初中数学《视图与投影》测考试题
(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(含答案解析)
一、选择题1.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是()A.B.C.D.2.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.343.如图,几何体由6个大小相同的正方体组成,其俯视图...是()A.B.C.D.4.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A .4B .6C .9D .125.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4π B .2π C .32π D .π6.如图是由五个棱长为2的小立方块搭建而成的几何体,则它的左视图的面积是( )A .3B .4C .12D .167.如下图所示是由一些大小相同的小正方体构成的三种视图,那么构成这个立体图的小正方体的个数是 ( )A .6B .7C .8D .98.如图的几何体的俯视图是( )A.B.C.D.9.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为().A.B.C.D.10.下列四个几何体中,从正面看得到的平面图形是三角形的是()A.B.C.D.11.下图是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱12.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.二、填空题13.写出图中圆锥的主视图名称________.14.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x=______,y=________.15.如图,直角坐标平面内,小明站在点A(﹣10,0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE的长度)为_____米.16.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.17.一个立体图形的三视图如图所示,这个立体图形的名称是__.18.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是22的正方形若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则可以拿掉小方块的个数为_____.19.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为______.20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题21.如图,在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学在测量树的高度时,发现树的影子有一部分(0.2 米)落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是 4.62米.”小强说:“要是没有台阶遮挡的话,树的影子长度肯定比 4.62米要长.”(1)你认为谁的说法对?并说明理由;(2)请根据小玲和小强的测量数据计算树的高度.【答案】(1)小强的说法对,理由见解析;(2)8米.【分析】(1)画出解题示意图,利用同一时刻,物高与影长成正比,计算判断即可;(2)利用同一时刻,物高与影长成正比,计算判断即可;【详解】解:(1)小强的说法对;根据题意画出图形,如图所示,根据题意,得10.6DE EH =, ∵DE=0.3米,∴0.30.60.18EH =⨯=(米).∵GD ∥FH ,FG ∥DH , ∴四边形DGFH 是平行四边形, ∴0.2FH DG ==米. ∵AE=4.42米,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8(米), 即要是没有台阶遮挡的话,树的影子长度是4.8米, ∴小强的说法对;(2)由(1)可知:AF=4.8米.∵10.6AB AF =, ∴8AB =米.答:树的高度为8米. 【点睛】本题考查了太阳光下的平行投影问题,准确理解影长的意义,灵活运用同一时刻,物高与影长成正比是解题的关键.22.请你画出下面几何体的主视图,左视图,俯视图.【答案】见解析. 【分析】根据三视图的概念作图即可.【详解】解:如图所示:【点睛】此题主要考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看所得到的图形.23.作图题(1)如图所示的几何体是由5个相同的正方体搭成的,请画出它的三视图.(涂阴影)(2)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:(涂阴影)【答案】(1)见解析;(2)见解析.【分析】(1)根据三视图的定义画图即可;(2)根三视图的定义再结合题意画图即可.【详解】解:(1)该立体图形的三视图如图:(2)该几何体的主视图和左视图如图:【点睛】本题考查了根据立体图形画三视图,较好的空间想象能力是解答本题的关键.24.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF=4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.25.如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD 的影子刚好不落在广告墙PQ上.(1)画出太阳光线CE和AB的影子BF;(2)若AB=10米,CD=6米,CD到PQ的距离DQ的长为8米,求此时木杆AB的影子BF的长.【答案】(1)如图所示,见解析;(2)木杆AB 的影长BF 是403米. 【分析】(1)连结CQ ,即为太阳光线CE ,过A 点作CE 的平行线与BQ 交于点F ,即可得到AB 的影子BF ;(2)根据在同一时刻的太阳光线下,物体高度与影子长度对应成比例可列出关系式,代入数值计算即可求得BF 的长. 【详解】解:(1)如图所示,CE 和BF 即为所求;(2)设木杆AB 的影长BF 为x 米, 由题意,得:CD DQ AB BF =,即6810x=, 解得:403x =. 答:木杆AB 的影子BF 的长为403米. 【点睛】本题考查了相似三角形的应用,理解题意并熟练运用相似三角形的性质是解题的关键.26.如图,甲、乙两个几何体是由一些棱长是1的正方体粘连在一起所构成的,这两个几何体从上面看到的形状图相同是“”请回答下列问题:(1)请分别写出粘连甲、乙两个几何体的正方体的个数.(2)甲、乙两个几何体从正面、左面、上面三个方向所看到的形状图中哪个不相同?请画出这个不同的形状图.(3)请分别求出甲、乙两个几何体的表面积.【答案】(1)见解析,甲的正方体有8个;乙的正方体有7个;(2)见解析;(3)甲几何体的表面积为:28;乙几何体的表面积为:28【分析】(1)分别利用几何的形状得出组成的个数;(2)甲的左视图从左往右3列正方形的个数依次为2,2,2;乙的左视图从左往右3列正方形的个数依次为2,1,2;(3)直接利用几何体的形状进而得出表面积.【详解】解:(1)如图所示:甲的正方体有4+4=8个;乙的正方体有4+3=7个;(2)甲、乙两个几何体的主视图相同,俯视图也相同,只有左视图不同;甲、乙两个几何体的左视图不同,如图所示:;(3)甲几何体的表面积为:14+14=28;乙几何体的表面积为:14+1+5+8=28.【点睛】本题考查了视图的相关知识;用到的知识点是:三视图分别是从物体的正面、左面、上面看得到的平面图形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据主视图的定义判断即可.【详解】解:这个几何体从正面看到的图形是C,故选:C.【点睛】本题考查三视图的应用,熟练掌握三视图的意义及观察方法是解题关键.2.D解析:D【分析】首先要数清这个组合体的表面是由几个正方形组成的,再乘以1个正方形的面积即可得到表面积.【详解】+6×2+2)×21=34解:这个组合几何体的表面积为:(5×2+52故选:D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.C解析:C【分析】细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.【详解】解:从物体上面看,底层是1个小正方形,上层是并排放4个小正方形.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.D解析:D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.5.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.6.C解析:C【分析】先确定几何体的左视图的形状,再根据图形求面积.【详解】由图知该几何体的左视图由两列构成,第一列是两个小正方块,第二列是一个小正方块,共三个小正方块,∴它的左视图的面积是23212,故选:C.【点睛】此题考查几何体的三视图,根据几何体得到三视图的图形形状是解题的关键. 7.B解析:B【解析】【分析】根据三视图,将每一层的小正方体的个数求出来相加,即可得到答案.【详解】根据三视图得:该几何体由两层小正方体构成,最底层有6个,顶层由1个,共有7个,故选:B.【点睛】此题考察正方体的构成,能够理解图形的位置关系是解题的关键.8.C解析:C【分析】安装几何体三视图进行判断即可;【详解】解:本几何体的俯视图是后排有三个,前排有两个,即答案为C.【点睛】本题主要考查了简单几何体的三视图,掌握是从物体正面、左面和上面看物体以及较好的空间思维能力是解答本题的关键.9.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A.【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.10.B解析:B【分析】依次分析每个几何体的主视图,即可得到答案.【详解】A.主视图为矩形,不符合题意;B.主视图为三角形,符合题意;C.主视图为矩形,不符合题意;D.主视图为矩形,不符合题意.故选:B.【点睛】此题考查几何体的三视图,掌握每一个几何体的三视图的图形是解题关键.11.A解析:A【解析】【分析】根据图形的三视图特点,进行选择.【详解】由题意图形的三视图可判断图形为圆锥.故答案选A.【点睛】本题主要考查的是三视图的性质特征,熟练掌握三视图的性质特征是本题的解题关键. 12.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.二、填空题13.等腰三角形【解析】主视图是指从正面看圆锥体从正面看是等腰三角形故答案为:等腰三角形解析:等腰三角形【解析】主视图是指从正面看,圆锥体从正面看是等腰三角形,故答案为:等腰三角形.14.1或23【分析】由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知左边一列叠有2个正方体从而求解【详解】解:由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知解析:1或2 3【分析】由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,从而求解【详解】解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3.故答案为1或2;3.15.5【详解】首先作出BM⊥EO得出△BND∽△BME即可得出再利用已知得出BNBMDN的长即可求出EM进而求出EO即可解:过点B作BM⊥EO交CD于点N∵CD∥EO∴△BND∽△BME∴∵点A(﹣10解析:5【详解】首先作出BM⊥EO,得出△BND∽△BME,即可得出BN DNBM EM=,再利用已知得出BN,BM,DN的长,即可求出EM,进而求出EO即可.解:过点B作BM⊥EO,交CD于点N,∵CD∥EO,∴△BND∽△BME,∴BN DNBM EM=,∵点A(﹣10,0),∴BM=10米,∵眼睛距地面1.5米,∴AB=CN=MO=1.5米,∵DC=2米,∴DN=2﹣1.5=0.5米,∵他的前方5米处有一堵墙DC,∴BN=5米,∴50.510EM=,∴EM=1米,∴EO=1+1.5=2.5米.故答案为2.5.16.72【解析】分析:∵由主视图得出长方体的长是6宽是2这个几何体的体积是36∴设高为h则6×2×h=36解得:h=3∴它的表面积是:2×3×2+2×6×2+3×6×2=72解析:72【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3.∴它的表面积是:2×3×2+2×6×2+3×6×2=72.17.正四棱柱【分析】由主视图和左视图可确定是柱体再由俯视图可确定具体形状【详解】解:由主视图和左视图可确定是柱体再由俯视图可确定是正四棱柱故答案为:正四棱柱【点睛】本题考查了由三视图还原立体图形掌握立体解析:正四棱柱.【分析】由主视图和左视图可确定是柱体,再由俯视图可确定具体形状.【详解】解:由主视图和左视图可确定是柱体,再由俯视图可确定是正四棱柱.故答案为:正四棱柱.【点睛】本题考查了由三视图还原立体图形,掌握立体图形的三视图的形状,注意解题所用的方法.18.4或5【分析】根据正面和左面看到的图形可知上面一层必须保留左后面的正方体上层其它的正方体拿掉下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体另外两个保留据解析:4或5【分析】根据正面和左面看到的图形可知,上面一层必须保留左后面的正方体,上层其它的正方体拿掉,下层已经拿掉正方体的对应位置的正方体保留右前面的正方体其它两个可有可无或者去掉右前方的正方体,另外两个保留,据此作答即可.【详解】解:根据题意,拿掉若干个小立方块后,从正面和左面看到的图形如图2所示,所以可拿掉的小方块的个数可为5个或4个.故答案为:4或5.【点睛】本题考查了简单组合体的三视图.主要考查学生的空间想象能力.19.26【分析】从俯视图中可以看出最底层小正方体的个数及形状由主视图可以看出每一列的最大层数和个数从而算出总的个数【详解】解:根据主视图和俯视图可知该几何体中小正方体最少分别情况如下:故n的最小值为1+解析:26【分析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数【详解】解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26【点睛】本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.20.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.无22.无23.无24.无25.无26.无。
人教版数学九年级下学期第29章《投影与视图》测试题含答案
人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。
(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(包含答案解析)
一、选择题1.如图,在直角坐标系中,点P (2,2)是一个光源.木杆AB 两端的坐标分别为(0,1),(3,1).则木杆AB 在x 轴上的投影长为( )A .3B .5C .6D .7 2.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A .仅主视图不同B .仅俯视图不同C .仅左视图不同D .主视图、左视图和俯视图都相同 3.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )A .4860π+B .4840π+C .4830π+D .4836π+ 4.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4πB .2πC .32πD .π5.一个几何体是由一些大小相同的小正方体搭成的,其俯视图与左视图如图所示,则搭成该几何体的方式有( )种A .2B .3C .5D .6 6.如图是用4个同样大小正方体搭成的立体图形,从左面看,它应是下列图形中的( )A .B .C .D . 7.如图的几何体的俯视图是( )A .B .C .D . 8.如图是由6个完全相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D . 9.如图是一个底面为正方形的几何体的实物图,则其俯视图为( )A.B.C.D.10.如图是一个由多个相同的小正方体堆成的几何体从上面看得到的平面图形,小正方形中的数字表示在该位置的小正方体的个数,那么从正面看该几何体得到的平面图形是()A.B.C.D.11.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.12.下列哪种影子不是中心投影()A.皮影戏中的影子 B.晚上在房间内墙上的手影C.舞厅中霓红灯形成的影子 D.太阳光下林荫道上的树影二、填空题13.甲乙两人在太阳光下并行,乙的身高1.8m,他的影长是2.1m,甲比乙矮12cm,此刻甲的影长是_____.14.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数可以是________.15.一个几何体的三视图如图所示,则这个几何体是_____.16.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为:________.17.如图所示,身高1.5m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD 为2.5m,则路灯的高度AB为_____米.18.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)19.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个20.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为______.三、解答题21.如图是一个几何体的三视图.(1)说出这个几何体的名称;(2)若主视图的宽为4cm ,长为7cm ,左视图的宽为3cm ,俯视图为直角三角形,其中斜边长为5cm ,求这个几何体中所有棱长的和,以及它的表面积和体积.【答案】(1)三棱柱;(2)所有棱长的和为45cm ;表面积为296cm ;体积为342cm【分析】(1)根据三视图可以判断该几何体是三棱柱;(2)根据三视图和直三棱柱各棱长的关系求出各棱长,再根据表面积和体积公式计算即可.【详解】解:(1)根据三视图,这个几何体是三棱柱 ;(2)由题意,棱长的和:()4232527345cm ⨯+⨯+⨯+⨯= ,表面积:()()24322345796cm⨯÷⨯+++⨯=, 体积:()3432742cm ⨯÷⨯=,答:所有棱长的和为45cm ;表面积为296cm ;体积为342cm .【点睛】本题考查由三视图判断几何体、求棱柱的表面积和体积,熟记常见几何体的三视图,掌握三视图与几何体的各棱长关系是解答的关键.22.“如图是由10个同样大小的小正方体搭成的几何体,(1)请分别画出它的主视图和左视图.(2)如果在这个几何体的表面喷上黄色的漆(底面不涂色),有_________个小正方体只有两面黄色,有_________个小正方体只有三面黄色,(3)在俯视图和左视图不变的情况下,你认为最多还可以添加_________个小正方体.【答案】(1)见解析;(2)2,3;(3)4【分析】(1)主视图从左至右每列个数分别为3、1、2,左视图左至右每列个数分别为3、2、1. (2)注意题干中的底面不涂色,涂2面的在第一层后面最左面的2个,涂3面的在中间层的后面的左面和第一层的最中间以及第一层的最后最右面,一共3个.(3)要使俯视图和左视图不变,可以在第二列,第二层和第三层的3个空缺处添加,第三层第三列的最上面也可添加.【详解】(1)(2)设由下到上分别是第一层到第三层,由左到右分别是第一列到第三列,有前到后分别是第一行到第三行.有2个面是黄色的应为第一层第一列第三行和第一层第二列第三行的2个小正方体.有3个面是黄色的应为第二层第一列第三行、第一层第二列第二行和第一层第三列第三行的3个小正方体.故答案为2,3.(3)要使俯视图和左视图不变,可添加至第二层第二列第二行、第二层第二列第三行、第三层第二列第三行、第三层第三列第三行.所以可添加4个小正方体.故答案为4.【点睛】本题主要考查作三视图.利用空间想象能力,并把几何体按空间排序来解决问题.23.如图是由四个大小相同的小正方体搭成的一个立体图形,画出从正面,从上面,从左面三个方向看到的立体图形的形状图.【答案】见解析【分析】观察图形可知,从正面看到的图形是两层:下层3个正方形,上层1个靠中间;从左面看到的图形是2层:下层2个正方形,上层1个靠左边;从上面看到的图形是两行:后面一行3个正方形,前面一行1个正方形靠左边,据此即可画图【详解】解:如图【点睛】此题考查了从不同方向观察几何体,锻炼了学生的空间想象力和抽象思维能力.24.一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),求这个零件的表面积.【答案】900cm 2【分析】由题意可得这个零件是长方体,再根据长方体的表面积公式解答即可.【详解】解:由题意可得:这个零件是长方体,且这个零件的表面积=()2101221015212152900cm⨯⨯+⨯⨯+⨯⨯=.答:这个零件的表面积是900cm 2.【点睛】本题考查了几何体的三视图和长方体表面积的计算,正确理解题意、明确求解的方法是关键.25.如图是由8个相同的小正方体组成的一个几何体(1)画出几何体从正面看、左面看、上面看的形状图;(2)现量得小立方体的棱长为2cm ,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.【答案】(1)见解析 (2)2116cm【分析】(1)分别画出几何体图即可;(2)根据题意得涂上颜色的总面积为正反面面积,左右两侧面积,和向上一侧面积,求出总小正方形个数乘以面积即可.【详解】(1)从正面看;从左面看;从上面看.(2)(6×2+6×2+5)×2×2=116(cm2)答:涂色部分面积为116cm2.【点睛】本题考查了立体图形的三视图,及表面积的求法,正确理解三视图的概念,并形成空间图形观念是解题关键.26.一作图题:下列物体是由六个小正方体搭成的,请在下列网格中分别画出从正面、左面、上面看到的立体图形的形状.【答案】答案见解析【分析】根据主视图,左视图,俯视图定义,首先运用形体分析法把组合体分解为若干个形体,确定它们的组合形式,判断形体间邻接表面是否处于共面、相切和相交的特殊位置;然后逐个画出形体的三视图.【详解】【点睛】本题考查了三视图的作图,三视图是主视图、俯视图、左视图的统称,从物体的前面向后面投射所得的视图称主视图,从物体的上面向下面投射所得的视图称俯视图,从物体的左面向右面投射所得的视图称左视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用中心投影,延长PA 、PB 分别交x 轴于A′、B′,作PE ⊥x 轴于E ,交AB 于D ,如图,证明△PAB ∽△PA′B′,然后利用相似比可求出A'B'的长.【详解】延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D ,如图∵P (2,2),A (0,1),B (3,1).∴PD =1,PE =2,AB =3,∵AB ∥A ′B ′,∴△PAB ∽△PA ′B ′, ∴AB AD A B AE ='',即312A B ='' ∴A ′B ′=6,故选:C .【点睛】 本题考查了中心投影和三角形相似,引出辅助线利用三角形相似的性质求解是本题的关键.2.D解析:D【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.3.A解析:A【分析】首先根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【详解】解:∵根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:22133S =2πr =2π4=24π44⨯⨯⨯⨯⨯,该几何体的侧面积为:233S =2462πr h=48+2π46=48+36π44⨯⨯+⨯⨯⨯⨯⨯, ∴总表面积为:12S=S +S =4860π+,故选:A .【点睛】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.4.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.5.C解析:C【分析】根据几何体的俯视图与左视图,可得搭成该几何体的叠加方式,进而即可得到答案.【详解】由题意得:搭成该几何体(俯视图中小正方形中的数字表示在该位置上的小正方体块)的个数的方式如下:,故选C .【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.6.A解析:A【分析】从左面观察三个正方形的形状即可解答.【详解】解:从左面看,共有2列,左边一列是两个正方形,右边是一个正方形,且下齐.故答案为A.【点睛】本题考查了立体图形的三视图,理解三视图的概念以及较好的空间思维能力是解答本题的关键.7.C解析:C【分析】安装几何体三视图进行判断即可;【详解】解:本几何体的俯视图是后排有三个,前排有两个,即答案为C.【点睛】本题主要考查了简单几何体的三视图,掌握是从物体正面、左面和上面看物体以及较好的空间思维能力是解答本题的关键.8.D解析:D【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】左视图有2层3列,第一层有3个正方形,第二层有一个正方形;每列上正方形的分布从左到右分别是2,1,1个.故选D.【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.9.D解析:D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得到被一条直线分割成两个长方形的正方形.故选D.【点睛】本题考查三视图的知识,俯视图是从物体的上面看得到的视图.10.C解析:C【解析】【分析】找到从正面看所得到的图形即可.解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是1,2,2.故选:C.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.11.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.12.D解析:D【解析】【分析】根据中心投影的性质,找到不是灯光的光源即可.【详解】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,所以太阳光下林荫道上的树影不是中心投影.故选:D.解决本题的关键是理解中心投影的形成光源为灯光.二、填空题13.96m【分析】根据同一时刻两人的身高与影长成正比列出算式求得甲的影长即可【详解】解:∵同一时刻两人的身高与影长成正比∴18:21=(18﹣012):甲的影长解得:甲的影长=196故答案为196m【点解析:96m【分析】根据同一时刻两人的身高与影长成正比列出算式求得甲的影长即可.【详解】解:∵同一时刻两人的身高与影长成正比,∴1.8:2.1=(1.8﹣0.12):甲的影长,解得:甲的影长=1.96,故答案为1.96m.【点睛】考查了相似三角形的应用及平行投影的知识,解题的关键是了解同一时刻两人的身高与影长成正比.14.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个解析:8、9、10【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个;所以小立方块的个数可以是6+2=8个,6+2+1=9个,6+2+2=10个.故答案为8、9、10.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.16.DABC【解析】试题分析:根据北半球上太阳光下的影子变化的规律易得答案试题解析:DABC.【解析】试题分析:根据北半球上太阳光下的影子变化的规律,易得答案.试题根据北半球上太阳光下的影子变化的规律,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.可得顺序为DABC.考点:平行投影.17.5【解析】【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】解:∵CE∥AB∴△ADB∽△EDC∴AB:CE=BD:CD即AB:15=75:25解得:AB=解析:5.【解析】【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】解:∵CE∥AB,∴△ADB∽△EDC∴AB:CE=BD:CD即AB:1.5=7.5:2.5解得:AB=4.5m.即路灯的高度为4.5米.故答案为4.5【点睛】考查相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.18.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.19.5【分析】利用三视图得到排数及列数即可得到答案【详解】由三视图可知此摆放体有两排第一排有一列第二排有两列第一排一列有一个第二排两列分别有两个∴1+2+2=5个故答案为:5【点睛】此题考查三视图的应用解析:5【分析】利用三视图得到排数及列数,即可得到答案.【详解】由三视图可知,此摆放体有两排,第一排有一列,第二排有两列,第一排一列有一个,第二排两列分别有两个,∴1+2+2=5个,故答案为:5.【点睛】此题考查三视图的应用,会看三视图的组成特点及分析得到排数列数是解题的关键. 20.26【分析】从俯视图中可以看出最底层小正方体的个数及形状由主视图可以看出每一列的最大层数和个数从而算出总的个数【详解】解:根据主视图和俯视图可知该几何体中小正方体最少分别情况如下:故n的最小值为1+解析:26【分析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数【详解】解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26【点睛】本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.三、解答题21.无22.无23.无24.无25.无26.无。
视图与投影基础试题
1 1 32 21 1视图与投影基础试题一、 选择题 1.有一实物如下图,那么它的主视图( )AB C D2、将右上图Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )3、一物体及其正视图如右图所示,则它的左视图与俯视图分别是右侧图形中的( )(A)①② (B)③②(C)①④ (D)③④4、右图是由相同小正方形搭的几何体的俯视图(小正方形中所标的数字表示在该位置上小正方体的个数),则这个几何体的左视图是()5、一天中,同一物体同一地点,在阳光下的影子( )A 、变长B 、变短C 、先变长,后变短D 、先变短,后变长6、下列图中是太阳光下形成的影子是( )A 、B 、C 、D 、7.给出以下命题,命题正确的有( )①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影②物体的投影的长短在任何光线下,仅与物体的长短有关③物体的俯视图是光线垂直照射时,物体的投影④物体的左视图是灯光在物体的左侧时所产生的投影⑤看书时人们之所以使用台灯是因为台灯发出的光线是平行的光线. A.1个B.2个C.3个D.4个8.如图,晚上小亮在路灯下散步,在小亮由A 处径直走到B 处这一过程中,他在地上的影子( )A .逐渐变短B .先变短后变长C .先变长后变短D .逐渐变长D C B A CB A 5 题图第8题图21二、填空题1、太阳光线形成的投影是_________,灯光形成的投影是_________.2、身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯光较_________.3.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人 ”;4、某天同时同地,甲同学测得1米的木杆在平地上的影长为0.8米,乙同学测得同一平地上的旗杆的影长为9.6米,则旗杆的高为____________米。
5、某同学的身高为1.8米,他在路灯下的影长是为2米,他距路灯底部为3米,则路灯灯泡距地面的高度为__________米。
初中数学投影与视图经典测试题附答案
【解析】
【分析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
【详解】
解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,
故选C.
【点睛】
本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【解析】
【分析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
从正面看第一层是三个小正方形,第二层右边一个小正方形,
故选A.
【点睛】
本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.
10.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()
A. B. C. D.
【答案】C
【解析】
试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是 ,故选C.
16.如图是由几个相同的小方块搭成的几何体,关于它的三视图,下列说法正确的()
左视图是第一层两个小正方形,第二层一个小正方形,所以主视图的面积是3;
俯视图是第一层左边1个小正方形,中间一个小正方形,第二层左边一个小正方形,右边一个小正方形,所以主视图的面积是4;
因此,主视图的面积最大.
故答案为A.
初中数学投影与视图经典测试题含答案
一、选择题
1.如图是某几何体的三视图,则这个几何体可能是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.
【详解】
解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.
故答案选:B.
【点睛】
12.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有( )种.
A.8种B.9种C.10种D.11种
【答案】C
【解析】
【分析】
先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为 ,每一行最大个数分别为 ,画出俯视图.进而根据总和为16,分析即可.
考点:三视图.
7.如图所示,该几何体的主视图是( )
A. B. C. D.
【答案】D
【解析】
【分析】
从前往后看到一个矩形,后面的轮廓线用虚线表示.
【பைடு நூலகம்解】
该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.
故选D.
【点睛】
本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.
10.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )
A.从前面看到的形状图的面积为5B.从左面看到的形状图的面积为3
C.从上面看到的形状图的面积为3D.三种视图的面积都是4
【答案】B
【解析】
A.从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A错误;
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
人教版九年级数学上册《投影与视图》试卷(含答 案)
投影与视图单元测试题一、选择题(每题3分,共30分)1.圆形的物体在太阳光的投影下是( )A . 圆形B .椭圆形C .线段D .以上都有可能 2. 下列几何体中,左视图是圆的是( )A B C D3.如图,晚上小明由甲处径直走到乙处的过程中,他在路灯M 下的影长在 地面上的变化情况是( )A .逐渐变短B .先变短后变长C .先变长后变短D .逐渐变长 4.如图,几何体的主视图是( )A B C D5、一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是( )A .1号房间B .2号房间C .3号房间D .4号房间 6.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米, 小明的身高为1.6米,则旗杆的高为( )A .3.2米B .4.8米C .5.2米D .5.6米 7.如图是小红在某天四个时刻看到一根木棒及其影子的情况, 那么她看到的先后顺序是( )A .①②③④B .④①③②C .④③①②D .②①③④ 8.如图给出的三视图表示的几何体是( )A .圆锥B .三棱柱C .三棱锥D .圆柱 9.如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是( )A .16π B. 12π C. 10π D. 4π10.一个圆锥的主视图是边长为4cm 的正三角形,则这个圆锥的侧面积 等于( )A .16πcm 2 B. 12πcm 2 C. 8πcm 2 D. 4πcm 2二、填空题(每题4分,共24分)第3题图第4题图第5题图第8题图第9题图11. 如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向远离灯的位置移动时,圆形阴影面积的大小的变化情况是会变 (大、小) 12. 如图,在平面直角坐标系xoy 中,位于第一象限内的点A (1,2)在x 轴上的正投影为点A ′,则cos ∠AO A ′ .13.如图,在平面直角坐标系中,一点光源位于A (0,5)处,线段CD ⊥x 轴,垂足为点D ,点C 坐标为(3,1),则CD 在x 轴上的影子长为 .14. 如图是一个由若干个小正方体组合而成的几何体的三视图,请问组成该组合体的小正方体个数是 .15、如图,是一圆锥的主视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角为 度16. 如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC 等于8米,则树高AB 等于 米三、解答题一(每题解6分,共18分) 17、画出如图所示立体图形的三视图.18.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB//CD ,AB=1.5m ,CD=4.5m ,点P 到CD 的距离为2.7m ,求AB 与CD 间的距离是多少m 。
九年级数学(下)第二十九章《投影与视图》全章测试题含答案
九年级数学(下)第二十九章《投影与视图》全章测试题一、选择题1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散2.正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.5 5.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).15.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.圆;矩形. 8.三棱柱. 9.48π. 10.24. 11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3).15.第一种:高为a ,表面积为;π221b ab S +=第二种:高为b ,表面积为⋅+=π222a ab S。
(专题精选)初中数学投影与视图经典测试题附答案
【答案】B
【解析】
【分析】
易得这个几何体共有 层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.
【详解】
解:由俯视图易得最底层有 个小正方体,第二层最多有 个小正方体,那么搭成这个几何体的小正方体最多为 个.
故选:B
【点睛】
考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.
故选A.
【点睛】
本题考查简单组合体的三视图,熟练掌握几何体的三视图的相关知识是解题关键.
15.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )
A.3个B.5个C.7个D.9个
【答案】B
【解析】
【分析】
由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数即可.
(专题精选)初中数学投影与视图经典测试题附答案
一、选择题
1.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.
【详解】
A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;
A. B. C. D.
【答案】C
【解析】
【分析】
依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.
【详解】
A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;
九年级数学下册《投影与视图》单元测试卷(附答案解析)
九年级数学下册《投影与视图》单元测试卷(附答案解析)一、单选题1.“皮影戏”是我国一种历史悠久的民间艺术,下列关于它的说法正确的是()A. 皮影戏的原理是利用平行投影将剪影投射到屏幕上B. 屏幕上人物的身高与相应人物剪影的身高相同C. 屏幕上影像的周长与相应剪影的周长之比等于对应点到光源的距离之比D. 表演时,也可以利用阳光把剪影投射到屏幕上2.下列几何体各自的三视图中,有且仅有两个视图相同的是()A. ①②B. ②③C. ①④D. ②④3.如图,某剧院舞台上的照明灯P射出的光线成“锥体”,其“锥体”面图的“锥角”是60°.已知舞台ABCD是边长为6m的正方形.要使灯光能照射到整个舞台,则灯P的悬挂高度是()A. 3√6mB. 3√3mC. 4√3mD. √6m4.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A. B.C. D.5.如图所示的几何体的左视图是()A. B.C. D.6.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A. 逐渐变短B. 先变短后变长C. 先变长后变短D. 逐渐变长7.下列图形中,主视图和左视图一样的是()A. B.C. D.8.图中三视图对应的几何体是()A. B.C. D.9.图中几何体的俯视图是()A. B. C. D.10.人离窗子越远,向外眺望时此人的盲区是()A. 变大B. 变小C. 不变D. 无法确定二、填空题11.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形 ______ 相似.(填“可能”或“不可能”).12.如图,光源P在水平横杆AB的上方,照射横杆AB得到它在平地上的影子为CD(点P、A、C在一条直线上,点P、B、D在一条直线上),不难发现AB//CD.已知AB=1.5m,CD=4.5m,点P到横杆AB的距离是1m,则点P到地面的距离等于______m.13.圆柱的主视图是长方形,左视图是______形,俯视图是______形.14.画三种视图时,对应部分的长度要________,而且通常把俯视图画在主视图________面,把左视图画在主视图________面.15.许多影院的座位做成阶梯形,目的是____(请用数学知识回答).16.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的表面积为______.17.如图所示是一个几何体的三视图,若这个几何体的体积是6,则它的表面积是 ______.18.直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(−10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是______.19.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有 ______个.三、解答题20.小明周末到公园里散步,当他沿着一段平坦的直线跑道行走时,前方出现一棵树AC和一座景观塔BD(如图),假设小明行走到M处时正好透过树顶C看到景观塔的第5层顶端E处,此时他的视角为30°,已知树高AC=10米,景观塔BD共6层(塔顶高度和小明的身高忽略不计),每层5米.(1)当小明向前走到点N处时,刚好看不到景观塔BD,请在图中作出点N,不必写作法;(2)请问,小明再向前走多少米刚好看不到景观塔BD?(结果保留根号)21.已知小明和树的高与影长,试找出点光源和旗杆的影长.22.明明与亮亮在借助两堵残墙玩捉迷藏游戏,若明明站在如图所示位置时,亮亮在哪个范围内活动是安全的?请在图(1)的俯视图(2)中画出亮亮的活动范围.23.如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?24.补全下面物体的三视图.25.一个圆柱体形零件,削去了占底面圆的四分之一部分的柱体(如图),现已画出了主视图与俯视图.(1)请只用直尺和圆规,将此零件的左视图画在规定的位置(不必写作法,只须保留作图痕迹);(2)若此零件底面圆的半径r=2cm,高ℎ=3cm,求此零件的表面积.26.如图,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为37°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB和楼房MN的高度.(√3≈1.73,sin37°≈0.60,cos37°≈0.800,tan37°≈0.75,结果精确到0.1m)参考答案和解析1.【答案】C;【解析】解:A.“皮影戏”是根据中心投影将剪影投射到屏幕上,因此选项A不符合题意;B.由中心投影的性质可知幕上人物的身高与相应人物剪影的身高成比例,因此选项B不符合题意;C.由中心投影的性质可知屏幕上影像的周长与相应剪影的周长之比等于相似比,即等于对应点到光源的距离之比,因此选项C符合题意;D.表演时,不可以利用阳光把剪影投射到屏幕上,因此选项D不符合题意;故选:C.根据中心投影的意义和性质,逐项进行判断即可,同时注意与平行投影的区别与联系.此题主要考查的是中心投影的性质,注意中心投影与平行投影的区别,利用生活中的“皮影戏”体现光的中心投影性质,这是光投影在生活中的应用,平时多观察,多思考.2.【答案】D;【解析】本题是基础题,考查几何体的三视图的识别能力,作图能力,三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解:∵正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,∴正确答案为D.故选D.3.【答案】A;【解析】解:连接AC,∵∠APC=60°,∴∠PAC=∠PCA=60°,∵ABCD是边长为6m的正方形,∴AC=6√2,OC=3√2∴PC=6√2,∴PO=3√6,故选:A.先根据题意进行连接AC,再根据“锥体”面图的“锥角”是60°得出△PAC是等边三角形,再根据它的计算方法和正方形的特点分别进行计算,即可求出答案.此题主要考查了中心投影和圆锥的计算,解答该题的关键是根据等边三角形和正方形的计算方法进行计算.4.【答案】D;【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项错误;D、在同一时刻阳光下,树高与影子成正比,所以D选项正确.故选:D.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.该题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.5.【答案】B;【解析】解:从左边看,是一列两个矩形.故选:B.根据左视图是从左边看得到的图形,可得答案.此题主要考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【答案】B;【解析】【试题解析】该题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.小亮由A处径直走到路灯下,他的影子由长变短,再从路灯下走到B处,他的影子则由短变长.解:根据中心投影的特点,知小亮由A处走到路灯下,他的影子由长变短,由路灯下走到B处,他的影子由短变长.故选B.7.【答案】D;【解析】解:A.主视图和左视图不相同,故本选项不合题意;B.主视图和左视图不相同,故本选项不合题意;C.主视图和左视图不相同,故本选项不合题意;D.主视图和左视图相同,故本选项符合题意;故选:D.根据各个几何体的主视图和左视图进行判定即可.此题主要考查简单几何体的三视图,掌握各种几何体的三视图的形状是正确判断的关键.8.【答案】B;【解析】解:由主视图可以推出这个几何体是上下两个大小不同柱体,从主视图推出这两个柱体的宽度不相同,从俯视图推出上面是圆柱体,直径小于下面柱体的宽.由此可以判断对应的几何体是选项B.故选:B.由主视图和左视图可得此几何体为柱体,根据俯视图可判断出此上面是圆柱体,由此观察图形即可得出结论.此题主要考查了三视图,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.9.【答案】D;【解析】解:从上面看可得到三个矩形左右排在一起,中间的较大,故选:D.找到从上面看所得到的图形即可.该题考查了三视图的知识,俯视图是从物体的上面看得到的视图.10.【答案】A;【解析】解:如图:AB为窗子,EF∥AB,过AB的直线CD,通过想象我们可以知道,不管在哪个区域,离窗子越远,视角就会越小,盲区就会变大.故选:A.11.【答案】可能;【解析】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.此题主要考查了相似三角形的应用及中心投影的知识,解答该题的关键是了解中心投影是由点光源发出的光线形成的投影.12.【答案】3;【解析】解:如图,作PF⊥CD于点F,∵AB//CD,∴△PAB∽△PCD,PE⊥AB,∴△PAB∽△PCD,∴ABCD =PEPF,即:1.54.5=1PF,解得PF=3.故答案为:3.易得△PAB∽△PCD,利用相似三角形对应边的比等于对应高的比可得AB与CD间的距离.考查相似三角形的应用;用到的知识点为:相似三角形对应边的比等于对应高的比.13.【答案】长方圆;【解析】解:圆柱的主视图是长方形,左视图是长方形,俯视图是圆形.从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.此题主要考查了几何体的三视图的判断.14.【答案】相等;下;右;【解析】这道题主要考查三视图的画法,熟练掌握物体的长、宽、高与三种视图的关系是解答该题的关键,首先正确理解:主视图,左视图,俯视图分别是从物体正面,左面和上面看所得到的图形,然后再从几何体的长、宽、高三个方面分析从不同的角度所观察到物体的情况,进而作出解答.解:在画三种视图时,对应部分的长度要相等,而且通常把俯视图画在主视图下面,把左视图画在主视图右面.故答案为相等;下;右.15.【答案】减少观众的盲区(看不见的地方),使得每人都能看到屏幕;【解析】解:结合盲区的定义,我们可以知道影院的座位做成阶梯形是为了然后面的观众有更大的视野从而减少盲区,使得没人都能看到屏幕,因此影院的座位做成阶梯形的原因是减少观众的盲区(看不见的地方),使得每人都能看到屏幕.故答案为:减少观众的盲区(看不见的地方),使得每人都能看到屏幕.16.【答案】(18+2√3)c m2;【解析】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为√3cm,三棱柱的高×2×√3=18+2√3(cm2).为3,所以,其表面积为3×2×3+2×12故答案为(18+2√3)cm2.由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.17.【答案】22;【解析】解:∵由主视图得出长方体的长是3,宽是1,这个几何体的体积是6,∴设高为ℎ,则1×3×ℎ=6,解得:ℎ=2,∴它的表面积是:1×3×2+3×2×2+1×2×2=22.故答案为:22.根据主视图与左视图得出长方体的长和宽,再利用图形的体积得出它的高,进而得出表面积.此题主要考查了利用三视图判断几何体的长和宽,得出图形的高是解题关键.18.【答案】0<y≤2.5;【解析】解:过D作DF⊥OC于F,交BE于H,OF=1.5,BH=0.5,三角形DBH中,tan∠BDH=BH:DH=0.5:5,因此三角形CDF中,CF=DF⋅tan∠BDH=1因此,OC=OF+CF=1+1.5=2.5.因此盲区的范围在0<y⩽2.5.如图,本题所求的就是OC的值,过D作DF⊥OC于F,交BE于H,利用三角函数可求出.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.【答案】5;【解析】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成,故答案为:5.易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.20.【答案】解:(1)如图,点N 即为所求.(2)由题意得,BE=5×5=25(米),BD=5×6=30(米),在Rt △ACM 中,∵∠M=30°,AC=10米,∴AM=10√3(米),在Rt △BEM 中,∵∠M=30°,BE=25米,∴BM=25√3(米),∴AB=BM-AM=25√3-10√3=15√3(米),∵AC ∥BD ,∴△ACN ∽△BDN ,∴AC BD =NA NB =1030=13,设NA=x 米,则NB=(x+15√3)米, x+15√3=13, 解得,x=15√33, ∴MN=MA-NA=10√3-15√32=5√32(米), 答:小明再向前走5√32米刚好看不到景观塔BD .;【解析】 (1)连接DC 并延长交BM 于点N.(2)利用直角三角形的边角关系和相似三角形的性质进行解答即可.此题主要考查直角三角形的边角关系,相似三角形的判断和性质,连接和掌握直角三角形的边角关系、相似三角形的性质是解决问题的前提.21.【答案】解:如图:连接AB、CD并延长交与点O,点O即为点光源,EG为旗杆的影子.;【解析】首先根据小明的身高和影长与树的高度和影长确定点光源,然后由过点光源和旗杆的顶部确定旗杆的影长即可.此题主要考查了中心投影的知识,中心投影是由点光源发出的,确定了点光源是解决本题的关键.22.【答案】解:阴影部分A、B为亮亮活动的范围.;【解析】亮亮活动的安全范围其实就是明明的盲区,因此画亮亮的活动范围只要画出明明的盲区就行了.本题是结合实际问题来考查学生对视点,视角和盲区的理解能力.23.【答案】解:设FG=x米.那么FH=x+GH=x+AC=x+4(米),∵AB=6m,CD=8m,小强的眼睛与地面的距离为1.6m,∴BG=4.4m,DH=6.4m,∵BA⊥PC,CD⊥PC,∴AB∥CD,∴FG:FH=BG:DH,即FG•DH=FH•BG,∴x×6.4=(x+4)×4.4,解得x=8.8(米),因此小于8.8米时就看不到树CD的树顶D.;【解析】根据盲区的定义结合图片,我们可看出在FG之间时,是看不到树CD的树顶D的.因此求出FG就是本题的关键.已知了AC的长,BG、DH的长,那么可根据平行线分线段成比例来得出关于FG、FH、BG、DH 的比例关系式,用FG表示出FG后即可求出FG的长.24.【答案】解:如图示,.;【解析】此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.25.【答案】(1)左视图与主视图形状相同,有作垂线(直角)的痕迹(作法不唯一).(2)两个底面积:2πr2×3=6π(c m2);4+2r)×3=(3π+4)×3=9π+12(c m2);侧面积:(2πr×34表面积:15π+12(c m2).;【解析】(1)由削去了占底面圆的四分之一部分的柱体易得主视图和左视图相同,可先画一条线段等于主视图中大长方形的长,然后分别做两个端点的垂线及线段的垂直平分线,在两端点的垂线上分别截取主视图的高连接即可得到几何体的左视图;(2)此零件的表面积=两个底面积+侧面积,把相关数值代入即可求解.解决本题的关键是得到零件全面积的等量关系,注意侧面积的展开图应为一个长方形,长方形的长为四分之三圆的周长+半径长.26.【答案】解:在Rt△CDN中,,∵tan30°=CDDN∴CD=tan30°•DN=5√3,∵∠CBD=∠EMB=37°,√3,∴BD=CD÷tan37°=203√3∴BN=DN+BD=15+203,在Rt△ABN中,tan30°=ABBN∴AB=tan30°•BN≈15.3,√3)≈19.9在Rt△MNB中,MN=BN•tan37°=0.75(15+203∴树高AB是15.3米,楼房MN的高度是19.9米.;【解析】,得到CD=tan30°⋅DN=5√3于是得到BD=CD=5√3,在RtΔCDN中,由于tan30°=CDDN在RtΔABN中,根据三角函数的定义即可得到结论;该题考查了解直角三角形的应用,解答本题的关键是借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.。
九年级数学下册第二十九章《投影与视图》综合测试(含答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26 B.38 C.54 D.562.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图3.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.4.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.125.下面几何体的左视图是( )A.B.C.D.6.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.57.从上面看下图能看到的结果是图形()A.B.C.D.8.如图所示立体图形,从上面看到的图形是()A.B.C.D.9.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)10.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个12.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.13.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.14.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是()A .12πB .6πC .12π+D .6π+二、填空题15.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.16.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为______.17.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)18.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.19.如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=6m ,点P 到CD 的距离是2.7m ,则点P 到AB 间的距离是________.20.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.21.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.22.如图所示,是从不同方向看到的由一些小立方块搭成的几何体的形状图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以便搭成一个大正方体,则至少还需要______个小立方块.23.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多可以离开树干多少米才可以不被阳光晒到?____.24.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一致,则这样的几何体最多要个小立方块.(3)若小正方体的棱长为1cm,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.28.如图所示是由几个小立方体所组成几何体从上面看到的形状,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面和从左面看到的形状.A B,且木棒AB的长为8cm. 29.已知木棒AB垂直投射于投影面a上的投影为11A B长;(1)如图(1),若AB平行于投影面a,求11A B长.(2)如图(2),若木棒AB与投影面a的倾斜角为30,求这时1130.如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm2;如图②中,从正面看有3个正方形,表面积为18cm2;如图③,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?【参考答案】一、选择题1.A2.C3.C4.C5.C6.A7.D8.C9.C10.A11.C12.A13.D14.B二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几16.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别17.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影18.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股定理19.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P到AB距离为x则=x=09故答案为09m【点睛20.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体22.19【分析】先由主视图左视图俯视图求出原来的几何体共有8个立方块再根据搭成的大正方体的共有3×3×3=27个小立方块即可得出答案【详解】解:由主视图可知原来的几何体有三层且有3列;由左视图可知搭成的23.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=24.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD=DE=17m在Rt△MNF中MN=NF25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×3×3=36个小正方体,∴至少还需要36-10=26个小正方体.故选:A.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.2.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.3.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.4.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个⨯+个.故最多有332=11故选C.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.5.C解析:C【分析】根据三视图的定义,从左边观察可得.【详解】从左面看可得到左边有2个正方形,右边有1个正方形.故选:C.【点睛】考核知识点:三视图.注意观察的方向.6.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.7.D解析:D【分析】先细心观察原立体图形中的圆锥体和长方体的位置关系,结合四个选项选出答案.【详解】从上面往下看到左边一个长方形,右边一个圆,因此只有D的图形符合这个条件.故选:D.【点睛】本题考查了三视图的知识,解题的关键是熟知俯视图是从上面往下的视图.8.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.9.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.10.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A..做这类题时要借助三种视图表示物体的特点,从主点睛:本题考查由三视图想象立体图形视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.11.C解析:C【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐.【详解】如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C.【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.12.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.13.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.B解析:B【解析】【分析】根据三视图确定该几何体是圆柱体,再根据主视图上的数据计算圆柱体的侧面积即可.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1,高是3.所以该几何体的侧面积为2π×1×3=6π.故选:B.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.16.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别解析:7【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【详解】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.17.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影解析:中心投影【解析】【分析】找出光源即可得出结果.【详解】如图可知,该投影属于中心投影.故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点.主要从形成投影的光线来比较两者的区别.18.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股定理解析:20 cm.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222A B A D BD121620'='+=+=(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.19.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P 到AB距离为x则=x=09故答案为09m【点睛解析:0.9m【分析】根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB∥CD,∴△PAB∽△PCD,∴ 2.7ABx CD=,假设P到AB距离为x,则2.7x=26,x=0.9.故答案为0.9m.【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA,SAS,SSS;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).20.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱解析:圆柱【解析】解:这个几何体是圆柱.故答案为:圆柱.21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体解析:8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体22.19【分析】先由主视图左视图俯视图求出原来的几何体共有8个立方块再根据搭成的大正方体的共有3×3×3=27个小立方块即可得出答案【详解】解:由主视图可知原来的几何体有三层且有3列;由左视图可知搭成的解析:19【分析】先由主视图、左视图、俯视图求出原来的几何体共有8个立方块,再根据搭成的大正方体的共有3×3×3=27个小立方块,即可得出答案.【详解】解:由主视图可知,原来的几何体有三层,且有3列;由左视图可知,搭成的几何体共有3行;由俯视图易得最底层有5个小立方体,第二层有2个小立方体,第三层有1个小立方块,共有5+2+1=8个小立方块,∵搭成的大正方体的共有3×3×3=27个小立方块,∴至少还需要27−8=19个小立方块.故答案为:19.【点睛】本题考查了三视图,重点培养学生的空间想象能力,解题的关键是求出原来的几何体及搭成的大正方体共有多少个小立方块.23.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=解析:8【分析】设小明这个时刻在水平地面上形成的影长为x 米,利用同一时刻物体的高度与影长成正比得到1.5x =107.5,解得x =2,然后计算两影长的差即可. 【详解】解:设小明这个时刻在水平地面上形成的影长为x 米, 根据题意得1.5x =107.5,解得x =2, 小明这个时刻在水平地面上形成的影长为2米,因为10﹣2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为:8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.24.3【分析】如图由题意证明AB =EBAB =BF 推出DB =AB ﹣17BN =AB ﹣15根据DN =28构建方程求解即可【详解】解:如图由题意可得:在Rt △CDE 中CD =DE =17m 在Rt △MNF 中MN =NF解析:3【分析】如图,由题意证明AB =EB ,AB =BF ,推出DB =AB ﹣1.7,BN =AB ﹣1.5,根据DN =2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt △CDE 中,CD =DE =1.7m ,在Rt △MNF 中,MN =NF =1.5m ,∵∠CDE =∠MNF =90°,∴∠E =∠F =45°,∵AB ⊥EF ,∴AB =EB =BF ,∴DB =AB ﹣1.7,BN =AB ﹣1.5,∵DN =2.8m ,∴2AB ﹣1.7﹣1.5=2.8,∴AB =3(m ),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+ 【分析】 先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可. 【详解】 解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题27.30cm(1)见解析;(2)14;(3)2【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可;(3)数一数有多少个正方形露在外面即可求得面积.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:14;(3)若将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,30cm,则需要喷6×2+6×2+6=30个小正方形,面积为230cm.故需喷漆部分的面积为2【点睛】本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.。
人教版九年级数学下册第29章《投影与视图》测试带答案解析
7.下列几何体中,主视图为等腰三角形的是()
A. B. C. D.
8.如图,一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是圆,关于这个几何体的说法错误的是()
A.该几何体是圆柱B.几何体底面积是
C.主视图面积是4D.几何体侧面积是
9.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()
参考答案:
1.C
【分析】根据常见几何体的主视图特征判断即可;
【详解】解:A.主视图为圆,不符合题意;
B.主视图为等腰梯形,不符合题意;
C.主视图为长方形,符合题意;
D.主视图为三角形,不符合题意;
故选:C.
【点睛】本题考查了主视图:在正面内得到的由前向后观察物体的视图,叫做主视图;掌握常见几何体的三视图特征是解题关键.
【详解】如图所示:
.
【点睛】本题考查简单组合体的三视图,掌握三视图的画法是画出三视图的关键.
18.图见解析.
【分析】根据几何体的三视图,可得从正面看有3列,每列小方形数目为2,1,3;从左面看有2列,每列小方形数目为2,3;从上面看有3列,每列小方形数目为1,1,2;分别画出即可求解.
【详解】解:如图所示.
16.如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是___________.
三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)
17.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状图,小正方形中的数字表示在该位置的小正方块儿的个数,请在相应网格中画出从正面和左面看到的几何体的形状图.
人教版数学九年级下册第二十九章 投影与视图 达标测试卷(含答案)
第二十九章投影与视图达标测试卷(本试卷满分120分)一、选择题(每小题3分,共30分)1.下列几何体的左视图为长方形的是()A B C D2.下列图形能表示两根立柱所形成的投影是平行投影的是()A B C D3.如图是一个正三棱柱的三视图,则这个三棱柱摆放方式正确的是()A B C D第3题图第5题图第6题图4.下列结论:①同一地点、同一时刻,不同物体在阳光照射下影子的方向是相同的;②不同物体在任何光线照射下影子的方向都是相同的;③同一物体在路灯照射下影子的方向与路灯的位置有关;④物体在光线照射下影子的长短仅与物体的长短有关.其中正确的有()A.1个B.2个C.3个D.4个5.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图是()A B C D6.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.俯视图C.左视图D.主视图和俯视图7.与图中所示的三种视图相对应的几何体是()A B C D 第7题图8.在同一天的四个不同时刻,某学校旗杆的影子如图所示,下列选项中按时间先后顺序排列正确的是()A.②④③①B. ②③④①C. ③④①②D. ④③①②第8题图9.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼.如图,甲构件带有榫头,乙构件带有卯眼,两个构件恰好可以完全咬合,根据图中标示的方向,乙构件的主视图是()A B C D第9题图第10题图10.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π二、填空题(每小题3分,共18分)11.如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我门可以确定这个几何体是.12.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_________.(填“逐渐变大”或“逐渐变小”)第12题图第13题图第14题图13.一圆柱按如图所示方式放置,若其左视图的面积为48,则该圆柱的侧面积为_______.14.如图,晚上小红由路灯A走向路灯B,当她走到点P时,发现她的影子顶部正好接触到路灯B的底部,此时她与路灯A的距离为20 m,与路灯B的距离为5 m.如果小红的身高为1.2 m,那么路灯A的高度是___________m.15.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.第15题图第16题图16.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:2,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE为米.(结果保留根号)三、解答题(本大题共8小题,共72分)17.(6分)画出如图所示几何体的三视图.第17题图第18题图18.(6分)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景(粗线分别表示三人的影子).请根据要求,进行作图.(不写画法,但要保留作图痕迹).(1)在图中画出灯泡所在的位置;(2)在图中画出小明的身高.19.(8分)(1)由大小相同的小立方块搭成的几何体如图,请在如图的方格中画出该几何体的俯视图和左视图;第19题图(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在方格中所画的图一致,则这样的几何体最多要个小立方块.20. (8分)如图所示为一几何体的三视图.(1)这个几何体的名称为__________;(2)画出它的任意一种表面展开图;(3)若主视图是长方形,其长为10 cm,俯视图是等边三角形,其边长为4 cm,求这个几何体的侧面积.第20题图第21题图21.(8分)如图,在Rt△ABC中,∠ACB=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D. (1)试写出边AC,BC在AB上的投影;(2)试探究线段AC,AB和AD之间的关系;(3)线段BC,AB和BD之间也有类似的关系吗?请直接写出结论.22.(10分)某几何体的主视图和俯视图如图所示(单位:mm),求该几何体的体积.第22题图第23题图23.(12分)在一个阳光明媚的上午,数学陈老师组织学生测量小山坡上一棵大树CD的高度,山坡OM与地面ON的夹角为30°(∠MON=30°),同一时刻站在水平地面上身高1.7米的小明AB在地面的影长BP为1.2米,此刻大树CD在斜坡上的影长DQ为5米,求大树的高度.24.(14分)如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他(EF)在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).第24题图(1)请在图中画出灯光光源O的位置及小明位于点F时在这一灯光下的影长FM(不写画法);(2)求小明原来的速度.投影与视图达标测试卷一、1.C 2.B 3.B 4.B 5.B 6.C 7.D 8.B 9.C 10.B二、11.圆锥 12.逐渐变大 13.48π 14.6 15.108 16.18-102三、17.解:如图所示:第17题图18.解:(1)如图所示,点O即为灯泡所在的位置.(2)如图所示,EF即为小明的身高.第18题图19. 解:(1)如图所示:第19题图(2)7 提示:由俯视图可知最底层有4个小立方块,第二层最多有3个小立方块,所以最多要4+3=7(个)小立方块.20. 解:(1)该几何体是三棱柱.(2)展开图如图所示(答案不唯一):第20题图(3)三棱柱的侧面展开图是长方形,长方形的长是等边三角形的周长即4×3=12(cm).由题意,知主视图的长是三棱柱的高,所以三棱柱侧面展开图的面积为12×10=120(cm2). 所以这个几何体的侧面积是120 cm2.21. 解:(1)边AC,BC在AB上的投影分别为AD,BD.(2)因为点C在斜边AB上的正投影为点D,所以CD⊥AB.所以∠ADC=90°.因为∠A=∠A,∠ADC=∠ACB,所以△ADC∽△ACB.所以AC ADAB AC=,即AC2=AD•AB.(3)BC2=BD•AB.提示:同(2)可证△BCD∽△BAC,所以BC BDBA BC=,即BC2=BD•AB.22.解:由主视图和俯视图可知,该几何体是上下两个圆柱的组合图形.所以该几何体的体积为16×π×2162⎛⎫⎪⎝⎭+4×π×282⎛⎫⎪⎝⎭=1088π(mm3).23. 解:过点Q作QE⊥DC于点E.由题意,得△ABP∽△CEQ,所以AB BPCE EQ=.所以AB CEBP EQ=,即1.71.2CEEQ=.因为EQ∥NO,所以∠1=∠2=30°.因为QD=5,所以DE=52,EQ=532.所以1.71.2532CE=,解得CE=85324.所以CD=CE+DE=52+85324=6085324+(米).答:大树的高度为6085324+米.第23题图24.解:(1)灯光光源O,影长FM如图所示:第24题图(2)设小明原来的速度为x 米/秒,则AD=DF=CE=2x,AM=AF-MF=2x+2x-1.2=4x-1.2,EG=FH=2×1.5x=3x,MB=AB-AM=12-(4x-1.2)=13.2-4x.因为点C,E,G在一条直线上,CG∥AB,所以∠OCE=∠A,∠OEC=∠OMA,∠OEG=∠OMB,∠OCE=∠B.所以△OCE∽△OAM,△OEG∽△OMB.所以CE OEAM OM=,EG OEMB OM=.所以CE EGAM MB=,即234 1.213.24x xx x=--,解得x=1.5.经检验,x=1.5为原分式方程的根. 答:小明原来的速度为1.5米/秒.。
中考数学复习 《视图与投影》练习题含答案
中考数学复习视图与投影一、选择题1.正方形的正投影不可能是( D )A.线段B.矩形C.正方形D.梯形2.如图由7个小正方体组合而成的几何体,它的主视图是( A )3.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( C )A.20B.22C.24D.264.将图①围成图②的正方体,则图①中的红心“”标志所在的正方形是正方体中的( A )A.面CDHE B.面BCEFC.面ABFG D.面ADHG5.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)( B )A.40πcm2B.65π cm2C.80π cm2D.105π cm2【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8 cm,底面半径为10÷2=5(cm),故表面积=πrl+πr2=π×5×8+π×52=65π(cm2).故选B.6.如图是几何体的俯视图,小正方形内所表示数字为该位置小正方体的个数,则该几何体的主视图是( B )二、填空题7.某几何体的主视图和左视图如图所示,则该几何体可能是__圆柱体__.8.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小__相同__.(填“相同”“不一定相同”或“不相同”)9.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__个.【解析】综合三视图,可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5(个).10.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为__4__ cm.【解析】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴l=2r,∴侧面积S =πrl=2πr2=162π,解得r=4,l=42,∴圆锥的高h=4 cm.侧三、解答题11.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,求树的高度.解:4 m12.如图是一张铁皮.(单位:m)(1)计算该铁皮的表面积;(2)此铁皮能否做成长方体的盒子?若能,画出它的几何图形,并求出它的体积;若不能,说明理由.解:(1)22 m2(2)能够,图略,6 m313.根据三视图求几何体的表面积,并画出物体的展开图.解:由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成,物体的展开图如图.圆锥、圆柱底面半径为r =5,由勾股定理得圆锥母线长R =52,S 圆锥表面积=12lR =12×10π×52=252π,∴S 表面积=π×52+10π×20+252π=225π+252π=(225+252)π14.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体上的点B 出发,沿表面爬到AC 的中点D ,请求出这个路线的最短路程.解:(1)圆锥(2)S 表=S 底+S 侧=π(42)2+π×2×6=16π(cm 2) (3)3 3 cm15.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请你按照三视图确定制作每个密封罐所需钢板的面积.解:由三视图可知,密封罐的形状是正六棱柱(如图①),密封罐的高为50,底面正六边形的直径为100,边长为50,图②是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50sin60°=75003+15000。
人教版九年级数学下册第二十九章-投影与视图综合测评试题(含解析)
人教版九年级数学下册第二十九章-投影与视图综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是()A.B.C.D.2、如图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.3、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是()A.左视图和俯视图不变B.主视图和左视图不变C.主视图和俯视图不变D.都不变4、下列立体图形的主视图是()A.B.C.D.5、一个几何体从不同方向看到的图形如图所示,这个几何体是( )A.球B.圆柱C.圆锥D.立方体6、如图,图形从三个方向看形状一样的是()A.B.C.D.7、下列几何体中,俯视图为三角形的是()A.B.C.D.8、如图,几何体的左视图是()A.B.C.D.9、如图为某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.四棱柱10、四个相同的小正方体组成的立体图形如图所示,它的主视图为()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个圆柱形橡皮泥,底面积是212cm.高是5cm.如果用这个橡皮泥的一半,把它捏成高为5cm的圆锥,则这个圆锥的底面积是______2cm2、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留 ).从正面看从左面看从上面看3、阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好落到后面一个同学身上,而小宁的影子却没有落到后面一个同学身上,据此判断他们的队列方向是______(填“背向太阳”或“面向太阳”),小宁比小勇_______(填“高”、“矮”、或“一样高”).4、一个立体图形,从正面看到的形状是,从左面看到的形状图是.搭这样的立体图形,最少需要________个小正方体,最多可以有________个正方体.5、如图,是一个由若干个小正方体搭成的几何体的主视图与视图,设搭这样的几何体最多需要m块小立方块,最少需要n块小立方块,则m+n=_____.三、解答题(5小题,每小题10分,共计50分)1、画出几何体的三种视图.2、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)该几何体的表面积(含下底面)为;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加个小正方体.3、下列几何体是用相同的正方体搭成的,画出从三个不同方向看到的图形4、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)(2)画出图2实物的三视图.5、如图是由大小相同的小正方体组合成的简单几何体.(1)在下面的网格中画出该几何体从正面看和从左面看的形状图.(2)每个正方体棱长为1cm,那么搭成这个几何体的表面积是cm2.---------参考答案-----------一、单选题1、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图.故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.2、D【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【详解】解:从物体左面看,是左边2个正方形,右边1个正方形.故选:D..【点睛】本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3、A【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.【详解】解:若去掉1号小正方体,主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,从左边看过去,看到的小正方形的个数与排列方式不变;所以左视图不变,所以A符合题意,B,C,D不符合题意;故选:A.【点睛】本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.4、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5、B【分析】根据各个几何体的三视图,依次判别即可;【详解】解:A、球的三视图均为圆形;B、圆柱的三视图与题图相符;C、圆锥的主视图和左视图为等腰三角形;D、立方体的三视图均为四边形.故选:B.【点睛】本题考查了由三视图判断几何体,熟悉相关性质是解题的关键.6、C【分析】根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;C.从三个方向看形状一样,都是圆形,故本选项符合题意;D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.故选:C.【点睛】本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.7、(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=错误,应该是a=6,b =11,a+b=17.故选:B.【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.19.D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.【详解】从上方朝下看只有D选项为三角形.故选:D.【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.8、C【分析】找到从左面看所得到的图形,比较即可.【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是:.故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.9、C【分析】根据三视图判断该几何体即可.【详解】解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.故选:C.【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.10、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题1、18【解析】【分析】首先求出圆柱体积,根据题意得出圆柱体积的一半即为圆锥的体积,根据圆锥体积计算公式列出方程,即可求出圆锥的底面积.【详解】V圆柱=Sh =212560cm , 这个橡皮泥的一半体积为:2160302V cm ,把它捏成高为5cm的圆锥,则圆锥的高为5cm,故1303Sh,即15=303S,解得=18S(cm2),故填:18.【点睛】本题考查了圆柱的体积和圆锥的体积计算公式,解题关键是理解题意,熟练掌握圆柱体积和圆锥体积计算公式.2、6π【解析】【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:由图可知,圆柱体的底面直径为2,高为3,所以,侧面积236ππ=⋅⨯=.故答案为:6π.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高.3、面向太阳矮【解析】【分析】根据小勇的影子正好落到后面一个同学身上可得他们的队列方向是面向太阳,根据同时同地,身高与影长成正比可得答案.【详解】∵小勇的影子正好落到后面一个同学身上,∴他们的队列方向是面向太阳,∵小宁的影子却没有落到后面一个同学身上,∴小勇的影子比小宁的影子长,∴小宁比小勇矮.故答案为:面向太阳,矮【点睛】本题考查平行投影,熟练掌握同时同地,身高与影长成正比是解题关键.4、 6 10【解析】【分析】根据题中所给的正面的形状和左面的形状即可得.【详解】解:根据题中所给的正面的形状和左面的形状可知,最少需要6个,将小正方体横着摆5个,再在任意一个小正方体的后面放一个小正方体;最多需要10个,将小正方体横着摆5个,再在每一个小正方体的后面放一个小正方体;故答案为:6,10.【点睛】本题考查了三视图,解题的关键是根据三视图得出立体图形.5、15【解析】【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【详解】解:有两种可能;有主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多m为3+4+1=8个小立方块,最少n为个2+4+1=7小立方块.m+n=15,故答案为:15【点睛】此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.三、解答题1、见详解【分析】从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右3列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1.依此画出图形.【详解】解:如图所示:【点睛】本题考查了三视图的画法;得到从各个方向看得到的每列正方形的个数是解决本题的关键.2、(1)见解析;(2)28;(3)2【分析】(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.【详解】(1)如图所示:(2)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28故答案为:28(3)由分析可知,最多可以再添加2个小正方体,如图,故答案为:2【点睛】此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.3、见解析【分析】从正面看:共有3列,从左往右分别有3,2,1个小正方形;从左面看:共有2列,从左往右分别有3,1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】本题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4、(1)见解析;(2)见解析【分析】BD AC,两射线交于点P即可求得P的位置,过P和木桩的顶(1)如图,分别以,A B为端点作射线,端,以P为端点做射线,与底面交于点F,木桩底部为E点,连接EF,则EF即为竖立在地面上木桩的影子;(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线【详解】(1)如图所示,P为灯源,EF为竖立在地面上木桩的影子,(2)如图所示,【点睛】本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.5、(1)图见解析;(2)38.【分析】(1)由已知条件可知,从正面看的视图有3列,每列小正方数形数目分别为3,1,2,据此可画出图形;从左面看的视图有3列,每列小正方形数目分别为3,2,1;(2)根据三视图的面积和被挡住的面积即可计算总面积;【详解】解:(1)如图所示:(2)搭成这个几何体的表面积是:6×2+6×2+6×2+2=38 cm2.【点睛】本题考查从不同方向看几何体,几何体的表面积等知识.解题的关键是熟练掌握基本知识,属于中考常考题型.。
(必考题)初中数学九年级数学上册第五单元《投影与视图》测试(答案解析)
一、选择题1.如图所示,左侧的几何体是由若干个大小相同的小正方休组成的,该几何体的主视图(从正:面看)是( )A.B.C.D.2.如图所示的几何体的主视图是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.如图所示的几何体是由几个大小相同的小正方体搭成的,将正方体①移走后,从左面看到的图形是()A .B .C .D .5.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )A .4860π+B .4840π+C .4830π+D .4836π+6.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A .13个B .16个C .19个D .22个7.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为( )A.B.C.D.8.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是()A.小明:“早上8点”B.小亮:“中午12点”C.小刚:“下午5点”D.小红:“什么时间都行”9.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形B.矩形C.线段D.梯形10.如下图所示是由一些大小相同的小正方体构成的三种视图,那么构成这个立体图的小正方体的个数是()A.6 B.7 C.8 D.911.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.12.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是()A.①②B.②③C.②④D.③④二、填空题13.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有_____个.14.如图,一个 5 ⨯ 5 ⨯ 5 的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则凿掉部分的体积为_____.15.长方体从正面看和从上面看所得到的图形如图所示,则这个长方体的体积是________.16.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x=______,y=________.17.如图是一个正六棱柱的主视图和左视图,则图中a的值为____.18.如图,是一个实心圆柱体的三视图(单位:cm ),根据图中数据计算这个圆柱体的体积是__________cm 3.19.一透明的敞口正方体容器装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α,(CBE α∠=,如图1所示),此时液面刚好过棱CD ,并与棱'BB 交于点Q ,此时液体的形状为直三棱柱,三视图及尺寸如图2所示,当正方体平放(正方形ABCD 在桌面上)时,液体的深度是__________dm .20.如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔的正方体的表面积(含孔内各面)是__________.三、解答题21.如图,甲是由5个棱长为1cm 的小正方体搭成的几何体. (1)请在下面方格纸中分别画出甲的主视图和左视图;(2)该几何体甲的表面积为cm².(3)若用n个同样的正方体搭几何体乙,使其主视图、左视图与甲完全相同,则n的最大值为.【答案】(1)画图见解析;(2)22(3)7【分析】(1)根据主视图和左视图的定义画出图形即可.(2)利用三视图数出六个方向的小正方形的个数,总个数乘一个小正方形的面积即可求解.(3)根据主视图可知这个几何体有2层3列,从左视图看有2层2列,底层最多有6个小正方体,顶层最多有1个,两层的个数相加即可.【详解】(1)如图所示:(2)∵从主视看有4个小正方形,从对面看也有4个,从左视图看有3个小正方形,从对面看也有3个,从俯视图看4个小正方形,从对面看也有4个,∴几何体的表面共有22个小正方形,每个小正方形面积为1cm²,∴该几何体甲的表面积为22cm².(3)∵根据主视图可知这个几何体有2层3列,从左视图看有2层2列,∴结合主视图与左视图,底层最多有6个小正方体,顶层最多有1个,∴乙几何体最多由7个小正方体搭成,n .∴7【点睛】本题考查三视图,从不同方向看几何体,求小立方块堆砌图形的表面积,并由三视图还原几何体,易错点是由三视图确定立方体的最多块数.22.如图是由8个相同的小立方体组成的一个几何体,请分别画出这个几何体从左面、从上面看到的形状图.【答案】见解析.【分析】左视图有3列,每列小正方形数目分别为2,3,1;俯视图有3列,每列小正方形数目分别为2,1,2.【详解】如图所示:【点睛】本题考查几何体的三视图画法,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.23.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是立方单位,表面积是平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.【答案】(1)5,22;(2)答案见解析.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为1,1,2;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为2,1,1.【详解】(1)几何体的体积:1×1×1×5=5(立方单位),表面积:(4+3+4)×2=22(平方单位);故答案为:5,22;(2)如图所示:.【点睛】本题主要考查了画几何体的三视图,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.24.如图所示,这是由小立方体搭成的几何体,请画出主视图、左视图、俯视图.【答案】见解析【分析】根据三视图的定义,分别画出几何体的主视图、左视图以及俯视图即可.【详解】由图可得几何体的三视图如下:主视图左视图俯视图【点睛】本题主要考查几何体三视图的画法,熟记三视图的概念以及空间想象力的运用是解题关键.25.一个小朋友用五块正方体积木摆成了一件作品[如图].请你只移动一块积木,使这件作品从正面看是图一,左面是图二,你有几种移动方法,从上面看移动后的作品,请你把看到的平面图形画出来(画出所有情况).【答案】见解析【分析】从上面看移动后的作品,有3列,从左往右正方形的个数依次为2,1,1;一种情况上面1个小正方形;另一种情况下面1个小正方形;然后即可画出图形.【详解】解:从上面看如图所示:【点睛】本题考查了立体图形的三视图,掌握主视图,左视图,俯视图的概念是解答本题的关键.26.如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD 的影子刚好不落在广告墙PQ上.(1)画出太阳光线CE和AB的影子BF;(2)若AB=10米,CD=6米,CD到PQ的距离DQ的长为8米,求此时木杆AB的影子BF 的长.【答案】(1)如图所示,见解析;(2)木杆AB的影长BF是403米.【分析】(1)连结CQ,即为太阳光线CE,过A点作CE的平行线与BQ交于点F,即可得到AB的影子BF;(2)根据在同一时刻的太阳光线下,物体高度与影子长度对应成比例可列出关系式,代入数值计算即可求得BF的长.【详解】解:(1)如图所示,CE 和BF 即为所求;(2)设木杆AB 的影长BF 为x 米, 由题意,得:CD DQ AB BF =,即6810x=, 解得:403x =. 答:木杆AB 的影子BF 的长为403米. 【点睛】本题考查了相似三角形的应用,理解题意并熟练运用相似三角形的性质是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据简单组合体的三视图的意义可得答案,从正面看到的图形是底层有3个,上层的右侧有1个正方形. 【详解】解:从这个组合体的正面看到的是两行,从正面看到的图形是底层有3个,上层的右侧有1个正方形,故D 符合题意. 故选:D . 【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.A解析:A【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图是一个“L”形的组合图形.故选:A.【点睛】此题考查几何体的三视图,掌握几何体三视图观察的方位及图形形状是解题的关键.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.B解析:B【分析】利用组合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,主视图和左视图都没有发生改变.故选:B.【点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.5.A解析:A【分析】首先根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【详解】解:∵根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:22133S =2πr =2π4=24π44⨯⨯⨯⨯⨯, 该几何体的侧面积为:233S =2462πr h=48+2π46=48+36π44⨯⨯+⨯⨯⨯⨯⨯, ∴总表面积为:12S=S +S =4860π+,故选:A .【点睛】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.6.A解析:A【分析】由几何体的正视图和俯视图,我们可以判断出这个几何体由一些相同的小正方体构成,其中根据俯视图我们可以判断该几何体共有7摞小正方体组成,然后根据主视图推算每摞小正方体的最少个数,即可得到答案.【详解】根据俯视图我们可以判断该几何体共有7摞小正方体组成,根据正视图,可得:左边2摞,最高层数为3,故小正方体最少有3+1=4个,中间2摞,最高层数为2,故小正方体最少有2+1=3个,右边3摞,最高层数为4,故小正方体最少有4+1+1=6个,故小正方体最少有13个.故选A .【点睛】本题主要考查几何体的三视图,掌握三视图的定义,是解题的关键.7.A解析:A【分析】根据题意,左视图有两列,左视图所看到的每列小正方形数目分别为3,1.【详解】因为左视图有两列,左视图所看到的每列小正方形数目分别为3,1故选:A .【点睛】本题考查由三视图判断几何体,简单组合体的三视图,解题关键是根据俯视图确定左视图的列数和各列最高处的正方形个数.8.C解析:C【解析】可根据平行投影的特点分析求解,或根据常识直接确定答案.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.故选C.本题考查了平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.9.D解析:D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.10.B解析:B【解析】【分析】根据三视图,将每一层的小正方体的个数求出来相加,即可得到答案.【详解】根据三视图得:该几何体由两层小正方体构成,最底层有6个,顶层由1个,共有7个,故选:B.【点睛】此题考察正方体的构成,能够理解图形的位置关系是解题的关键.11.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.12.B解析:B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆.∴三视图有两个相同,而另一个不相同的几何体是圆柱和圆锥.故选B.二、填空题13.6【分析】根据三视图可知:组成几何体的正方体的分布情况进而求出答案【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个故答案是:6【点睛】本题主要考查几何体解析:6【分析】根据三视图可知:组成几何体的正方体的分布情况,进而求出答案.【详解】根据几何体的三视图可知:组成该几何体的正方体分布如下:∴构成这个几何体的小正方体有6个.故答案是:6.【点睛】本题主要考查几何体的三视图,根据三视图想象出几何体的样子,是解题的关键. 14.49【分析】分别计算前后上下左右方向凿掉的体积然后求和即可【详解】前后方向凿掉部分的体积为5525上下方向又凿掉了522214左右方向又凿掉了5210凿掉部分的总体积为2514解析:49【分析】分别计算前后、上下、左右方向凿掉的体积,然后求和即可.【详解】前后方向凿掉部分的体积为 5 ⨯ 5 = 25 ,上下方向又凿掉了 5 ⨯ 2 + 2 ⨯ 2 = 14 ,左右方向又凿掉了5 ⨯ 2 = 10 ,∴凿掉部分的总体积为 25 + 14 + 10 = 49【点睛】本题考查不规则图形的几何体的体积,关键是找到凿掉小正方形的个数.15.36【解析】由图可知这个长方体的长为4宽为3高为3∴长方体的体积V=4×3×3=36故答案为36解析:36【解析】由图可知,这个长方体的长为4,宽为3,高为3,∴长方体的体积V=4×3×3=36,故答案为36.16.1或23【分析】由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知左边一列叠有2个正方体从而求解【详解】解:由俯视图可知该组合体有两行两列左边一列前一行有两个正方体结合主视图可知解析:1或2 3【分析】由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,从而求解【详解】解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3.故答案为1或2;3.17.【解析】由正六棱柱的主视图和左视图可得到正六棱柱的最长的对角线长是4则边长为2做AD⊥BC在△ABC中AB=AC=2∠BAC=120°∴在直角△ABD中∠ABD=30°AD=1∴BD=3【解析】由正六棱柱的主视图和左视图,可得到正六棱柱的最长的对角线长是4,则边长为2,做AD⊥BC,在△ABC中,AB=AC=2,∠BAC=120°,∴在直角△ABD中,∠ABD=30°,AD=1,∴223-=AB AD18.【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的体积【详解】解:先由三视图确定该几何体是圆柱体底面半径是2÷2=1(cm)高是5cm所以该几何体的体积为π×12×5=5π(cm3)故答案为:【点解析:5π【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的体积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1(cm),高是5cm.所以该几何体的体积为π×12×5=5π(cm3).故答案为:5π.【点睛】本题考查了由三视图确定几何体和求圆柱体的体积,关键是根据三视图确定该几何体是圆柱体.19.5【分析】根据水面与水面平行可以得到CQ与BE平行利用勾股定理即可得到BQ的长液体正好是一个以△BCQ为底面的直棱柱据此即可求出液体的体积即可得到液体的深度【详解】解:∵由图知:CQ∥BEBQ=4C解析:5【分析】根据水面与水面平行可以得到CQ与BE平行,利用勾股定理即可得到BQ的长,液体正好是一个以△BCQ为底面的直棱柱,据此即可求出液体的体积,即可得到液体的深度.【详解】解:∵由图知:CQ∥BE,BQ=4,CQ=5,根据勾股定理得:22543BQ=-=(dm),液体的体积为:1344=242⨯⨯⨯(dm3),液体深度为:24÷(4×4)=1.5(dm),故答案为:1.5【点睛】本题主要考查的是四边形的体积计算以及三视图的认识,正确的理解棱柱的体积计算是解题的关键.20.222【分析】先明确题目的含义:正方体共有6个直通小孔有6个交汇处计算即可解:正方体无【详解】解:正方体无论从哪一个面看都有两个直通的边长为1的正方形孔正方体共有6个直通小孔有6个交汇处表面积等于正解析:222【分析】先明确题目的含义:正方体共有6个直通小孔,有6个交汇处,计算即可解:正方体无【详解】解:正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,正方体共有6个直通小孔,有6个交汇处,表面积等于正方体的表面积减去12个表面上的小正方形面积加上6个棱柱的侧面积,减去6个通道的6个小正方体的表面积则6251264566222S 全,故答案为:222.【点睛】主要考查空间想象能力及分析问题能力对空间想象力有较高要求,同时会利用容斥原理的思想分析、解决交并问题.三、解答题21.无22.无23.无24.无25.无26.无。
(易错题精选)初中数学投影与视图经典测试题含解析
(易错题精选)初中数学投影与视图经典测试题含解析一、选择题1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【答案】D【解析】【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.【详解】俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.【点睛】考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.2.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.3.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .()822π+B .11πC .()922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π, 圆柱的侧面积=2π•1•4=8π, 圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.故选D .【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.4.下面四个几何体中,俯视图是圆的几何体共有( )A .1个B .2个C .3个D .4个【答案】B【解析】题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.5.下列几何体中,主视图与俯视图不相同的是( )A .B .C .D .【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B .点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.6.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.7.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )A.7 B.8 C.9 D.10【答案】A【解析】【分析】【详解】解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.故选A.【点睛】本题考查由三视图判断几何体.8.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.11.下图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B. C.D.【答案】B【解析】【分析】根据三视图的意义进行分析,要注意观察方向是从左边看.【详解】解:从物体左面看,是左边1个正方形,中间2个正方形,右边1个正方形.故选B.【点睛】考核知识点:简单组合体的三视图.12.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定【答案】D【解析】【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.【点睛】本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.13.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!14.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( ) A.B.C.D.【答案】C【解析】根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.【详解】A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,故选C.【点睛】本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.15.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.16.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A .主视图的面积为4,此选项正确;B .左视图的面积为3,此选项错误;C .俯视图的面积为4,此选项错误;D .由以上选项知此选项错误;故选A .【点睛】本题主要考查三视图的画法,关键在于正面方向.17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.18.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A.B.C.D.【答案】B【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.19.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【答案】B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.20.如图所示的几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.。
初中数学投影与视图经典测试题附答案解析
初中数学投影与视图经典测试题附答案解析一、选择题1.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定【答案】D【解析】【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.【点睛】本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.2.如图所示,该几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据几何体的三视图求解即可.【详解】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.3.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.33C.32D.62【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为12×2×2=2,高为3,∴该几何体的体积为×23=32,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.6.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A .48B .57C .66D .48236+【答案】C【解析】【分析】 先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得.【详解】由题意,画出长方体如图所示:由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形AC BC ∴=22218AC BC AB +==Q3AC BC ∴==则这个长方体的表面积为24233434184866AC BC AC CE ⋅+⋅=⨯⨯+⨯⨯=+= 故选:C .【点睛】本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.7.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要( )个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉( )个小正方体A.10:2B.9:2C.10:1D.9:1【答案】C【解析】【分析】由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C.【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.8.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.如图是某几何体的三视图,则这个几何体可能是()A.B.C.D.【答案】B【解析】【分析】根据主视图和左视图判断是柱体,再结合俯视图即可得出答案.【详解】解:由主视图和左视图可以得到该几何体是柱体,由俯视图是圆环,可知是空心圆柱.故答案选:B.【点睛】此题主要考查由几何体的三视图得出几何体,熟练掌握常见几何体的三视图是解题的关键.11.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】C【解析】【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.12.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.13.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.14.如图所示的几何体的俯视图为( )A.B.C.D.【答案】C【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选:C.【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.15.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A .6πm 2B .9πm 2C .12πm 2D .18πm 2【答案】B【解析】【分析】 根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图16.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )A .B .C .D .【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C .【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.17.如图是某几何体得三视图,则这个几何体是( )A .球B .圆锥C .圆柱D .三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B .18.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 【答案】C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.19.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.20.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx学校xx学年xx 学期xx 试卷
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题简答题xx题xx题xx题总分得分
一、xx题
(每空xx 分,共xx分)
试题1:
举两个俯视图为圆的几何体的例子,。
试题2:
如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称。
试题3:
请将六棱柱的三视图名称填在相应的横线上.
试题4:
一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有__________个碟子。
试题5:
评卷人得分
当你走向路灯时,你的影子在你的,并且影子越来越。
试题6:
小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长=
试题7:
小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人”;
试题8:
皮影戏中的皮影是由投影得到的.
试题9:
下列个物体中:是一样物体的是______________ (填相同图形的序号)
(1) (2)
(3) (4)
试题10:
如图所示,在房子外的屋檐E处安有一台监视器,房子前有一面落地的广告牌,已知房子上的监视器高3m,广告牌高为1.5m,广告牌距离房子5m,则盲区的长度为________
试题11:
一个画家由14个边长为1m的正方形,他在地面上把他们摆成如图的形式,然后把露出表面的部分都涂上颜色,那么被涂上颜色的总面积为__________.
试题12:
桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由个这样的正方体组成。
试题13:
小明从正面观察下图所示的两个物体,看到的是()
试题14:
在同一时刻,阳光下,身高1.6m的小
强的影长是1.2m,旗杆的影长是15m,
则旗杆高为()
A、 16m
B、 18m
C、 20m
D、 22m
试题15:
如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()
试题16:
当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了。
这是因为()
A、汽车开的很快
B、盲区减小
C、盲区增大
D、无法确定
试题17:
“圆柱与球的组合体”如右图所示,则它的三视图是
A. B.C.
D.
试题18:
在同一时刻,两根
长度不等的竿子
置于阳光之下,但
它们的影长相等,
那么这根竿子的
相对位置是
()
A、两根都垂直于地面
B、两根平行斜插在地上
C、两根竿子不平行
D、一根倒在地上
试题19:
正方形在太阳光的投影下得到的几何图形一定是()
A、正方形;
B、平行四边形;
C、矩形;
D、菱形
试题20:
同一灯光下两个物体的影子可以是()
A、同一方向;
B、不同方向;
C、相反方向;
D、以上都有可能
试题21:
棱长是1的小立方体组成如图所示的几何体,那么这个几何体的表面积是()
A、36
B、33
C、30
D、27
试题22:
下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )
试题23:
.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )
A、2
B、3
C、4
D、5
试题24:
下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的
是【】
A、③④②①
B、②④③①
C、③④①②
D、③①②④
试题25:
我们坐公共汽车下车后,不要从车前车后猛跑,为什么?
试题26:
已知,如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的
长
试题27:
要测量旗杆高CD,在B处立标杆AB=2.5cm,人在F处。
眼睛E、标杆顶A、旗杆顶C在一条直线上。
已知BD=3.6m,FB =2.2m,EF=1.5m。
求旗杆的高度。
试题28:
为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:
根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)
试题1答案:
圆柱、圆
试题2答案:
圆锥
试题3答案:
俯视图主视图左视图
试题4答案:
12
试题5答案:
后面短
试题6答案:
4.5米
中间
试题8答案: 灯光
试题9答案: (1)(3)
试题10答案: 5m
试题11答案: 33
试题12答案: 13
试题13答案: C
试题14答案: C
试题15答案: B
试题16答案: C
试题17答案: A
试题18答案: C
B
试题20答案:
D
试题21答案:
A
试题22答案:
A
试题23答案:
B
试题24答案:
C
试题25答案:
因为汽车司机的视线在车前车后有看不见的地方,即盲区。
汽车前进或倒退时,在车前或车后走很容易出危险。
试题26答案:
作法:连结AC,过D作DF∥AC交地面于点F,则EF就是DE在阳光下的投影
利用相似三角形易得DE的长为10m。
试题27答案:
解:过E作EH∥FD分别交AB、CD于G、H。
因为EF∥AB∥CD,所以EF=GB=HD。
所以AG=AB-GB=AB-EF=2.5-1.5=1m
EG=FB=2.2m,GH=BD=3.6m
CH=CD-1.5m
又因为,所以
所以CD=m,即旗杆的高m
试题28答案:
由题意知∠CED=∠AEB,∠CDE=∠ABE=Rt∠,∴△CED∽△AEB∴
∴∴AB≈5.2米。