2019年大一高数试题及答案.doc

合集下载

2019年10月自考《高等数学(一)》真题及答案00020

2019年10月自考《高等数学(一)》真题及答案00020

全国2019年10月高等教育自学考试高等数学(一)试题一、单项选择题(本大题共10小题,每小题3分,共 30分)1. 下列函数为奇函数的是( )。

A. 2x sin x B. 2x cos xC. xsinxD. xcosx【正确答案】 D【答案解析】 已知奇函数满足()()f x f x =--,因为D 选项中令()cos f x x x =,有()cos f x x x -=-,满足奇函数条件,故选择D 。

参见教材P31。

【知 识 点】 函数的奇偶性。

2. 当0,0x y >>时,下列等式成立的是( )。

A.()ln ln ln xy x y = B. ()ln ln ln x y x y +=+C. ()ln ln ln xy x y =+D. ln ln ln x x y y= 【正确答案】 C【答案解析】 因为对数函数有log ()log log a a a xy x y =+的性质,故选C 。

参见教材P38。

【知 识 点】 对数函数。

3. 3342lim 2n n n n→∞+=+( )。

A. 1B. 2C. 3D. 4【正确答案】 B【答案解析】 3223421224lim lim lim 226112n n n n n n n n n n→∞→∞→∞+===++。

参见教材P96。

【知 识 点】 洛必达法则。

4. 10()020x e x f x x a x a x ⎧-≠⎪===⎨⎪=⎩,已知函数在点处连续,则 , ( )。

A. 0 B. 12C. 1D. 2【正确答案】 B【答案解析】 因为函数在0x =处连续,则有0lim ()x f x a →=,带入可得00011lim ()lim lim 222x x x x e x f x x x →→→-===,解得12a =,故选B 。

参见教材P63。

【知 识 点】 函数的连续性。

5. ()221,1y x x =-曲线在点处的切线方程为( )。

大一高等数学考卷及答案

大一高等数学考卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。

()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。

()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。

()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。

()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。

()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。

2.函数f(x)=e^x在x=0处的导数为______。

3.函数f(x)=lnx在x=1处的导数为______。

4.函数f(x)=sinx在x=π/2处的导数为______。

5.函数f(x)=cosx在x=0处的导数为______。

四、简答题(每题2分,共10分)1.简述导数的定义。

2.简述连续与可导的关系。

3.简述罗尔定理。

4.简述拉格朗日中值定理。

2019年高考数学真题及答案解析(全国卷Ⅰ)

2019年高考数学真题及答案解析(全国卷Ⅰ)

2019年普通高等学校招生全国统一考试(全国 I 卷)理科数学1.已知集合}24|{<<-=x x M ,}06|{2<--=x x x N ,则=N M I ( )A.}34|{<<-x xB.}24|{-<<-x xC. }22|{<<-x xD. }32|{<<x x 答案: C解答:由题意可知,}32|{<<-=x x N ,又因为}24|{<<-=x x M ,则}22|{<<-=x x N M I ,故选C .2.设复数z 满足1z i -=,z 在复平面内对应的点为(,)x y ,则( ) A.22(1)1x y ++= B.22(1)1x y -+=C.22(1)1x y +-=D.22(1)1x y ++= 答案: C解答:∵复数z 在复平面内对应的点为(,)x y , ∴z x yi =+ ∴1x yi i +-= ∴22(1)1x y +-=3.已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a << 答案: B解答:由对数函数的图像可知:2log 0.20a =<;再有指数函数的图像可知:0.221b =>,0.300.21c <=<,于是可得到:a c b <<.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215- .若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是( )A.cm 165B.cm 175C.cm 185D.cm 190 答案: B解答: 方法一:设头顶处为点A ,咽喉处为点B ,脖子下端处为点C ,肚脐处为点D ,腿根处为点E ,足底处为F ,t BD =,λ=-215, 根据题意可知λ=BD AB ,故t AB λ=;又t BD AB AD )1(+=+=λ,λ=DFAD,故t DF λλ1+=; 所以身高t DF AD h λλ2)1(+=+=,将618.0215≈-=λ代入可得t h 24.4≈.根据腿长为cm 105,头顶至脖子下端的长度为cm 26可得AC AB <,EF DF >;即26<t λ,1051>+t λλ,将618.0215≈-=λ代入可得4240<<t 所以08.1786.169<<h ,故选B.方法二:由于头顶至咽喉的长度与头顶至脖子下端的长度极为接近,故头顶至脖子下端的长度cm 26可估值为头顶至咽喉的长度;根据人体的头顶至咽喉的长度与咽喉至肚脐的长度之比是215-(618.0215≈-称为黄金分割比例)可计算出咽喉至肚脐的长度约为cm 42;将人体的头顶至咽喉的长度与咽喉至肚脐的长度相加可得头顶至肚脐的长度为cm 68,头顶至肚脐的长度与肚脐至足底的长度之比是215-可计算出肚脐至足底的长度约为110;将头顶至肚脐的长度与肚脐至足底的长度相加即可得到身高约为cm 178,与答案cm 175更为接近且身高应略小于cm 178,故选B.5. 函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A.B.C.D.答案:D解答:∵()()()2sin()cosx xf xx x---=-+-=2sincosx xx x+-+()f x=-,∴()f x为奇函数,排除A,又22sin4222()02cos22fπππππππ++==>⎛⎫+ ⎪⎝⎭,排除C,()22sin()01cosfπππππππ+==>++,排除B,故选D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.1116答案:A解答:每爻有阴阳两种情况,所以总的事件共有62种,在6个位置上恰有3个是阳爻的情况有36C种,所以36620526416CP===.7.已知非零向量,a br r满足2a b=r r,且()a b b-⊥r r r,则ar与br的夹角为()A.6πB.3πC.23πD.56π答案:B解答:设ar与br的夹角为θ,∵()a b b-⊥r r r∴2()cosa b b a b bθ-⋅=-r r r r r r=0∴1cos=2θ∴=3πθ.8.右图是求112+12+2的程序框图,图中空白框中应填入()A.12AA=+B.12AA=+C.112A A =+D.112A A=+答案: A解答:把选项代入模拟运行很容易得出结论选项A 代入运算可得1=12+12+2A ,满足条件,选项B 代入运算可得1=2+12+2A ,不符合条件, 选项C 代入运算可得12A =,不符合条件,选项D 代入运算可得11+4A =,不符合条件. 9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( )A.25n a n =-B.310n a n =-C.228n S n n =- D.2122n S n n =- 答案: A解析: 依题意有415146045S a d a a d =+=⎧⎨=+=⎩,可得132a d =-⎧⎨=⎩,25n a n =-,24n S n n =-.10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =,||||1BF AB =,则C 的方程为( )A.1222=+y xB. 12322=+y xC.13422=+y xD.145=+答案: B解答:由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又Θ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 21=,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程12222=+by a x ,得32=a ,2222=-=c a b ,∴椭圆C 的方程为12322=+y x .11. 关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2 其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③ 答案: C解答:因为()sin sin()sin sin ()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,①正确, 因为52,(,)632ππππ∈,而52(()63f f ππ<,所以②错误, 画出函数()f x 在[],ππ-上的图像,很容易知道()f x 有3零点,所以③错误, 结合函数图像,可知()f x 的最大值为2,④正确,故答案选C.12. 已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,,E F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( ) A.86πC.26π 6π 答案: D解答:设PA x =,则2222222-42cos =22PA PC AC x x x PAC PA PC x x x++--∠==⋅⋅⋅ ∴2222cos CE PE PC PE PC PAC =+-⋅⋅∠22222222424x x x x x x x -=+-⋅⋅⋅=+∵90CEF ∠=︒,1,322xEF PB CF ===∴222CE EF CF +=,即222344x x ++=,解得2x =∴2PA PB PC ===又2AB BC AC ===易知,,PA PB PC 两两相互垂直,故三棱锥P ABC -6∴三棱锥P ABC -的外接球的体积为34663ππ⋅=⎝⎭,故选D. 13.曲线23()xy x x e =+在点(0,0)处的切线方程为 . 答案:3y x =解答:∵23(21)3()xxy x e x x e '=+++23(31)xx x e =++,∴结合导数的几何意义曲线在点(0,0)处的切线方程的斜率3k =, ∴切线方程为3y x =.14.记n S 为等比数列{}n a 的前n 项和,若113a =,246a a =,则5S = . 答案:5S =1213解答:∵113a =,246a a = 设等比数列公比为q∴32511()a q a q =∴3q = ∴5S =121315.甲乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该对获胜,决赛结束)根据前期的比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以4:1获胜的概率是 . 答案: 0.18 解答:甲队要以4:1,则甲队在前4场比赛中输一场,第5场甲获胜,由于在前4场比赛中甲有2个主场2个客场,于是分两种情况:1221220.60.40.50.60.60.50.50.60.18C C ⋅⋅⋅⋅+⋅⋅⋅⋅=.16.已知双曲线C:22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =⋅=uuu r uu u r uuu r uuu r,则C 的离心率为 . 答案:2解答:由112,0F A AB F B F B =⋅=uuu r uu u r uuu r uuu r 知A 是1BF 的中点,12F B F B ⊥uuu r uuu r ,又O 是12,F F 的中点,所以OA为中位线且1OA BF ⊥,所以1OB OF =,因此1FOA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=︒,221()1tan 602b e a=+=+︒=.17. ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(222a b c +=,求sin C . 答案: 略 解答:(1)由()22sin sin sin sin sin B C A B C -=-得222sin sin sin sin sin B C A B C +-= 结合正弦定理得222b c a bc +-=∴2221cos =22b c a A b c +-=⋅⋅又(0,)A π∈,∴=3A π.(222a b c +=2sin 2sin A B C +=, ()2sin 2sin A A C C ++=6sin()2sin 3C C π++=,312cos 2C C -=∴2sin()62C π-=又203C π<<∴662C πππ-<-< 又sin(06C π->∴062C ππ<-<∴2cos62Cπ⎛⎫-=⎪⎝⎭,∴sin sin()66C Cππ=-+=sin cos cos sin6666C Cππππ⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭624+=.18.如图,直四棱柱1111ABCD A B C D-的底面是菱形,14,2,60AA AB BAD==∠=︒,,,E M N分别是11,,BC BB A D的中点.(1)证明://MN平面1C DE;(2)求二面角1A MA N--的正弦值.答案:(1)见解析;(2)10.解答:(1)连结,M E和1,B C,∵,M E分别是1BB和BC的中点,∴1//ME B C且112ME B C=,又N是1A D,∴//ME DN,且ME DN=,∴四边形MNDE是平行四边形,∴//MN DE,又DE⊂平面1C DE,MN⊄平面1C DE,∴//MN平面1C DE.(2)以D为原点建立如图坐标系,由题(0,0,0)D,(2,0,0)A,1(2,0,4)A,3,2)M1(0,0,4)A A=-uuu r,1(1,3,2)A M=--u u u u r,1(2,0,4)A D=--uuu r,设平面1AA M的法向量为1111(,,)n x y z=u r,平面1DA M的法向量为2222(,,)n x y z=u u r,由1111n A An A M⎧⋅=⎪⎨⋅=⎪⎩u r uuu ru r uuuu r得111140320zx y z-=⎧⎪⎨-+-=⎪⎩,令13x=得1(3,1,0)n=u r,由2121n A Dn A M⎧⋅=⎪⎨⋅=⎪⎩u u r uuu ru u r uuuu r得22222240320x zx y z--=⎧⎪⎨-+-=⎪⎩,令22x=得2(2,0,1)n=-u u r,∴12121215cos,n nn nn n⋅==⋅u r u u ru r u u ru r u u r,∴二面角1A MA N--的正弦值为10.19.已知抛物线xyC3:2=的焦点为F,斜率为23的直线l与C的交点为A,B,与x轴的交点为P.(1)若4||||=+BFAF,求l的方程;(2)若3=,求||AB.答案:(1)07128=+-xy;(2)3134.解答:(1)设直线l的方程为bxy+=23,设),(11yxA,),(22yxB,联立直线l与抛物线的方程:⎪⎩⎪⎨⎧=+=xybxy3232消去y化简整理得0)33(4922=+-+bxbx,0494)33(22>⨯--=∆b b ,21<∴b ,9)33(421b x x -⨯=+,依题意4||||=+BF AF 可知42321=++x x ,即2521=+x x ,故259)33(4=-⨯b ,得87-=b ,满足0>∆,故直线l 的方程为8723-=x y ,即07128=+-x y .(2)联立方程组⎪⎩⎪⎨⎧=+=xy b x y 3232消去x 化简整理得0222=+-b y y ,084>-=∆b ,21<∴b ,221=+y y ,b y y 221=,Θ3=,可知213y y -=,则222=-y ,得12-=y ,31=y ,故可知23-=b 满足0>∆, ∴3134|13|941||11||212=+⨯+=-⋅+=y y k AB . 20.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导函数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 答案:略 解答:(1)对()f x 进行求导可得,1()cos 1f x x x '=-+,(1)2x π-<< 取1()cos 1g x x x=-+,则21()sin (1)g x x x '=-++,在(1,)2x π∈-内21()sin (1)g x x x '=-++为单调递减函数,且(0)1g =,21()102(1)2g ππ=-+<+所以在(0,1)x ∈内存在一个0x ,使得()0g x '=,所以在0(1,)x x ∈-内()0g x '>,()f x '为增函数;在0(,)2x x π∈内()0g x '<,()f x '为减函数,所以在()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)可知当(1,0)x ∈-时,()f x '单调增,且(0)0f '=,可得()0'<x f则()f x 在此区间单调减;当0(0,)x x ∈时,()f x '单调增,且(0)0f '=,()0f x '>则()f x 在此区间单调增;又(0)0f =则在0(1,)x x ∈-上()f x 有唯一零点0x =. 当0(,)2x x π∈时,()f x '单调减,且0()0,()02f x f π''><,则存在唯一的10(,)2x x π∈,使得1()0f x '=,在01(,)x x x ∈时,1()0f x '>,()f x 单调增;当1(,)2x x π∈时,()f x 单调减,且()1ln(11ln 022f e ππ=-+>-=,所以在0(,)2x x π∈上()f x 无零点;当(,)2x ππ∈时,sin y x =单调减,ln(1)y x =-+单调减,则()f x 在(,)2x ππ∈上单调减,()0ln(1)0f ππ=-+<,所以在(,)2x ππ∈上()f x 存在一个零点.当(,)x π∈+∞时,()sin ln(1)1ln(1)0f x x x π=-+<-+<恒成立,则()f x 在(,)x π∈+∞上无零点.综上可得,()f x 有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮实验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在实验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i )证明:1{}(0,1,2,,7)i i p p i +-=L 为等比数列; (ii )求4p ,并根据4p 的值解释这种实验方案的合理性. 答案:(1)略;(2)略解答:(1)一轮实验中甲药的得分有三种情况:1、1-、0.得1分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则(1)(1)P Xαβ==-;得1-分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则(1)(1)P Xαβ=-=-;得0分时是都治愈或都未治愈,则(0)(1)(1)P Xαβαβ==+--.则X的分布列为:(2)(i)因为0.5α=,0.8β=,则(1)0.4a P X==-=,(0)0.5b P X===,(1)0.1c P X===.可得110.40.50.1i i i ip p p p-+=++,则110.50.40.1i i ip p p-+=+,则110.4()0.1()i i i ip p p p-+-=-,则114i ii ip pp p+--=-,所以1{}(0,1,2,,7)i ip p i+-=L为等比数列.(ii)1{}(0,1,2,,7)i ip p i+-=L的首项为101p p p-=,那么可得:78714p p p-=⨯,67614p p p-=⨯,………………2114p p p-=⨯,以上7个式子相加,得到76811(444)p p p-=⨯+++L,则886781111441(1444)143p p p p--=⨯++++=⨯=-L,则18341p=-,再把后面三个式子相加,得23411(444)p p p-=⨯++,则4423411844141311(1444)334141257 p p p--=⨯+++==⨯==-+.4p 表示“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”,因为0.5α=,0.8β=,αβ<,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”这种情况的概率是非常小的,而41257p =的确非常小,说明这种实验方案是合理的.22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值. 答案: 略 解答:(1)曲线C :由题意得22212111t x t t -==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x +=而直线l :将cos ,sin x y ρθρθ==代入即可得到23110x y ++=(2)将曲线C 化成参数方程形式为则4sin()112cos 23sin 11677d πθθθ++++==所以当362ππθ+=723. 已知,,a b c 为正数,且满足1abc =,证明: (1)222111a b c a b c++≤++ (2)333()()()24a b b c c a +++++≥答案: 见解析: 解答:(1)1abc =Q ,111bc ac ab a b c∴++=++. 由基本不等式可得:222222,,222b c a c a b bc ac ab +++≤≤≤, 于是得到222222222111222b c a c a b a b c a b c +++++≤++=++.(2)由基本不等式得到:3322()8()a b ab a b ab +≥⇒+≥,3322()8()b c bc b c bc +≥+≥,3322()8()c a ac c a ac +≥⇒+≥.于是得到333333222()()()8[()()()]a b b c c a ab bc ac +++++≥++333322283()()()24ab bc ca ≥⨯=。

(完整版)大一高数试题及答案.doc,推荐文档

(完整版)大一高数试题及答案.doc,推荐文档

大一高数试题及答案一、填空题(每小题1分,共10分)1.函数 的定义域为______________________。

22111arcsin xx y -+-= 2.函数上点( 0,1 )处的切线方程是______________。

2e x y += 3.设f(X )在可导,且,则0x A (x)f'=hh x f h x f h )3()2(lim000--+→= _____________。

4.设曲线过(0,1),且其上任意点(x ,y )的切线斜率为2x ,则该曲线的方程是____________。

5._____________。

=-⎰dx xx41 6.__________。

=∞→xx x 1sinlim 7.设f(x,y)=sin(xy),则fx(x,y)=____________。

9.微分方程的阶数为____________。

22233)(3dx y d x dxy d + ∞ ∞10.设级数 ∑ an 发散,则级数 ∑ an _______________。

n=1 n=1000二、单项选择题。

(1~10每小题1分,11~20每小题2分,共30分)1.设函数则f[g(x)]= ( ) x x g xx f -==1)(,1)( ① ② ③ ④xx 11-x 11-x -112.是 ( )11sin +xx ①无穷大量 ②无穷小量 ③有界变量 ④无界变量3.下列说法正确的是 ( )①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导 ②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续 ③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在 ④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导 4.若在区间(a,b)内恒有,则在0)(",0)('><x f x f (a,b)内曲线弧y=f(x)为 ( )①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧5.设,则 ( ))(')('x G x F = ① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0 ④⎰⎰=dx x G dxddx x F dxd )()( 1 6.( )=⎰-dx x 11-1① 0 ② 1 ③ 2 ④ 3 7.方程2x+3y=1在空间表示的图形是 ( ) ①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线8.设,则f(tx,ty)yx y x y x y x f tan),(233++==( )① ②),(y x tf),(2y x f t ③ ④ ),(3y x f t ),(12y x tan +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1 ①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( ) ①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程 (二)每小题2分,共20分11.下列函数中为偶函数的是 ( ) ①y=ex ②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a) ②f(b)-f(a)=f'(ζ)(x2-x1) ③f(x2)-f(x1)=f'(ζ)(b-a) ④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( )①充分必要的条件 ②必要非充分的条件 ③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim───∫3tgt2dt=()x→0x3 01①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数 ∑ an xn 在xo (xo ≠0)收敛, 则 ∑ an xn 在│x│〈│xo│( )n=o n=o①绝对收敛 ②条件收敛 ③发散 ④收敛性与an 有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ= ( ) D x 1 1 sinx① ∫ dx ∫ ───── dy 0 x x__1 √y sinx② ∫ dy ∫ ─────dx 0 y x __1 √x sinx③ ∫ dx ∫ ─────dy 0 x x __1 √x sinx④ ∫ dy ∫ ─────dx 0 x x三、计算题(每小题5分,共45分)1.设求 y’ 。

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D.}{23x x <<【答案】C 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A. 22+11()x y +=B. 22(1)1x y -+=C. 22(1)1x y +-=D.22(+1)1y x +=【答案】C 【解析】 【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【详解】,(1),z x yi z i x y i =+-=+-1,z i -则22(1)1x y +-=.故选C . 【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.300.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则26261105x x y +==+,得42.07, 5.15x cmy cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C. D.【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.【详解】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116【答案】A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3C.2π3D.5π6【答案】B 【解析】 【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以c o s θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.8.如图是求112122++的程序框图,图中空白框中应填入A. A =12A+ B. A =12A+C. A =112A+D.A =112A+【答案】A 【解析】 【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【详解】执行第1次,1,122A k ==≤是,因为第一次应该计算1122+=12A +,1k k =+=2,循环,执行第2次,22k =≤,是,因为第二次应该计算112122++=12A +,1k k =+=3,循环,执行第3次,22k =≤,否,输出,故循环体为12A A=+,故选A .【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为12A A=+.9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =-B. 310n a n =-C. 228n S n n =-D.2122n S n n =- 【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D.22154x y += 【答案】B 【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④C. ①④D. ①③【答案】C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2s i n fx x =,它有两个零点:0,π;当0x π-≤<时,()()s i n s i n 2s i nfx xx x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2s i n fx x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()s i n s i n 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A. B.C.D.【答案】D 【解析】 【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===从而得P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解. 【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点, //EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R == 3442338R V R =∴=π=⨯=π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=又90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,344338V R ∴=π=π⨯=,故选D .【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、填空题:本题共4小题,每小题5分,共20分。

大一高数试题及答案

大一高数试题及答案

大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0② 1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

大一高数试卷试题含解答.docx

大一高数试卷试题含解答.docx

大一高数试题及解答大一高数试题及答案一、填空题(每小题1分,共10分)________121.函数y=arcsin√1-x+──────的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是 ______________。

f( Xo+2 h)-f( Xo-3 h)3.设f( X)在 Xo 可导且f ' (Xo)=A,则lim───────────────h→o h=_____________ 。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞X7.设f(x,y)=sin(xy),则fx(x,y)= ____________。

_______R22√R-x8.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。

00d3y3d2y9.微分方程───+──(─── )2的阶数为 ____________。

dx3xdx2∞∞10.设级数∑an 发散,则级数∑an _______________。

n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③ ────④xxx1-x12.x→ 0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X =Xo连续,则f(X)在X=Xo 可导②若f( X )在 X =Xo不可导,则f( X )在 X=Xo 不连续③若f( X )在 X =Xo不可微,则f( X )在 X=Xo 极限不存在④若f( X )在 X =Xo不连续,则f( X )在 X=Xo 不可导4.若在区间(a,b)内恒有f' (x)〈0,f " (x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F '(x)=G'(x),则()①F(X) +G (X)②F(X) -G (X)③F(X) -G (X)为常数为常数=0d④ ──∫F(x)dxd=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设a n≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散210.方程y'+3xy=6xy是①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=e③y=xx3②y=x3+1④y=ln│x│12.设f(x)在(a,b)可导,a〈x〈1 x〈2 b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f ' (ζ)(b-a)②f(b)-f(a)=f ' (ζ)(x2-x 1)③f(x 2)-f(x 1)=f'(ζ)(b-a)④f(x 2)-f(x 1)=f'(ζ)(x2-x 1)13.设f( X)在 X =Xo 的左右导数存在且相等是f( X)在 X =Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x 4 4②x 4+c41x16.lim─── ∫ 3tgt2dt=()x→0x301① 0② 1③ ──④ ∞3xy17.limxysin─────=()x→0x 2+y 2y→0③∞① 0②1④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y ' =p,则y"=p'dp②设y ' =p,则y"=───dydp③设y ' =p,则y"=p───dy1dp④设y ' =p,则y" =─────pdy∞∞n19.设幂级数∑ anx在x(oxo≠0)n收敛,则∑ anx在│x│〈│xo│()n=on=o①绝对收敛②条件收敛③发散④收敛性与an 有关sinx20.设D域由y=x,y=x2 所围成,则∫∫ ─────dσ=()Dx11sinx① ∫ dx∫ ───── dy0xx__1√ysinx② ∫ dy∫─────dx0yx__1√xsinx③ ∫ dx∫─────dy0xx__1√xsinx④ ∫ dy∫─────dx0xx三、计算题(每小题5分,共45分)___________y'1.设。

大学大一高数试题及答案

大学大一高数试题及答案

大学大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-4x+3,若f(a)=0,则a的值为()。

A. 1B. 3C. -1D. 2答案:B2. 极限lim(x→0) (sin x)/x的值为()。

A. 0B. 1C. ∞D. -1答案:B3. 若函数f(x)在点x=a处可导,则()。

A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处的导数为0答案:A4. 设数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,n∈N*,则a_3的值为()。

A. 5B. 7C. 9D. 11答案:C二、填空题(每题5分,共20分)1. 计算定积分∫(0到1) x^2 dx的值为______。

答案:1/32. 若矩阵A=\[\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}\],则A 的行列式det(A)为______。

答案:-23. 设函数f(x)=x^3-6x^2+11x-6,f'(x)=3x^2-12x+11,则f'(1)的值为______。

答案:24. 函数y=ln(x)的反函数为______。

答案:e^y三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-12在x=2处的切线方程。

答案:首先计算f'(x)=3x^2-6x+4,代入x=2得到f'(2)=6,然后计算f(2)=0,所以切线方程为y-0=6(x-2),即y=6x-12。

2. 计算级数∑(1到∞) (1/n^2)的和。

答案:该级数为π^2/6。

3. 已知函数f(x)=x^3-3x^2+2,求f(x)的极值点。

答案:首先求导f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。

然后计算二阶导数f''(x)=6x-6,代入x=0和x=2,得到f''(0)<0,f''(2)>0,所以x=0是极大值点,x=2是极小值点。

2019年普通高等学校招生全国统一考试数学试题及答案(理)

2019年普通高等学校招生全国统一考试数学试题及答案(理)

2019年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 若siniθcosθ>0,则θ在( )(A) 第一、二象限(B) 第一、三象限(C) 第一、四象限(D) 第二、四象限(2) 过点A (1,-1)、B (-1,1)且圆心在直线x+y-2 = 0上的圆的方程是( )(A) (x-3) 2+(y+1) 2 = 4 (B) (x+3) 2+(y-1) 2 = 4(C) (x-1) 2+(y-1) 2 = 4 (D) (x+1) 2+(y+1) 2 = 4(3) 设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )(A) 1(B) 2(C) 4(D) 6(4) 若定义在区间(-1,0)的函数f (x ) = log 2a (x +1)满足f (x )>0,则a 的取值范围是( )(A)(210,)(B)⎥⎦⎤ ⎝⎛210,(C) (21,+∞) (D) (0,+∞)(5) 极坐标方程)4sin(2πθρ+=的图形是( )(6) 函数y = cos x +1(-π≤x ≤0)的反函数是 ( )(A) y =-arc cos (x -1)(0≤x ≤2) (B) y = π-arc cos (x -1)(0≤x ≤2) (C) y = arc cos (x -1)(0≤x ≤2)(D) y = π+arc cos (x -1)(0≤x ≤2)(7) 若椭圆经过原点,且焦点为F 1 (1,0) F 2 (3,0),则其离心率为 ( )(A)43 (B)32 (C)21 (D)41 (8) 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( )(A) a <b(B) a >b(C) ab <1(D) ab >2(9) 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为( )(A) 60°(B) 90°(C) 105°(D) 75°(10) 设f (x )、g (x )都是单调函数,有如下四个命题:① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④ 若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是( )(A) ①③ (B) ①④ (C) ②③ (D) ②④(11) 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 ( ) (A) P 3>P 2>P 1(B) P 3>P 2 = P 1(C) P 3 = P 2>P 1(D) P 3 = P 2 = P 1(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )(A) 26 (B) 24(C) 20(D) 19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 (14)双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则 q =(16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD . (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. (18) (本小题满分12分) 已知复数z 1 = i (1-i ) 3. (Ⅰ)求arg z 1及1z ;(Ⅱ)当复数z 满足1z =1,求1z z -的最大值. (19) (本小题满分12分)设抛物线y 2 =2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .(20) (本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明in i i m i P m P n <;(Ⅱ)证明(1+m ) n > (1+n ) m . (21) (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入? (22) (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈[0,21]都有f (x 1+x 2) = f (x 1) · f (x 2).且f (1) = a >0. (Ⅰ)求f (21) 及f (41); (Ⅱ)证明f (x ) 是周期函数; (Ⅲ)记a n = f (2n +n21),求()n n a ln lim ∞→.2001年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)2π (14)516(15)1 (16)2n (n -1)三.解答题:(17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.解:(Ⅰ)直角梯形ABCD 的面积是 M 底面()43125.0121=⨯+=⋅+=AB AD BC , ……2分 ∴ 四棱锥S —ABCD 的体积是⨯⨯=SA V 31M 底面43131⨯⨯=41=.……4分 (Ⅱ)延长BA 、CD 相交于点E ,连结SE 则SE 是所求二面角的棱. ……6分∵ AD ∥BC ,BC = 2AD ,∴ EA = AB = SA ,∴ SE ⊥SB ,∵ SA ⊥面ABCD ,得SEB ⊥面EBC ,EB 是交线, 又BC ⊥EB ,∴ BC ⊥面SEB , 故SB 是CS 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角. ……10分 ∵ 22AB SA SB +=2=,BC =1,BC ⊥SB ,∴ tan ∠BSC =22=SB BC . 即所求二面角的正切值为22. ……12分 (18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.解:(Ⅰ)z 1 = i (1-i ) 3 = 2-2i , 将z 1化为三角形式,得⎪⎭⎫⎝⎛+=47sin47cos 221ππi z ,∴ 47arg 1π=z ,221=z . ……6分 (Ⅱ)设z = cos α+i sin α,则z -z 1 = ( cos α-2)+(sin α+2) i , ()()22212sin 2cos ++-=-ααz zsin 249+=(4πα-), ……9分当sin(4πα-) = 1时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分 (19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分.证明一:因为抛物线y 2 =2px (p >0)的焦点为F (2p,0),所以经过点F 的直线的方程可设为2pmy x +=; ……4分 代入抛物线方程得y 2 -2pmy -p 2 = 0,若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2 = -p 2. ……8分因为BC ∥x 轴,且点c 在准线x = -2p 上,所以点c 的坐标为(-2p,y 2),故直线CO 的斜率为111222x y y p p y k ==-=. 即k 也是直线OA 的斜率,所以直线AC 经过原点O . ……12分证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD ⊥l ,D 是垂足.则 AD ∥FE ∥BC . ……2分连结AC ,与EF 相交于点N ,则ABBF AC CN AD EN ==,,ABAF BCNF = ……6分 根据抛物线的几何性质,AD AF =,BC BF =, ……8分∴ NF ABBC AF ABBF AD EN =⋅=⋅=,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O . ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明: 对于1<i ≤m 有im p = m ·…·(m -i +1),⋅-⋅=m m m m m p i i m 1…mi m 1+-⋅, 同理 ⋅-⋅=n n n n n p i in 1…ni n 1+-⋅, ……4分由于 m <n ,对整数k = 1,2…,i -1,有mkm n k n ->-, 所以 i im i i n mp n p >,即im i i n i p n p m >. ……6分(Ⅱ)证明由二项式定理有()in ni i nC m m ∑==+01, ()i mmi i mCn n ∑==+01, ……8分由 (Ⅰ)知i n i p m >im i p n (1<i ≤m <n =,而 !i p C i m im=,!i p C i n in =, ……10分所以, im i i n i C n C m >(1<i ≤m <n =.因此,∑∑==>mi im i mi i niC n Cm 22. 又 10000==m n C n C m ,mn nC mC m n ==11,()n i m C m in i ≤<>0.∴∑∑==>mi im i ni i niC n Cm 0. 即 (1+m )n >(1+n )m . ……12分 (21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,……,第n 年投入为800×(1-51)n -1万元. 所以,n 年内的总投入为a n = 800+800×(1-51)+…+800×(1-51)n -1∑=--⨯=nk k 11)511(800= 4000×[1-(54)n]; ……3分 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41)万元,……,第n 年旅游业收入为400×(1+41)n -1万元.所以,n 年内的旅游业总收入为b n = 400+400×(1+41)+…+400×(1+41)n -1∑=-⨯=nk k 11)45(400= 1600×[ (54)n-1]. ……6分 (Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即 1600×[(45)n -1]-4000×[1-(54)n ]>0.化简得 5×(54)n +2×(54)n -7>0, ……9分 设=x (54)n,代入上式得 5x 2-7x +2>0,解此不等式,得52<x ,x >1(舍去). 即 (54)n <52,由此得 n ≥5.答:至少经过5年旅游业的总收入才能超过总投入. ……12分。

《大一高等数学》试卷(十份)

《大一高等数学》试卷(十份)

《高等数学》试卷(一)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =12.函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ).(A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x ⎛⎫'⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x⎛⎫-+⎪⎝⎭8.xxdx e e-+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x xe eC --+ (D )ln()x xe eC -++9.下列定积分为零的是( ).(A )424arctan 1x dx xππ-+⎰(B )44arcsin x x dx ππ-⎰(C )112x xe edx --+⎰(D )()121sin xx x dx -+⎰10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x xa x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21x y x =-的垂直渐近线有条.4.()21ln dx x x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限 ①21limxx x x →∞+⎛⎫ ⎪⎝⎭②()2sin 1limxx x x x e→--2.求方程()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()0a >⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高等数学》试卷(一)参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctan ln x c + 5.2三.计算题 1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②ln ||x C +③()1xex C--++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x =(B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x fx →=( ).(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且0)(0>'x f , 则曲线()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12x x e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12x xe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫'⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分) 1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211x y x =+-的水平和垂直渐近线共有_______条.4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________.三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12x x x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰②)0a>⎰③2xx e dx ⎰四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yxey y '=-3.①3sec 3x c + ②)lnx c + ③()222xx x e c -++四.应用题:1.略 2.13S =《高等数学》试卷3(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21MM ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x yx y 的定义域是( ).A.(){}21,22≤+≤y x y xB.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a与b 垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则( ).A.p 1<B.1≤pC.1>pD.1≥p8.幂级数∑∞=1n nnx的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x-11 B.x-22 C.x-12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________.5.微分方程044=+'+''y y y 的通解为_________________________________.三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin,其中22224:ππ≤+≤yx D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷3参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()nn n nx ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题 1.()()[]y x y x y exz xy+++=∂∂cos sin ,()()[]y x y x x eyz xy+++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z yy z z x xz . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R .5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷4(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21MM ( ).A.12B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6πB.4πC.3πD.2π3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.97.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r 8.幂级数()n n x n ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n nna 是( ).A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.x ce y = C.x e y = D.xcxe y = 二.填空题(4分⨯5) 1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y tx 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242yx z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________.5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtx d -=22.当0=t 时,有0x x =,0v dtdx =)试卷4参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n nx .5.x y =. 三.计算题1.k j i238+-.2.()()()yy xy y y y x yz y y y y x xz 3333223cossincos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,zxy xz yz zxy yz x z +-=∂∂+-=∂∂.4.⎪⎭⎫ ⎝⎛-3223323πa . 5.xxeC e C y --+=221.四.应用题1.316.2. 00221x t v gtx ++-=.《高数》试卷5(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x xa x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim_________________.25x x x x →∞+=+-6. 321421sin 1x x dx x x -+-⎰=______________.7.2_______________________.x td e dt dx-=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2.; 233lim 9x x x →-- 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分) 1. 2x y x =+, 求(0)y '. 2. cos xy e=, 求dy .3. 设x y xy e +=, 求d y d x.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xe dx ⎰五、(8分)求曲线1cos x ty t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程xy y ex '+=满足初始条件()10y =的特解.《高数》试卷5参考答案一.1.(3,3)- 2.4a= 3.2x = 4.()x xe f e '5.126.07.22xxe- 8.二阶二.1.原式=0lim1x x x →=2.311lim36x x →=+3.原式=112221lim[(1)]2xx ex--→∞+=三.1.221,(0)(2)2y y x ''==+2.c o s sin xdy xedx =-3.两边对x 求写:(1)x y y xy e y +''+=+'x yx yeyxy y y x ex xy++--⇒==--四.1.原式=ln 2cos x x C -+2.原式=2221ln(1)()ln(1)[ln(1)]222x xx d x x d x +=+-+⎰⎰=222111ln(1)ln(1)(1)221221x xxx dx x x dxxx+-=+--+++⎰⎰=221ln(1)[ln(1)]222xxx x x C +--+++3.原式=12212111(2)(1)222xxe d x ee ==-⎰五.2sin ,1.,,122t dy dy t t x y dxdxπππ======且当时切线:1,1022y x x y ππ-=--+-=即法线:1(),1022y x x y ππ-=--+--=即六.1231014(1)()33Sx dx x x =+=+=⎰22211221(1)11()22V x dy y dy y y ππππ==-=-=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]xx e C x=-+由10,0x yC ==⇒=1xx y ex-∴=《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( d )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( c ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( c ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( a )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、zy zR x --, B 、zy zR x ---, C 、zy zR x ,--D 、zy zR x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 2217、级数∑∞=-1)1(n nnnx的收敛半径为( )A 、2B 、21 C 、1 D 、38、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n xnB 、∑∞=-1)1(n n)!2(2n xnC 、∑∞=-0)1(n n)!2(2n xnD 、∑∞=-0)1(n n)!12(12--n xn9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

2019年普通高等学校招生全国统一考试数学卷(全国Ⅰ.理)含详解

2019年普通高等学校招生全国统一考试数学卷(全国Ⅰ.理)含详解

=A B P A P B)()()A在一次试验中发生的概率是k,,2)n}{}0.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶看作时间t的函数,其图像可能是(中,AB =c ,AC =b .若点满足2BD DC =,则AD =( B .33-c b 3-b cD .33+b 0)(1)+∞, 1)(01),1)(1)-+∞,,0)(01),,1x yb+=通过点)α,则( 1≤1+45,求二面角OA AB OB、、成等差数列,且BF与FA同向.被双曲线所截得的线段的长为4,求双曲线的方程.像可知;由()2AD AB AC AD -=-,322AD AB AC c b =+=+,12AD c b =+; ()()()21210,1a i i a ai i a a i a +=+-=-+->=-;另解:设,,AB AC AA 为空间向量的一组基底,,,AB AC AA 的两两间的夹角为a ,平面ABC 的法向量为1133OA AA AB AC =--,1AB AB AA =+ 226,,3OA AB a OA AB ⋅=== 则AB 与底面ABC 所成角的正弦值为1123OA AB AO AB ⋅=种种法;种三种花有42A11(),AN AC AB EM AC AE =+=-,11()()AN EM AB AC AC AE ⋅=+⋅-=1故EM AN ,所成角的余弦值16AN EM AN EM⋅=为坐标原点,建立如图所示的直角坐标系,则3121321(,,),(,,),,3AN EM AN EM AN EM ==-⋅===, EM AN ,所成角的余弦值16AN EM AN EM⋅=. 中,由正弦定理及a AB 90,90∴∠,即CE CE AD ⊥CG ∠zx233AC CD AD =CG GE =,即二面角C AD -2142315325C C =2112)()555P B =+⨯4 31 53,( 5PC=13 ),(5B P= 212。

大一高数试题及答案

大一高数试题及答案

大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。

A. 3x^2-3B. x^2-3C. 3x^2+3D. x^3-3答案:A2. 求极限lim(x→0) (sinx/x) 的值。

A. 0B. 1C. 2D. -1答案:B3. 设曲线y=x^2+1与直线y=2x+3相交于点A和点B,求交点的横坐标。

A. -2, 1B. 1, 2C. -1, 2D. 1, -2答案:C4. 计算定积分∫(0,1) x^2 dx。

A. 1/3B. 1/2C. 2/3D. 1/4答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=x^2-4x+3,求f(2)的值。

答案:-16. 求不定积分∫(1/x) dx。

答案:ln|x|+C7. 设函数f(x)=e^x,求f'(x)的值。

答案:e^x8. 计算定积分∫(0,π) sinx dx。

答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的极值点。

解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。

当x<1或x>11/3时,f'(x)>0,函数单调递增;当1<x<11/3时,f'(x)<0,函数单调递减。

因此,x=1为极大值点,x=11/3为极小值点。

10. 求曲线y=x^3-3x^2+2在点(1,0)处的切线方程。

解:首先求导数y'=3x^2-6x,代入x=1得y'|_(x=1)=-3。

切线方程为y-0=-3(x-1),即y=-3x+3。

11. 计算二重积分∬D (x^2+y^2) dxdy,其中D是由x^2+y^2≤4所围成的圆域。

解:将二重积分转换为极坐标系下的形式,即∬D (x^2+y^2) dxdy = ∫(0,2π) ∫(0,2) (ρ^2) ρ dρ dθ = 8π。

大一高数习题含答案

大一高数习题含答案

大一高数练习题第八章一、选择题1、若二元函数()y x f ,在()00,y x 处可微,则在()00,y x 点下列结论中不一定成立的是( ) A 、连续 B 、偏导数存在 C 、偏导数连续 D 、切平面存在2、函数22x z y +=在(0,0)处( )A 、 不连续B 、 偏导数存在C 、 任一方向的方向导数存在D 、可微 3、已知()()2y x ydy dx ay x +++为某函数的全微分,则a 等于( )A 、 -1B 、 0C 、1D 、24、函数),(y x f 在点),(00y x P 处两个一阶偏导数存在,是),(y x f 在该点可微的( )A 、充要条件B 、必要但非充分条件C 、充分但非必要条件C 、无关条件 5、函数()y x ln 1z +=的定义域是( )A. 0y x ≠+B.0y x +C. 1y x ≠+D. 1y x 0y x ≠++且 二、填空题1、设()⎪⎭⎫ ⎝⎛+=x y x y x f 2ln ,,则 ()(2,1'=y f ) 2、()du u z y x ,223+-==( )3、函数22y xy x z +-=在(1,1)处的梯度为( )4、Z=ylnx, 则"xx z =( )5、函数z=()xy x +ln 的定义域( )6、设zyxu =,则 ()(1,,1,1=du )7、已知:(){}θθsin ,cos ,,22=+-=l e y xy x y x f ,求在(1,1)点沿方向L 的方向导数( ) 三、解答题1、已知曲面:221y x z --= 上的点P 处的切平面平行于平面 122=++z y x ,求点P 处的切平面方程2、设:()yx y x z ++=2 ,求','y x z z3、设()y x z z ,=是由方程()0,=--z y z x f 所确定的隐函数,其中()v u f ,具有连续偏导数且,0≠∂∂+∂∂v fu f 求yz x z ∂∂+∂∂的值。

2019年全国统一高考数学试卷(理科)以及答案(全国1卷解析版)

2019年全国统一高考数学试卷(理科)以及答案(全国1卷解析版)

2019年全国统一高考数学试卷(理科)(全国1卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1 D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1 B.+=1C.+=1 D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。

大一高等数学试题及答案

大一高等数学试题及答案

期末总复习题一、填空题1、已知向量2a i j k =+-,2b i j k =-+,则a b ⋅=-1。

2、曲线2x z =绕z 轴旋转所得曲面方程为z=x 2+y 2。

3、级数1113n n n∞=⎛⎫+ ⎪⎝⎭∑的敛散性为发散。

4、设L 是上半圆周222a y x =+(0≥y ),则曲线积分221Lds x y +⎰=a π 5.交换二重积分的积分次序:⎰⎰--0121),(ydx y x f dy =dy y x dx ),(f 0x-121⎰⎰6.级数∑∞=+1)1(1n n n 的和为1。

二、选择题1、平面0)1(3)1(=+++-z y x 和平面02)1()2(=+--+z y x 的关系(B ) A 、重合B 、平行但不重合C 、一般斜交D 、垂直 2.下列曲面中为母线平行于z 轴的柱面的是(C )A 、2221x z +=B 、2221y z +=C 、2221x y +=D 、22221x y z ++= 3.设)0(4:22>≤+y y x D ,则32222ln(1)1Dx x y dxdy x y ++=++⎰⎰(A ) A 、2πB 、0C 、1D 、4π4、设)0(4:22>≤+y y x D ,则⎰⎰=Ddxdy (A )A 、π16B 、π4C 、π8D 、π25、函数22504z x y =--在点(1,-2)处取得最大方向导数的方向是(A ) A 、216i j -+B 、216i j --C 、216i j +D 、216i j -6、微分方程222()()0y y y '''+-=的阶数为(B ) A 、1B 、2C 、4D 、67.下列表达式中,微分方程430y y y ''-+=的通解为(D ) A 、3x x y e e C =++B 、3x x y e Ce =+C 、3x x y Ce e =+D 、312x x y C e C e =+ 8.lim 0n n u →∞=为无穷级数1n n u ∞=∑收敛的(B )A 、充要条件B 、必要条件C 、充分条件D 、什么也不是三、已知1=a ,3=b ,b a ⊥,求b a +与b a-的夹角.P7四、一平面垂直于平面0154=-+-z y x 且过原点和点()3,7,2-,求该平面方程.(参考课本P7例题)五、设,,,22xy v y x u ue z v =-==求yzx z dz ∂∂∂∂,,.P19 六、求由z xyz sin =所确定的函数()y x z z ,=的偏导数yz x z ∂∂∂∂, 七、求旋转抛物面2222y x z +=在点⎪⎭⎫ ⎝⎛-2,21,10M 处的切平面和法线方程.八、求函数())2s in(,y x xy y x f ++=在点()0,0P 处沿从点()0,0P 到点()2,1Q 的方向的方向导数。

(完整版)大一高数试题及答案.doc,推荐文档

(完整版)大一高数试题及答案.doc,推荐文档

C. 2(x 1) 2x
D. 2(x 1) x
2.已知 f(x)=ax+b,且 f(-1)=2,f(1)=-2,则 f(x)=( )
A.x+3
B.x-3
C.2x
D.-2x
3. lim ( x ) x ( ) x x 1
A.e
B.e-1
C.
D.1
4.函数 y
x 3 的连续区间是( )
4.若在区间(a,b)内恒有 f ' ( x) 0, f "( x) 0 ,则在
(a,b)内曲线弧y=f(x)为 ( )
①上升的凸弧
②下降的凸弧
③上升的凹弧
④下降的凹弧
5.设 F ' ( x) G' ( x) ,则 ( )
① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0
1.(-1,1)
2.2x-y+1=0
4.y=x2+1
5.
1 2
arctan x 2
c
7.ycos(xy)
3.5A 6.1
π/2 π 8.∫ dθ ∫ f(r2)rdr
0
0
9.三阶
பைடு நூலகம்
10.发散
二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的 ( )内,1~10每小题1分,11~20每小题2分,共30分)
B.x5+C
C. 2 x 3 C 3
x5 D.
C
15
13.
8
3
e
x
dx
( )
8
A.0
B. 2
8
3
e
x

2019年大学高数曲面积分题.doc

2019年大学高数曲面积分题.doc

第二十章 曲线积分§ 1 第一型曲线积分1.计算下列第一型曲线积分:( 1) ( x y) ds ,其中 L 是以 O(0,0), A(1,0), B(0,1) 为顶点的三角形;L1 ( 2) ( x2 y 2 ) 2ds ,其中 L 是以原点为圆心, R 为半径的右半圆周;L( 3) xy d sx 2 y 21在第一象限中的部分;,其中 L 是椭圆22La b( 4)y d s ,其中 L 是单位圆周 x2y21 ;L( 5) ( x 2 y 2 z 2)ds ,其中 L 为螺旋线 x a cost , y a sin t, z btL(0 t2 ) 的一段;( 6)xyzds ,其中 L 是曲线 x t, y2 2t3 , z 1 t 2 ( 0 t 1) 的L3 2一段;( 7)2 y 2z 2 ds ,其中 L 是 x 2y 2 z 2a 2 与 x y 相交的圆L周 .解 (1)(x y)ds(x y)ds (x y)ds (x y)dsLOAABBO1 11xdx0 2dxydy 12 ;( 2)右半圆的参数方程为:x Rcos , yRsin .2 2所以1( x 2 y 2 ) 2 ds2R 2 dR 2 ;L2( 3 )由于椭圆在第一象限中的部分可表示为y b a 2x 2 ,a232( 0 xa ),从而 ybx, 所以a 2a x 2a bbx 2a 2x 21dxxydsaa 2x 2Lab a ba 4( a 2b 22dx 2ab( a 2 ab b 2 );2a 2a) x3(a b)( 4)由于圆的参数方程为:x cos , y sin 02,所以y dssind2sin d4 ;L( 5) ( x2y2z 2)ds 2a 2b 2t 2 a 2 b 2dtL2 (3a 2 42b 2 ) a 2b 2 ;12 31( 6)2t3t 2t 2dtxyzds0 t1 2tL3221 92 (1t)dt16 2;3t143( 7)截线为 2 y 2z 2 a 2 , x y ,所以2 y 2 z 2 dsL a 2ds a 2 a 2 a 2 .L2. 求曲线 xa, yat , z 1 at 2 (0 t 1, a 0) 的质量,设其线密2度为2za .解 曲线质量为M2zds1a 2t 2dtt a 2L aa21 22 a 0 1 t d(1t )(2 2 1).3233x a(t sin t)3. 求摆线a(1 (0 t) 的重心,设其质量分布是均匀ycost )的 .解 设摆线的线密度为,由于dsa 2(1cost )2a 2 sin 2t dt 2asin tdt ,从而其质量为2mds 2asin tdt4a,L2故其重心坐标为1 xm a2L 0 xds1 a( tsin t) 2a sin tdt4a2t sin tdt asin t sintdt 2 22at costa cos tdta cos3tcos t dt4a ;2 024 0223y1 yds 1a(1 cost)2asin tdtm L 4a 02a tacost sin t2sin dt2 dt20 2tasin 3t tdt4a cos42 sin a .2 0 0234. 若曲线以极坐标( )( 12 ) 表示,试给出计算f (x, y)dsL的公式,并用此公式计算下列曲线积分:( 1)ex 2 y 2ds ,其中 L 为曲线a( 0) 的一段;L4aek( 2)xds ,其中 L 为对数螺线(k 0) 在圆 ra 内的部分 .L解 因为 L 的参数方程为 x ( )cos , y ( )sin( 12 )2342dy 2且dsdxd2 / 2ddd .所以f (x, y) dsL22/ 2f ( ( ) cos , ( ) sin )d .1( 1) x 2y 24 a 20 daa;ed se a4eL( 2) xdsaekcos a 2e 2ka 2k 2e 2k dLa 2 1k 2e 2 kcos d.e 2 k cos d若记I,则e 2 k cos de 2k d sinIe 2k sin 02ksinde 2k2ksin d2k2k d cose 2ke2ke 2k cos 04k 22k4k 2 Ie 2 k cos d于是 I2k ,故 xds2a 2 k 1 k 2.1 4k21 4k 2L5. 证明:若函数 f ( x, y) 在光滑曲线 L : x x(t ), y y(t), t [ , ] 上 连续,则存在点 ( x , y ) L ,使得 f x y )d s f x 0 , y L ,其中L 0 0 L ( , ( 0 )为 L 的弧长 .证 由 于 函 数 f (x, y) 在 光 滑 曲 线 L 上 连续 , 从 而 曲 线 积 分f ( x, y)ds 存在,且Lf ( x, y)dsf ( x(t), y(t )) x 2 (t) y 2 ( t) dtL235又 f在 L 上连续, L 为光滑曲线,所以f ( x(t), y( t))与x2 (t ) y 2 (t )在 [, ] 上连续,由积分中值定理知:存在t0 [ ,] ,使f ( x(t), y(t ))x 2 (t )y 2 (t) dtf [ x(t0 ), y(t0 )]x 2 (t )y 2 ( t)dt f [ x(t0 ), y(t0 )]L .令 x0x(t0 ), y0 y( t0 ) ,显然点 ( x0 , y0 )L ,且f ( x, y) ds f ( x0 , y0) L.L§2 第二型曲线积分1.计算第二型曲线积分:( 1)Lxdy ydx ,其中L为本节例 2 中的三种情况;( 2)(2a y)dx dy ,其中L为摆线x a(t sin t ), y a(1 cost ) L(0 t 2 ) 沿t增加方向的一段;( 3)xdx ydy,其中 L 为圆周x2y2a2,依逆时针方向;L22x y( 4)Lydx sin xdy ,其中L为 y sin x0x与 x 轴所围的闭曲线,依顺时针方向;( 5)x x y y z z,其中L:从(1,1,1)到(2,3,4)的直线段 .L d d d解( 1)若积分沿抛物线OB:y2x 2(0x 1 ),则xdy ydx 14x 2 x2 ]dx 2 ;[ xL03若积分沿直线 OB : y2x (0 x1),则xdy ydx1x 22x dx0.L若积分沿封闭曲线OABO ,在 OA 一段上,y0,0x1;在AB一段上, x 1,0y 2 ;在BO一段上,沿 y2x 从x1到 x 0 .且23612 xdy ydx0dx 0,d d d 2,OA0AB0 xdy ydx xdy ydx0.BO OB因此 xdy ydxOA AB BO 2.L( 2)由于 x a(t sin t ), y a(1cost ) (0t 2 ),从而( 2 a y) dx dy 2a a cos t ) a(1cost ) a sin t] dt [( 2aLL xdx ydyx2 y2(a2 sin2 t a sin t) dt a2x a cost, y a sin t 02 a2 sint cost a2 sint cost0a2dt.t 2,所以2sin2tdt0 .(4)ydx sin xdyL OA AO(sin x sin x cosx)dx( 0sin x0)dx 2 .( 5)直线的参数方程为x 1t, y 12t, z13t( 0 t 1 )xdx ydy zdz 1t) 2(12t ) 3(13t )]dt [(1L01( 6 14t)dt13 .2.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比 .若质点由(a,0)沿椭圆移动到(0,b),求力所作的功 .解椭圆的参数方程为:x a cost, y b sin t 0 t 2 ,而F k x 2y2x,y(kx, ky) (k0) .x2y2x2y 2则力所作的功W kxdx kydyLk2a sin t)bsin t cost]dt[a cost (( 3)由于圆的参数方程为:0 2237k2( a 2 b2) sintdsin tk (b 2 a 2) .2xy 平面3. 设一质点受力作用,力的方向指向原点,大小与质点到 的 距 离 成 反 比 . 若 质 点 沿 直 线 xat , ybt , z ct (c 0) 从M (a,b,c) 沿椭圆移动到N (2a,2b,2c) ,求力所作的功 .解由于力的方向指向原点,故其方向余弦为cosxyz, cos, cosrrr其中 rx 2 y 2z 2 .所以力的三个分力为 Pk x k yk zz , Qz, Rz.从而力所作的功rrrWkxky dy kzdz2(a 2 b 2 c 2 )tdtdxzrzr kcrtLzr12a 2b 2c2k a2 b2c 2ln 2 .dtkc 21ct a 2 b 2c4. 证明曲线积分的估计式:AB Pdx QdyLM其中 L 为 AB 的弧长, MmaxP 2Q 2 .( x, y ) AB利用上述不等式估计积分I Rydx xdyx 2y 2R 2(x2xy y 2)2.并证明 lim I R 0 .R证 ( 1)因为Pdx QdyP dxQdyds ,且ABABds dsP dxQ dy(P2Q 2)[(dx)2( dy )2 ]P 2Q 2 ,dsdsdsds从而238Pdx QdyP dxQdydsP 2 Q 2 dsMds LMABABds ds ABAB( 2)因为 max( x 2 x2y24,则由( 1)得x 2y 2R 2xy y 2 ) 4R 3ydx xdy2 R48x 2y 2R 2( x 2xy y 2 )2R 3 R 280( R ) ,故 lim I0 .则 I R2RRR5. 计算沿空间曲线的第二型曲线积分:( 1) xyzdz ,其中 L : x 2 y 2 z 2a 2 与 y z 相交的圆,其方L向按曲线依次经过 1, 2, 7,8 卦限;( 2 )( y 2 z 2 )dx ( z 2x 2 )dy ( x 2 y 2 )dz , 其 中 L 为 球 面Lx 2 y 2 z 21 在第一卦限部分的边界曲线, 其方向按曲线依次经过xy 平面部分, yz 平面部分和 zx 平面部分 .解 ( 1)曲线的参数方程为xcost, y2sin t, z2sin t) ,且 t 从 022(0 t2 增加到 2时,曲线依次经过 1,2,7,8 卦限,xyzdz2 2 2 . 所以sin 2t cos 2 tdtL416( 2)球面在第一卦限部分的边界曲线由三部分xcostx 0L 1 : ysin t (0 t2) ;L 2 : y cosu (0 u2) ;z 0 z sinuxsin vL 3 : y0 (0 t2)组成 .zcosv而( y 2 z 2 )dx (z 2x 2 )dy ( x 2y 2 )dzL 12392(sin 3 t cos 3t )dt 4 ,3同理L 2 ( y 2 z 2 )dx ( z 2 x 2 ) dy ( x 2y 2 )dz2cos 3u)du4 , (sin 3u3L 3 ( y 2 z 2 )dx (z 2x 2 ) dy ( x 2y 2 )dz2cos 3v) dv4 .(sin 3v34 4 4所以( y 2 z 2 )dx (z 2x 2 )dy (x 2 y 2 )dz4 .L3 3 3总练习题1. 计算下列曲线积分:( 1)yd s ,其中 L 是由 y 2x 和 x y2 所围的闭曲线;L( 2)y ds ,其中 L 为双纽线 ( x 2 y 2 ) 2 a 2 ( x 2 y 2 ) ;L( 3) zds ,其中 L 为圆锥螺线 xt cos t, y a sin t , z t ,t [0,t 0 ] ;L( 4)xy 2dy x 2 ydx , L 为以 a 为半径, 圆心在原点的右半圆周从L最上面一点 A 到最下面一点 B ;( 5)dydx,L 为抛物线 y x 2 4 ,从 A(0, 4) 到 B(2,0) 的一段;Lx y( 6)y 2d x z 2 dy x 2 dz , L 是维维安尼曲线x 2y 2 z 2a 2 ,Lx 2 y 2 ax ( z 0, a 0) ,若从 x 轴正向看去, L 是沿逆时针方向进行的 .解 (1) L 是由 L 1: yx ,0 x 1 与 L 2 : yx,0x 4 及L 3 : y 2x,1 x 4 三部分组成 .故ydsydsydsydsLL 1L 2L 324011)2dx 4x 1 (1) 2dx1x 1 (2 (2 x)dx2 x2 x15 17 32 .(517 )122r 2 a 2 cos2( 2)由于 L 的极坐标方程为 , r 0 ,且dsr 2r / 2 dad .cos2利用对称性得y ds4 4 r sinad4a 24sin d4a 2 (12 ) .Lcos22( 3)由于 ds(cost t sint)2(sin t t cost )2 1dt2 t 2 dt ,zdst 02t 2dt1t 0 2 t 2d ( 2 t 2 )所以t 0L21{( 2 t 0 ) 3 2 2 2}.3( 4)由于圆的参数方程为:x cost, ysin t(2t ),且 A 点2与对应, B 点与对应 .故22xy 2dyx 2 ydxL2 { a cos t a 2 sin t a cost a 2 cos 2 t a sin t ( asin t)} dt2a 4 2 sin 2 2tdta 4 21 cos 4t dta 4 ;222224dy dx22x 12x1( 5)2dx 2dx0 xx 21Lx y4( x ) 2 152162ln( xx24)ln 2 .241( 6)曲线L的参数方程为a a, y a, z a sin, 02x cos sin2222则 y 2dx z2dy x2dzL2a sin )2 (a sin )( a sin )2( a cos )(a a cos )2( a cos )}d{(022******* a3.42.设 f ( x, y) 为连续函数,试就如下曲线:(1)L:连接A( a, a), C(b, a)的直线段;( 2)L:连接A( a, a),C(b, a), B(b,b)三点的三角形(逆时针方向),计算下列积分: f ( x, y)ds, f ( x, y)dx, f ( x, y)dy .L1L 2L2解( 1)连接A( a, a),C (b, a)的直线段的方程为y a, a x b ,by则f ( x, y)ds f (x,a)dx ;L1a C(b,b)bf ( x, y)dy 0f ( x, y)dx f (x,a)dx ;.L1a L1B (b,a)( 2)连接C(b, a), B(b,b)的直线段的方程为A(a,a)x x b,a y b ,则f ( x, y)dsb CB f (b, y)dy ;af ( x, y)dx0, f ( x, y)dy b CB f (b, y) dy .CB a连接 B(b,b), A( a, a) 的直线段的方程为y x,a x b ,则f ( x, y) ds2b BA f ( x, x)dx ;af ( x, y) dx af ( x, x) dxbBA bf ( x, x)dx ,af ( x, y) dy af ( y, y) dybBA bf ( y, y)dy , a242f ( x, y)ds b b2b从而 f ( x,a )dx f (b, y)dy f ( x, x)dx ;L 2a a af ( x, y )d x b bf ( x, a )d x f ( x, x )dx ,L 2a af ( x, y )dy b bf ( y, y)dy .f (b, y) dyL 2a a3.设 f ( x, y) 为定义在平面曲线弧段AB 上的非负连续函数,且在AB 上恒大于零.( 1)试证明 f ( x, y)ds 0 ;AB( 2)试问在相同条件下,第二型曲线积分f( ,y) d0 是否成AB立?为什么?证(1)证由题设存在 P0 ( x0 , y0 )AB, 使得 f (P0 )0 ,令f ( P0 ) ,由连续函数的局部保号性知:存在0 ,使得对一切P L1 (L1U (P0,) AB) ,有 f (P).2又由于 f ( x, y) 为定义在平面曲线弧段AB 上的恒大于零的连续函数,因此 f ( x, y) 在 AB 上可积,且f ( x, y)ds f ( x, y)dsAB f ( x, y)ds2L10 .AB L 1L1(其中 L1是 L1的弧长).( 2)不成立 .因为第二型曲线积分与平面曲线弧段AB 的方向有关.如 f (x, y)2x ,沿着曲线y x从 A(2,2) 到 B(1,1) ,显然 f ( x, y)为定义在平面曲线弧段AB 上的非负连续函数,且恒大于零.但12 xdx3 .2xdx2AB243。

2019年大一高数上册.doc

2019年大一高数上册.doc

复习提纲(函数、极限与连续)一、函数有界函数,周期函数,奇偶函数,复合函数,反函数,显函数,隐函数,初等函数,分段函数,导函数,积分上限函数。

1. 定义域:使函数解析式有意义的x 的取值范围1) 分式:(),()0()g x y f x f x =≠ 2)根式开偶次方根:y n 为偶数),()0f x ≥ 3) 对数:log ()a y f x =,()0f x >4) 反三角函数:arcsin (),arccos ()y f x y f x ==,()1f x ≤ 2. 函数值记法:000(),(),(),()x x x x y x f x y x f x ==已知(())f g x ,求()f x例:2()sin ,(())1f x x g x x ϕ==-,求()x ϕ及定义域例:222(1)ln 2x f x x -=-,求()f x 及定义域3. 奇偶性:f D 关于原点对称,若()()f x f x -=,()f x 偶函数; ()()f x f x -=-,()f x 奇函数 常见的奇函数:211sin ,tan ,,,arcsin ,arctan n x x x x x x+,ln(y x =+ ;常见的偶函数:22,cos ,(,,,xnx x x x n e e 为正整数);注:对任意函数()f x ,1[()()]2f x f x +-偶函数,1[()()]2f x f x --为奇函数例:已知2()2,[0,2]f x x x x =+∈,试补充()f x 在[2,0]-上的表达式使其在区间[2,2]-上构成偶函数(偶延拓)4. 常见的有界函数:,()f x D f x M ∀∈≤(常数)s i n 1,c o s1,(,)a r c s i n,a r c c o s,[1,1]2a r c t a n ,a r c c o t,(,)2x x x x x x ππππ≤≤-∞+∞≤≤-<<-∞+∞5. 周期函数:()()f x T f x +=,T 为周期 1)()f ax b +的周期为Ta;2)()()f x g x ±的周期也是T ((),()f x g x 的周期T ) 3)(),()f x g x 分别是以1212,()T T T T ≠为周期的函数,则()()f x g x ±是以12,T T 的最小公倍数为周期的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x1②1 - -④x大一高数试题及答案、填空题(每小题1分,共10分)----- 2 11•函数 v =arcsi nJ 1 — x + _______ 的定义域为Jl —x 222 •函数 y = x • e 上点(0,1)处的切线方程是 ________________4 •设曲线过(0,1),且其上任意点( x , y )的切线斜率为2x ,则该曲线的方程是3 .设f(X )在X 。

可导,且f (x ) = A ,则怛。

f(X o 2h)- f(X o - 3h)h5.x”dx6.lim x sin 1 X )二 x设 f(x,y)=sin(xy),则 fx(x,y)=9.微分方程3dx 3Jh 2的阶数为dxOO10 .设级数n=1OO刀 a n 发散,则级数刀n=1000二、单项选择题。

(1〜10每小题1分,11〜2 0每小题2分,共3 0分)1.设函数1f (x), g(x)二 1 -x 则f [g(x)]= ()① tf ( x, y ) ② t2f (x, y )2. x sin 丄 1 是()x① 无穷大量② 无穷小量 ③ 有界变量 ④ 无界变量3 .下列说法正确的是① F (X) +G (X)为常数② F (X) -G (X)为常数③ F (X) -G (X) =0④ d ! F (x)dxd I G ( x ) dx1dxdx6.1-1x |dx =()i① 0②i③2④37 .方程2x + 3y =1在空间表示的图形是 ()① 平行于xoy 面的平面 ② 平行于oz 轴的平面 ③ 过oz 轴的平面 ④ 直线① 若f ( X )在X = Xo 连续, 则f( X )在X = Xo 可导② 若f ( X )在X = Xo 不可导,则f( ③ 若f ( X )在X = Xo 不可微,则f( ④ 若f ( X )在X = Xo 不连续,则f( X )在X = Xo 不连续 X )在X = Xo 极限不存在 X )在X = Xo 不可导4 .若在区间(a,b )内恒有 f ' ( X )b)内曲线弧『=f(x )为 ()0 , f " ( X ) 0,则在(a.① 上升的凸弧② 下降的凸弧③ 上升的凹弧④ 下降的凹弧'.设 F '(x)G '( x),则()8.设f(x,y)= x 3 y 3 x 2 y t a n,则 f(tx,ty)=④有(x, y)①在p〉1时收敛,p〈1时发散②在p>1时收敛,p〈1时发散③在p<1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散210.方程y' + 3xy = 6x y 是 ()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共2 0分11.下列函数中为偶函数的是()®y = ^ X®y = x 3+1③y = x 3cosx ④y=ln|x|12.设彳(乂)在(a,b )可导,a〈x 1〈x 2 <b,则至少有一点Z€(a,b)使()①f(b)-f(a)=f ' (Z )(b — a)②f(b)-f(a)=f ' (Z )(x 2 —x 1)③f(x 2)—f(X l)=f'(Z )(b — a)④f(x 2)—f(X l)=f'(Z )(x 2—x l)13.设f (X)在X = Xo的左右导数存在且相等是f (X)在X = Xo可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件14.设2f(x)cosx =d[f(x)] Uf(0)=1,9 .设a n>0,且limn rs a n +1--------- =p,则级数a n=1oo刀a n2n=o n=o的曲线方程为y=()③ x 4+1④ x 4—()1③ ---- ④g3()③ g④ s① 设y ' =p ,贝Uy " =p 'dp② 设y ' =p ,贝U y "= --------------dy dp③ 设y ' =p ,贝 U y "=p -------------dy 1dp ④ 设y ' =p ,贝U y "= -------- ----------pdy则f (x) = dx①cosxs inx②2—cosxnx18 .对微分方程 y " =f(y,),降阶的方法是 15 .过点(1 ,2)且切线斜率为4x 3①x 4② x 4+c11 x1 6.1im--------/ 3tgt 2 dt =X T 0x 3①0② 11 7.1imxysinxyx t 022x +yy t0① 0② 1in119.设幕级数刀a n x 在X o (x 。

工0)收敛,①绝对收敛 ②条件收敛 ③发散 ④收敛性与a n 有关sinx2所围成,则// ----------- d(T =Xs inxdys inxdxx s inxdyx s inxdxx三、计算题(每小题5分,共4 5分)2sin(9x —16)2 .求 limX T 4/33x — 4 dxdy4.设 x= /(cosu)arctgudu,y = /(sinu)arctgu du,求 。

1.设 yy2 0 .设D 域由y = x,y = xD10 .发散5 .求过点 A (2,1,-1),B (1,1,2 )的直线方程。

6 .设 u = e X +Vy +sinz,求 du 。

x as in 07.计算 / / rsin 0drd0 。

0 0y+18 .求微分方程dy=( ------------------- ) 2 dx 通解x+1 39 .将 f(x)= ---------------------------------------- 展成的幕级数(1 — x)(2 + x)四、应用和证明题(共15分)1.(8分)设一质量为m 的物体从高空自由落下,空气阻力正比于速度 (比例常数为k>0 )求速度与时间的关系。

1> 3 — ——x附:高数(一)参考答案和评分标准 、填空题(每小题1分,共10分)9.三阶dx2.(7分)借助于函数的单调性证明:当x>1时,2"x1. (—1 ,1)2.2x —y+1= =04. y = x 2+ 11 arcta n X2 c7. ycos(xy)n /2n8. / d0 / f(r 2)rdr0 03.5A6.13dx + 1分)二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的 ( )内,1〜10每小题1分,三、计算题(每小题5分,共4 5分)每小题1分 ,共10分.③ 2 .③3 .④ 4.④ 5 .②.②7.②8.⑤9.④10 .③每小题2分,共20分④ 12 .④ 13 .⑤ 14.③ 15 .③ ②17.① 18 .③19.①2 0.②1 6 1. 6. .解: 原式=li 虫 -------------------------------X T 4/3318(4/3)cos[9(4/3)3分)2—16]―― =82分).解: xx1+e —e原式=/ ----------------------- d x x2(1+e x) 2dx2分)(1分)x 1 + exx+e —ex21+e x) 211〜2 0每小题2分,0分).解:11 ny= --------- [ln(x —1)2 1 —lnx —ln(x + 3)(2分)2 x —1 1)x x +32分)1/x —1y ' = ------- / ---------------------2 V x(x + 3)x —l1―)xx +(1分)4.函数yx x 3. lim (丄)x =( ) X F X 1 A.eB.ex -3 C.::D.1(x 2)(x -1)的连续区间是(x= x — ln(1 + e ) +4.解:因为 dx=(cost)arctgtdt,dy=—(sint)arc tgtdt (3分)— (sint)arctgtdt -- = —tgt (2分)5 .解:所求直线的方向数为{1,0,—3}(3分)x — 1 y — 1 z — 2 所求直线方程为 -------- = ------------- = ------------ (2分)1—3x + V y + si nz//6 .解:du = e d(x+VyD C A C A B C C B A D A B A D A D B D A二课程代码:00020、单项选择题(本大题共 20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。

错选、多选或未选均无分。

1 x1•设函数 f(),则 f(2x)=(x x —1 2.已知 f(x)=ax+b,且 f(-1)=2,f(1)=-2,贝U f(x)=( ) A. x+3 D.-2x1+e1(1分)dy 所以 ------dx(cost)arctgtdt+ sinx)(3分)A.1 1 —2xB.C.2(x -1) D. 2(x -1)2xB.x-3C.2x12•设f(x)的一个原函数是 x ,则.xf (x)dx 二( )3A. - CB.X 5+C 3C. 2x 3 C D.77 C3 1583 -13. e dx 二()J -8A. (R/)U (—1,gB. (-co, _1) U (_1,亦)C. (-oa,/)U (/,—1)U (—1,*c )D. 3,亦)5.设函数 f(x^/x +1)ln(x +1)2,X41在 x=-1 连续,则a=()a, x = _1A.1B.-1C.2D.O6.设 y=lnsinx,贝U dy=( )A.-cotx dxB.cotx dxC.-ta nx dxD.ta nx dx7.设 y=a x (a>0,a 式 1),则 y (n) x-~ ( )A.0B.1C.l naD.(l na)n8.设一产品的总成本是产量 x 的函数C(x),则生产x o 个单位时的总成本变化率是( )A. C(x)B^l6X =x °xX 1C dC(x)D dC(x)X=X odxdx 9.函数 y=e -X -x 在区间(-1,1) 内( )A.单调减小B.单调增加C.不增不减D.有增有减 10.如可微函数f(x)在X 0处取到极大值 f(x o ),则()A.f (X 。

相关文档
最新文档