地震资料数字处理技术

合集下载

地震资料数字处理__第四章_速度分析

地震资料数字处理__第四章_速度分析

5.射线速度(ray velocity)
在水平介质中,波沿某一条射线传播时,所经过的总路 径与总时间之比.(有的书上叫做射线平均速度)
Vr=hi/[1-vi2p2]1/2/ hi/vi[1-vi2p2]1/2
(4-1-5)
显然,射线参数P不同,射线速度也不同,因此,它无法用等效层 来讨论。射线速度不仅考虑了射线的“弯折效应”,也考虑 了横向不均匀的影响,因此是一种更精确的速度。但由于实 际中很难计算它,故它主要具有理论上的意义(由于它有公 式可以计算,所以常用来作为标准对其它实际中获得的速度 进行评判)。
V=Vrms = {vi2ti/ ti}½
(4-1-4)
即各层层速度对垂直传播时间的均方根值。由(4-1-4)式可以看出,均方根速 度也相当于用一个速度为V的均匀介质去代替第n层以上全部上伏地层 的一种等效处理。由于实际上它是用双曲线时距关系代替水平层状介质 的非双曲线时距关系对应的速度,所以这种等效处理的适用范围就是水 平层状介质时距曲线接近双曲线的那个范围(范围有多大?).它与平均速 度的不同之处在于考虑了不均匀介质的“折射”效应,因此运用范围应 大一些。
简化,从数学上讲主要就是取平均,从物理上说就是取等效 层,即用均匀介质去等效非均匀介质。一般来说,岩性的纵 向变化总是比横向变化快,所以我们主要考虑纵向上的平 均。 2.层速度(interval velocity) 按照地层物性,将地下介质分成若干厚度在几十米以上的地 震反射层,并认为地下介质是由若干个彼此平行的地震层 所组成,将每一地震层都看作均匀介质,取其中各个薄互层 真速度的平均就是层速度;它接近于其中包含的大量薄 平行层的真速度。层速度可以由地震测井获得 Vi=H/t (4-1-2) 显然,层厚度H越小, Vi就越接近于真速度.由声波测井求得 的层速度H可以很小(0.3~1m),这时的速度与岩性关系更 密切。

高密度地震数据处理技术研究及应用

高密度地震数据处理技术研究及应用

实际采集与附加采集后振幅图
中国石油学会2008年物探技术研讨会
1. 高密度勘探技术发展
国外
③西方公司的Q-land地震勘探技术
采集技术: “十字排列”、“单点接收”采集 数字检波器接收 面元子线接收、单点距5米 野外不组合、室内组合
模拟检波器
模 拟 叠 加
模拟组合形式
野外记 录单元 CCU
常规地震采集
高密度地震勘探技术是国外地球物理服务公司发展最 快的技术之一,形成自己特有的技术系列。
➢ PGS公司:HD3D技术 ➢ CGG公司:Eye-D技术 ➢ 西方公司:Q技术系列
- Q-land - Q-Marine - Q-Reservoir - Q-Seabed - Q-Borehole
中国石油学会2008年物探技术研讨会
中国石油学会2008年物探技术研讨会
2. 高密度数据处理技术
(1) 层析静校正技术 (2) 室内组合压噪技术 (3) 叠前3D FK去噪技术 (4) 高精度动校正技术 (5) 叠前时间偏移技术
中国石油学会2008年物探技术研讨会
(1) 层析静校正技术
密集的初至波能够更加细致地反映近地表结构的变化,为精 细的近地表模型反演、高精度静校正创造了条件;
中国石油学会2008年物探技术研讨会
(1) 层析静校正技术
网格尺寸:50m×1.5m
网格尺寸:5m×1.5m
同口高密度二维
对模型刻画精细,高频成分更丰富
中国石油学会2008年物探技术研讨会
(1) 层析静校正技术鸭老北三维Fra bibliotek鸭儿峡三维
鸭老南三维
石北三维
工区高程平面图
石油沟
中间参考面反演速度
中国石油学会2008年物探技术研讨会

数字技术在地质勘探空间信息处理中的应用案例

数字技术在地质勘探空间信息处理中的应用案例

数字技术在地质勘探空间信息处理中的应用案例地质勘探一直是石油、矿产等资源行业的重要环节,而数字技术的快速发展和普及为地质勘探带来了巨大的变革。

数字技术在地质勘探中的应用为空间信息处理提供了高效准确的解决方案。

本文将以几个具体案例为例,探讨数字技术在地质勘探空间信息处理中的应用。

一、地震勘探中的数字技术应用地震勘探是地质勘探中常用的一种方法,通过记录并分析地壳中产生的地震波,获取地下结构的信息。

在过去,地震勘探主要依靠人工解读数据,效率低下且容易出错。

随着数字技术的发展,人们可以利用计算机算法和模型来处理地震数据,大大提高了勘探的效率和准确性。

比如,在地震数据处理中,使用数字滤波技术可以有效地去除背景噪声,突出地下结构的细节。

同时,数字技术还可以通过反演算法,将地震数据转换成可视化的地下模型,帮助地质学家更好地理解地下结构,为勘探决策提供可靠的依据。

二、地形测量中的数字技术应用地形测量是地质勘探的另一个关键环节,通过测量地表的起伏和形状,可以确定地质构造和沉积环境等重要信息。

数字技术在地形测量中的应用使得数据的获取和处理更加便捷和准确。

激光雷达技术(LiDAR)是地形测量常用的数字技术之一。

利用激光雷达仪器对地表进行扫描,可以高精度地获取地表的数据。

获取到的数据可以通过数字海拔模型(DEM)进行处理和分析,快速生成地形图、坡度图、等高线等多种地表表示方式,为地质勘探提供宝贵的信息。

三、地质模拟中的数字技术应用在地质勘探中,地质模拟是一种重要的辅助工具。

通过数字技术,地质模拟可以更真实、更复杂地还原地下地质结构和过程,帮助地质学家更好地理解地质演化和资源形成。

数值模拟技术是地质模拟的一种重要方法。

利用计算机进行数值模拟可以模拟地震、地壳运动、岩石变形、沉积过程等多种地质现象,生成准确的地质模型。

这些模型可以用于预测资源分布、评估地质灾害风险等,为勘探工作提供指导和支持。

四、地质数据库中的数字技术应用地质数据库是地质勘探中重要的数据存储和管理平台。

《地震资料数字处理》复习

《地震资料数字处理》复习

《地震资料数字处理》复习地震资料数字处理围绕以下三方面工作:1、提高信噪比;2、提高分辨率;3、提高保真度。

一、提高信噪比的处理1、原理利用噪声和信号在时间、空间、频率和其他变换域中的分布差异,设计滤波因子,将噪声进行压制。

2、处理顺序提高信噪比包含消除噪声和增强信号两部分内容。

消除噪声一般在叠前的各种道集上进行,主要针对规则干扰如多次波和面波等,增强信号一般在叠后剖面上进行,主要针对随机噪声。

3、随机噪声是指没有固定的频率、时间、方向的振幅扰动和震动,其成因大致是来自环境因素、次生因素和仪器因素,其中次生干扰的强度与激发能量有关。

随机噪声在记录上表现为杂乱无章的波形或脉冲,在频率上分布宽而不定,在空间上没有确定的视速度。

随机噪声的随机性与道间距有关,如果道间距减小到一定程度,许多随机噪声表现出道间的相干性,当道距大于随机噪声的相干半径才表现出随机性。

4、一维滤波器(伪门、Gibbs现象)频率滤波器是根据信号和噪声在频率分布上的差异而设计时域或频域一维滤波算子。

它压制通放带以外的频率成分,保留通放带以内的频率成分。

Gibbs现象是由于频率域的不连续或截断误差引起的,通放带和压制带之间设置过渡带可克服此现象,设计滤波器就是控制过度带的形状和宽度。

5、二维滤波器二维滤波是根据有效信号和相干噪声在视速度分布上的差异,来压制噪声或增强信号。

通常用来压制低视速度相干噪声,在f-k平面上占据低频高波数区域。

二维滤波比较容易产生蚯蚓化现象,而且混波相现象明显,在空间采样条件不满足或陡倾角的情况下受到空间假频的影响,一般常用于压制一些规则干扰,如面波和多次波等。

6、频率-波数域二维滤波实现步骤:(1)把时间和空间窗口里的数据变换到f-k域;(2)在f-k域,通过外科切除,按径向扇形划分压制区C(乘振幅置零)、过渡区S(乘振幅置0至1变化)、通放区P (乘振幅置1) ;(3)从f-k域反变换到t-x域。

8、数字滤波有两个特殊性质:(1)数字滤波由于时域离散化会带来伪门现象,(2)由于频域截断会造成吉卜斯现象。

地震资料处理[高级课件]

地震资料处理[高级课件]

fd (t) d (t) *i(t) 为接收滤波器
严选内容
22
对反射地震勘探而言,除一次反射波以 外的一切波都是干扰波,一次反射波可用以 下褶积模型表示:
s(t) b(t) * (t) b (t)
S( t )
实际 模型
褶积模型
理想模型
严选内容
23
*



地震子波
反射系数
第一层反射波 第二层反射波 地震记录
严选内容
17
第二节 地震记录的形成及显示
一、地震记录的形成
(一) 地震记录的褶积模型 1. 理想模型
设震源脉冲为b (t) ,假定无吸收、透射和多次反射 等因素影响,无随机干扰,则理想的输出:
x(t) b (t) * (t) b (t)
式中 (t) 为反射系数(反射率函数)。
x( t )
理想 模型
严选内容
2
出现于二十世纪二十年代初期:光点记录和模拟记录, 发展较慢。
利用反射时间推断构造形态。主要包括:滤波、反滤波、 动静校正
二十世纪六十年代:数字记录,数字时代,发展迅速。
野外采集发展了多次覆盖技术,出现了水平叠加和偏移 叠加技术。
二十世纪七十年代:开始寻找岩性油气藏
反滤波、偏移成像技术有了较大发展,出现了波动方程 偏移技术、“亮点”技术、声阻抗反演技术、复地震道技术 (三瞬)。
(2)与地质结构无关:水中鸣震、气泡效应、
地表及海面散射等。
严选内容
27
有噪声时严选的内容褶积模型
28
(二)地震剖面的数学模型—射线理论
二维情况下可根据给定的地质模型, 利用射线理论得到自激自收地震剖面。 有多种实现方法,如褶积模型的逐道循 环法等。

地震数据处理 第一章:地震数据处理基础

地震数据处理 第一章:地震数据处理基础

3.速度分析(velocity Analysis);
4.动校正(Normal Moveout Correction)消除由于炮检距不同引起同一
反射波达到时间的差异;
5.叠加(Stack); 6.显示叠加剖面 (Display) (有波形、变面积、波形+变面积三种显示方式);
从波形可看出波的振幅、周期、频率等动力学特点;从变面积的角度,它又突出了 反射层,较直观地反映地下构造形态的特点
ICTFT
f (t )
时 域 恢 复 时 域 抽 样
LT
F ( s)
S j j S
F ( j )
截 取 主 周 期 频 域 周 期 延 拓
ILT
j j n F ( e ) f ( n ) e n- DTFT : j j n f ( n) 1 F ( e ) e d 2
地震波不是简谐波,从波剖面中可得到相邻两峰或谷 间的距离称为视波长,其倒数为视波数。
地 震 波 场
地 震 波 场 时 间 切 片, 即 波 动 图
一ቤተ መጻሕፍቲ ባይዱ付里叶变换
一个正弦运动要用频率、振幅和相位才能完整 的描述。
在计算机中用快速算法实现付里叶变换(FFT)。
付里叶变换:
正变换:时域信号 分解 频域信号;
时 间 (s)
频率(Hz)
图1.1-11 几个没有相位延迟但峰值振幅相同的正弦波的总和产生一个带限对称子波, 表示在右边一道上(由星号标出),这是一个零相位非对称子波
图1.1—12表示给在图1.l-11中的各正弦 波一个线性相位移所产生的结果。线性相 位移在频率域定义为:

时 间 (s)
模拟与数字信号 一道地震信号是一个连续的时间函数。在地震记录中,连续(模拟) 的地震信号在时间域按照固定的比例取样,叫做采样间隔。典型采样间 隔范围在1到4ms,高分辨率要求采样间隔小到0.25ms。 一般地说,给定采样间隔 ,则可恢复的最高频率为尼奎斯特(Niquist) 频率。公式如下:

地震资料的处理

地震资料的处理

地震资料的一般处理过程分三个阶段:预处理、参数提取和分析、资料处理。

处理的最终结果是得到供解释用的水平叠加时间剖面或叠加偏移时间剖面。

1.预处理对原始数据进行初步加一U,以满足计算机及操作系统中各处理方法的要求。

一、数据解编野外磁带记录数据是按时序排列的,即依次记一F每道的第一个采样值,各道记完后,再依次记下各道的第二个采样值,依此类推。

在数据处理中,时序排列的形式很不方便,必须转换为道序排列,即第一道的所有数据都排在第二道之前,使同一道数据都排放在一起,这种预处理称为数据解编或重排。

二、编辑在浅层地震数据采集中,由于施工现场复杂,外界干扰大,难免出现一些不正常道和共炮点记录,这些记录信噪比低,如果参与叠加处理会严重影响处理效果。

在止式处理之前,需要对这些不正常的记录进行编辑处理,例如对信噪比很低的不正常道进行充零处理,发现极性反转的工作道对它们进行改正等。

另外,还要显示有代表性的记录并观察初至同相轴,以便进行初至切除。

切除是为了消除包括噪声的记录开始部分所存在的高振幅,这样做对避免以后处理时出现的叠加噪声有好处。

切除的方法就是用零乘需要切除的记录段。

三、抽道集抽道集也叫共深度点选排,是把具有相同共反射点的记录道排成一组,按共深度点号次序排在一起。

抽道集处理后,磁带上记录的次序是以共深度点号为次序的记录,以后所有的处理都将方便地以共深度点格式进行。

四、真振幅恢复处理在野外数据采集过程中,为了使来自不同深度信号的能量能够以一定的水平记录在磁带上,数字地震仪采用了增益控制,对浅层信号放大倍数低,深层信号放大倍数高。

对经过增益控制的地震记录恢复到地面检波器接收到的振幅值的处理称为增益恢复。

数字仪对信号进行增益控制时的增益指数己记录在记录格式的阶码上,因此增益恢复的公式为:A=AO/2”其中A。

为记录到的采样值,A为地面检波器接收到的增益控制前的振幅值,n为阶码(即增益指数)。

2参数提取与分析参数提取与分析的目的是为寻找在常规处理或其他处理中常用的最佳处理参数,以及有用的地震信息,如频谱分析、速度分析、相关分析等。

地震资料数字处理第三章动静校正

地震资料数字处理第三章动静校正

当界面为倾斜时,反射时距曲线也 是一条双曲线,但是极小点向上 倾方向偏移的双曲线,与水平界 面情况类似,只有经过动校正消 除了炮检距的影响后,其时距曲 线才是一条直线,但不是水平的, 而是一条与反射界面成镜像的 倾斜直线.这时,它可以基本反 映地下反射界面的形态.
共反射点时距曲线
在地面、反射界面为水平,界面 以上介质为均匀的情况下, 共反射点时距曲线也是一条 双曲线,其极小点位于共反 射点的正上方.要想进行共 反射点叠加,最终获得水平 叠加剖面,也必须对反射波 时距曲线进行处理,消除炮 检距的影响.
难点:自动统计剩余静校正的具体实现
参考:双语教材的3.0,3.1和3.3节
动静校正又通称数值校正,是地震资料数字处理的基本内容之一,其目的就是为了 从原始地震记录中消除由于非零炮检距引起的时间延迟和由于表层不均匀性 引起的时间差异,使地震记录能真实地反映地下界面的情况,为后续的资料处 理、解释提供可靠的信息。
这里也需提醒大家注意速度参数对动校正量的影响.由公式 ti xi²/2 t0v²
可知,如速度函数取得不恰当,也会使动校正量发生变化: 速度偏大(应用的速度比真实速度大),会使双曲线未完全校平,这叫做动校正不足
(undercorrection);速度偏小,会校正过量(overcorrection),从而在时间剖面上 造成一些错误影像,给解释造成“陷阱”,这是在具体处理中需特别注意的.
无论哪种情况,都必须消除炮检距的影响,才能应用时距曲线,所以,我们就把消除非 零炮检距的影响——把非零炮检距反射时间t校正为零炮检距反射时间t0的校正
过程叫做动校正.
注意:对于共炮点记录和共反射点记录,动校正的原理和公式都是一样的,但其含义是
不同的.对于共炮点记录来说,动校正是把各接收点处的反射时间校正为炮点处的

地震资料数字处理

地震资料数字处理

MB1 MB2 MB3
四、处理流程
(1) 观测系统定义 (2) 野外静校正 (3) 线性动校正 (4) 叠前去噪 (5) 反褶积 (6) 速度分析 (7) 动校正、切除 (8) 剩余静校正 (9) 叠加 (10)叠后去噪 (11)绘图
1、定义观测系统 运行如下模块: 3D Land Geometry Spreadsheet* 弹出如下菜单:
横线方向覆盖次数: N y P * R /(2d )
P 排列不动所需的激发点数;R 接收线数; d 束线间接收线移动距离相当的激发点数。
例 如 : 对 于8线8炮 制 的 采 集 方 式 , 其R和P分 别 为8; 束线间接收距为4 200m 800m,横线炮距100m, d 800/100 8, 故 N y 8 8 /(2* 8) 4
10。用MB1击,则 将数据输入表中。
● Sources (填写炮点参数表)
Source Line Station St Index x y z FFID Time Date Offset Skid Shot fold* Pat Shift Static
用户定义的震源编号 震源线号 震源站号 同一炮点识别器(1~9) 震源点的X坐标 震源点的Y坐标 震源点的高程 野外文件号 放炮时间 放炮日期 炮点垂直炮线的偏移距,+右、-左 炮点平行炮线的偏移距,+大、-小号 接收道数 排列滚动的站点值 用户定义的静校量
● Receivers (填写接收点参数表)
Station Pt index x y Elev Line Static
接收点站号(桩号) 站点识别器(1~9) 接收点x坐标 接收点y坐标 接收点高程 接收点线号 接收点静校量
本例为498~825/线 全1 为测量数据 为测量数据 为测量数据 本例线号为1~9 全0

地震数据处理重点整理

地震数据处理重点整理

地震数据处理重点整理(个人观点)一、题型判断题20分/10个名词解释30分/5个简答题30分/3个计算题20分/2个二、名词解释1、地震剖面的“三高”:高信噪比、高分辨率和高保真度。

2、野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。

剩余静校正:野外静校正后,在地震数据中仍然残留有各种剩余静态时移,对这些的校正称为剩余静校正。

3、反褶积:沿时间坐标轴作用,通过压缩地震子波提高地震时间分辨率。

4、最小相位信号:是具有对相同振幅谱的物理可实现信号中相位最小的信号,或者说能量延迟最小的信号。

5、视波数:k=f/v,由于地震勘探是沿测线观测的,因此可以用视波长、视速度、视波数来描述地震波特征,可表示为k*=f/v*,其中k*为视波数。

6、预白化:为了解决带限问题,在地震信号的功率谱P(w)中,从低频到高频统一加一白噪。

7、子波整形反褶积:将不同相位的子波转变为最佳子波的反褶积。

8、速度分析:为叠加提供最佳叠加速度的方法。

9、静校正:存在地形起伏、低速带的厚度变化和速度的横向变化等,此时时距曲线发生畸变,对这些因素的校正,称为静校正。

10、动校正:在水平界面的情况下,从观测到的反射波旅行时中减去正常时差t,得到相当于自激自收的时间,这一过程叫做动校正。

11、正常时差:在界面水平时,对界面上某点以跑检距进行观测得到的反射波旅行时与自激自收观测的旅行时之差,称为正常时差。

12、拉伸畸变:动校正结果出现频率畸变,同相轴移向低频。

13、水平叠加:水平叠加是将CMP道集记录经NMO动校后叠加起来,目的是压制随机噪音,提高地震信噪比。

14、速度谱:把每一种速度所得的叠加结果并排显示在速度-双程零炮检距时间平面中,称此为速度谱。

15、速度扫描:应用一系列常速度在CMP道集进行动校正,并将结果并列显示,从中选出能使反射波同相轴拉平程度最高的速度作为NMO速度的速度分析方法称为速度扫描。

节点仪器地震勘探辅助数据处理技术及应用

节点仪器地震勘探辅助数据处理技术及应用

节点仪器地震勘探辅助数据处理技术及应用摘要:随着石油勘探和开采的不断发展,地质对象日益复杂,对精确识别油气井提出了更高的要求。

近年来,国外的高密度地震技术得到了飞速的发展,解决了噪声抑制、分辨率和保真度的改善。

为加速中国油田开发利用高密度地震技术,笔者对节点仪器地震勘探辅助数据处理技术进行了归纳整理。

关键词:节点仪器;地震勘探;数据处理一、地震数据处理技术现状由于有效的可控震源技术的迅速发展,使得野外地震勘探的采集范围越来越复杂,采集工作的效率和接触面也越来越大。

由于线路容量和施工条件等因素的制约,常规的地震数据采集设备已经没有了。

该方法能够满足复杂环境下高精度地震勘探的需要。

由于其体积小,采集独立,稳定可靠,具有较高的可靠性。

该观测系统具有设计灵活、适用范围广、工作效率高等优点,适用于油气勘探、煤矿地震勘探、在地质监测中有很好的应用前景。

此外,结点仪表在经济上也有较大的优越性。

中国油气勘探开发的重点有四个共性:(1)储层厚度:中国东部地区1~5 m,中国中西部地区5~10 m,超出了传统地震勘探技术的极限。

(2)储集层的异质性较高:大陆沉积面变化迅速,砂岩与泥岩间的交叠较多;碳酸盐岩储层是由多种因素共同作用的。

火山岩储层的发育机理和物性差异较大。

传统的地震技术无法满足对低分辨率目标的横向识别和各向异性的研究。

(3)地表复杂情况下,地层构造及断裂块体十分复杂。

地面和地下的复杂构造,使得地震图像难以进行,而波场的复杂性也影响了图像的准确性。

传统的地震技术在改善图像的准确性和纵向分辨率方面是不够的。

(4)在含油气丰富的凹陷(带)中进行精细储层评价、剩余油量监测、新地层系列寻找、动态开发监测是当前地球物理研究的热点。

因此,为了提高成像的准确性,必须在石油勘探和开发中增加信噪比;增加地震频带以改善解析度;为了提高油气藏的保真度,提高油气藏的准确性,已成为地震技术发展的当务之急[1]。

针对复杂储层勘探与开发中遇到的问题,对重点、难点、富集油气储层进行精细评估与开发,必须开展高密度地震实验与研究。

地震资料处理复习总结(第1-6章)

地震资料处理复习总结(第1-6章)

《地震勘探资料处理》第一章~第六章复习要点总结第一章 地震数据处理基础一维谱分析数字地震记录中,每个地震道是一个按一定时间采样间隔排列的时间序列,每一个地震道都可以用一系列具有不同频率、不同振幅、相位的简谐曲线叠加而成。

应用一维傅里叶变换可以得到地震道的各个简谐成分;应用一维傅里叶反变换可以将各个简谐成分合并为原来的地震道序列。

连续函数正反变换公式:dt et x X t i ωω-∞∞-⎰=)()(~ 正变换 ωωπωd e X t x t i ⎰∞∞-=)(~21)( 反变换 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。

它可以写成指数形式 )()()(|)(~|)(~ωφωφωωωi i e A e X X ==式中)(ωA 为复数的模,称为振幅谱;)(ωϕ为复数的幅角,称为相位谱。

)()()(22ωωωi r X X A +=,)()(tan )(1ωωωφr i X X -=(弧度也可换算为角度)离散情况下和这个差不多(看PPT 和书P2-3)一维傅里叶变换频谱特征:1、一维傅里叶变换的几个基本性质(推导)线性 翻转 共轭 时移 褶积 相关(功率谱),P3-72、Z 变换(推导)3、采样定理 假频 尼奎斯特频率,tf N ∆=21二维谱分析二维傅里叶变换),(k X ω称为二维函数),(t x X 的频——波谱。

其模量|),(|k X ω称为函数),(t x X 的振幅谱。

由),(k X ω这些频率f 与波数k 的简谐成分叠加即可恢复原来的波场函数),(t x X (二维傅里叶反变换)。

如果有效波和干扰波的在f-k 平面上有差异,就可以利用二维频率一波数域滤波将它们分开,达到压制干扰波,提高性噪比的目的。

二维频谱产生空间假频的原因数字滤波在地震勘探中,用数字仪器记录地震波时,为了保持更多的波的特征,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。

地震资料数字处理方法

地震资料数字处理方法

地震资料数字处理方法The method for seismic data processing张白林更多资料:/h/user.php?uid=1078354141&fixed=ishare地震资料数字处理的目的、任务和特点利用数字计算机对野外地震勘探所获得的原始资料进行加工.改造,以期得到高质量的.可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息.特点:借助于计算机或数字化设备根本目的:提高信噪比、提高分辨率、提供岩性参数无论方法多么先进,技术如何发展,地震资料数字处理的根本目的仍然是:提高信噪比.提高分辨率.提供岩性参数第一章数字滤波第1-1节数字滤波基础第1-2节二维滤波第1-3节二维滤波的实现组成一个复杂振动的所有简谐振动成份的振幅、初相位与频率关系的总和。

信号按随时间变化的特点理的过程。

反射波与面波、声波和微震等干扰波,在频谱上有明显差别,故利用这种差别,可进行频率滤波,以便减少干扰波的能量,提高信噪比。

(或波形)进行加工、改造的过程。

不同类型的波具有不同的频率分布范围,,去掉干扰波,保留有效波,最终达到提高信噪比的目的;对信号的频谱进行修正的过程.方法:物理频率滤波:利用电子元器件的组合对信号频谱进行改造的过程;数字频率滤波:利用数学手段,在计算机上对信号的频谱成分进行修正的过程.其目的:压制干扰信号,突出有效信号,也即是提高信噪比.数字频率滤波的实现:①时域褶积: x(t)*h(t)= y(t)②频域乘积: X(f)•H(f) = Y(f)地震资料数字滤波的关键是选择恰当的滤波器,也即确定h(t)或H(f)。

实现数字滤波的步骤⑴时域①根据工区内有效波和干扰波的频谱分布情况设计滤波器的频率特性H(f);②由H(f)作傅氏反变换,得到h(t);③褶积:y(t)=x(t)﹡h(t),其中x(t)是待处理的地震道,y(t)是滤波后的地震道。

类似地,也可得到频率域实现滤波的相应步骤。

地震数据处理过程及格式说明

地震数据处理过程及格式说明

向相反取负值) (分米) 。
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
11 21—22
12 23—24 13 25—26 14 27—28 15 29—30 16 31—32 17 33—34 l8—l 35
18—2 36
19 37—38 20 39—40 21 41—42 22 43—44
45—48 炮点的地面高程(cm)。 49—52 炮井深度(正数,cm)。 53—56 接收点基准面高程(cm)。 57—60 炮点基准面高程(cm)。 61—64 炮点的水深(cm)。 65—68 接收点的水深(cm)。 69—70 对 41 一 68 字节中的所有高程和深度应用此因
子给出真值。比例因子=l,土 10,土 100,土 1000 或者 土 10000。如果为正,乘以因子;如果为负, 则除以因子。(此约定中= -100) 71—72 对 73—88 字节中的所有坐标应用此因子给出真 值。比例因子=1,土 10,土[00,土 1000 或者 土 10000。如果为正,乘以因子;如果为负,则 除以因子。(此约定中= -10) 73—76 炮点坐标—X(分米)。(如果坐标单位是弧度·秒, 77—80 炮点坐标—Y(分米)。X 值代表径度,Y 值代表 81—84 接收点坐标—X(分米)。纬度;正值代表格林威 85—88 接收点坐标—Y(分米)。治子午线东或者赤道北的
4=其他 34—2 68 135—136 扫描道起始斜坡长度,以 ms 表示。 35—1 69 137—138 扫描道终了斜坡长度,以 ms 表示。 35—2 70 139—140 斜坡类型:1=线性;2=COS²;3=其他 36—1 71 141—142 滤假频的频率(如果使用) 36—2 72 143—144 滤假频的陡度 37—1 73 145—146 陷波频率(如果使用) 37—2 74 147—148 陷波陡度 38—1 75 149—150 低截频率(如果使用) 38—2 76 151—152 高截频率(如果使用) 39—1 77 153—154 低截频率陡度 39—2 78 155—156 高截频率陡度 40—1 79 157—158 数据记录的年 40—2 80 159—160 日 41—1 81 161—162 小时(24 小时制) 41—2 82 163—164 分 42—1 83 165—166 秒 42—2 84 167—168 时间代码:1=当地时间;2=格林威治时间;

地震勘探资料处理流程与方法

地震勘探资料处理流程与方法

地震勘探资料处理流程与方法提纲引言一、数据加载二、置道头三、静校正四、叠前噪音压制五、振幅补偿六、叠前反褶积七、动校正、切除与叠加八、剩余静校正九、倾角时差校正(DMO) 与叠前时间偏移十、叠后提高分辨率处理十一、叠后噪音压制引言地震勘探分三个阶段。

地震资料采集、地震资料处理、地震资料解释。

其中地震资料处理是连接野外采集和资料解释的关键环节。

所谓地震资料处理,就是利用数字计算机对野外地震助探所获得的原始资料进行加工、改造,以期得到高质量的、可靠的地震信息,为下一步资料解释提供直观的、可靠的依据和有关的地质信息。

野外地震资料中包含着有关地下构造和岩性的信息,包这些信息是叠加在于扰背景上且被些外界因素所扭曲,信息之间往往是互相交织的,不宜直接用于地质解释。

因此,需要对野外采集的地震资料进行室内处理。

常规处理流程,数据输入→置道头→静校正→叠前噪音压制→振幅补偿→叠前反褶积→抽cmp道集→速度分析,动校正、初叠加→剩余静校正→DMo或叠前时间前移→叠后褶积→随机噪音衰减→偏移→时变滤波,增益一、数据加载1、数据输入:将野外磁带数据转换成处理系统格式,加载到磁盘上;2、输入数据质量检查:炮号、道号波形、道长、采样间隔等等。

二、置道头●道头: 每个地震道的开始部分都有个固定字节长度的空余段,这个空余段用来记录描述本道各种属性的信息,称之为道头。

如第8炮第2道,第126MP等。

观测系统定义:定义一个相对坐标系,将野外的激发点、按收点的实际位置放到这个相对的坐标系中。

观测系统定义完成后,处理软件中置道头模块,可以根据定义的观测系统,计算出各个需要的道头字的值井放入地震教据的道头中。

当道头置入了内容后,我们任取道都可以从道头中了解到这一道属于哪炮、哪一道? CIP号是多少?炮检距是多少?炮点静校正量、检波点静校正量是多少等。

后续处理的各个模块都是从道头中获取信息,进行8的处里,如抽MP道集,只要将数据道头中cmP号相同的道排在一起就可以了因此道头有错误,后续工作也是错误的。

地震数据处理方法

地震数据处理方法

安徽理工大学一、名词解释〔20分〕1、、地震资料数字处理:就是利用数字电脑对野外地震勘探所获得的原始资料进行加工、改良,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。

2、数字滤波:用电子电脑整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。

〔对离散化后的信号进行的滤波,输入输出都是离散信号〕3、模拟信号:随时间连续变化的信号。

4、数字信号:模拟数据经量化后得到的离散的值。

5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt.6、采样定理:7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。

8、假频:抽样数据产生的频率上的混淆。

某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。

抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。

这两个频率fN+Y和fN-Y相互成为假频。

9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。

如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。

产生伪门的原因就是由于对h(t)离散采样造成的。

10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w〔t〕。

11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。

12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。

地震资料数字处理课件 6---起伏地表波动方程法叠前深度偏移

地震资料数字处理课件  6---起伏地表波动方程法叠前深度偏移

基于波动方程定基准面 (Berry Hill, 1979,1984) 的层替代技术一即在进 行波场向上外推时,用 某一层的下伏介质速度 代替该层的速度,以消 除该层与下伏层之间因 速度差异而引起的波动 传播射线的弯曲。
图2 (a)上覆层与下伏层之间的速度差使射线在 在两者之间的界面上折曲。 (b)用下伏层速度 代替上覆层速度消除射线的折曲。
{ 波动方程法: 傅里叶有限差分(FFD)法 分步富里叶(SSF)法 广义屏(PS)法
存在的问题
随着地震勘探的不断发展,油气勘探的重点正转向复杂 地表条件和复杂地质条件的区域:如山地勘探,滩海、沼泽 地区勘探。山地等复杂地表地区的地震资料叠前深度偏移技 术,已受到人们的高度重视。我国东部陆地油气勘探程度的 日趋饱和,促使我国油气勘探的战略重点也正在向西部地形 复杂地区转移,这对地震勘探工作提出了新的挑战。要做好 叠前深度偏移,达到预想的效果,就必须解决好以下几个问 题:(1)基准面问题。现有的偏移程序,大都建立在激发点 和接收点位于同一个水平面上,这与我们需要进行叠前深度 偏移处理地区的实际观测条件不相符合。(2)静校正问题: 叠前深度偏移也是一个叠加的过程,从运动学的概念上来,
解决的办法
要实现从起伏观测面直接进行深度偏移,必须首先 用射线追踪或层析成像法反演出近地表速度再进一步利 用这种速度作深度偏移,替代的一种方法先用近地表速 度作波场延拓,转化到一个平滑的基准面,再用现有的 方式作深度偏移。目前,国内外都在极力研究这个问题。 准确的方法是先用初至层析法求出近地表速度建立起近 地表速度模型,将此速度模型合并到整个总的模型中, 从起伏观测面直接进行深度偏移。
这个基准面上。然后从这个水平基准面开始做常规的偏移。 由于插入的虚拟层的速度值很小,在使用波动方程深度外 推算子进行波场外推时,地震波在这个层中几乎是直上直 下的传播,其横向传播可以忽略不计,即用波动方程的方 式“抵消了”高程校正的时移,当到达实际地层时则恢复 正 常运算。“零速层”的最大优点在于无须对偏移算法做任 何 改动,就可以实现从非水平观测面偏移的过程,达到消除 复杂地表对地下构造的影响的目的。 以二维波动方程为例说明这项技术的基本理论。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要处理技术:反褶积、叠加和偏移成像 反褶积:通过压缩地震子波提高地震时间分辨率 叠加:压制噪声以提高信噪比 偏移成像:界面空间归位,恢复波场特征,提高空间分辨率 和保真度。
反褶积、叠加和偏移成像对地震数据的作用:
反褶积:沿时间坐标轴作 反褶积 用,通过压缩地震子波提 高地震时间分辨率。 叠加:沿偏移距坐标轴 作用,把非零偏移距的数 据体压缩成一个零偏移距 的时间平面(对CMP道集 正常时差校正后叠加所 得),从而压制噪声以提 高信噪比。 偏移成像:空间反褶积 过程,能改善空间分辨率 和保真度。通过对叠后资 料沿中心点轴作偏移,使 倾斜同相轴归位置、绕射 波收敛,从而实现反射界面的空间归位和恢复波场特征和反射率 。
地震剖面的 “ 三高 ” :高信噪比、高分辨率和高保 真度。
二十一世纪后,地震处理会有广阔的发展空间和前景 。
§1.2 地震处理流程
地震处理三个基本阶段:
– 预处理:将野外采集数据转换成适合计算机
处理的格式,并对数据作相应编辑和校 正。 ;
– 常规处理:对地震数据作基本处理运算,包
括反褶积、叠加和偏移三大技术 ;
§1.1 地震处理的重要性及其 发展趋势
.地震处理的重要性
– 野外地震资料必须经过处理才能用于解释。 – 处理结果直接影响解释的正确性和精确度。 – 高质量处理成果可直接用于油气储层预测和烃类
检测。 – 解释人员应当具备一定的处理知识。
§1.1 地震处理的重要性及其 发展趋势
二.地震处理的发展趋势
– 特殊处理(目标处理):针对不同目的采用
的特殊处理手段。
§1.2 地震处理流程
地震处理流程的设计:
– 针对处理的数据,选择一系列适当的处理步
骤; – 对每一步骤选择恰当的参数; – 评价每一处理步骤的输出结果、分析任何由 于不合适参数引起的问题。 目前另一发展趋势是处理解释一体化
§1.2 地震处理流程
解编后的炮集
直达波 直 射 波 反射波
直达波
反射波
编辑
噪 音
废道
反 极 性
图1-3a
图1-3b
图1-3c
几何扩散校正
反褶积
反褶积后的道均衡
道集选排-CMP道集
速度谱
注意速度函 数的一般趋 势及较晚时 间处速度分 辨率丧失
动校正 拉伸
动校正
畸变带切除
速度分析位置
叠加
静校正
静校对速度谱的影响
§1.2 地震处理流程
几何扩散校正:通过给数据加一增益恢复函数以 校正波前(球面)扩散对振幅的影响。 建立野外观测系统 :把所有道的炮点和接收点 位置坐标等测量信息都储存于道头中以保证各道 的正确叠加 。 野外静校正 :对陆上资料,把所有炮点和接收 点位置均校正到一个公共基准面上以消除高程、 低降速带和井深对旅行时的影响。
剩余静校正
地层断开引起的原因:由于障碍物 的影响没有布校波器
叠后处理
绕射波,滤波后可 直接作解释
偏移处理

前积反射 断点比较清楚
第二章 数字滤波
本章主要回顾和介绍数字滤波器的有关 知识,以及利用干扰波与有效波在频率、 传播方向、速度以及能量等方面的差异进 行干扰波压制或消除,从而突出有效波, 提高地震资料的质量和精度的方法原理。 §2.1 概述(4) §2.2 一维滤波 (6) §2.3 二维滤波 (4)
地震资料数字处理技术
第一章 第二章 第三章 第四章 概述 数字滤波 反褶积 速度分析、动静校正和叠加
第一章 概述
§1.1 地震处理的重要性及其发展趋势 §1.2 地震处理流程
§1.1 地震处理的重要性及其 发展趋势
一.地震处理的重要性
地震 勘探 三步 采集:获取反射波数据 处理:提高反射波数据的信噪比、分辨率和保真度 解释(构造和岩性解释):确定地质特征和意义。
地震处理流程介绍:
– 预处理:包括数据解编、格式转换、编辑、
几何扩散校正、建立野外观测系统、和野外 静校正等 。
数据解编:把按时分道的数据记录方式变换成按 道分时的数据记录方式(共炮点记录)。在这一 阶段,数据要转换到通用格式(如SEG-Y格 式),全部处理过程都用这种格式。这个格式由 处理系统的类型和各个公司决定。 道编辑:删除噪音道、带有瞬变噪音的道、单频 信号道;改正极性反转的道。
§1.2 地震处理流程
属性分析:借助于希尔伯特 (Hilbert) 变换进行 复地震道分析获取 “ 三瞬 ” 剖面,即包络振幅 (反射强度)、瞬时频率和瞬时相位剖面。 反演:利用观测地震数据推测地球内部介质性质。 地震反演方法很多,声阻抗反演应用最广。另 外还有旅行时反演、速度反演等。
小结
地震勘探的三个阶段及地震资料处理的重要性。 地震处理流程的三个基本阶段
§1.2 地震处理流程
– 常规处理:主要包括反褶积、道均衡、共中
心点道集、速度分析、剩余静校正、动校正、 切除、叠加和偏移等。
观测日志
§1.2 地震 处理 流程
§1.2 地震处理流程
– 特殊处理:主要包括tau-pi变换、小波变换、三维
叠前深度偏移、子波处理、属性分析和反演等。
tau-pi变换:从偏移距—时间域变换到射线参数—截距 时间域,可用来压制面波和多次波。 小波变换:小波变换与多尺度分析可用于去噪、数据 压缩、提高分辨率处理、信号增强和解波动方 程等。 三维叠前深度偏移 :实现复杂三维地质体的偏移成像。 主要用于叠后偏移和时间偏移不能正确成像的复杂地 区。 子波处理 :通过子波压缩、整形和其它处理可获取高 分辨率地震剖面、反射系数剖面和等效子波。
出现于二十世纪二十年代初期:光点记录和模拟记录,发展较慢。 二十世纪六十年代后:数字记录,数字时代,发展迅速。 波动方程偏移技术、“亮点”技术、声阻抗反演技术、tau-pi变换技术、 三维地震处理技术、垂直地震剖面处理技术、多波多分量处理技术、广义线 性反演和非线性反演技术、井间地震处理技术、分形技术、神经网络预测技 术、小波变换技术、和四维地震处理技术等。 地表一致性静校正、地表一致性反褶积、和共反射面和超级面元叠加等 技术仍在发展中。
一、数字滤波的概念 1. 滤波和滤波器:广义上任何一种对输 入信号的改造作用都可看成滤波,实现 这种滤波的系统称为滤波器。滤波器可 分为模拟滤波器和数字滤波器。 2.模拟滤波器:也叫电滤波器,它由电 阻、电感和电容等元器件组成。
相关文档
最新文档