液压缸设计

合集下载

液压缸的设计计算

液压缸的设计计算

液压缸的设计计算液压缸设计计算是液压系统设计的关键部分之一,液压缸通过液压油的压力作用,将液压能转化为机械能。

液压缸的设计需要考虑液压缸的工作条件、负载要求、速度要求等多个因素。

下面是液压缸设计计算的一些关键要点。

液压缸设计前需要明确以下几个参数:(1)负载:液压缸要承受的最大负载。

(2)行程:液压缸的活塞行程,即活塞从一个极限位置到另一个极限位置的移动距离。

(3)速度:液压缸的移动速度要求。

(4)传动方式:液压缸的传动方式有单杆式和双杆式,单杆式主要用于简单操作,而双杆式适用于更复杂的应用场景。

(5)工作压力:液压缸的额定工作压力,一般由液压系统的工作压力决定。

在设计液压缸时,需要进行以下计算和选型:(1)工作压力的计算:根据液压缸所需承受的最大负载和速度要求,计算出液压缸所需的工作压力。

工作压力计算公式为:工作压力=功率÷斜杠(活塞面积×张角因数)活塞面积=π×活塞直径²÷4张角因数根据活塞材料和工作环境选取合适的值。

(2)液压缸尺寸的计算:根据所需承受的最大负载和工作压力,计算出液压缸的尺寸。

液压缸尺寸计算公式为:活塞面积=承受的负载÷工作压力活塞直径=(4×活塞面积÷π)^0.5根据液压缸的类型和具体要求,还需要进行一些其他计算,如活塞杆直径、带式液压缸的带宽和带材厚度的计算等。

(3)液压缸速度的计算:根据液压缸的移动速度要求,结合液压缸的流量特性和阀门的流量系数等参数,计算出所需的液压缸速度。

液压缸速度计算公式为:流量=活塞面积×速度速度=流量÷活塞面积其中,流量需要根据阀门流量系数、压差等因素计算得出。

为了确保液压缸的工作效果和可靠性,设计时还需要考虑液压缸的密封性、液压阀的选型、活塞材料的选择和润滑等方面的计算和选型。

总结起来,液压缸的设计计算包括工作压力的计算、液压缸尺寸的计算以及液压缸速度的计算等。

液压缸的设计规范

液压缸的设计规范

液压缸的设计规范液压缸的设计规范⽬录:⼀、液压缸的基本参数1、液压缸内径及活塞杆外径尺⼨系列2、液压缸⾏程系列(GB2349-1980) ⼆、液压缸类型及安装⽅式1、液压缸类型2、液压缸安装⽅式三、液压缸的主要零件的结构、材料、及技术要求1、缸体2、缸盖(导向套)3、缸体及联接形式4、活塞头5、活寒杆6、活塞杆的密封和防尘7、缓冲装置8、排⽓装置9、液压缸的安装联接部分(GB/T2878)四、液压缸的设计计算1、液压缸的设计计算部骤2、液压缸性能参数计算3、液压缸⼏何尺⼨计算4、液压缸结构参数计算5、液压缸的联接计算⼀、液压缸的基本参数1.1液压缸内径及活塞杆外径尺⼨系列1.1.1液压缸内径系列(GB/T2348-1993)8 10 12 16 20 25 32 40 50 63 80 (90) 100 (110)125 (140) 160 (180) 200 220 (250)(280) 320 (360) 400 450 500括号内为优先选取尺⼨1.1.2活塞杆外径尺⼨系列(GB/T2348-1993)4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360活塞杆连接螺纹型式按细⽛,规格和长度查有关资料。

1.2液压缸的⾏程系列(GB2349,1980)1.2.1第⼀系列25 50 80 100 125 160 200 250 320 400500 630 800 1000 1250 1600 2000 2500 3200 4000 1.2.1第⼆系列40 63 90 110 140 180 220 280 360 450550 700 900 1100 1400 1800 2200 28003600⼆、液压缸的类型和安装办法2.1液压缸的类型对江东机械公司⽽⾔2.1.1双作⽤式活塞式液压缸2.1.2单作⽤式柱塞式液压缸2.2液压缸的安装⽅式对江东机械公司⽽⾔2.2.1对柱塞式头部法兰2.2.2对活塞式螺纹联接在梁上三、液压缸主要零件的结构、材料、技术要求3.1缸体3.1.1缸体材料A焊接缸头缸底等,采⽤35钢粗加⼯后调质[σ],110MPaB⼀般情况采⽤45钢HB241,285 [σ],120MPaC铸钢采⽤ZG310,57 [σ],100MPaD球墨铸铁 (江东⼚采⽤)QT50,7 [σ],80,90MPaE⽆缝纲管调质(35号 45号) [σ],110MPa 3.1.2缸体技术要求A内径 H8 H9 精度粗糙度( 垳磨 )B内径圆度 9,11级圆柱度 8级3.2缸盖(导向套)3.2.1缸盖材料A可选35,45号锻钢B可选⽤ZG35,ZG45铸钢C可选⽤HT200 HT300 HT350铸铁D当缸盖⼜是导向导时选铸铁3.2.2缸盖技术要求A直径d(同缸内径)等各种回转⾯(不含密封圈)圆柱度按 9 、10 、11 级精度B内外圆同轴度公差0.03mmC与油缸的配合端⾯?按7级D导向⾯表⾯粗糙度3.2.3联接形式多种可按图133.2.4活塞头(耐磨)A材料灰铸铁HT200 HT300 钢35 、45B技术要求外径D(缸内径)与内孔D1?按7、8级外径D的圆柱度 9、10、11级端⾯与内孔D1的?按7级C活塞头与活塞杆的联接⽅式按图3形式D活塞头与缸内径的密封⽅式柱寒缸 40MPa以下V型组合移动部分活塞缸 32MPa以下⽤Yx型移动部分静⽌部分 32MPa以下⽤“O“型 3.2.5 活塞杆A端部结构按江东⼚常⽤结构图17、18B活塞杆结构空⼼杆实⼼杆C材料实⼼杆35、45钢空⼼杆35、45⽆缝缸管D技术要求粗加⼯后调质HB229,285可⾼频淬⽕HRC45,55外圆圆度公差按9、10、11级精度圆柱度按8级两外圆?为0.01mm端⾯?按7级⼯作表⾯粗糙度 < (江东镀铬深度0.05mm)渡后抛光 3.2.6活塞杆的导向、密封、和防尘 A导向套结构图9(江东常⽤) 导向杆材料可⽤铸铁、球铁导向套技术要求内径H8/f8、H8/f9表⾯粗糙度 B活塞杆的密封与防尘柱塞缸V型组合移动部分活塞缸Yx 移动部分“O”型 (静⽌密封)防尘,⽑毡圈(江东常⽤)3.2.7 液压缸缓冲装置多路节流形式缓冲参考教科书3.2.8 排⽓装置3.2.9液压缸的安装联接部分的型式及尺⼨可⽤螺纹联接(细⽛) 油⼝部位可⽤法兰压板联接油⼝部位液压缸安装可按图84 液压缸的设计计算4.1液压缸的设计计算部骤4.1.1根据主机的运动要求定缸的类型选择安装⽅式4.1.2根据主机的动⼒分析和运动分析确定液压缸的主要性能参数和主要尺⼨如推⼒速度作⽤时间内径⾏程杆径注:负载决定了压⼒。

液压缸设计指导书

液压缸设计指导书

液压缸设计指导书
液压缸设计指导书
1.引言
1.1 目的
本指导书的目的是为液压工程师提供设计液压缸的详细步骤和指导,包括液压缸的选型、尺寸计算、材料选择等方面的内容,以确保设计出符合要求且可靠的液压缸。

1.2 适用范围
本指导书适用于液压工程师、机械设计师和相关专业人员。

2.液压缸类型
2.1 单作用液压缸
2.2 双作用液压缸
2.3 伸缩式液压缸
2.4 旋转液压缸
3.液压缸选型
3.1 载荷计算
3.2 推力计算
3.3 工作压力计算
3.4 活塞速度计算
3.5 缸体材料选择
4.液压缸尺寸设计
4.1 活塞直径计算
4.2 活塞杆直径计算
4.3 缸体内径计算
4.4 缸体壁厚计算
4.5 缸体长度计算
5.液压缸密封件选取与设计5.1 密封件种类
5.2 密封件选型
5.3 密封件尺寸设计
6.液压缸安全设计
6.1 过载保护
6.2 液压缸应急情况处理
6.3 液压缸的安全标准和规范
7.液压缸安装与调试
7.1 安装前准备
7.2 安装步骤
7.3 调试与测试
附件:
附件1:液压缸设计工程图纸
附件2:液压缸性能测试报告
法律名词及注释:
1.著作权:指法律规定的对作品的全部或部分的独占意志权和财产权
2.专利:指依法授予发明创造者的专利权人对其发明创造在一定的期限内处于独占的权利
3.商标:指用以区别商品或服务的标志,包括文字、图形、字母、数字、颜色、声音、三维标志等
4.知识产权:知识产权是指人们在创造和利用文化、科学、技术、艺术和其他领域中所拥有的、可以依法保护的权利。

液压油缸设计手册

液压油缸设计手册

液压油缸设计手册一、液压油缸概述1.定义及作用液压油缸,作为一种将液压能转换为机械能的元件,广泛应用于各种工程机械、汽车制造、航空航天、工业自动化等领域。

它以油液为工作介质,通过活塞往复运动实现驱动和控制设备的动作。

液压油缸在实现机械自动化、提高生产效率等方面具有重要作用。

2.分类及特点液压油缸按结构可分为单杆、双杆、多杆等类型;按驱动方式可分为手动和电动两种。

液压油缸具有以下特点:(1)输出力大,承载能力高;(2)体积小,重量轻,结构简单;(3)动作平稳,无噪声,无污染;(4)易于控制,便于实现自动化;(5)寿命长,维护方便。

二、液压油缸设计要点1.选材与工艺液压油缸的材料选择应考虑强度、耐磨性、耐腐蚀性等因素。

常见的材料有碳钢、不锈钢、铝合金等。

工艺方面,应根据油缸的工作条件选择合适的加工方法,如焊接、铸造、数控加工等。

2.结构设计与计算液压油缸的结构设计应满足以下要求:(1)确保油缸在正常工作时,密封件的寿命;(2)考虑油缸的安装方式,如耳轴、法兰等;(3)满足油缸在各种工况下的稳定性能;(4)考虑油缸的防尘、防水、防爆等性能。

计算方面,主要包括以下内容:(1)确定油缸的工作压力;(2)计算油缸的驱动力和负载力;(3)计算油缸的有效面积;(4)校核油缸的材料强度、密封件寿命等。

3.油缸尺寸确定根据液压油缸的用途和工况,确定油缸的长度、直径、行程等尺寸。

同时,考虑油缸的安装空间和外形要求。

4.密封与防尘设计密封设计应考虑油缸的工作压力、运动速度、介质性质等因素,选择合适的密封材料和型式。

防尘设计方面,可根据工况要求,采用不同的防尘措施,如防尘圈、防护罩等。

5.油缸性能优化针对液压油缸的性能要求,通过结构优化、材料选择、工艺改进等手段,提高油缸的性能。

三、液压油缸应用领域1.工程机械液压油缸在工程机械中的应用十分广泛,如液压起重机、液压挖掘机、液压支撑等。

2.汽车制造液压油缸在汽车制造领域的应用主要包括车身装配、发动机装配、底盘装配等。

液压油缸设计标准

液压油缸设计标准

液压油缸设计标准1. 结构和材料液压油缸的主要结构应设计为耐高压、高强度和耐疲劳的结构。

缸体应采用高强度材料,如铸钢、合金钢或不锈钢。

对于关键部位,如活塞和活塞环,应选择耐磨、耐腐蚀的材料,如不锈钢或高强度合金钢。

2. 密封和防泄漏液压油缸的密封系统应设计为防止内部和外部泄漏。

活塞和活塞环之间应采用高性能的密封圈或密封环,以防止液压油的泄漏。

此外,缸盖和缸体之间也应采用密封圈或密封环,以确保缸体的密封性。

3. 性能要求液压油缸应具有良好的性能,包括推力、速度、精度和稳定性。

推力应足够大,以适应各种应用场景的需要。

速度应可调,以满足不同操作速度的要求。

精度应高,以实现精确的控制。

稳定性应强,以确保在各种操作条件下都能保持稳定的工作状态。

4. 安装和维护液压油缸的安装和维护应简单易行。

在安装过程中,应确保各部件的正确安装和调整,避免因安装不当而引起的泄漏或损坏。

在维护过程中,应定期检查液压油的清洁度和浓度,以及各部件的磨损情况,及时进行更换或维修。

5. 表面处理和涂层液压油缸的表面处理和涂层应能够抵抗腐蚀和磨损。

缸体和活塞等部件应进行防腐蚀处理,如镀锌、喷涂防腐涂料等。

此外,为了提高耐磨性,活塞环等摩擦表面应进行耐磨涂层处理。

6. 环境和安全要求液压油缸的设计应考虑环境和安全要求。

在操作过程中,液压油缸可能会产生热量和压力,因此应确保液压油缸能够安全地承受这些条件。

此外,在设计和制造过程中,应考虑到环境保护的要求,尽可能减少对环境的影响。

7. 测试和检验液压油缸在出厂前应进行严格的测试和检验。

测试应包括性能测试、密封性测试、耐压测试等。

检验应包括外观检验、尺寸检验等。

只有经过合格的测试和检验,液压油缸才能被视为符合设计标准。

8. 标记和文档液压油缸应有清晰的标记和完整的文档。

标记应包括产品名称、型号、规格、生产日期等基本信息。

文档应包括设计图纸、使用说明书、维护手册等。

这些标记和文档应易于理解和使用,以便于用户正确地使用和维护液压油缸。

液压油缸设计手册

液压油缸设计手册

液压油缸设计手册第一章:液压油缸的工作原理和结构设计1.1 液压油缸的工作原理液压油缸是一种将液压能转换为机械能的装置,它利用压力油作为工作介质,通过将液压能转化为机械能来实现工作。

液压油缸的工作原理是通过液压力作用在活塞上,从而驱动活塞做直线运动。

1.2 液压油缸的结构设计液压油缸主要由缸体、活塞、密封件、油口、活塞杆等部分组成。

在设计液压油缸结构时,需要考虑工作压力、工作温度、工作环境等因素,以选择合适的材料和结构设计方案,确保液压油缸能够稳定可靠地工作。

第二章:液压油缸的选型和性能参数计算2.1 液压油缸的选型在选型时需要考虑液压油缸的工作压力、推力、速度、工作温度等因素,根据实际工作条件来选择最适合的液压油缸型号和规格。

2.2 液压油缸的性能参数计算液压油缸的性能参数包括工作压力、推力、速度等,需要通过相关公式和计算方法来确定,确保液压油缸在工作时能够满足设计要求。

第三章:液压油缸的材料选择和密封件设计3.1 液压油缸的材料选择液压油缸的材料选择直接影响着其使用寿命和性能稳定性,需要根据工作条件选择合适的材料,例如缸体和活塞可采用优质的合金钢或不锈钢材料,活塞杆则选择具有高强度和耐磨性的材料。

3.2 液压油缸的密封件设计液压油缸的密封件起着密封作用,保证液压油缸的正常工作,需要根据工作环境和工作压力设计合适的密封结构和材料,以确保液压油缸具有良好的密封性能和使用寿命。

第四章:液压油缸的安装和维护4.1 液压油缸的安装在安装液压油缸时,需要确保其与其他部件的配合精确,活塞杆的外部装配与液压机械部件的连接可靠,同时还要注意安装过程中的油污和杂质。

4.2 液压油缸的维护液压油缸在工作过程中需要定期进行维护,保持液压油清洁,检查密封件是否有磨损或老化,以确保液压油缸的正常使用和延长使用寿命。

结语液压油缸作为重要的液压传动元件,其设计、选型和维护都对液压系统的工作稳定性和可靠性起着至关重要的作用。

液压缸设计计算实例

液压缸设计计算实例

液压缸设计计算实例液压缸是一种常用于工业设备中的液压传动装置,主要由一个活塞、一个油缸和两个密封件组成。

它通过液压力将活塞推动,从而实现各种机械运动或工艺过程。

液压缸的设计计算主要包括以下几个方面:液压缸的尺寸计算、密封件的设计和选择、液压缸的工作压力计算、液压缸的材料和结构设计。

下面以液压缸在机械设备中的应用为例,进行设计计算。

液压缸的油缸内径可以根据活塞面积计算得到,油缸内径=2×√(A/π)=2×√(0.04/π)≈0.36m。

为了方便选用标准化油缸,取油缸内径为0.35m。

根据液压缸的工作行程和速度,可以计算出整个工作周期的时间 t=行程/速度=1000mm/0.5m/s=2000s。

液压缸的密封件设计和选择也是重要的一步。

常见的密封元件有油封、活塞密封圈和导向环等。

根据液压缸的工作压力和速度,可以选择适用的密封件类型和尺寸,确保密封性能以及使用寿命。

液压缸的工作压力计算也是必要的。

液压缸工作时,会受到工作压力的作用,为了保证液压缸的安全性和可靠性,需要计算液压缸允许的最大工作压力。

液压缸的最大工作压力一般按照材料、工艺和安全要求确定,常用的安全系数为2倍。

根据工作压力和安全系数,可以计算出液压缸最大允许工作压力为12.5MPa×2=25MPa。

液压缸的材料和结构设计也需要考虑。

液压缸常用的材料有铸铁、铝合金和不锈钢等,根据具体的应用场景和要求选择适合的材料。

液压缸的结构设计包括油缸壁厚、密封件槽设计、支撑结构等,需要根据实际情况和安全性要求进行设计。

综上所述,液压缸设计计算涉及液压缸的尺寸计算、密封件的设计和选择、液压缸的工作压力计算、液压缸的材料和结构设计等方面。

通过合理计算和选取,可以设计出安全可靠的液压缸,满足机械设备的工作需求。

液压油缸设计手册

液压油缸设计手册

液压油缸设计手册第一章:液压油缸概述1.1 液压油缸的定义和作用液压油缸是一种常用的液压执行元件,利用液压油在缸体中的压力变化,产生线性运动或者转动,用于实现各种机械装置的动作控制。

液压油缸广泛应用于冶金、石化、建筑、造船、机械制造等领域。

1.2 液压油缸的结构和工作原理液压油缸通常由缸体、活塞、密封件、进出油口、安装支架等组成。

其工作原理是通过控制油液的流入和流出,使得油缸内部产生一定的压力,从而驱动活塞做直线运动或旋转运动。

第二章:液压油缸设计原理2.1 液压油缸的选型原则在设计液压油缸时,应考虑载荷大小、工作环境、运动速度、活塞行程等因素,选择适合的型号和规格的液压油缸。

2.2 液压油缸的密封性能设计密封性是液压油缸的重要性能指标,设计时应考虑密封件的选择、布局和工作条件,以确保液压油缸的密封可靠性。

2.3 液压油缸的安全性设计在设计液压油缸时,应考虑其在工作过程中可能遇到的过载、压力变化、温度变化等情况,设计相应的安全保护装置和控制系统,以确保液压油缸的安全可靠运行。

第三章:液压油缸的结构设计3.1 缸体和活塞的材料选择液压油缸的缸体和活塞通常由优质碳素钢、合金钢或不锈钢制成,设计时需考虑材料的强度、刚性、耐磨性和耐腐蚀性等性能。

3.2 活塞杆的设计活塞杆是液压油缸的重要部件,设计时需考虑其长度、直径、表面硬度和表面光洁度等参数,以确保活塞杆的工作可靠性和寿命。

3.3 密封件的设计液压油缸的密封件包括活塞密封、杆密封、缸体密封等,设计时需选择适合的密封材料和结构,以确保液压油缸具有良好的密封性能。

第四章:液压油缸的应用和维护4.1 液压油缸的应用范围液压油缸广泛应用于各种工程机械、航空航天、船舶、起重装备、冶金设备等领域,可实现各种复杂机械动作的控制。

4.2 液压油缸的维护和保养液压油缸在使用过程中需要定期检查和维护,包括液压油的更换、密封件的检查、活塞杆的清洁和润滑等,以保证液压油缸的正常工作。

液压缸设计指导书(2023最新版)

液压缸设计指导书(2023最新版)

液压缸设计指导书液压缸设计指导书目录⒈引言⑴文档目的⑵适用范围⑶参考文件⑷术语和定义⒉设计要求⑴功能需求⑵技术要求⑶性能指标⑷安全要求⒊系统设计⑴系统结构⑵工作原理⑶主要组成部件⒋液压缸设计⑴缸体设计⒋⑴材料选择⒋⑵结构设计⒋⑶壁厚计算⑵活塞设计⒋⑴材料选择⒋⑵结构设计⒋⑶活塞密封设计⑶密封件设计⒋⑴ O型圈⒋⑵ V型圈⒋⑶磁性密封件⑷配合设计⒋⑴缸体和活塞配合⒋⑵密封件和槽设计⒋⑶建议的优化配合尺寸⒌安全与可靠性考虑⑴安全设计要求⑵可靠性分析⒌⑴故障模式与影响分析⒌⑵可靠性评估方法⒌⑶可靠性改进措施⒍检验与测试⑴压力测试⑵密封性能测试⑶功能测试⒎维护与保养⑴维护计划⑵保养要点附件附件1、详细图纸附件2、技术规范附件3、实验报告附件4、相关数据表格法律名词及注释⒈《液压缸设计指导书》:本文档所指液压缸的设计指导。

⒉液压缸:一种将液体能量转换为机械能的装置,通常由缸体、活塞和密封件组成。

⒊缸体:液压缸的外壳,通常由钢材制成。

⒋活塞:液压缸内部移动的元件,与缸体配合形成密封工作腔。

⒌O型圈:一种常用的密封件,具有圆环状横截面。

⒍V型圈:一种具有V形横截面的密封件,适用于高压密封。

⒎磁性密封件:利用磁性力实现密封效果的密封件。

⒏故障模式与影响分析:对系统故障模式及其对系统性能的影响进行分析和评估。

⒐可靠性评估方法:对系统的可靠性进行定量或定性评估的方法和工具。

⒑维护计划:规定液压缸维护工作内容、周期和方法的计划。

1⒈保养要点:液压缸日常保养中需要注意的关键事项和操作指南。

液压缸设计

液压缸设计

液压缸设计(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--液压缸设计指导书河南理工大学机械与动力工程学院热能与动力工程系一、设计目的油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。

具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。

因此,广泛应用于工业生产各部门,如:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人,火箭的发射装置等。

它们所用的都是直线往复运动油缸,即推力油缸。

所以,研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。

通过学生自己独立地完成指定的液压缸设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名合格的机械工程师打好基础。

为此,编写了这本“液压缸设计指导书”,供热能专业学生学习液压传动课程及课程设计时参考。

二、设计要求1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。

2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。

计算公式不必进行推导,但应注明公式中各符号的意义,代入数据得出结果即可。

3、说明书要有插图,且插图要清晰、工整,并选取适当此例。

说明书的最后要附上草图。

4、绘制工作图应遵守机械制图的有关规定,符合国家标准。

5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。

三、设计任务设计任务由指导教师根据学生实际情况及所收集资料情况确定。

四、设计依据和设计步骤油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。

液压油缸设计手册

液压油缸设计手册

液压油缸设计手册液压油缸是工业设备中常用的液压传动元件,是利用液体来产生线性运动的装置。

它的应用范围非常广泛,涉及到机械制造、航空航天、采矿、船舶等多个领域。

液压油缸设计的好坏直接影响到整个液压系统的工作性能和稳定性。

制作一份关于液压油缸设计的手册对液压工程师和相关从业人员非常重要。

本手册旨在介绍液压油缸的设计原理、结构特点和设计方法,帮助读者更好地掌握液压油缸的设计技术。

第一部分:液压油缸设计原理液压油缸是利用液压能量进行工作的一种装置,其工作原理主要包括利用液压介质传递压力、使活塞做直线往复运动。

在设计液压油缸时,需要考虑以下几个原理:1. 压力传递原理:液压油缸通过液压介质传递压力,使活塞产生直线往复运动。

2. 液压能量转换原理:将液体能量转换为机械能,实现对工件的推拉作用。

3. 密封原理:液压油缸内部需要有合适的密封结构,以防止液体泄漏,并保证活塞的运动平稳。

4. 运动控制原理:设计液压油缸时需要考虑运动控制方式,如有无缓冲器、限位装置等。

第二部分:液压油缸结构特点液压油缸通常由缸筒、活塞、活塞杆、密封件、导向部件等部分组成。

其特点包括:1. 缸筒:通常由无缝钢管或铸铁制成,结构坚固,能承受一定的压力。

2. 活塞和活塞杆:活塞在缸筒内作直线往复运动,活塞杆与外部连接,传递力量。

3. 密封结构:液压油缸的密封结构决定了其工作的可靠性和寿命,需要采用优质的密封件,才能有效防止泄露和污染。

4. 导向部件:用于保证活塞的运动精度,防止侧向载荷对活塞的影响。

第三部分:液压油缸设计方法液压油缸的设计方法主要包括以下几个步骤:1. 决定工作条件:根据工作环境、工作载荷等确定液压油缸的工作条件。

2. 计算力学参数:包括活塞承受的最大力、活塞杆的拉压强度、缸筒的受压能力等。

3. 选择密封件:选用合适的密封结构和材料,以保证液压油缸的密封性和使用寿命。

4. 确定液压系统参数:包括液压油缸的工作压力、流量等参数,以配合液压系统的设计。

液压油缸设计手册

液压油缸设计手册

液压油缸设计手册摘要:一、液压油缸简介1.液压油缸的定义与作用2.液压油缸的分类及特点二、液压油缸的设计要素1.设计原则与要求2.设计参数的选择3.结构形式的选择三、液压油缸的设计步骤1.确定工作压力与行程2.选择缸径与杆径3.设计活塞与活塞杆4.设计导向机构5.设计密封装置6.设计缓冲装置7.设计安装与固定方式四、液压油缸的材料选择1.金属材料的选择2.非金属材料的选择五、液压油缸的性能测试与维护1.液压油缸的性能测试2.液压油缸的维护与保养正文:液压油缸设计手册详细介绍了液压油缸的设计原理、方法与步骤。

液压油缸是一种将液压能转换为机械能的执行元件,广泛应用于各种工程机械、机床和自动化设备中。

根据工作压力、行程、安装方式等特点,液压油缸可分为多种类型。

在液压油缸设计中,需要遵循一定的设计原则和要求,确保油缸的可靠性与安全性。

设计参数的选择直接影响液压油缸的性能,如工作压力、行程、速度等。

结构形式的选择则需根据实际应用场景,如单杆式、双杆式、多杆式等。

液压油缸的设计步骤主要包括:确定工作压力与行程,选择缸径与杆径,设计活塞与活塞杆,设计导向机构,设计密封装置,设计缓冲装置以及设计安装与固定方式。

在设计过程中,需要充分考虑材料的选择,包括金属材料和非金属材料。

液压油缸的性能测试与维护对于确保油缸的正常运行至关重要。

性能测试主要包括压力测试、速度测试、行程测试等,以验证油缸的各项性能指标是否满足设计要求。

维护与保养方面,需要注意定期更换液压油、检查密封件、清洁油缸内部等,以延长油缸的使用寿命。

液压油缸设计手册

液压油缸设计手册

液压油缸设计手册摘要:1.液压油缸设计概述2.液压油缸的组成部分3.液压油缸的设计原则与方法4.液压油缸的性能参数5.液压油缸的应用领域6.液压油缸的选用与安装7.液压油缸的维护与故障排除8.液压油缸的设计案例分析正文:一、液压油缸设计概述液压油缸作为液压传动系统的重要组成部分,广泛应用于各种工程机械、自动化设备和工业领域。

液压油缸的设计涉及到力学、材料科学、热处理技术等多个方面,合理的設計可以提高液压油缸的使用寿命、工作效率和安全性。

二、液压油缸的组成部分液压油缸主要由缸体、活塞、密封装置、导向装置、驱动装置等组成。

各部分之间相互配合,完成液压油的吸入、压力传递、动作控制等功能。

三、液压油缸的设计原则与方法1.设计原则:液压油缸设计应满足使用要求,确保安全可靠,力求结构简单、紧凑,降低成本。

2.设计方法:根据液压油缸的使用条件,确定其主要尺寸、材料、密封形式等,进行结构设计,然后校核强度、刚度、稳定性等性能。

四、液压油缸的性能参数液压油缸的性能参数主要包括工作压力、行程、活塞面积、承载能力等。

设计时应根据实际工况,合理选择性能参数,使之满足使用要求。

五、液压油缸的应用领域液压油缸在工程机械、冶金设备、汽车制造、航空航天、船舶等领域有着广泛的应用。

不同领域的液压油缸有着不同的使用要求和技术特点。

六、液压油缸的选用与安装1.选用液压油缸时,应根据使用条件选择合适的结构形式、材料、密封形式等。

2.安装液压油缸时,要注意安装位置、方向、支撑结构等,确保液压油缸能正常工作。

七、液压油缸的维护与故障排除1.定期检查液压油缸的密封性能、油液质量、活塞运动情况等,及时更换密封件、添加油液。

2.遇到故障时,可通过外观检查、拆卸检查、试验等方法,找出故障原因,并进行排除。

八、液压油缸的设计案例分析通过对实际工程中的液压油缸设计案例进行分析,探讨液压油缸设计中应注意的问题,为液压油缸设计提供参考。

液压缸设计步骤和液压缸计算方法档

液压缸设计步骤和液压缸计算方法档

液压缸设计步骤和液压缸计算方法档液压缸(油缸)设计步骤:1.确定液压缸的工作参数:包括工作压力、负荷要求、行程长度、作用力、运动速度等。

这些参数可以根据设备的应用需求来确定。

2.选择液压缸的类型:有单作用和双作用两种,单作用液压缸只能在一个方向上产生推或拉力,而双作用液压缸可以在两个方向上产生推拉力。

3.计算活塞直径和活塞杆直径:活塞直径和活塞杆直径是根据负荷要求和工作压力来计算的。

一般来说,活塞直径越大,液压缸的承载能力越大,但也会增加摩擦阻力和油液消耗量。

4.确定液压缸筒体和活塞杆材料:根据工作环境的要求和负荷的性质选择合适的材料,一般常用的材料有铸铁、钢等。

5.完成液压缸内部部件的设计:包括密封件、液压缸密封结构、液压缸的阻尼装置等。

密封结构的设计需要考虑到液压缸的工作环境和工作温度。

6.进行液压缸的强度计算:计算液压缸各个部件的强度,包括活塞杆、筒体和密封结构等。

强度计算需要考虑到工作压力和作用力等参数。

7.进行液压缸的动态计算:根据液压缸的运动速度和所需的加速度等参数,进行液压缸的动态计算。

1.计算缸体容积:液压缸的容积可以通过下式计算得到:V=π/4*D^2*L其中,V为缸体容积,D为活塞直径,L为活塞行程长度。

2.计算活塞面积:根据活塞直径计算活塞面积,可以通过下式计算得到:A=π/4*D^2其中,A为活塞面积,D为活塞直径。

3.计算活塞杆面积:根据活塞杆直径计算活塞杆面积,可以通过下式计算得到:A'=π/4*D'^2其中,A'为活塞杆面积,D'为活塞杆直径。

4.计算推力:根据工作压力和活塞面积计算液压缸的推力,可以通过下式计算得到:F=P*A其中,F为液压缸的推力,P为工作压力,A为活塞面积。

5.计算液压缸的速度:液压缸的速度可以通过可控阀门来调节,一般使用油流量来计算液压缸的速度,可以通过下式计算得到:V=Q/A其中,V为液压缸的速度,Q为油流量,A为活塞面积。

第11讲液压缸结构、设计

第11讲液压缸结构、设计

螺纹连接<
> 重量轻,外径小,但端部复杂,
外螺纹 装卸不便,需专用工具
焊接连接
拉杆连接
通用性好,缸体加工方便,装拆方 便,但端盖体积大,重量也大,拉 杆受力后会拉伸变形,影响端部密 封效果,只适于中低压.
活塞和活塞杆的连接
∵ 工作压力、安装方式、 工作条件的不同。
∴ 活塞组件有多种结构形式。 整体式:常用于小直径液压缸,
1、缸筒壁厚δ
中低压系统,无需校核
确定原则 <
高压大直径时,必须校核δ
薄壁缸体(无缝钢管):
当D/δ≥ 10时 δ≥ptD/2[б]
[б]= бb /n Pt 为缸筒的试验压力,由液压缸的额定压力来确定 [б] 缸筒材料的许用压力 бb 缸筒材料的抗拉强度
n一般取为5
厚壁缸体(铸造缸体):
当D/δ ≤ 10时 δ≥D/2[√[б]+ 0.4 pt/[б] -1.3pt-1] 若 液压缸缸筒与缸盖采用半环连接,δ应取 缸筒壁最小处的值。
d为:
d D 1
缸的速度比 过大会使无杆腔产生过大的背压,速 度比 过小则活塞杆太细,稳定性不好。
2 根据执行机构速度要求和选定液压 泵流量 来确定
以单杆缸为例: 无杆腔进油时
1
q A1
v
4q
D2
有杆腔进油时
2
q A2
4qvD2 dຫໍສະໝຸດ 2(二)活塞杆直径d原则:活塞杆直径可根据工作压力或设 备类型选取液压缸的往复速度比 有一定要求时
V1
液压缸内径和活塞杆直径的确定
(一)液压缸内径D
(二)活塞杆直径d
液压缸内径D
一 双杆缸
F
A p1 p2 m

液压油缸的设计内容和步骤

液压油缸的设计内容和步骤

液压油缸的设计内容和步骤液压油缸是一种广泛应用于机械、工程和农业等领域的装置,通过利用液体的压力将机械能转化为液压能,并实现力的放大和方向的改变。

液压油缸的设计涉及多个主要内容和步骤,下面将详细介绍。

一、液压油缸设计前的准备工作1.确定应用环境:液压油缸的设计应该先明确所处的工作环境和工作条件,包括温度、湿度、压力要求等。

2.确定工作要求:确定液压油缸需要承受的最大负荷和所需的运动速度、力的输出方向等。

3.选择液压油缸类型:根据应用的具体要求,选择合适的液压油缸类型,例如单作用液压油缸、双作用液压油缸等。

二、液压油缸设计步骤1.计算负荷:根据液压油缸的工作要求,计算液压油缸所需承受的最大负荷。

这可以通过计算受力分析和力的分解来实现。

2.计算液压缸行程:液压油缸的行程是指活塞从一个极端位置到另一个极端位置的线性位移量。

根据工作要求,计算液压缸的行程。

3.计算活塞面积:液压油缸的活塞面积是指活塞所覆盖的面积。

根据负荷和压力要求,计算出活塞面积。

4.选择密封件:为保证液压缸的密封性,选择合适的密封件材料和形状,并按照密封性能计算具体尺寸。

5.计算液压油缸尺寸:根据活塞面积、行程和密封件尺寸,计算液压油缸的具体尺寸,包括外径、内径、长度等。

6.选择材料:根据工作环境和负荷要求,选择合适的液压油缸材料,例如铸铁、碳钢、不锈钢等。

7.设计活塞杆:液压油缸的活塞杆是负责传递力量的部分,根据需求选择合适的活塞杆材料和直径。

8.计算液压油缸的稳定性:通过计算液压油缸的稳定性,确定液压油缸的最小稳定直径,以确保其在工作过程中不会发生扭转。

9.计算液压油缸的工作压力:根据所需负荷和活塞面积,计算液压油缸所需的工作压力。

10.设计油缸壳体:根据液压油缸的尺寸、行程和工作压力,设计油缸的壳体结构,保证其足够强度和刚度。

11.进行液压油缸的组装:根据设计要求和步骤,对液压油缸的各个组成部分进行组装。

通过以上这些步骤,液压油缸的设计过程可以得以实现。

液压缸设计

液压缸设计

第一章液压系统设计1.1液压系统分析1.1.1 液压缸动作过程3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。

工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。

按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。

1.1.2液压系统设计参数(1)合模力;(2)最大液压压28Mp;(3)主缸行程700㎜;(4)主缸速度υ快=38㎜/s、υ慢=4.85㎜/s。

1.1.2分析负载(一)外负载压制过程中产生的最大压力,即合模力。

(二)惯性负载设活塞杆的总质量m=100Kg,取△t=0.25s(三)阻力负载活塞杆竖直方向的自重活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。

静摩擦阻力动摩擦阻力由此得出液压缸在各个工作阶段的负载如表****所示。

表*** 液压缸在各个工作阶段的负载F工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。

F/N v/mm s-1537 491981 384.850 l/mm 0 l/mm-491 -981由已知速度υ快=38㎜/s、υ慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如图***所示。

1.2确定执行元件主要参数1.2.1 液压缸的计算(一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。

鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。

在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。

由合模力和负载计算液压缸的面积。

将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:由此得液压缸两腔的实际有效面积(二)确定液压缸壁厚根据公式计算液压缸壁厚。

液压油缸设计手册

液压油缸设计手册

液压油缸设计手册摘要:1.液压油缸的概述2.液压油缸的设计原理3.液压油缸的主要部件4.液压油缸的设计步骤5.液压油缸的安装与维护6.液压油缸在我国的应用与发展正文:液压油缸是一种将液压能转换为机械能的机械装置,广泛应用于工程机械、汽车、飞机等行业。

本文将详细介绍液压油缸的设计原理、主要部件、设计步骤以及安装与维护。

一、液压油缸的概述液压油缸是将液压能转换为机械能的执行元件,主要由缸体、活塞、密封件、导向套等部件组成。

根据结构形式,液压油缸可分为单杆式和双杆式两种。

二、液压油缸的设计原理液压油缸的工作原理是利用液体在封闭的管道内传递压力,通过活塞上的密封件产生压力差,从而推动活塞产生位移。

液压油缸的设计需要考虑负载、速度、行程、安装空间等因素。

三、液压油缸的主要部件1.缸体:液压油缸的主体部分,承受油压和机械负荷。

2.活塞:在液压油作用下产生位移的部件。

3.密封件:防止液压油泄漏的部件,包括活塞环、缸筒环等。

4.导向套:引导活塞运动,防止活塞与缸体发生摩擦的部件。

5.缓冲装置:吸收液压冲击,保护液压油缸和设备的部件。

四、液压油缸的设计步骤1.确定液压油缸的工作压力、行程、安装方式等参数。

2.选择合适的缸体材料和尺寸。

3.设计活塞及密封件,确定其材料和尺寸。

4.设计导向套,确定其材料和尺寸。

5.设计缓冲装置,确定其类型和参数。

6.根据安装和使用条件,进行强度计算和校核。

7.绘制液压油缸的总装图、零件图和材料清单。

五、液压油缸的安装与维护1.安装前,应对液压油缸进行清洗和检查,确保无损坏和杂质。

2.安装时,应保证各部件的安装位置准确,避免安装误差。

3.使用过程中,应定期检查液压油缸的运行状况,及时更换损坏的密封件和缓冲装置。

4.维护时,应根据使用条件和厂家要求,进行定期保养。

六、液压油缸在我国的应用与发展液压油缸在我国工程机械、汽车、飞机等行业得到了广泛应用,推动了我国相关产业的发展。

随着科技的进步,液压油缸将朝着轻量化、高效率、低噪音、长寿命等方向发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章液压系统设计1.1液压系统分析1.1.1 液压缸动作过程3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。

工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。

按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。

1.1.2液压系统设计参数(1)合模力;(2)最大液压压28Mp;(3)主缸行程700㎜;(4)主缸速度υ快=38㎜/s、υ慢=4.85㎜/s。

1.1.2分析负载(一)外负载压制过程中产生的最大压力,即合模力。

(二)惯性负载设活塞杆的总质量m=100Kg,取△t=0.25s(三)阻力负载活塞杆竖直方向的自重活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。

静摩擦阻力动摩擦阻力由此得出液压缸在各个工作阶段的负载如表****所示。

工况负载组成负载值F 工况负载组成负载值F 启动981 保压3150×103加速537 补压3150×103快速491 快退+G 10301 按上表绘制负载图如图***所示。

F/N v/mm s-1537 491981 384.850 l/mm 0 l/mm-491 -981由已知速度υ快=38㎜/s、υ慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如图***所示。

1.2确定执行元件主要参数1.2.1 液压缸的计算(一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。

鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。

在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。

由合模力和负载计算液压缸的面积。

将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:由此得液压缸两腔的实际有效面积(二)确定液压缸壁厚根据公式计算液压缸壁厚。

式中:δ=管壁厚 mmP=最大压力 kg/cm2D=液压缸径 mm许用应力,[]=,n为安全系数,此处取n=5。

=抗拉强度最低值设定油缸用料45#,抗拉强度600Mp,最大压力28MP,管径400mm,则最小壁厚,此处取壁厚δ=60㎜。

(三) 液压缸及活塞杆长度的确定(1)液压缸工作行程长度 =700mm。

(2)最小导向长度的确定当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H称为最小导向长度。

如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。

对一般的液压缸,最小导向长度H应满足以下要求:式中:L——活塞杆的最大行程;D——液压缸的径。

l,根据液压缸径D而定;活塞的宽度B一般取B=(0.610)D;缸盖滑动支承面的长度1当D<80mm时,取;当D>80mm时,取。

l和B都是不适宜的,必要时可在缸盖与活塞之间为保证最小导向长度H,若过分增大1增加一隔套K来增加H的值。

隔套的长度C由需要的最小导向长度H决定,即滑台液压缸:最小导向长度:取 H=240mm活塞宽度:B=0.6D=240mm缸盖滑动支承面长度:㎜隔套长度:。

液压缸缸体部长度应等于活塞的行程与活塞的宽度之和。

缸体外形长度还要考虑到两端端盖的厚度。

一般液压缸缸体长度不应大于径的2030倍。

液压缸:缸体部长度,即活塞杆长度(四)活塞杆稳定性校核活塞杆受轴向负载,其值F超过某一临界值,就会失去稳定。

活塞杆稳定性按下式进行校核。

式中:——安全系数,一般取2 4,此处取。

活塞杆长细比940/280=3.36当活塞杆的长细比时,且时式中:——安装长度,其值与安装方式有关;——活塞杆横截面最小回转半径,;——柔性系数;——由液压缸支撑方式决定的末端系数;E——活塞杆材料的弹性模量,对钢,可取——活塞杆横截面惯性矩;——活塞杆横截面积;——由材料强度决定的实验值;——系数。

以上各值参考章宏甲主编《液压与气压传动》第二版130页液压缸强度校核中表3-4、表3-5所取。

2.2 液压缸的结构设计液压缸主要尺寸确定以后,就进行各部分的结构设计。

主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。

由于工作条件不同,结构形式也各不相同。

设计时根据具体情况进行选择。

设计计算过程1)缸体与缸盖的连接形式缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。

本次设计中采用外半环连接,如下图所示:缸体与缸盖外半环连接方式优点:(1)结构较简单;(2)加工装配方便。

缺点:(1)外型尺寸大;(2)缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构。

参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。

如下图2所示:图2 活塞杆与活塞螺纹连接方式特点:结构简单,在振动的工作条件下容易松动,必须用锁紧装置。

应用较多,如组合机床与工程机械上的液压缸。

2)活塞杆导向部分的结构(1)活塞杆导向部分的结构,包括活塞杆与端盖、导向套的结构,以及密封、防尘和锁紧装置等。

导向套的结构可以做成端盖整体式直接导向,也可做成与端盖分开的导向套结构。

后者导向套磨损后便于更换,所以应用较普遍。

导向套的位置可安装在密封圈的侧,也可以装在外侧。

机床和工程机械中一般采用装在侧的结构,有利于导向套的润滑;而油压机常采用装在外侧的结构,在高压下工作时,使密封圈有足够的油压将唇边开,以提高密封性能。

参阅<<液压系统设计简明手册>>P16表2-9,在本次设计中,采用导向套导向的结构形式,其特点为:导向套与活塞杆接触支承导向,磨损后便于更换,导向套也可用耐磨材料。

盖与杆的密封常采用Y形、V形密封装置。

密封可靠适用于中高压液压缸。

防尘方式常用J形或三角形防尘装置活塞及活塞杆处密封圈的选用活塞及活塞杆处的密封圈的选用,应根据密封的部位、使用的压力、温度、运动速度的围不同而选择不同类型的密封圈。

参阅<<液压系统设计简明手册>>P17表2-10,在本次设计中采用O形密封圈。

活塞杆的计算及校核1.强度校核由以上计算有:活塞杆直径d=0.3m。

按公式进行校核。

式中:F——活塞杆上的作用力。

--活塞杆材料的许用应力,。

经过计算得=96.7mm,显然d=300mm﹥96.7mm。

2. 稳定性校核活塞杆受轴向压缩时,其值F就会超过某一临界值F k,就会失去稳定性。

活塞杆的稳定性按下式进行校核。

式中:——安全系数,一般取24。

此处取4。

1.强度校核由以上计算有:活塞杆直径d=0.3m 。

按公式进行校核。

式中:F——活塞杆上的作用力。

--活塞杆材料的许用应力,经过计算得=96.7mm,显然d=300mm﹥96.7mm。

2. 稳定性校核活塞杆受轴向压缩时,其值F就会超过某一临界值F k,就会失去稳定性。

活塞杆的稳定性按下式进行校核。

式中:——安全系数,一般取24。

此处取4。

1.3确定液压系统方案1.3.1设计液压系统方案由于该热压成型机是固定式机械,且不存在外负载对系统做功的工况,由表***知,此热压机液压系统功率大,运动速度小,工作负载变化也小。

表***液压缸在不同工作阶段的压力、流量和功率值工况负载F/N回油腔压力/Mp进油腔压力/Mp输入流量输入功率P/kW计算式启动981 0 0.508 ——/加速5370.70.811恒速491 0.810 4.776 3.869慢速下0.7 20 0.612 12.2/保压0.7 26.460 0 0/返回10301 0.7 1.796 2.09 6.002/注:液压缸的机械效率取,从表中可以看出,在此液压系统的工作循环,液压缸要求油源交替的提供低压大流量和高压小流量的油液。

液压缸完成工作所需的时间围为:设活塞杆快速行进的长度为620mm,慢速行进的路程为80mm,则有:液压缸一个循环的工时间较长,可选用双联泵的方式进行供油。

1.3.2确定系统方案,拟定液压系统图(一)设计液压系统方案由于该液压机是固定式机械,存在负载制动过程,由表***知,此液压机属于中等功率、中高压系统,工作负载变化大,根据液压机设计规,液压系统宜采用容积调速的开环为宜。

为解决系统卸荷后的活塞杆下滑,在回油路上设置单向阀和背压阀。

(二)选择基本回路1.选择快速回路和换向回路系统中采用容积调速回路,必须具有单独的油路直接通向液压缸两腔,以实现快速运动。

在本系统中,快进、快退换向回路采用图***所示的形式。

2.选择速度换接回路由工况图***********(图*****)中的q l曲线可知,当活塞杆从快进转为慢进时,输入液压缸的流量由286.56L/min降至为36.6L/min,活塞杆的速度变化较大,可选用行程阀来控制速度的换接,以减小液压冲击。

当活塞杆由慢退改为快退时,回路过的流量很大——进油路过125.4L/min,回油路过125.4×(0.1257/0.0550)L/min=286.6L/min。

为了保证液压系统平稳起见,采用换向时间可调的电磁换向阀换接回路。

3.选择调压和卸荷回路油源中有溢流阀调定系统工作压力,因此调压问题已在油源中解决,无须另外再设调压回路。

而且系统采用容积调速,故溢流阀常开,即使活塞杆被卡住,系统压力也不会超过溢流阀的调定值,所以溢流阀又起安全阀的作用。

在此液压系统中使用了M型三位四通阀,当活塞杆停止时,液压泵可经此阀卸荷。

因而不需要再设置卸荷回路。

4.保压回路系统要在某一个设定的压力下维持工作一定的时间,因此,应该设有保压回路。

在液压缸进口处安装一个单向阀,液压泵提供的流量通过单向阀进入液压缸,,当达到设定的工作压力后,压力继电器动作,使系统处于卸荷状态下,此时,液压缸的油液由于有单向阀的作用,因此不能够流动,液压缸的压力保持恒定。

因此单向阀基能保压同时又能保证在液压泵出现故障时,液压缸中的油液不会被倒吸。

5.补压回路保压过程维持一定的时间后,由于系统有泄漏,液压缸的压力有所损失,以至于影响工件的加工,为了能够保证系统绝对的达到所需要的压力,需要对系统进行补压。

补压无需另设回路,即按照加压时的回路进行。

(三)将液压回路综合成液压系统1. 将已确定的各种液压回路组合在一起,就可得到一图*****所示的液压系统原理图。

如图****所示。

在此基础上,对液压系统图进行完善。

(1)为了解决活塞杆在自重的作用下快速下滑时进油腔形成无油区,在液压缸上腔设置上位补偿油箱,当油液出现真空区时自动补上。

(2)活塞杆由快速到慢速转换时,应该有行程开关做保护,另外,当活塞杆接近工件及法兰时都应有相应的行程开关做保护。

相关文档
最新文档