地球表层系统作业

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年研究生课程《地球表层系统》作业说明:

(1)本作业包括5题,每题20分;

(2)下期开学一月内交纸质版。

一、翻译:

本文探讨美国牧场、作物土地利用以及放养率可能适应气候变化。利用农业普查和统计模型的气候数据,我们发现,随着温度和降水增加,农业商品生产者则减少耕地、增加牧场。

此外,牛的放养率随着夏季温湿度指数(THI)的增加和夏季降水减少而下降。使用带有四个环流模式(GCM )的气候数据的统计模型,我们预计,土地利用的变化是从种植到放牧和放牧率下降,而在控制了其他农业生产变量时,这些适应在美国中部和东南地区是更加明显的,从基线起,耕地减少了6%,牧草地增加33%。与此相对应,基于这些适应的相关经济影响大约为-14和29万美元,分别属于本世纪末作物生产商和牧草生产商。全国性和区域性的结果对农业项目和补贴政策均有影响。

二、翻译:

生态系统作为生物圈的重要组成部分,它在维持生命的支持系统和环境的动态平衡方面起着的不可取代的重要作用,其提供的各项服务功能已得到世界的公认。开展陆地生态系统服务的研究也已成为生态系统恢复、生态功能区划和建立生态补偿机制、保障国家生态安全的重大战略需求。近30年以来,国际和国内基于各种时空尺度的自然资源价值评估工作从生态系统服务、自然资本、生态资产、生物多样性等角度大量展开,在相关理论、方法和应用的广度和深度上取得了前所未有的进展,尽管在具体的价值核算方法上还存在较大分歧,但该方面研究的思路和框架已逐渐清晰,尤其是近些年来更侧重于生态系统“结构-过程-服务功能”关系的耦合研究和作为人类活动主导下的城市生态系统服务功能方面的研究,这些反过来也都为陆地生态系统服务功能的进一步深入研究提供了强有力的支持。

三、论述遥感技术的发展趋势。

随着人类社会的不断发展,科学技术的不断进步,资源问题已成为当今世界面临的严重问题。在面对全球资源如何继续支撑人类社会的生存与发展,以及人类如何尽快地掌握和利用它们等问题上,遥感技术是当今解决它们最有效的技术手段之一。遥感技术作为一种信息获取手段,已经广泛地应用到林业、农业、地质、矿产、水文和水资源、海洋、环境监测等方面,为全球经济、社会的发展,以及资源的可持续发展做出了巨大贡献。

遥感技术作为一门综合技术是美国学者在1960年提出来的,经过几十年的发展,目前已经形成了比较完整的基础理论体系及其一系列的技术支持。它集中了航空、航天、电子学、计算机、通讯、现代光学等学科发展的最新成果,成为现代科学技术的重要组成部分,并且已经广泛渗透到国民经济各个领域中,成为经济建设、社会进步、环境改善和国防建设的巨大推动力。随着空间技术、无线电电子技术、光学技术和计算机技术的不断发展,遥感技术有了很大的发展。遥感技术在20世纪80年代出现了第一次发展高潮,它不仅使遥感技术成为很多行业跨入高新技术门槛的有力手段,而且也大大促进了遥感学科的研究工作。20年来,广大遥感工作者不仅对遥感理论进行了深入研究,同时对遥感应用技术也进行了广泛探讨以及实践和应用,为遥感技术的进一步发展准备了足够的技术诸备。20世纪90年代以来,随着遥感传感器以及小卫星技术的发展,遥感技术再次迎来一个发展高峰。现代遥感史以20世纪60年代末人类首次登上月球为重要里程碑,随后美国、欧洲一些国家和加拿大、日本、印度、中国先后建立了各自的遥感系统。这些系统向人们提供了大量有价值的数据和图片。随着信息技术和传感器技术的飞速发展,卫星遥感影像分辨率有了很大提高。另一方面,低空间高时相频率的AVHRR(气象卫星NOAA 系统系列,星下点分辨率为1 km)以及其他各种航空航天多光谱传感器亦相继投入运行,形成现代遥感技术高速发展的时期。除了常规遥感技术迅猛发展外,开拓性的成像光谱仪的研制已在20世纪80年代开始,并逐渐形成了高光谱分辨率的新遥感时代。总之,信息技术和传感器技术的飞速发展带来了遥感数据源的极大丰富,每天都有数量庞大的不同分辨率的遥感信息,从各种传感器上接收下来。

这些高分辨率、高光谱的遥感数据为遥感定量化、动态化、网络化、实用化和产业化及利用遥感数据进行地物特征的提取,提供了丰富的数据源。

(1)定量化。遥感信息定量化,建立地球科学信息系统,实现全球观测海量数据的定量管理、分析与预测、模拟是遥感技术当前重要的发展方向之一。遥感技术的发展,最终目标是解决实际应用问题。但是仅靠目视解译和常规的计算机数据统计方法来分析遥感数据,精度不高,应用效率相对较低。其主要原因之一是遥感器在数据获取时,受到诸多因素的影响,譬如,仪器老化、大气影响、双向反射、地形因素及几何配准等。使其获取的遥感信息中带有一定的非目标地物的成像信息,再加上地面同一地物在不同时间内辐射亮度随太阳高度角变化而变化,获得的数据预处理精度达不到定量分析的标准,致使遥感数据定量分析专题应用模型得不到高质量的数据作输入参数而无法推广。GIS 的实现和发展及地球变化研究更需要遥感信息的定量化,遥感信息定量化研究在当前遥感技术发展中具有牵一发而动全局的作用,因而是当前遥感技术发展的前沿。

(2)智能化。遥感技术的智能化首先表现在遥感传感器的可编程方面,传感器不仅可以按设定的方式进行扫描,而且可以根据具体要求由地面进行控制编程,使用户可以获得多角度,高时间密度的数据。影像识别和影像知识挖掘的智能化是遥感数据自动处理研究的重大突破,遥感数据处理工具不仅可以自动进行各种定标处理,而且可以自动或半自动提取道路、建筑物等人工建筑的定标处理。地物波谱库的建立及高光谱自动识别系统让用户可以方便地进行地物识别,并在此基础上进行定量化分析。遥感数据自动配准算法是遥感数据生产的福音,它不仅加快了数据定位速度,提高了生产效率,而且为数据定位提供了一种高精度的生产工具。

(3)动态化。由于小卫星技术的发展,使得卫星造价降低,因此卫星网络计划得以顺利实施。美国的“传感器网络”使用户可以在获得更高分辨率的数据的同时,也可以获得更高时间密度的遥感数据。而雷达微波技术的发展,更使用户可以获得全天候的遥感数据,这一切都为遥感动态监测创造了条件,使遥感数据真正实现了“四维”(空间维和时间维)信息获取。

相关文档
最新文档