《用公式法进行因式分解》PPT课件(1)
合集下载
公式法分解因式ppt
总结词
完全平方公式是一种常见的因式分解方法,适用于形如$a^2 + 2ab + b^2$的式子。
公式
$(a+b)^2 = a^2 + 2ab + b^2$
完全平方公式法
平方差公式法
总结词
平方差公式是一种基本的因式分解方法,适用于形如$a^2 - b^2$的式子。
提取公因式法是因式分解中常用的一种方法,适用于有公因式的式子。
详细描述
利用三角恒等变换,将式子化为一个单项式的倍数形式,从而得到因式分解的结果。
方法描述
三角公式法
04
公式法分解因式的案例分析
请输入您的内容
公式法分解因式的案例分析
05
公式法分解因式的注意事项与技巧
确认公式是否正确
在使用公式法分解因式时,首先需要确认所使用的公式是否正确,避免使用错误的公式导致结果错误。
THANKS
感谢观看
2023-10-27
公式法分解因式ppt
目录
contents
引言公式法分解因式的基本原理公式法分解因式的具体方法公式法分解因式的案例分析公式法分解因式的注意事项与技巧总结与展望
01
引言
分解因式的定义与重要性
分解因式的重要性
1. 便于化简:通过分解因式,可以将一个复杂的多项式简化为易于计算的基本因子乘积,有助于进一步化简。
在使用公式法分解因式时,需要了解公式的变形,包括平方差公式的逆运算、立方和公式的逆运算等,以便更好地运用公式解决各种问题。
了解公式的变形
掌握公式的运用方法
在使用公式法分解因式时,需要掌握公式的运用方法,包括如何使用公式进行因式分解、如何使用公式进行计算等。
《公式法》因式分解PPT(第1课时)
B.-m ²-n²的两平方项符号相同,不能用平方差公式进行因式分解;
C.-m ²+n ² 符合平方差公式的特点,能用平方差公式进行因式分解;
D. m ²-tn ²不符合平方差公式的特点,不能用平方差公式进行因式分解.
合作探究
探究点三 问题1:把下列各式分解因式: (1)9(m+n)²-(m-n)²; (2)2x³-8x. (3)x 4-1 解:(1)9(m+n)²-(m-n)²
4.3 公式法
第1课时
八年级下册
-.
学习目标 1 掌握用平方差公式分解因式的方法. 2 能综合运用提取公因式法、平方差公式法分解因式.
前置学习
1.填空
①25x²= (__5_x__)²
③0.49b²= (_0_._7_b_)²
⑤1
4
b²=
(__12_b__)²
②36a4 = (__6_a_²_)² ④64x²y²= (__8_x_y_)²
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形 式 2 .公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
课后作业
1.对于任意整数n,多项式(n+7) ²-(n-3) ²的值都能( A )
随堂检测
1.判断正误 (1)x²+y²=(x+y)(x-y); (2)x²-y²= (x+y)(x-y); (3)-x²+y²=(-x+y)(-x-y); (4)-x²-y²=-(x+y)(x-y).
(✘) ( ✔) ( ✘) ( ✘)
随堂检测
2. 某同学粗心大意,分解因式时,把等式x4-■=(x ²+4)(x+2)(x-▲)中的
人教版教材《因式分解》ppt1
pq
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
十字相乘法(借助十字交叉线分解因式的方法)
例一:
步骤:
x2 6x 7 (x 7)(x 1) ①竖分二次项与常数项
x
7 7
或
x 1 1
②交叉相乘,和相加 ③检验确定,横写因式 顺口溜:竖分常数交叉验,
6
-5
2
-1
-1-10=-11
1
1
-5+6=1
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练习:将下列各式分解因式 1、 7x 2-13x+6 答案(7x-6)(x-1) 2、 -y 2-4y+12 答案- (y+6)(y-2) 3、 15x2+7xy-4y 2 答案 (3x-y)(5x+4y) 4、 x 2-(a+1) x+a 答案 (x-1)(x-a)
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练一练: 将下列各式分解因式
1x2 5x 6 3x2 7x 12
2x2 x 6 4x2 3x 10
x2
小结:用十字相乘法把形如
px q 二次三项式分解因式
q ab, p a b
当q>0时,q分解的因数a、b( 同号 )
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
你能对下列式子进行分解因式吗?
x y2 8x y 48
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
十字相乘法(借助十字交叉线分解因式的方法)
例一:
步骤:
x2 6x 7 (x 7)(x 1) ①竖分二次项与常数项
x
7 7
或
x 1 1
②交叉相乘,和相加 ③检验确定,横写因式 顺口溜:竖分常数交叉验,
6
-5
2
-1
-1-10=-11
1
1
-5+6=1
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练习:将下列各式分解因式 1、 7x 2-13x+6 答案(7x-6)(x-1) 2、 -y 2-4y+12 答案- (y+6)(y-2) 3、 15x2+7xy-4y 2 答案 (3x-y)(5x+4y) 4、 x 2-(a+1) x+a 答案 (x-1)(x-a)
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练一练: 将下列各式分解因式
1x2 5x 6 3x2 7x 12
2x2 x 6 4x2 3x 10
x2
小结:用十字相乘法把形如
px q 二次三项式分解因式
q ab, p a b
当q>0时,q分解的因数a、b( 同号 )
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
你能对下列式子进行分解因式吗?
x y2 8x y 48
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版数学八年级上册《因式分解公式法》(一)课件
(3)0.16x2-0.09y2z2 (4)16(x-1)2-9(x+2)2
(5)–16x4+81y4 (6)3x3y–12xy
(a+b)(a-b)=a2-b2 (整式乘法)
a2-b2 =(a+b)(a-b)ቤተ መጻሕፍቲ ባይዱ因式分解)
想一想
(1)下列多项式中,他们有什么共同特征?
①x2-25 ②9x2-y2
□2 -△2
(2)尝试将它们分别写成两个因式的乘积,并与同伴交流.
①x2-25=(x+5)(x-5)
②9x2-y2=(3x+y)(3x-y)
□2-△2=(□+△)(□-△)
议一议
平方差公式有哪些特点?
a2−b2= (a+b)(a−b)
左边:有两项;每一项都是平方项;两项符号相反 右边:两数的和与差的积
关键:确定公式中的a和b
火眼金睛
下列多项式可不可以用平方差公式因式分解?
①x2+y2
②-x2+y2
③-x2-y2
④x2-(-y)2
例题讲解
公式法因式分解(1)
回顾与思考
1、把下列各式分解因式:
(1)3a3b2-12ab3 关键:确定公因式 =3ab2(a2-4b)
(2)a(m-2)+b(2-m) =(m-2)(a-b)
一 看系数 二 看字母 三 看指数
最大公约数 相同字母最低次幂
回顾与思考
2、填空: ①25x2=(__5_x__)2
名言警句
严谨性之于数学 犹如道德之于人
自我检测
1、判断正误:
(1)x2+y2=(x+y)(x–y) (2)–x2+y2=–(x+y)(x–y) (3)x2–y2=(x+y)(x–y) (4)–x2–y2=–(x+y)(x–y)
用公式法进行因式分解第一课时课件
因式分解
我们把多项式a² +2ab+b²和
a² -2ab+b²叫做完全平方式。
完全平方式有什么特征?
(1)二次三项式。 (2)两数的平方和,两数积的2倍。
a2+2Βιβλιοθήκη b+b2 =(a+b)2. a2−2ab+b2 =(a−b)2.
两数的平方和,加上(或者减去)这两 数的积的2倍,等于这两数和或差的平方. 像 a2+2ab+b2或a2-2ab+b2的式子称为完全平式
当堂达标:
1.选择题:下列各式能用平方差公式分解因式的 是( D ) A. 4X² +y² B. 4 x- (-y)² C. -4 X² -y D. - X² + y² 2. 把下列各式分解因式:
1)18-2b²
2) x4 –1
1)原式=2(3+b)(3-b)
2)原式=(x² +1)(x+1)(x-1)
考考你
除了平方差公式外,还有哪些公式
(a+b)2=a2+2ab+b2 ; (a-b)2=a2-2ab+b2 ;
怎样用语言表述
两数和或差的平方,等于这两数的平方和 加上(或者减去)这两数的积的2倍.
完全平方公式:
完全平方公式 (a+b)2 = a²+2ab+ b² 反过来就是: (a-b)2 = a²-2ab+ b² 两个数的平方 和,加上(或减 整式乘法 去)这两数的积 2 a²+2ab+ b² = (a+b) 的2倍,等于这 a²-2ab+ b² = (a-b)2 两数和(或差)的 平方。
用公式法进行因式分解
教学目标 1.理解运用平方差公式和完全平方公式分 解因式与整式乘法是相反的变形. 2.学会运用平方差公式和完全平方公式分 解因式,并且分解到底. 3.培养观察分析问题的能力. 4.体会“整体”“换元”的数学思想和方 法.
课件《因式分解》课件PPT_人教版1
x=
(b2-4ac≥0)
( x -4 ) 2 - ( 5 - 2x )2=0.
5 , x2=5.
导入新知
1. 解一元二次方程的方法有哪些?
直接开平方法 x2=a (a≥0)
配方法
(x+m)2=n (n≥0)
公式法
x= b b2 4ac(b2-4ac≥0)
2a
2. 什么叫因式分解?
把一个多项式分解成几个整式乘积的形式叫做因式 分解,也叫把这个多项式分解因式.
(4)移项,得 y2-2y-15=0.
a b c (∵2ax=∵+31,)(b2==x--314,,)=c0=. -=1,-4, =-1,
②(x-1)2=3;
把方程左边因式分解,
y y x①b=2x-∴2-4ax3c=x=+(-1-=100);-(2-b240-=41±a0c0≥0)-24×2-3 4×3×-1=2±3
能力提升题
我们已经学习了一元二次方程的四种解法:直 接开平方法、配方法、公式法和因式分解法.请从 以下一元二次方程中任选一个,并选择你认为适当 的方法解这个方程.
降次,化为两个一次方程
x 0 或 10 4.9x 0
解两个一次方程,得出原方程的根
x1 0,
100 x2 49 2.04
这种解法是不是很简单?
探究新知
【思考】以上解方程 10x-4.9x2=0 的方法是如何使二次方 程降为一次的?
x(10-4.9x)=0 ①
x=0或10-4.9x=0 ②
(2)x(x+4)=8x+12. 解:x2-4x-12=0,
(x+1)2=-1.
(x-2)2=16.
此方程无解.
x1=6, x2=-2.
沪科版七年级下第8章 8.4.2 因式分解 公式法课件(15张PPT)
满足上述条件就可以用平方差公式
小试牛刀
判断下列各多项式是否可以用平方差公式进 行因式分解,如果可以,指出对应公式中的 a,b分别是什么,如果不能请说明理由。
(1)、a²-2ab+b² (2)、a²+b² (3)、-a²-b² (4)、a²-b (5)、a²-1 (6)、4a²-25b²(7)-16m²+1
)
3、分解因式:
(1)、4x²+4x+1 (2)、(x-2y)²+8xy
(3)、 1 x2 1 y2 (4)、(x+1)(x-1)-35
16 25
布置作业 课堂小册子
魅力数学
1、用简便方法计算:
1 1 1 1 1 1 1 1 ...1 1 4 9 16 25 10000
因式分解
引出概念
像这样运用公式进行因式分解的方法叫做公式 法
掌握运用
那么,我们如何运用公式法进行因式分解呢? 观察刚才的等式
a²+2ab+b²=(a+b)² a²-2ab+b²=(a-b)² 等式左边的多项式具有什么特点?
特征: 项数 三项式 特点 两项能够写成完全平方数,另外 一项是它们底数积的2倍。 符号 完全平方数的两项符号相同
满足刚才三点要求就可以运用完全平方公式法来 因式分解了。
判断下列各多项式可以运用完全平方法进行分解 因式吗?
(1)x²-2x+1 (2)m²+2mn+n²(3)4a²+6ab+9b² (4)(a-b)²-2(a-b)+1(5)-a²+2ab-b²(6)2a²-b (7)x²-2xy-y ² (8)a²-ab+b²(9)m²+mn+n²
小试牛刀
判断下列各多项式是否可以用平方差公式进 行因式分解,如果可以,指出对应公式中的 a,b分别是什么,如果不能请说明理由。
(1)、a²-2ab+b² (2)、a²+b² (3)、-a²-b² (4)、a²-b (5)、a²-1 (6)、4a²-25b²(7)-16m²+1
)
3、分解因式:
(1)、4x²+4x+1 (2)、(x-2y)²+8xy
(3)、 1 x2 1 y2 (4)、(x+1)(x-1)-35
16 25
布置作业 课堂小册子
魅力数学
1、用简便方法计算:
1 1 1 1 1 1 1 1 ...1 1 4 9 16 25 10000
因式分解
引出概念
像这样运用公式进行因式分解的方法叫做公式 法
掌握运用
那么,我们如何运用公式法进行因式分解呢? 观察刚才的等式
a²+2ab+b²=(a+b)² a²-2ab+b²=(a-b)² 等式左边的多项式具有什么特点?
特征: 项数 三项式 特点 两项能够写成完全平方数,另外 一项是它们底数积的2倍。 符号 完全平方数的两项符号相同
满足刚才三点要求就可以运用完全平方公式法来 因式分解了。
判断下列各多项式可以运用完全平方法进行分解 因式吗?
(1)x²-2x+1 (2)m²+2mn+n²(3)4a²+6ab+9b² (4)(a-b)²-2(a-b)+1(5)-a²+2ab-b²(6)2a²-b (7)x²-2xy-y ² (8)a²-ab+b²(9)m²+mn+n²
人教版初中数学《因式分解》_PPT
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
∴
x1
-1 2
,x2
1 2
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
典题精讲
例2 用适当的方法解下列方程:
(1)3x²+x-1=0
解: a=3,b=1,c=-1,
∴Δ=b²-4ac=1-4×3×(-1)
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
典题精讲
(2)5x2 2x 1 x2 2x 3
4
4
解:原方程整理为4x²-1=0
因式分解,得(2x+1)(2x-1)=0
∴2x+1=0或2x-1=0
典题精讲
(3)(3x-2)²=4(3-x)²
解:移项,得(3x-2)²-[2(3-x)]²=0
因式分解,得
[(3x-2)+2(3-x)][(3x-2)-2(3-x)]=0
即(x+4)(5x-8)=0
∴x+4=0或5x-8=0
∴x1=-4,x2
8 5
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《因 式分解 》_ppt 1-课件 分析下 载
典题精讲
(4)(x-1)(x+2)=-2
解:方程整理为x²+x=0 因式分解,得x(x+1)=0 ∴x1=0,x2=-1
人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件
1
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)
七年级数学下册第3章因式分解公式法(第1课时)课件(新版)湘教版
【学霸提醒】 提公因式法与平方差公式综合应用的一般步骤
“一提”“二套”“三查”. 一提:将一个多项式分解因式时,第一要视察被分解的 多项式是否有公因式,若有,就要先提公因式;
二套:再视察另一个因式特点,进而发现其能否用公式 法继续分解; 三查:因式分解必须分解到每个因式都不能再分解为止.
【题组训练】
2.下列各式应用平方差公式进行因式分解: ①32-y2=9-y2;②a2-9b2=(a+9b)(a-9b); ③4x4-1=(2x2+1)(2x2-1);
④m2n2- 1 = (mn 1 )(mn 1 ) ;⑤-a2-b2=(-a+b)(-a-b).
9
3
3
其中正确的有 ( B )
A.1个
B.2个
【学霸提醒】 能应用平方差公式因式分解的多项式特点 等号左边: ①是二项式; ②每一项都可以表示成平方的情势;
③两项的符号相反. 等号右边是等号左边两底数的和与两底数的差的积.
【题组训练】 1.下列多项式不能用平方差公式因式分解的是( A ) A.-m2-n2 B.-16x2+y2 C.b2-a2 D.4a2-49n2
C.(-x)2+y2
D.x2+(-y)2
(B)
2.多项式n2-4m2因式分解的结果为 ___(_n_+_2_m_)_(_n_-_2_m_)___. 3.因式分解:(a-2b)2-b2.
解:(a-2b)2-b2 =(a-2b+b)(a-2b-b) =(a-b)(a-3b).
知识点一 用平方差公式进行因式分解(P63-64例1,2,
3拓展)
【典例1】因式分解:
16- m21.
25
81y4-16x4.
分解因式公式法ppt课件
提示:可以把字母换成 (1)数 (2)字母
(3)字母与数字乘积组合
(4)多项式
请您欣赏
励志名言
The best classroom in the world is at the feet of an elderly person.
世界上最好的课堂在老人的脚下.
Having a child fall asleep in your arms is one of the most peaceful feeling in the world. 让一个孩子在你的臂弯入睡,你会体会到世间最安宁的感觉.
(系数、字母、字母指数)
系数是多项式各项系数的最大公约数。 字母是多项式各项中都含有的相同字母。 相同字母的指数取各项中最小的一个,即最低次幂。
4、公因式可以是单项式也可以是多项式吗?
因式分解注意事项:
(1)结果是“积”的形式。
即
结果=“(公因式)( )( )”的形式。
括号外不能有加减计算。
(2)一般情况下,如果多项式第一项系数为负时,习惯上都
∴k=±2•3x•y=±6xy 你认为谁的做法正确?为什么?运用:若x2-kx+4是完全平方公式,则k=±4 .
尝试活动:我来当老师!
(1)乘法分配律逆运算(提公因式)
ma+mb+mc=m(a+b+c)
(2)平方差公式
a2-b2=(a+b)(a-b)
(3)完全平方公式
a2±2ab+b2=(a±b)2
1、什么是公因式?
多项式各项都含有的相同因式叫做这个多项式各项的公因式。
2、什么是提公因式法?
如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将 多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。
因式分解公式法课件
=(2Байду номын сангаас)²- (mn)²
=(2x+mn)(2x-mn)
例2.把下列各式因解式: 分解
1)( x + z )²- ( y + 4z.原)²式=[(x+y+z)+(x-y-z)]
×[(x+y+z)- (x-y-z)]
2)4解(:a + b)²- 25(a - c)=²2 x ( 2 y + 2 z) 3解):41.a原³式-==4([x(a+xy++z)2+z()y(x+-zy))][(x+z)=-(4yx+z()y] + z ) 42解.)原(:x式=+[2y(a++b)z]²)-²[5-(a(-xc)]–² y – z )²
2 a 2 6 a 9 原式x32
3 4 a 2 4 a 1 原式2a12
4 9 m 2 6 m n n 2 原式3mn2
5 x2 1 x
4
原式
x
1 2
2
6 4 a 2 1 2 a b 9 b 2 原式2a3b2
练习题:
1、下列各式中,能用完全平方公式 分解的是( D ) A、a2+b2+ab B、a2+2ab-b2 C、a2-ab+2b2 D、-2ab+a2+b2 2、下列各式中,不能用完全平方公 式分解的是( C ) A、x2+y2-2xy B、x2+4xy+4y2 C、a2-ab+b2 D、-2ab+a2+b2
整式乘法 a²- b²= (a+b)(a-b)
《公式法》因式分解PPT课件(第1课时)
(1)( + ) −( − )
解: (1)( + ) −( − )
= ( + )
− ( − )
多项式
= + + ( − ) + − ( − )
=( + + − )( + − + )
=( + )( + )
=4×100×7=2800.
连接中考
( −)( −)
(2020•河北)若
则 =
= × × ,
.
解析:方程两边都乘以,
得 − − = × × ,
∴ + − + − = × × ,
)
平方差公
式因式分
解的步骤
一找 二套 三彻底
解: 4x2+8x+11
=4(x2+2x)+11
=4(x2+2x+1-1)+11
=4(x+1)2-4+11
=4(x+1)2+7
∵4(x+1)2≥0,
∴4(x+1)2+7>0
即4x2+8x+11>0,所以小刚说得对.
课堂小结
公式
− = ( + )( − )
公式法
分解因式
(平方差公式
答:剩余部分的面积为36 cm2.
课堂检测
能力提升题
已知 = + , = + , ≠ ,则
+ + 的值为
16
.
解析:将 = + , = + 相减,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题
讲
解
解:(1)25x2+20x+4
=(5x)2+2×5x·2+22 = (5x + 2)2
2
2
2
2
独立完成第2题,你能行!
练习:把下列各式进行因式分解 (1)a2+8a+16
(2)m2+mn+ 1 n2
4
能力提高
先独立完成,后小组讨论
例3:把下列各式进行因式分解 25a2-4(b+c)2 (x+y)2+6(x+y)+9
a2+2ab+b2=(a+b)2
这两个公式的特点形象的表示成:
平方差公式: 2
2
2
完全平方公式: 22征2来自例题讲
解
解:(1)4x2-25
=(2x)2 - 52 =( 2x + 5 ) ( 2x - 5 )
2
2
独立完成第2题,你能行!
把下列各式进行因式分解 (1)x2-9
(2)25-4x2y2
例
•
九、很多时候,我们富了口袋,但穷了脑袋;我们有梦想,但缺少了思想。——佚名
•
十、你想成为幸福的人吗?但愿你首先学会吃得起苦。——屠格涅夫
•
十一、一个人的理想越崇高,生活越纯洁。——伏尼契
•
十二、世之初应该立即抓住第一次的战斗机会。——司汤达
•
十三、哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅
课堂小结
公式法因式分解:
平方差公式 完全平方公式
a2-b2= (a+b)(a-b) a2-2ab+b2=(a-b)2 a2+2ab+b2=(a+b)2
当堂检测
(1)1469 x2-36y2 (2)4x2-12xy+9y2 (3)a4-b4 (4)(p+q)2+4(p+q)+4 (5)9m2-6mn+n2
是降临在那些真心相信梦想一定会成真的人身上。——威尔逊
•
二、梦想无论怎样模糊,总潜伏在我们心底,使我们的心境永远得不到宁静,直到这些梦想成为事实才止;像种子在地下一样,一定要萌芽滋长,伸出地面来,寻找阳光。——林语堂
•
三、多少事,从来急;天地转,光阴迫。一万年太久,只争朝夕。——毛泽东
•
四、拥有梦想的人是值得尊敬的,也让人羡慕。当大多数人碌碌而为为现实奔忙的时候,坚持下去,不用害怕与众不同,你该有怎么样的人生,是该你亲自去撰写的。加油!让我们一起捍卫最初的梦想。——柳岩
•
五、一个人要实现自己的梦想,最重要的是要具备以下两个条件:勇气和行动。——俞敏洪
•
六、将相本无主,男儿当自强。——汪洙
•
七、我们活着不能与草木同腐,不能醉生梦死,枉度人生,要有所作为。——方志敏
•
八、当我真心在追寻著我的梦想时,每一天都是缤纷的,因为我知道每一个小时都是在实现梦想的一部分。——佚名
•
十四、信仰,是人们所必须的。什麽也不信的人不会有幸福。——雨果
•
十五、对一个有毅力的人来说,无事不可为。——海伍德
•
十六、有梦者事竟成。——沃特
•
十七、梦想只要能持久,就能成为现实。我们不就是生活在梦想中的吗?——丁尼生
•
十八、梦想无论怎样模糊,总潜伏在我们心底,使我们的心境永远得不到宁静,直到这些梦想成为事实。——林语堂
关键确定公因式
(3)a(m-2)+b(2-m)
(4)a(x-y)2-b(y-x)2
一看系数 二看字母
三看指数
最大公约数 × 相同字母最低次幂
(整式乘法) (a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2
反过来
(因式分解) a2-b2= (a+b)(a-b) a2+2ab+b2=(a+b)2
(1)(
4 7
x+6y)(
4 7
x-6y)
(2)(2x-3y)2
(3)(a2+b2)(a+b)(ab)
(4)(p+q+2)2
(5)(3m-n)2
作业
习题12.4A组
•
一、我们因梦想而伟大,所有的成功者都是大梦想家:在冬夜的火堆旁,在阴天的雨雾中,梦想着未来。有些人让梦想悄然绝灭,有些人则细心培育维护,直到它安然度过困境,迎来光明和希望,而光明和希望总
• 学习目标: • 1、理解因式分解中的平方差公式、完全平
方公式的意义。
• 2、能运用公式法对多项式进行因式分解。 • 3、了解因式分解的一般步骤。
• 学习重点:能运用公式法对多项式进行因 式分解
• 学习难点:公式法的正确运用
回
顾
思
考
下列各式分解因式:
(1)3a3b2-12ab3
(2)x(a+b)+y(a+b)
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
•
十九、要想成就伟业,除了梦想,必须行动。——佚名
•
二十、忘掉今天的人将被明天忘掉。──歌德
(a-b)2= a2-2ab+b2
a2-2ab+b2=(a-b)2
a2-b2= (a+b)(a-b)
a2-2ab+b2=(a-b)2 a2+2ab+b2=(a+b)2
把它们作为公式,就可以把某些多项式进行因 式分解,这种因式分解的方法叫做公式法。
要
特
重
a2-b2= (a+b)(a-b)
a2-2ab+b2=(a-b)2 PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/