激光相位测距仪设计说明
激光测距仪的使用说明书
![激光测距仪的使用说明书](https://img.taocdn.com/s3/m/09466b4d59eef8c75fbfb372.png)
激光测距仪的使用说明书
激光测距仪是一种李忠激光对目标的距离经行测定的光学仪器,子啊多个啊河南工业中都有一定的应用。
我们在使用用激光测距仪的时候对于它的工作原理、分类、使用注意事项等问题都是需要掌握的,小编把这些知识为大家总结了一下,下面就来看一下激光测距仪的使用说明书吧。
一激光测距仪的工作原理
激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。
光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。
脉冲法测量距离的精度是一般是在+/-1米左右。
另外,此类测距仪的测量盲区一般是15米左右。
二、激光测距仪分类
(一)激光测距仪分手持激光测距仪和望远镜式激光测距仪。
1、手持激光测距仪:测量距离一般在200米内,精度在2mm左右。
这是目前使用范围最广的激光测距仪。
在功能上除能测量距离外,一般还能计算测量物体的体积。
2、望远镜式激光测距仪:测量距离一般在600-3000米左右,这类测距仪测量距离比较远,但精度相对较低,精度一般在1米左右。
主要应用范围为野外长距离测量。
(二)另外还可分为:
一维激光测距仪:用于距离测量、定位;激光测距仪
二维激光测距仪:用于轮廓测量,定位、区域监控等领域;
三维激光测距仪:用于三维轮廓测量,三维空间定位等领域。
用于相位法激光测距的电路系统设计
![用于相位法激光测距的电路系统设计](https://img.taocdn.com/s3/m/879e5859640e52ea551810a6f524ccbff021ca77.png)
用于相位法激光测距的电路系统设计激光测距是一种常用的非接触式测量技术,可以精确测量目标物体与测距仪的距离。
相位法激光测距是其中一种常见的方法,通过测量激光光波的相位差来计算距离。
下面将介绍一个基于相位法激光测距原理的电路系统设计。
1. 激光发射电路:设计一个激光二极管的驱动电路,可以通过电流控制二极管的发射光强。
使用一个恒流源以确保驱动电流的稳定性。
此外,还需要添加一个调节电路,可以根据需要调整激光发射的光功率。
2. 光电检测电路:将光电二极管作为光电检测元件接在测距仪上,用于接收激光反射光信号。
光电二极管产生的电流与光的强度成正比。
使用一个高增益的放大器将光电二极管产生的微弱电流信号放大。
3. 相位差测量电路:使用一个相位差测量电路来测量激光光波发射和接收之间的相位差。
该电路可以采用锁相放大器或频率调制技术。
在锁相放大器中,将激光发射的信号作为参考信号,将光电二极管接收到的信号作为待测信号输入。
锁相放大器可以精确测量相位差,并输出一个稳定的直流电压信号。
4. 距离计算电路:将锁相放大器输出的直流电压信号输入到距离计算电路中,根据相位差和激光波长的关系,计算出目标物体与测距仪之间的距离。
该电路可以通过编程芯片或者专门的测距芯片来实现距离计算。
以上是一个基于相位法激光测距原理的电路系统设计。
通过精心选择和设计各个电路模块,可以实现高精度和稳定的激光测距功能。
需要注意的是,在实际设计中还需考虑电路的抗干扰能力、功率稳定性和其他实际应用需要的因素。
在激光测距中,相位法是一种常用的方法,能够提供高精度和高稳定性的测距结果。
相位法激光测距的原理是通过测量激光发射和接收之间的光波相位差来计算目标物体与测距仪之间的距离。
在设计电路系统时,需要考虑到激光发射电路、光电检测电路、相位差测量电路和距离计算电路等各个环节。
首先,激光发射电路是相位法激光测距系统中的重要组成部分。
它负责驱动激光二极管发射具有稳定光强的激光光束。
《相位法激光测距仪设计》
![《相位法激光测距仪设计》](https://img.taocdn.com/s3/m/55088a8359f5f61fb7360b4c2e3f5727a4e92477.png)
《相位法激光测距仪设计》摘要:I.引言- 激光测距仪背景和应用- 相位法激光测距仪的优势II.相位法激光测距仪原理- 相位法基本原理- 激光测距仪系统构成III.相位法激光测距仪设计- 系统硬件设计- 激光发射器- 激光接收器- 数字鉴相器- 系统软件设计- 相位差计算- 距离计算IV.相位法激光测距仪应用- 军事领域- 民用领域V.结论- 相位法激光测距仪的优势- 发展前景正文:激光测距仪是一种利用激光技术测量物体距离的仪器,广泛应用于军事、民用等领域。
相位法激光测距仪作为其中一种类型,具有高精度、高效率等优势,成为近年来研究的热点。
相位法激光测距仪基于相位法原理,通过检测发射光和反射光之间的相位差来检测距离。
其系统构成主要包括激光发射器、激光接收器、数字鉴相器等部分。
其中,激光发射器负责发射激光束,激光接收器负责接收反射光,而数字鉴相器则负责计算相位差。
在设计相位法激光测距仪时,需要考虑系统硬件和软件的设计。
在硬件方面,激光发射器和接收器需要具有较高的稳定性和精度,以保证测量结果的准确性。
此外,数字鉴相器的设计也非常重要,其性能直接影响到相位差计算的准确性。
在软件方面,相位差计算和距离计算的算法需要优化,以提高计算速度和精度。
相位法激光测距仪在军事和民用领域具有广泛的应用前景。
在军事领域,相位法激光测距仪可以应用于侦查、定位、导航等方面,提高作战效率和精度。
在民用领域,相位法激光测距仪可以应用于土地测量、建筑测量、无人机导航等领域,为生产生活提供便捷。
总之,相位法激光测距仪具有显著的优势,其设计和应用值得进一步研究和探讨。
激光相位测距仪设计
![激光相位测距仪设计](https://img.taocdn.com/s3/m/c07659604afe04a1b071dec2.png)
课程设计报告(2014—2015年度第一学期)题目:激光相位测距仪设计院系:物理与电子信息工程学院姓名:学号:专业:光信息科学与技术指导老师:2015年01月03日目录1.设计目的与任务 (3)2.相位式激光测距仪的实现原理 (4)3.激光测距仪的原理方案 (6)3.1 直接测尺频率 (6)3.2 间接测尺频率 (6)4.测距精度的分析 (9)4.1 误差分析 (9)4.2精度分析 (10)5.总结 (12)6.参考文献 (12)1.设计目的与任务课程设计是学生理论联系实际的重要实践教学环节,是对学生进行的一次专业训练。
通过课程设计使学生获得以下几方面能力,为毕业设计打下基础。
1、进一步巩固和加深学生所学的专业理论知识,培养学生设计、计算、绘图、计算机应用、文献查阅、报告撰写等基本技能;2、培养学生独立分析和解决工程实际问题的能力;3、培养学生的团队协作精神、创新意识、严肃认真的治学态度和严谨求实的工作作风。
光电子技术基础课程设计是在学生已经完成光电子技术基础课程教学之后所进行的综合性设计过程。
其意义在于进一步巩固、加强课程的教学效果,并将这些知识真正应用于实际的设计过程中。
根据设计内容要求,完成方案论证,完成一类光电仪探测器特性实验测试开发;或利用光电探测器设计测试装置针对一物理量进行测量;或利用光电系统进行信息的传输;或能根据工程条件设计一光电技术的具体应用。
写出完整的设计报告,设计报告(论文)字数要求不少于3000字,文字通顺,书写工整。
2.相位式激光测距仪的实现原理相位测量一般采用差频测相技术。
差频测相的原理如图2.1所示2设主控振荡器的信号为cos()d s s e A t ωϕ=+ 2-1经过调制器发射后经2L 距离返回光电接收器,接收到的信号为cos()ms s s e A t ωϕ∆ϕ=++ 2-2 ϕ∆表示相位变化。
设基准振动器信号为cos()l l l e C t ωϕ=+ 2-3把l e 送到混频器分别与d e 和ms e 混频,在混频器的输出端得到差频参考信号r e 和测距信号m e ,他们可分别表示为cos[()()]r s l s l e D t ωωϕϕ=-+- 2-4cos[()()]m s l s l e E t ωωϕϕ∆ϕ=-+-+ 2-5 用相位检测电路测出这两个混频信号相位差'ϕϕ∆=∆。
相位式激光测距原理
![相位式激光测距原理](https://img.taocdn.com/s3/m/3474b6f4ba4cf7ec4afe04a1b0717fd5360cb229.png)
相位式激光测距原理
相位式激光测距原理是一种利用光学原理测量物体距离的方法。
其基
本原理是将激光束发送到目标物体,经过反射后接收回来,然后根据
光的相位差计算出物体到激光测距仪的距离。
下面将会逐一讲解相位
式激光测距原理的详细内容。
1. 激光的发射
相位式激光测距仪通过激光器发射一束定向、单色、激光光束,将激
光传输到目标体上。
2. 激光的接收
激光的接收有两种方法,其中一种可以使用普通的接收型光电二极管
来完成,另一种则需要使用相位测量的方法。
3. 相位差的测量
通过对激光发射时和接收时的相位差进行测量,得到目标到发射点的
距离,这个距离与光的波长有关。
4. 数据的处理
将测得的距离进行处理后,即可得到精确的目标距离数据,同时在数
据处理的过程当中,还可以实现自动跟踪,提高了装置的实用性。
总之,相位式激光测距原理是一种非常先进和高精度的测距方法,其
原理也比较复杂,需要参考一定的物理学知识,而在工业、航空航天、军事等领域都有广泛的应用。
《相位法激光测距仪设计》
![《相位法激光测距仪设计》](https://img.taocdn.com/s3/m/f52548af846a561252d380eb6294dd88d0d23d18.png)
《相位法激光测距仪设计》摘要:I.引言A.激光测距仪的背景和重要性B.相位法激光测距仪的设计方法II.相位法激光测距仪的工作原理A.激光测距仪的基本原理B.相位法激光测距仪的测量原理III.相位法激光测距仪的设计A.系统硬件设计1.激光发射器2.激光接收器3.数字鉴相器B.系统软件设计1.数字信号处理2.相位差计算3.距离计算IV.相位法激光测距仪的性能分析A.测量精度B.测量范围C.抗干扰能力V.结论A.相位法激光测距仪的优势和应用B.未来发展方向和挑战正文:相位法激光测距仪是一种高精度、高效率的测距设备,广泛应用于军事、航空航天、地质勘测等领域。
本文将详细介绍相位法激光测距仪的设计方法。
首先,我们需要了解相位法激光测距仪的工作原理。
激光测距仪的基本原理是通过测量激光从发射到接收的时间来计算距离。
相位法激光测距仪在此基础上,利用激光相位差来测量距离。
通过系统硬件设计和软件设计,可以实现高精度、高效率的测距。
在系统硬件设计方面,相位法激光测距仪主要包括激光发射器、激光接收器和数字鉴相器。
激光发射器负责发射激光,激光接收器负责接收反射回来的激光,数字鉴相器则用于计算激光相位差。
在系统软件设计方面,相位法激光测距仪需要进行数字信号处理、相位差计算和距离计算。
数字信号处理用于处理接收到的激光信号,相位差计算用于计算激光发射器和接收器之间的相位差,距离计算则根据相位差计算出距离。
相位法激光测距仪具有较高的测量精度和测量范围,同时具有较强的抗干扰能力。
然而,随着应用场景的不断扩展,相位法激光测距仪也面临着一些挑战,例如如何提高测量精度、扩大测量范围等。
总之,相位法激光测距仪是一种具有重要应用价值的测距设备。
通过设计高质量的系统硬件和软件,可以实现高精度、高效率的测距。
激光相位法测距页PPT文档
![激光相位法测距页PPT文档](https://img.taocdn.com/s3/m/8e97d94a52d380eb63946d50.png)
模拟开关切换电路
6、CPLD电路设计 具体的设计指标:电路I/O 口为LVTTL电平;计数频 率大于100MHZ 在该系统中,差频系统与检相系统都是在CPLD内部 实现
CPLDEPM240核心电路
7、单片机相关电路设计 单片机为ATM128
单片机及其外围电路
8、电源模块设计 整个系统所需的电源电压有+9V, +5V, -5V, +3.3V和 +1.8V。 其中+9V可由交流转直流的变压器提供,也可由蓄 电池提供,而其它电源则由+9V转化而来。 (1)+5V 电源 二极管为常用的1N5824,开关电压调节器LM2596
(4)接收部分使用PIN光电二极管,经前置放大后, 使用MFB带通滤波提取有用信号,精尺频率与粗尺 频率经过通道切换幵关后采用同一组放大整形电路, 减小系统复杂度,缩小电路板面积,节约成本。 (5)在高速CPLD内部实现参考信号与本振信号的差 频、测量信号与本振信号的差频,两个差频采用自
主要元件:两片AD9954(直接数字式频率合成器), ATM128单片机, EPM--240T100C5N, 液晶显示器LCD12864,开关电容芯片LM2662 ,低压差电压调节芯片LM1117, LM2596-5.0(开关电压调节器), 电平转换芯片MAX3232和DB9的串口线接口, 高速比较器芯片AD8611, 高速电流反馈宽带运放AD8001 单刀双掷(SPDT)模拟开关ADG636, 电压反馈放大器AD8045, 激光二极管BOS650010, 双路、宽带跨导运算放大器OPA2662
1、频率综和电路 具体设计指标:产生5MHz,50MHz, 5.001MHz, 50.0001MHz的频 率;可在低频与高频间快速切换;电压幅度为-500mV~500mV。
相位式激光测距仪激光接收部分设计
![相位式激光测距仪激光接收部分设计](https://img.taocdn.com/s3/m/865a799aac51f01dc281e53a580216fc700a532e.png)
相位式激光测距仪激光接收部分设计激光测距仪是一种测量目标物体距离的工具,其原理是利用激光束在空气中传播的特性,通过测量激光束的往返时间来计算出目标物体与测距仪的距离。
激光接收部分是激光测距仪的核心组成部分之一,其设计的好坏直接影响到测量结果的准确性和稳定性。
在设计激光接收部分时,需要考虑以下几个关键因素:1.激光接收器的选择:激光接收器是接收激光信号的关键部件,其性能直接影响到激光测距仪的灵敏度和测距范围。
常见的激光接收器有光电二极管(PD)和光电效应晶体管(APD)。
PD具有较高的响应速度和较低的噪声,适用于近距离测距场景;APD具有较高的增益和较低的噪声,适用于远距离测距场景。
2.光学系统的设计:光学系统包括透镜、滤波器等光学元件,其作用是将入射的激光束聚焦到激光接收器上。
在设计光学系统时需要考虑激光束的聚焦效果、散斑噪声等因素,以提高测距仪的测量精度和信噪比。
3.信号放大和滤波电路的设计:激光接收器输出的信号很弱,需要经过放大和滤波才能得到可信的测距信号。
放大电路可以采用运算放大器等电路实现,滤波电路可以采用RC滤波器或数字滤波器等实现。
通过合理设计放大和滤波电路,可以提高信号的噪声抑制和动态范围。
4.时间测量电路的设计:激光测距仪是通过测量激光束的往返时间来计算距离的,因此需要设计一个高精度的时间测量电路。
常用的时间测量电路有计数器、时钟等,可以通过采样和比较测量激光脉冲信号的上升沿和下降沿来计算出往返时间。
在设计激光接收部分时,还需考虑以下一些技术细节:5.温度补偿:激光测距仪的测量精度受到温度的影响,尤其是光学元件和电子元件的温度变化。
因此,需要设计温度补偿电路,通过测量环境温度并补偿光学和电子元件的参考值,提高测量精度。
6.光路对齐:激光测距仪的激光发射和接收部分需要在一条直线上对准,才能确保测量结果的准确性。
因此,需要设计一个精密的光路对齐机构,确保激光束的传输方向稳定。
7.防干扰设计:激光测距仪易受到外界光源干扰,导致测量结果偏差。
激光测距仪 方案
![激光测距仪 方案](https://img.taocdn.com/s3/m/77b79009f6ec4afe04a1b0717fd5360cba1a8de8.png)
激光测距仪方案引言激光测距仪是一种能够通过发射激光束并测量其返回时间来计算出被测物体到激光测距仪的距离的测量仪器。
它在测量精度、测量范围和测量速度上都具备优势,因此在工业、建筑、航空航天等领域广泛应用。
本文将介绍激光测距仪的方案设计。
设计原理激光测距仪主要由控制电路、激光发射装置、接收器、时钟计数装置和显示装置等组成。
其工作原理如下:1.激光发射装置发射激光束。
2.激光束照射到目标物体上并受到反射。
3.接收器接收到反射激光。
4.时钟计数装置计算激光从发射到接收的时间差。
5.根据时间差计算出目标物体到激光测距仪的距离。
6.距离数据通过显示装置展示出来。
系统组成激光测距仪主要由以下几个部分组成:激光发射装置激光发射装置主要由激光二极管和驱动电路组成。
驱动电路控制激光二极管发射激光束,并确保激光的稳定性和一致性。
接收器接收器用于接收反射激光,并将接收到的信号传递给时钟计数装置进行处理。
接收器通常采用光电二极管,能够快速转换光信号为电信号。
时钟计数装置时钟计数装置用于计算激光从发射到接收的时间差,并根据时间差计算出距离。
时钟计数装置通常由计时器、计数器和时钟源组成。
计时器测量时间差,计数器记录计时器的值,时钟源提供精确的时钟信号。
显示装置显示装置用于将测量到的距离数据展示出来。
显示装置可以采用液晶显示屏、LED显示屏等,通过数字或文字方式显示距离数值。
工作流程激光测距仪的工作流程如下:1.用户输入测量指令。
2.激光发射装置发射激光束。
3.激光束照射到目标物体上并受到反射。
4.接收器接收到反射激光。
5.时钟计数装置计算激光从发射到接收的时间差。
6.根据时间差计算出目标物体到激光测距仪的距离。
7.距离数据通过显示装置展示出来。
8.测量完成后,返回步骤1等待下一次测量。
优势和应用激光测距仪具有以下优势:•高精度:激光测距仪可以实现亚毫米级的测距精度,满足精密测量需求。
•远距离:激光测距仪可以实现数百米至数千米的测距范围。
相位式激光测距仪激光接收部分设计
![相位式激光测距仪激光接收部分设计](https://img.taocdn.com/s3/m/51ff563383c4bb4cf7ecd157.png)
摘要相位式激光测距法由于其计算方便、体积小巧、测距精度高等优点,成为最有发展潜力的距离测量技术。
将激光用低频信号进行调制发射,距离信息就隐含在从目标物反射回的调制光波的相位信息中。
测出发射与接收光波之间的相位差,通过适当的换算,即可得到待测距离的实际值。
本文首先介绍了相位式激光测距仪的研究背景、意义,总结和概括了激光测距的有关理论基础,并且介绍了相位式激光测距仪的测距原理,提出了测距系统的实现框图;接着围绕接收系统的性能开展深入研究,主要研究探测器件的选择,偏压电路、混频电路、自动增益控制电路的设计等问题;利用Proteus技术对APD偏压电路和自动增益控制电路进行仿真,通过仿真结果不断完善设计。
关键词:激光测距;雪崩二极管;相位;混频;自动增益控制ABSTRACTThe phase-shift laser ranging becomes the most potential technique owing to its compactness, easily data processing,and the high measurement accuracy. By measuring phase difference between emitted modulated waves and receiving modulated waves which are reflected.From the target, we could get the value of distance quite easily through simple calculation.This paper started from the background, the purposes, meanings of phase-shift laser ranging, then summarized the related theoretical basis of it. The principle of phase laser ranging and a practical ranging system is discussed. This paper concentrate on the researh of improving the porperty of receiving system. Lots of research have done on choosing detection element,design of the bias circuit and automatic gain control circuit.Then,the proteus is used for simulation of them. With the help of the simulation, the design was improved.Keywords:laser ranging, avalanche diode, phase, mixer circuit, automatic gain control山东科技大学学士学位论文目录目录1 绪论 (1)1.1激光测距技术 (1)1.2 激光测距的优点 (4)1.3 国内外研究及发展情况 (4)1.4 课题的研究目的和意义 (6)2 相位式激光测距技术 (8)2.1相位式激光测距技术原理 (8)2.2相位式激光测距多测尺原理 (10)2.3差频测相原理 (12)2.4 自动增益控制原理 (14)2.5光电探测器 (16)3 相位式激光测距仪接收电路的设计........ 错误!未定义书签。
激光相位法测距
![激光相位法测距](https://img.taocdn.com/s3/m/634841c933687e21af45a993.png)
(2)-5V 电源 开关电容芯片 LM2662
(3)+3.3V 主要用于单片机
STC12LE5A16S2,CPLD 器件 EPM:240T100C5N 以及 AD9954的I/O 口供电
-5V电源产生电路
+3.3V电源产生电路
(4)+1.8V 主要用于DDS芯片AD9954的内核供电
频率 切换 控制
单片机 系统控 制与数 据处理
驱计 动数 控值 制
频率综 合电路
本 振
激光调 制发射
内光路
参考
光电接
收前置 放大
反
射
光电接 收前置
外光路 面
放大
测量
50M带通 5M带通 50M带通 5M带通 滤波器 滤波器 滤波器 滤波器
50.001M 5.001M
整形
CPLD差 频与数 字检测
通
主要元件:两片AD9954(直接数字式频率合成器), ATM128单片机, EPM--240T100C5N, 液晶显示器LCD12864,开关电容芯片LM2662 ,低压差电压调节芯片LM1117, LM2596-5.0(开关电压调节器), 电平转换芯片MAX3232和DB9的串口线接口, 高速比较器芯片AD8611, 高速电流反馈宽带运放AD8001 单刀双掷(SPDT)模拟开关ADG636, 电压反馈放大器AD8045, 激光二极管BOS650010, 双路、宽带跨导法原理图
在“开门”时间内,计数器得到的单次检相脉冲数
闸门时间内,检相次数n可表示为:
总脉冲数
该分辨率是由 (时标脉冲频率)、_/;(差频信号频率)和 (高频调制频 率)三者共同决定的。
填充脉冲频率越高,检相精度也越高。在本系统中,正是利用了高速 CPLD实现高频脉冲的填充,来提高测量精度的。
相位法激光测距原理及算法详解
![相位法激光测距原理及算法详解](https://img.taocdn.com/s3/m/b719ef8a76a20029bd642df4.png)
激光相位法测距的原理激光相位测距中,把连续的激光进行幅度调制,调制光的光强随时间做周期性变化,测定调制光往返过程中所经过的相位变化即可求出时间和距离。
图.1 相位式激光测距原理示意图如图1所示,设发射处与反射处(提升容器)的距离为x ,激光的速度为c ,激光往返它们之间的时间为t ,则有:cxt 2设调制波频率为f ,从发射到接收间的相位差为 ,则有:N cfxft 242 (2) 其中,N 为完整周期波的个数, 为不足周期波的余相位。
因此可解出:)(2)22(24N N fcN f c f c x(3) 其中,f c L s 2 称为测尺或刻度,N 即是整尺数, 2 N 为余尺。
根据测得的相位移的大小,可知道N 余尺的大小。
而整尺数N 必须通过选择多个合适的测尺频率才能确定,测尺频率的选择是提升容器精确定位的关键因素之一。
多尺测量方法测量正弦信号相移的方法都无法确定相位的整周期数,即不能确定出相位变化中 2的整倍数N ,而只能测量不足 2的相位尾数 ,因此公式(2.3)中的N 值无法确定,使该式产生多个解,距离D 就不能确定。
解决此缺陷的办法是选用一个较低的测尺频率s f ,使其测尺长度s L 稍大于该被测距离,这种状况下不会出现距离的多值解。
但是由于测相系统的测相误差,会导致测距误差,并且选用的s L 越大则测距误差越大。
因此为了得到较高的测距精度而使用较短的测尺长度,即较大的测尺频率s f ,系统的单值测定距离就相应变小。
为了解决长测程和高精度之间的矛盾,一般使用的解决办法是:当待测距离D 大于基本测尺sb L (精测测尺)时,可再使用一个或几个辅助测尺sl L (又叫粗测测尺),然后将各个测尺测得的距离值组合起来得到单一的和精确的距离信息。
由此可见,用一组测尺共同对距离D 进行测量就可以解决距离的多值解,即用短尺保证精度,用长尺保证量程。
这样就解决高精度和长测程的矛盾[4]。
本系统选用10米作为精尺,1000米作为粗尺,带入公式即可求得精尺频率和粗尺频率:精尺频率 MHz L cf 152510(4) 粗尺频率 kHz L cf 150210001000 (5) 其中,光速s m c /1038 。
《相位法激光测距仪设计》
![《相位法激光测距仪设计》](https://img.taocdn.com/s3/m/d26e047766ec102de2bd960590c69ec3d5bbdb25.png)
《相位法激光测距仪设计》摘要:一、引言二、相位法激光测距仪的原理与结构1.相位法测距原理2.激光测距仪的结构组成三、相位法激光测距仪的设计方法1.欠采样技术与同步检测原理2.晶体滤波器和直接数字频率合成计四、实验结果与分析1.系统整体结构和性能改进2.数字化与自动化程度的提高五、结论正文:一、引言激光测距仪是一种非接触式的测量仪器,它利用激光束测量目标物体与测量仪器之间的距离。
根据测距方法的不同,激光测距仪可分为相位法激光测距仪和脉冲法激光测距仪。
相位法激光测距仪通过检测发射光和反射光之间的相位差来测量距离,具有较高的测量精度和较远的测量范围。
因此,本文将重点介绍相位法激光测距仪的设计方法。
二、相位法激光测距仪的原理与结构1.相位法测距原理相位法激光测距仪的原理是利用激光器发出一束激光,经过调制后射向目标物体,然后通过接收器接收目标物体反射回的激光束。
由于激光在传播过程中会发生相位变化,因此通过检测发射光和反射光之间的相位差,可以计算出目标物体与测量仪器之间的距离。
2.激光测距仪的结构组成激光测距仪主要由激光器、调制器、发射器、接收器、相位检测器和数据处理器等组成。
激光器负责发射激光束,调制器负责对激光束进行调制,发射器负责将激光束射向目标物体,接收器负责接收目标物体反射回的激光束,相位检测器负责检测发射光和反射光之间的相位差,数据处理器负责对测量结果进行处理。
三、相位法激光测距仪的设计方法1.欠采样技术与同步检测原理为了降低数据处理的复杂程度,可以采用欠采样技术与同步检测原理改进测相方法。
欠采样技术是指在采样频率较低的情况下,通过增加采样时间来提高采样精度。
同步检测原理是指通过同步检测发射光和反射光的相位差,来消除环境因素对测量结果的影响。
2.晶体滤波器和直接数字频率合成计为了改进测距仪的滤波与调制手段,可以采用晶体滤波器和直接数字频率合成计(DDS)。
晶体滤波器具有较高的滤波性能和较低的功耗,可以有效地抑制干扰信号。
相位式激光测距原理及其技术实现
![相位式激光测距原理及其技术实现](https://img.taocdn.com/s3/m/4c4e37a469eae009591bec23.png)
m=m1-m2 Δm=Δm1-Δm2 fs =fs1- fs2 C为光速
相位式激光测距原理分析(5)
三、间接测尺原理(2)
对于上例的测量要求,用间接测尺频率方式,从表可以看出, 各个间接测尺的频率值非常接近,频宽为150kHz,只有直接 测尺方式的1/100。在这样窄的频率范围内可以使放大器和 调制器获得相当接近的增益和相位稳定性,从而提高测量精 度。
为简化相位差计电路的设计,减小系统的体积和功耗, 采用FPGA(现场可编程门阵列)配合少量地外围电路实现相 位差的测量,换算和显示功能。
Thanks
The End
Any questions please mail to tjuhuangjackhotmail
文档名
THE END!THANK YOU !
相位式激光测距原理及其技术实现
相位式激光测距原理分析(1)
原理示意图:
相位式激光测距原理分析(2)
一、基本原理 • 若调制光角频率为ω,在待测量距离LAB上往返一次
产生的相位延迟为φ,则对应时间t 可表示为: t=(φ+Δφ)/ω 其中φ+Δφ=2π(m+Δm)
m:表示激光往返LAB所经历的整数个波长 Δm:表示不足一个波长的分量 则待测距离LAB可表示为 LAB =1/2 ct=1/2 c·(φ+Δφ)/ω=1/2λ(m+Δm)
在这么宽的频带内保证1/1000的测相精度是很难实现的,故实
际测量中采用间接测尺频率方式。
用两个频率fs1和fs2的调制光去测同一距离得到:
L=Ls1(m1+Δm1)
L=Ls2(m2+Δm2)
等效形式为: L=Ls (m+Δm)
相位式激光尺设计
![相位式激光尺设计](https://img.taocdn.com/s3/m/e0e476f06f1aff00bfd51e24.png)
相位式激光尺设计一、引言相位法激光测距就是通过测量连续的调制信号在待测距离上往返传播所产生的相位变化来间接地测定信号传播时间,从而求得被测的距离。
利用光速来测量距离时,要求测量范围大、测距精度高,但是由于光的速度极快,因而要求精确测量极短的时间间隔。
相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。
即用间接方法测定出光经往返测线所需的时间,相位式激光测距仪一般应用在精密测距中。
若调制光角频率为ω,在待测量距离LAB上往返一次产生的相位延迟为φ,则对应时间t 可表示为:t=(φ+Δφ)/ω其中φ+Δφ=2π(m+Δm)m:表示激光往返LAB所经历的整数个波长Δm:表示不足一个波长的分量则待测距离LAB可表示为LAB =1/2 ct=1/2 c·(φ+Δφ)/ω=1/2λ(m+Δm) =Ls(m+Δm)其中 Ls称作“光尺”。
二、总体设计方案本系统原理设计图如图一所示。
图一系统结构框图本系统由激光调制发射电路、光电检测电路、频率综合电路以及数字测向电路构成。
接下来将分别介绍这几部分的具体设计。
三、激光调制发射电路采用波形发生芯片MC12061产生单频正弦波信号,与稳压源产生的直流偏置通过恒流源驱动电路对激光二极管进行光强调制,使得激光二极管的光强随调制信号频率变化,出射光通过光学系统(主要是透镜),聚焦于目标点。
激光的调制发射主要由电源,直流偏置电路,调制信号发生电路,恒流驱动电路,激光二极管(LD)组成。
电路图如图二所示:图二激光调制发射电路10MHz高频调制信号由晶体振荡器MC12061外接10MHz晶体产生,它能精确产生正弦波与方波,只需少量外部元件就能实现2.0-20MHz的频率输出,且有高达±0.001%的频率稳定度,在频率8MHz下只有-0.08ppm/℃的温度漂移,结合(2-7)进行分析,误差很小,完全可以忽略,能够满足实验要求。
长春理工大学光电工程学院相位激光测距仪方案设计
![长春理工大学光电工程学院相位激光测距仪方案设计](https://img.taocdn.com/s3/m/83ab529b844769eae109ed15.png)
相位激光测距仪方案设计学生姓名专业学号指导教师学院二〇一六年十一月摘要随着半导体激光器、数字信号处理、精密机械等领域技术的飞跃发展,激光测距仪向着高精度、便携、高速,数字化的方向不断进步。
本论文先介绍了激光测距的几种测距方法原理以及国内外现状,着重介绍了相位法测距原理,在这基础上设计了基于相位法测距原理的总体方案。
论文从发射系统和接受系统对总体设计进行了阐述,探讨了激光器选择,光电探测器的选择,光电接受电路,放大电路,混频电路等电路的设计,系统采用了激光二极管作为激光发射器,雪崩二极管作为光电探测器并对系统进行误差分析,最后进行总结和发现不足之处。
关键词:激光测距,相位式激光测距,光电检测,误差分析目录一绪论 (3)1.1引言 (3)1.2激光测距 (3)1.2.1激光测距简介 (3)1.2.2激光测距方法 (3)1.3激光测距的优点 (6)1.4国内外研究现状 (6)1.5论文研究内容及章节安排 (7)第二章相位激光测距原理以及总体方案 (7)2.1相位激光测距原理 (7)2.2测相原理 (9)2.3系统整体方案设计 (10)第三章系统设计部分的选择 (11)3.1发射部分 (11)3.1.1激光器的选择 (11)3.1.2激光二极管的工作原理 (11)3.1.3调制发射部分 (11)3.2接受电路部分 (12)3.2.1光电探测器的选择 (12)3.2.2雪崩二极管工作原理 (13)3.3光电接受电路设计 (13)3.3.1光电接收电路 (13)3.3.2放大电路设计 (13)3.3.3自动增益控制电路 (14)3.4其他需要考虑的电路部分 (14)3.4.1混频部分 (14)3.4.2后级放大电路 (15)第四章相位式激光测距仪误差分析 (15)4.1元器件的稳定性 (16)4.2频率误差 (16)4.3电路系统误差 (17)4.4光电探测器噪声引起的误差 (17)4.5光学误差 (18)第五章总结和展望 (18)参考文献 (20)一绪论1.1引言激光具有单色性好、方向性强、亮度高等特点。
相位法激光测距的理论设计
![相位法激光测距的理论设计](https://img.taocdn.com/s3/m/edd1325c02768e9950e7380e.png)
相位法激光测距的理论设计相位法激光测距的理论设计相位法激光测距的设计第一章引言激光,是一种自然界原本不存在的,因受激而发出的具有方向性好、亮度高、单色性好和相干性好等特性的光。
物理学家把产生激光的机理溯源到1917年爱因斯坦解释黑体辐射定律时提出的假说,即光的吸收和发射可经由受激吸收、受激辐射和自发辐射三种基本过程[1]。
所谓激光技术,就是探索开发各种产生激光的方法以及探索应用激光的这些特性为人类造福的技术的总称。
30多年来,激光技术得到突飞猛进的发展,利用激光技术不仅研制了各个特色的多种多样的激光器,而且随着激光应用领域不断拓展,形成了激光唱盘唱机、激光医疗、激光加工、激光全息照相、激光照排印刷、激光打印以及激光武器等一系列新兴产业。
激光技术的飞速发展,使其成为当今新技术革命的先锋!激光和普通光的根本不同在于它是一种有很高光子简并度的光。
光子简并度可以理解为具有相同模式(或波型、位相、波长)的光子数目,即具有相同状态的光子数目。
这些特性使激光具有良好的准直性及非常小的发散角,使仪器可进行点对点的测量,适应非常狭小和复杂的测量环境。
激光测距仪就是利用激光良好的准直性及非常小的发散角度来测量距离的一种仪器。
激光在A、B 两点间往返一次所需时间为t, 则A、B 两点间距离D 可表示为: D = c·t /2,式中, c为光在大气中传播的速度。
由于光速极快, 对于一个不太大的D 来说, t是一个很小的量。
如:假设D =15km, c = 3 ×105 km / s,则t = 5 ×10- 5 s。
由测距公式可知,如何精确测量出时间t的值是测距的关键。
由于测量时间t的方法不同,便产生了两种测距方法:脉冲测距和相位测距。
其中相位测距更加精确[1]。
- 1 - 第二章国内外研究状况相位式激光测距技术的研究起始于20 世纪60年代末,到80 年代中期陆续解决了激光器件、光学系统及信号处理电路中的关键技术,80 年代后期转入应用研究阶段,并研制出了各种不同用途的样机,90年代中期,各种成熟的产品不断出现,预计近期将是其应用产品大发展的阶段,在中、近程激光测距应用方面有取代YAG激光的趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告(2014—2015年度第一学期)题目:激光相位测距仪设计院系:物理与电子信息工程学院姓名:学号:专业:光信息科学与技术指导老师:2015年01月03日目录1.设计目的与任务 (4)2.相位式激光测距仪的实现原理 (5)3.激光测距仪的原理方案 (6)3.1 直接测尺频率 (6)3.2 间接测尺频率 (7)4.测距精度的分析 (9)4.1 误差分析 (9)4.2精度分析 (10)5.总结 (12)6.参考文献 (12)1.设计目的与任务课程设计是学生理论联系实际的重要实践教学环节,是对学生进行的一次专业训练。
通过课程设计使学生获得以下几方面能力,为毕业设计打下基础。
1、进一步巩固和加深学生所学的专业理论知识,培养学生设计、计算、绘图、计算机应用、文献查阅、报告撰写等基本技能;2、培养学生独立分析和解决工程实际问题的能力;3、培养学生的团队协作精神、创新意识、严肃认真的治学态度和严谨的工作作风。
光电子技术基础课程设计是在学生已经完成光电子技术基础课程教学之后所进行的综合性设计过程。
其意义在于进一步巩固、加强课程的教学效果,并将这些知识真正应用于实际的设计过程中。
根据设计容要求,完成方案论证,完成一类光电仪探测器特性实验测试开发;或利用光电探测器设计测试装置针对一物理量进行测量;或利用光电系统进行信息的传输;或能根据工程条件设计一光电技术的具体应用。
写出完整的设计报告,设计报告(论文)字数要求不少于3000字,文字通顺,书写工整。
2.相位式激光测距仪的实现原理相位测量一般采用差频测相技术。
差频测相的原理如图2.1所示2.1差频测相原理图示设主控振荡器的信号为cos()d s s e A t ωϕ=+ 2-1经过调制器发射后经2L 距离返回光电接收器,接收到的信号为cos()ms s s e A t ωϕ∆ϕ=++ 2-2ϕ∆表示相位变化。
设基准振动器信号为cos()l l l e C t ωϕ=+ 2-3把l e 送到混频器分别与d e 和ms e 混频,在混频器的输出端得到差频参考信号r e 和测距信号m e ,他们可分别表示为cos[()()]r s l s l e D t ωωϕϕ=-+- 2-4cos[()()]m s l s l e E t ωωϕϕ∆ϕ=-+-+ 2-5 用相位检测电路测出这两个混频信号相位差'ϕϕ∆=∆。
可见,差频后得到的两个低频信号的相位差'ϕ∆直接测量高频调制信号的相位差ϕ∆是一样的。
通常选取测相的低频频率为几千赫兹到几十千赫兹。
差频后得到的低频信号进行相位比较,可采用平衡测相法,也可采用自动数字测相法。
平衡测相法结构简单,性能可靠,价格低,但准确度较低,通常会有15'~20'或更大的测相不确定度。
此外,平衡测相法还有机械磨损。
测量速度低,并难以实现信息处理等缺点。
自动数字测相法测相速度高,测相过程自动化,便于实现信息处理,测相不确定度高,可达2'~4'3.激光测距仪的原理方案3.1 直接测尺频率由侧尺量度Ls 可得光尺的调制频率为/2fs c Ls = 3-1这种方法所选的测尺频率fs 直接和测尺长度Ls 相对应,即测尺长度直接由测尺频率决定,所以这种方式成为直接测尺 频率方式。
若果测距仪测程为100km ,要求精确到0.01m 相位测量系统的测量不确定度为0.1%,则需要三八光尺,即110Ls =5m ,210Ls =3m ,310Ls =m ,相应的光调制频率分别为1 1.5,2150,310.kHz kHz MHz fs fs fs ===。
显然,要求相位测量系统在这么宽的频带都保证0.1%的测量不确定度很难做到。
所以直接测尺频率一般应用于短程测量如GaAs 半导体激光短程相位测距仪。
3.2 间接测尺频率在实际测量中由于测程要求较大,大都采用间接测尺频率方式。
若用两个频率1fs 和2fs 调制的光分别测量同意距离L,可得111()m m L Ls +∆= 3-2222()m m L Ls +∆= 3-3将式2-2两边乘以2Ls ,式2-3两边乘以1Ls 后做相见运算,可得:112212(12)()Ls Ls Ls Ls m m m m L Ls m m --+∆-∆==+∆ 3-4 式中1211122122Ls Ls c c Ls Ls fs fs fsLs ==--=1212,m m m fs fs fs -==-1212,2m m m ϕπϕϕϕ=∆∆-∆∆=∆=∆-∆ 式2-4中,Ls 是一个新的测尺量度,fs 是与Ls 对应的新的测尺量度。
这样,用1fs 和2fs 分别测量某一距离时所得相位尾数1ϕ∆和2ϕ∆之差,与用1fs 和2fs 的差频频率12fs fs fs =-测量该距离时的相位尾数ϕ∆相等。
这是间接测尺频率法测距的基本原理,即通过1fs 和2fs 频率的相位尾数并取其差值来间接测定相位的差频频率的相位尾数。
通常把1fs 和2fs 称为间接测尺频率,而把差频频率称为相当测尺频率。
表3.1列出了间接测尺频率,相当测尺频率,相对应的测尺长度鸡测距不确定度:表3.1间接测尺频率,相当测尺频率及测尺长度由表可知,这种测距方式的各间接测距频率非常接近,最高的和最低之差仅为1.5MHz,5个间接测尺频率都集中在较窄的频率围,故间接测尺频率又称为集中测尺频率。
这样,不仅可使放大器和调制器能够获得相接近的增益和相位稳定性,而且各对应的石英晶体也可统一。
4.测距精度的分析4.1 误差分析测距仪的误差有以下两大类:第一类是与距离远近有关的误差,如0,,c n f m m m 及不变的误差如K m ,称为系统误差,它们是构成了仪器精度指标中的比例误差。
另一类是与距离远近无关,而且随即变化的误差,如,,g R m m m ϕ称为偶然误差,即仪器精度指标中的固定误差部分。
而周期误差虽属于系统误差,但却是一种特殊的误差。
以下讨论几种主要的误差:4.1.1主控晶体振荡器的频率误差f m测距仪中的主振频率误差,主要指精测频率误差而言,因为它决定了仪器的测距精度。
此项误差包括两方面,即频率的校准误差和频率的飘移误差,前者取决于频率的准确度,后者则取决于频率的稳定度。
当用高精度的频率计作频率校准时,频率的校准误差可忽略不计。
产生频率漂移的原因有:震荡线路原件性能的变化,晶体老化或质量欠佳,有恒温装置的仪器,预热时间不够,恒温围过大,无恒温装置的仪器,由于温度变化引起频率漂移,电源电压不足或不稳。
可通过采用加恒温措施或晶体温度补偿以及电子线路设计上的锁频或锁相等办法来减弱频率漂移的影响4.1.2测相误差m ϕ测相误差包括:移相器或数字相位计的原理误差,瞄准误差,幅相误差以及有信噪比决定的误差。
以上误差是测距仪的瞄准误差,也是目前测距仪误差的主要来源,为了减小瞄准误差,一方面要提高调制器或发光管的制造工艺,一提高它的空间相位均匀性。
也可在短程测距仪GaAs 发光管前加混相措施一提高发射的光束的相位均匀性。
4.1.3周期误差z m自动数字测距仪的周期误差这类误差主要来源于仪器部固定信号的串扰。
若果发射信号形成固定不变的串扰信号,使得相位计测得的相位差附加上了串扰信号的附加相位移。
即相位计实际测量的是测距信号与串扰信号之合成信号的相位移,这就引起了差距误差。
减小此类误差的措施主要有:在设计。
制造时,采用合理的电子开关,发射和接受系统等的电子线路要单独设立电源:加强屏蔽,防止信号通过地线或空间发生耦合串扰。
移相-鉴相法测相测井愿意的周期误差这一类一起出了固定串扰信号能产生周期误差外,由感移相器的非线性RC 网络失调以及输入信号的频率偏离移相器的固有频率等原因均可引起周期误差。
解决此类误差的措施有:使输入移相器的信号频率与移相器的固有频率相符(可通过校正晶体振荡器的振荡频率)之后校正RC 网络,使得1R c ω=。
4.2精度分析4.2.1精度分析由于相位测量是影响其精度的主要原因,故而本文只讨论由相位测量引起的测量误差的精度分析。
由第一主频1f 测量时,其测距精度公式为111()2D L ϕπ∆=∆∆ 4-1由第一辅频测量时,(因210.9f f =,有21910L L =),其测距精度公式222211()2()2(19)D L L L ϕπϕπ∆=∆∆=∆∆+ 4-2显然,由同一相位测量仪测量时,测距精度2D ∆相当于原来的基础上提高了9倍,而此时测距围为10L1扩大了10倍。
同理,若再用第二辅频3f 测量时,(因310.99f f =,有3199100L L =),精度公式为 333311()2()2(19)D L L L ϕπϕπ∆=∆∆=∆∆+ 4-3精度在原来基础上提高了99倍,测距围为100L 1,扩大了100倍。
依此类推,依据主频和辅频的不同比例关系可以得到添加不同辅频时的精度公式。
4.2.2测距精度的提高如某台仪器有两把测尺,精尺长 10 m ,粗尺长1000 m ,现各测得距离值为:精测(用 10 m 测尺) 5.524 m粗测(用 1 000 m 测尺) 866.6 m显示距离 865.524 m显示距离值是取粗测的百米、十米位与精测的米位及小数位组合而成。
但是由于仪器本身存在各种误差,以及外界条件的影响,使得各测尺的测量值总带有误差,会造成距离衔接上的错误。
a) 米位数值很大,而粗测米位又是偏大的正误差精测(用 10 m 测尺) 9.958 m粗测(用 1000 m 测尺) 270.0 m显示距离 279.958 mb) 米位数值很小,而粗测米位又是偏小的负误差精测(用 10 m 测尺) 0.058 m粗测(用 1000 m 测尺) 269.9 m显示距离 260.058 m为了防止粗差,可以用 “置中运算法” 和“比较试探法”来有效地处理测尺衔接的问题。
5.总结这个实验很有用,特别是对于我们电子类专业的学生,现在激光技术在工业、医疗、商业、科研、信息和军事等研究中应用的非常广泛。
这是一次我们接触这方面的实验,在实验中我们将大学期间学习过的专业知识、matlab和word学以致用,同时此次实验也为我们提供了一个写论文的机会。
我认为作为一名工科生,matlab和单片机是我们大学生活中的一个玩伴,通过这门课程的学习,我们已熟悉地掌握matlab的基本操作,同时对激光测距有了基本的认识,更重要的是我们通过相互帮助,相互学习完成了这个实验,实验同时提高了我们的仿真能力。
见到不少实验仪器,对实验的过程有了更全面的体会,注意到每一个实验都有各自的严谨性和特殊的方法。
6.参考文献主要参考资料:[1] 郭培源, 付扬. 光电检测技术与应用(第二版)[M].:航空航天大学, 2011.[2] 加良.相位法激光测距仪的研究[D].:电子科技大学,2006[3] 卫国.matlab程序设计教程(第二版)[M].:中国水利水电,2010。