相似图形的特征

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DF 12, DE 16
乘胜追击 实践应用:在同一时刻物高与影长成比例,如果某学校 的教学楼在地面上的影长为10 m ,同时高为1m 的测杆的影 长为50 cm ,那么该教学楼的高是多少米?
A
D
C B 10m
1m
F E0.5m
BC AB 10 AB AB 20 EF DE 0.5 1
永攀高峰,胜利一定属于你!
两个相似的五边形的对应边之比为1:2,其中一个五边形 的最短边为3cm ,则另一个五边形的最短边长为多少厘米?
3cm
x
y
y 1 y 3
32
2
3 1x6 x2
通过刚才的学习,你认为如何识别两个多边形 是否相似?想想看你一定有办法!
相似多边形的识别方法: 如果两个多边形对应边成比例,对应角相
等,那么这两个多边形相似。
应用中领悟
正三角形
A E
B
D A`
正方形
D`
B` C`
C
四边形
应用中领悟
A A`
D D`
B` B
C` C
理性思考: 问题一:只满足对应边成比例的多边形一定相似吗?
b=5 a=10 问题二:只满足对应角相等的多边形一定相似吗?
问题三:两个菱形相似吗?添加一个什么条件就相似?
2
1
问题四:两个矩形相似吗?添加一个什么条件就相似?
结论:如果对应边成比例,对应角相等,那么多边形相似。 两者必须同时满足,缺一不可。
探索:两个相似多边形周长之比是否等于对应边之比?
反思中整合
1、我知道了…… 2、我学会了…… 3、我的疑问是……
B
A C
(2)
(3)
F
G
D
E
实验探究
等边三角形
正方形
直角三角形
问题一:从相似多边形的边和角出发,进行观察、 猜测、测量等活动,你发现了什么?
问题二:根据你发现的规律,请你概括一下相似 多边形具有哪些特征?
问题三:对一般相似多边形而言,你所归纳出的特征 是否成立? 相似多边形的特征:对应边成比例,对应角相等.
1cm
2cm
3cm
a
b
c
求 a 与 c 的值并比较大小. bd
a 1,c 3 1 b 2d 6 2
6cm d
ac bd
对于四条线段a、b、c、d,如果其中两条线段
的长度的比与另两条线段的长度的比相等,即
a b
c d

那么这四条线段叫做成比例线段,简称比例线段.
应用中领悟 牛刀小试:
1、①、根据图示求线段比: AC AC CD
解得 x=28,y=24
α=3600-(700+800+1200)=900
应用递进
在 ∆ABC中,BC=5cm,CA=6cm,AB=8cm,另一个和它 相似的三角形的最短边为10cm,求其余两边的长度。
F
C
6
5
10
A
8
B D
E
BC AC , BC AB EF DF EF DE
5 6 ,5 8 10 DF 10 DE
数学中实验探究的基本步骤: 1、观察 2、猜测 3、测量 4、推理 5、验证 6、得出结论
应用中领悟
2、在如图所示的相似四边形中, 求未知边x、y的长度和角度α的大小?
16 700 y
x 800
4 1200 α 7
700 6
解:由于相似图形的对应边成比例,对应角相等
所以
16 4
=
x
7
16 4
y =6
CD Cபைடு நூலகம் DB
1cm 2cm
4cm
AC
D
B
AC 1 CD 2
AC 1 CB 6
CD 1 DB 2
②、指出图中成比例的线段?
AC CD CD DB; AC=1, AD=3, AB=7, CD=2, CB=6, DB=4
AC CD AD CB;
AC AD CD CB; CD AD DB CB.
(1)
相关文档
最新文档