参数;二是 周围环境(如温度、湿度等)。 最常见的漂移是温度 漂移,即周围环境温度变化而引起输出的变化,温度 漂移主要表现为温度零点漂移和温度灵敏度漂移。
4
举例:测量压力的电位器式压力传感器
1-弹簧管 2-电位器
5
弹性敏感元件(弹簧管)
敏感元件在传感器中直接感受被测量, 并转换成与被测量有确定关系、更易于转换 的非电量。
6
弹性敏感元件(弹簧管)
在下图中,弹簧管将压力转换为角位移α
7
弹簧管放大图
当被测压力p增大时,弹簧管撑直,通过齿 条带动齿轮转动,从而带动电位器的电刷产生 角位移。
2 i yi kxi b min i 1 i 1
2 i 对k和b一阶偏导数等于零,求出b和k的表达式
n
n
2
23
灵敏度 :
灵敏度是指传感器在稳态下输出变化 值(输出增量)与引起输出变化值的输入变 化值(输入量增量)之比,用K 来表示:
dy y K dx x

温度漂移通常用传感器工作环境温度偏离标准环 境温度(一般为20℃)时的输出值的变化量与温度变 化量之比(ξ )来表示, 即
yt y20 t
31
可靠性 :
可靠性是反映检测系统在规定的条件下,
在规定的时间内是否耐用的一种综合性的质
量指标。
浴盆 曲线
32
稳定性:
稳定性是指传感器在长时间工作的情况下 输出量发生的变化,有时称为长时间工作稳定 性或零点漂移。 例如:测试时先将传感器输出调至零点或 某一特定点,相隔4h、8h或一定的工作次数后, 再读出输出值,前后两次输出值之差即为稳定 性误差。它可用相对误差表示,也可用绝对误差 表示。
通常将该代数方程写成
y(t)=kx(t) 式中,k=b0/a0为传感器的静态灵敏度或放大系数。传感器的动 态特性用方程式来描述的就称为零阶系统。 零阶系统具有理想的动态特性,无论被测量 x(t) 如何随 时间变化,零阶系统的输出都不会失真,其输出在时间上也无 任何滞后, 所以零阶系统又称为比例系统。
8
其他各种弹性敏感元件
在上图中的各种弹性元件也能将压力转 换为角位移或直线位移。
9
被测量通过敏感元件转换后,再经传感元件转
换成电参量
在右图 中, 电位器 为传感元件, 它将角位移 转换为电参 量-----电阻 的变化(ΔR)
10
360度圆盘形电位器
右图所 示的360度圆 盘形电位器 的中间焊片 为滑动片, 右边焊片接 地,左边焊 片接电源。
第四章 传感器的特性
人类处于信息时代,信息技术的三大支柱 是测控技术、通信技术和计算机技术,而传感 器技术是测控技术的基础。“没有传感器技术 就没有现代科学技术”的观点已为全世界公认。 传感器处于自动检测与控制系统之首,是 感知、获取与检测信息的窗口。科学研究和生 产过程要获取的信息,都要通过传感器转换成 容易传输和处理的电信号。
17
二、传感器的静态特性指标
传感器的特性一般指输入、输出特性, 包括:线性度、灵敏度、迟滞、重复性、分 辨力、稳定度、漂移、电磁兼容性、可靠性 等。
18
线性度:
线性度又称非线性误差,是指传感器实际 特性曲线与拟合直线(有时也称理论直线)之 间的最大偏差与传感器量程范围内的输出之百 分比。将传感器输出起始点与满量程点连接起 来的直线作为拟合直线,这条直线称为端基理 论直线,按上述方法得出的线性度称为端基线 性度,非线性误差越小越好 。线性度的计算 公式如下:
描述传感器输入一输出关系的方法有两种:一是传 感器的数学模型;二是传感器的各种基本特性指标。两 者都可用于描述传感器的输入、输出关系及其特性。
相关文档
最新文档