圆的基础习题(附答案)
《圆的认识》基础习题1
一、填空题1.时钟的分针转动一周形成的图形是()。
2.从()到()任意一点的线段叫半径。
3.通过()并且()都在()的线段叫做直径。
4.圆中心的一点叫做(),用字母()表示,它到圆上任意一点的距离都()。
5.()叫做半径,一般用字母()表示。
6.()叫做直径,一般用字母()表示。
7.在一个圆里,有()条半径、有()条直径。
8.()确定圆的位置,()确定圆的大小。
9.在一个直径是8分米的圆里,半径是()厘米。
一、填空题1.画圆时,圆规两脚间的距离是圆的( )。
2.用圆规画一个直径20厘米的圆,圆规两脚步间的距离是()厘米。
3.在同一圆内,所有的()都相等,所有的()也相等。
()的长度等于()长度的2倍。
二、判断题1.在连接圆上任意两点的线段中,直径最长。
()2.画一个直径是4厘米的圆,圆规两脚应叉开4厘米。
()3.圆的直径是半径的2倍。
()4.两个圆的直径相等,它们的半径也一定相等。
()一、填空题1、圆是平面上的一种()图形,将一张圆形纸片至少对折()次可以得到这个圆的圆心。
2、在同一个圆或相等的圆中,所有的半径长度都();所有的直径长度都()。
直径的长度是半径的()。
3、画一个直径4厘米的圆,那么圆规两脚间的距离应该是()厘米。
4、连接圆心和圆上任意一点的线段,叫做(),用字母()表示。
5、通过圆心并且两端都在圆上的线段叫做(),用字母()表示。
6、()决定圆的大小;()决定圆的位置。
7、在长8厘米,宽6厘米的长方形中画一个最大的圆,圆的半径一、判断1、所有的半径都相等。
()2、直径的长度总是半径的2倍。
()3、圆心决定圆的位置,半径决定圆的大小。
()4、在一个圆里画的所有线段中,直径最长。
()5、两端在圆上的线段是直径。
()6、直径5厘米的圆与半径3厘米的圆大。
()7、要画直径2厘米的圆,圆规两脚之间的距离就是2厘米。
()8、圆有4条直径。
()9.同一个圆中,半径都相等。
()四、解决问题:1、画一个直径4厘米的圆。
(完整版)直线和圆基础习题和经典习题加答案
【知识网络】综合复习和应用直线和圆的基础知识,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题,提高分析问题和解决问题能力.【典型例题】[例1]( 1)直线x+ y=1与圆X2+ y2—2ay=0(a>0)没有公共点,贝V a的取值范围是()A. (0, 2 —1) B . ( 2 —1, 2 + 1)C. (—2 —1 , 2 —1)D. (0, 2 +1(2)圆(x —1)2+ (y +•, 3 )2=1的切线方程中有一个是()A. x—y=0B. x + y=0C. x=0 D . y=0(3)a=b”是直线y x 2与圆(x a)2(y b)22相切”的()A .充分不必要条件B .必要不充分条件C.充分必要条件 D •既不充分又不必要条件(4)已知直线5x + 12y + a=0与圆x2+ y2—2x=0相切,则a的值为 ___________ .(5)过点(1, ,2 )的直线I将圆(x —2)2+ y2=4分成两段弧,当弧所对的圆心角最小时,直线I的斜率k= ___________ .[例2]设圆上点A (2, 3)关于直线x+ 2y=0的对称点仍在圆上,且圆与直线x —y+ 1=0相交的弦长为2 2 ,求圆的方程.[例3]已知直角坐标平面上点Q (2, 0)和圆C: x2+ y2=1,动点M到圆C的切线长与|MQ| 的比等于入(心0).求动点M的轨迹方程,并说明它表示什么曲线.[例4]已知与曲线C: x2+ y2—2x —2y +仁0相切的直线I叫x轴,y轴于A , B两点, |OA|=a,|OB|=b(a > 2,b > 2).(1) 求证:(a—2)(b —2)=2 ;(2) 求线段AB中点的轨迹方程;(3 )求厶AOB面积的最小值.【课内练习】51 .过坐标原点且与圆x2+ y2—4x + 2y +2 =0相切的直线的方程为()2. 圆(x — 2)2 + y 2=5关于原点(0,0)对称的圆的方程为()A . (x + 2)2+ y 2=5B . x 2 + (y — 2)2=5C . (x — 2)2+ (y — 2)2=5D . x 2 + (y + 2)2=53.对曲线凶一|y|=1围成的图形,下列叙述不正确的是()A .关于x 轴对称B .关于y 轴对称C .关于原点轴对称D .关于y=x 轴对称4. 直线11: y=kx + 1与圆x 2 + y 2+ kx — y — 4=0的两个交点关于直线 I 2: y + x=0对称,那么这两个交点中有一个是()A . (1, 2)B . (— 1, 2)C . (— 3, 2)D . (2, — 3)5. ____________________________________________________________________________ 若直线y=kx + 2与圆(x — 2)2 + (y 一 3)2=1有两个不同的交点,则k 的取值范围是 ________________6.已知直线ax + by + c = 0与圆O : x 2 + y2= 1相交于A 、B 两点,且|AB| = ■.. 3 ,则OA OB7. ___________________________________________________________ 直线11: y= — 2x + 4关于点M (2, 3)的对称直线方程是 _____________________________________ . & 求直线11: x + y — 4=0关于直线1: 4y + 3x —仁0对称的直线|2的方程.9.已知圆 C : x 2 + y 2 + 2x — 4y + 3=0(1) 若C 的切线在x 轴,y 轴上的截距的绝对值相等,求此切线方程;(2) 从圆C 外一点P (X 1,y 1)向圆引一条切线,切点为 M , O 为原点,且有|PM|=|PO|,求 使|PM|最小的P 点的坐标.10 .由动点P 引圆x 2 + y 2=10的两条切线PA , PB ,直线PA , PB 的斜率分别为k 1,k 2 . (1)若k 1+ k 2+ k 1k 2=— 1,求动点P 的轨迹方程;(2)若点P 在直线x + y=m 上,且PA 丄PB ,求实数m 的取值范围.1y= — 3x 或 y=3 x 1B . y=3x 或 y= — § x、 1 y= — 3x 或 y= — 3 x 、 1D . y=3x 或 y=3 x11 . 5直线与圆的综合应用1. 设直线过点(0, a),其斜率为1,且与圆x2+ y2=2相切,则a的值为 ()A. ±,2 B . ± C. i2 2 D . ±42. 将直线2x —y+ X= 0,沿x轴向左平移1个单位,所得直线与圆x2+y2+2x —4y=0相切,则实数入的值为A. —3 或7 B . —2 或8 C. 0 或10 D . 1 或113. 从原点向圆x2+ y2—12y+ 27=0作两条切线,则该圆夹在两条切线间的劣弧长为()A. nB. 2 nC. 4 nD. 6 n1 14. 若三点A (2, 2), B (a,0), C ( 0, b) (a, b均不为0)共线,^U ——的值等于______________ .a b5. 设直线ax—y + 3=0与圆(x —1)2+ (y—2)2=4有两个不同的交点A , B,且弦AB的长为2 3,则a等于_____________ .6. 光线经过点A (1, 7),经直线| : x+ y +仁0反射,反射线经过点B (1, 1).(1 )求入射线所在的方程;(2)求反射点的坐标.7. 在厶ABC中,BC边上的高所在的直线方程为x—2y +仁0, / A的平分线所在直线方程为y=0,若B点的坐标为(1 , 2),求点A和点C的坐标.& 过圆O: x2+ y2=4与y轴正半轴的交点A作这个圆的切线I, M为I上任意一点,过M 作圆O的另一条切线,切点为Q,当点M在直线I上移动时,求△ MAQ垂心H的轨迹方程.B组1. 已知两定点A (—2, 0), B (1 , 0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A. n B . 4 n C . 8 n D . 9 n2•和x轴相切,且与圆x2+ y2=i外切的圆的圆心的轨迹方程是()A. x2=2y + 1 B . x2= —2y + 1 C. x2=2y —1 D. x2=2|y| + 13.设直线的方程是Ax By 0,从1, 2, 3, 4, 5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是A . 20B . 1918D . 1624.设直线2x 3y 1 0和圆x2x 3 0相交于点A 、B ,则弦AB 的垂直平分线方程是 _____5. 已知圆M : A .对任意实数B .对任意实数C .对任意实数D .对任意实数 其中真命题的代号是 6. 已知点A , B 的坐标为(一3 , 0), (3 , 0), C 为线段AB 上的任意一点,P , Q 是分别 以AC , BC 为直径的两圆01 , O 2的外公切线的切点,求 PQ 中点的轨迹方程. 7.已知△ ABC 的顶点A (— 1, — 4),且/ B 和/ C 的平分线分别为I BT : y +仁0,I CK :X + y +仁0,求BC 边所在直线的方程.&设a,b,c,都是整数,过圆x 2 + y 2= (3a + 1)2外一点P (b 3 — b,c 3— c)向圆引两条切线,试证 明:过这两切点的直线上的任意一点都不是格点(纵横坐标均为整数的点)(x + cos e 2) (y — sin 02=1, k 和e 直线l 和圆M 都相切; k 和e 直线l 和圆M有公共点; e ,必存在实数k ,使得直线I 和圆M 相切; k ,必存在实数 e,使得直线I 和圆M 相切. 写出所有真命题的代号)直线I : y=kx ,下面四个命题 11. 5直线与圆的综合应用【典型例题】 例1(1) A .提示:用点到直线的距离公式.(2) C .提示:依据圆心和半径判断. (3) A .提示:将直线与圆相切转化成关于ab 的等量关系.(4) — 18或&提示:用点到直线的距离公式,注意去绝对值符号时的两种可能情况. (5)石-.提示:过圆心(2 , 0)与点(1, ,2 )的直线m 的斜率是—2 ,要使劣弧所 对圆心角最小,只需直线 I 与直线m 垂直.例2、设圆的方程为(x — a)2 + (y — b)2=r 2,点A (2 , 3)关于直线x + 2y=0的对称点仍在圆 上,说明圆心在直线 x + 2y=0上,a + 2b=0 ,又(2— a)2 + (3 — b)2=r 2,而圆与直线x — y + 1=0 相交的弦长为2 .2 ,,故r 2— ()2=2,依据上述方程解得:b 1= — 3 a 1=6 或r 12=52b 2=— 7 a 2=14 r 22=244•••所求圆的方程为(x — 6)2 + (y + 3)2=52,或(x — 14)2+ (y + 7)2=224. 例 3、设切点为 N ,则 |MN|2=|MO|2 — |ON|2=|MO|2 — 1 ,设 M ( x,y),则y 2 1 J (x 2)2y 2,整理得(於一1) (x 2+ y 2) — 4 入 X (1 + 4 心=05 当入=1时,表示直线x=5;当入工时,方程化为(x 二 )2 21坨,它表示圆心在(罕,。
九年级圆的基础知识点、经典例题及课后习题
圆【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
③弧、半圆、优弧、劣弧:,简称弧.,用符号“⌒”表示,弧:圆上任意两点间的部分叫做圆弧..以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..优弧:大于半圆的弧叫做优弧..。
(为了区别优弧和劣弧,优弧用三个字劣弧:小于半圆的弧叫做劣弧..母表示。
)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧...⑦圆心角:顶点在圆心的角叫做圆心角...⑧弦心距:从圆心到弦的距离叫做弦心距....(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆的练习题(含答案)
圆的练习题一.选择题1.⊙O是△ABC的外接圆,直线EF切⊙O于点A,若∠BAF=40°,则∠C等于()A、20°B、40°C、50°D、80°2.如图,BC是⊙O的直径,P是CB延长线上一点,P A切⊙O于点A,如果P A=, PB=1,那么∠APC等于()3.某工件形状如图所示,圆弧BC的度数为,AB=6厘米,点B到点C的距离等于AB,∠BAC=,则工件的面积等于()(A)4π(B)6π(C)8π(D)10π4.下列语句中正确的是()(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧;(4)经过圆心的每一条直线都是圆的对称轴.(A)1个(B)2个(C)3个(D)4个5.如图,两个等圆⊙O和⊙的两条切线OA、OB,A、B是切点,则∠AOB等于() (A)(B)(C)(D)6.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()(A)π(B)1。
5π(C)2π(D)2。
5π7。
在Rt△ABC中,已知AB=6,AC=8,∠A=.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S,那么S∶S()(A)2∶3(B)3∶4(C)4∶9(D)5∶128.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线长为() A.6 cm B.8 cm C.10 cm D.12 cm9.已知⊙O1和⊙O2相外切,它们的半径分别是1厘米和3厘米.那么半径是4厘米,且和⊙O1、⊙O2都相切的圆共有()(A)1个(B)2个(C)5个(D)6个10.已知圆的半径为6。
5厘米,如果一条直线和圆心距离为6。
5厘米,那么这条直线和这个圆的位置关系是()(A)相交(B)相切(C)相离(D)相交或相离二.填空题1.已知:如图,AB是⊙O的直径,弦CD⊥AB于P,CD=10cm,AP︰PB=1︰5.则:⊙O的半径为。
圆(全)知识点习题及答案
圆一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R 的弧长.圆心角为n°,半径为R,弧长为l 的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l 的圆柱的体积为,侧面积为2πRl ,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角;圆周角;(2)如图,已知∠AOB=50度,则∠ACB= 度;(3)在上图中,若AB是圆O的直径,则∠AOB= 度;OA B3、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、直线和圆的位置关系有三种:相、相、相.例:已知圆的半径r等于12厘米,圆心到直线l的距离为d,(1)当d=10厘米时,有d r,直线l与圆(2)当d=12厘米时,有d r,直线l与圆(3)当d=15厘米时,有d r,直线l与圆5、圆与圆的位置关系:例:已知⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为 d,则:R+r= , R-r= ;(1)当d=14厘米时,因为d R+r,则⊙O1和⊙O2位置关系是:(2)当d=2厘米时,因为d R-r,则⊙O1和⊙O2位置关系是:(3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是:(4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是:(5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是:6、切线性质:例:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度(2)如图,PA、PB是⊙O的切线,点A、B是切点,则 = ,∠ =∠;7、圆中的有关计算(1)弧长的计算公式:例:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长=()180所以l =()180= (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? (3)圆锥:例:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点;基础练习一。
初中数学九年级上册《圆》基础典型练习题(整理含答案)
圆一、认认真真,书写快乐1.圆内接五边形各边相等,各边所对的圆心角的度数是 .2.如图1,在⊙O 中,AB AC =,∠B =70°,则∠C = .3.在半径为2的⊙O 中,弦AB 的长为则弦AB 所对的圆心角∠AOB 的度数是 .4.若⊙O 是△ABC 的外接圆,OD ⊥BC 于D ,且∠BOD =48°,则∠BAC = .5.如图2所示,弦AB 过圆心O ,∠A =30°,⊙O 的半径长为CD ⊥AB 于E ,则CD 的长为 .二、仔仔细细,记录自信6.下列图形中对称轴最多的是( )A .圆B .正方形C .等腰三角形D .线段7.在同圆或等圆中,如果圆心角∠BOA 等于另一圆心角∠COD 的2倍,则下列式子中能成立的是( )A .AB =2CD B .2AB CD =C .2AB CD < D .AB CD =8.下列语句中,正确的有( )①相等的圆心角所对的弦相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A .1个B .2个C .3个D .4个9.如图3,已知圆心角∠AOB =100°,则圆周角∠ACB 的度数为( )A .100°B .80°C .50°D .40°10.已知:如图4,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD等于()A.30°B.40°C.50°D.60°三、平心静气,展示智慧11.如图5,AB是⊙O的直径,AC、CD、DE、EF、FB都是⊙O的弦,且AC=CD=DE=EF=FB,求∠AOC与∠COF的度数.12.如图6,一座圆弧形的拱桥,它所在圆的半径为10米,某天通过拱桥的水面宽度AB为16米,现有一小帆船高出水面的高度是3.5米,问小船能否从拱桥下通过?13.如图7,在⊙O中,弦AB与CD相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.参考答案:一、1.722.70 3.90 4.48 5.6 二、6.A 7.B 8.A 9.C 10.D三、11.解:因为AC DC DE EF FB ====,所以180536AOC COD DOE EOF FOB =====÷=∠∠∠∠∠, 所以336108COF AOC ==⨯=∠∠.12.先算出拱桥高出水面的高度为4米,4 3.5>,因此可以通过.13.解:因为AB CD =,所以AB CD =.所以AB AD CD AD -=-,即BD CA =,所以BD CA =.在AEC △与DEB △中,BD CA =,ACE DBE =∠∠,AEC DEB =∠∠, 所以AEC DEB △≌△.(2)点B 与点C 关于直线OE 对称.理由略.。
初三数学圆基础练习题及答案
初三数学圆基础练习题及答案练习题一:直径和半径的关系1. 若一个圆的半径为5cm,求其直径的长度是多少?答案:直径的长度是2倍的半径长度,因此直径的长度为10cm。
2. 若一个圆的直径为12cm,求其半径的长度是多少?答案:半径的长度是直径长度的一半,因此半径的长度为6cm。
练习题二:圆的周长和面积计算3. 已知一个圆的半径为3cm,求其周长和面积。
答案:圆的周长公式为C = 2πr,其中r为半径。
将半径代入公式,可得C = 2π × 3 = 6π ≈ 18.85cm。
圆的面积公式为A = πr²,将半径代入公式,可得A = π × 3² = 9π ≈ 28.27cm²。
4. 已知一个圆的周长为10π cm,求其半径和面积。
答案:圆的周长公式为C = 2πr,已知周长为10π,因此10π = 2πr,可得r = 5。
圆的面积公式为A = πr²,将半径代入公式,可得A = π × 5² = 25π ≈ 78.54cm²。
练习题三:相交圆的交点个数5. 如果两个圆相交于两个点,这两个圆的关系是什么?答案:两个相交的圆是相交圆。
6. 如果两个圆相交于一个点,这两个圆的关系是什么?答案:两个相交于一个点的圆是切圆。
7. 如果两个圆不相交,也不包含对方,这两个圆的关系是什么?答案:两个不相交也不包含对方的圆是相离圆。
练习题四:判断圆心在坐标系中的位置8. 圆心坐标为(2, 3),半径为4的圆在坐标系中处于哪个位置?答案:根据圆心坐标和半径,我们可以在坐标系中画出这个圆。
圆心(2, 3)代表圆心在横坐标2,纵坐标3处,半径为4表示从圆心向外延伸4个单位的长度。
因此该圆处于横坐标为2,纵坐标为3的位置,并以该点为中心向外扩展4个单位的长度。
练习题五:圆的切线和切点9. 若一条直线与圆相切,这条直线与圆的关系是什么?答案:一条与圆相切的直线称为圆的切线。
初三圆的练习题基础配答案
初三圆的练习题基础配答案练习题1:已知一个圆的直径为10cm,求其半径、周长和面积。
解答:首先,计算半径:半径 = 直径 / 2 = 10cm / 2 = 5cm接下来,计算周长:周长= 2πr = 2π × 5cm ≈ 31.42cm最后,计算面积:面积= πr² = π × (5cm)² ≈ 78.54cm²练习题2:已知一个圆的半径为6cm,求其直径、周长和面积。
解答:首先,计算直径:直径 = 2 ×半径 = 2 × 6cm = 12cm接下来,计算周长:周长= 2πr = 2π × 6cm ≈ 37.68cm最后,计算面积:面积= πr² = π × (6cm)² ≈ 113.04cm²练习题3:已知一个圆的周长为18πcm,求其半径、直径和面积。
解答:首先,计算半径:周长= 2πr18π = 2πrr = 18π / (2π) = 9cm接下来,计算直径:直径 = 2 ×半径 = 2 × 9cm = 18cm最后,计算面积:面积= πr² = π × (9cm)² ≈ 254.34cm²练习题4:已知一个圆的周长为36cm,求其半径、直径和面积。
解答:首先,计算半径:周长= 2πr36 = 2πrr = 36 / (2π) ≈ 5.73cm接下来,计算直径:直径 = 2 ×半径= 2 × 5.73cm ≈ 11.46cm最后,计算面积:面积= πr² = π × (5.73cm)² ≈ 103.10cm²综上所述,对于给定圆的练习题,我们可以根据已知条件使用相应的公式来求解半径、直径、周长和面积。
通过反复练习这些题目,我们可以加深对圆的特性和计算方法的理解,从而在初三数学学习中更加游刃有余。
(完整版)圆的方程 习题(含答案)
一、单选题
1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )
A.(x+2)2+(y-3)2=4
B.(x+2)2+(y-3)2=9
C.(x-2)2+(y+3)2=4
D.(x-2)2+(y+3)2=9
2.当点 在圆 上运动时,连接它与定点 ,线段 的中点 的轨迹方程是( )
6.若点 为圆 上的一个动点,点 , 为两个定点,则 的最大值为( )
A. B. C. D.
7.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
8.若直线l:ax+by+1=0经过圆M: 的圆心则 的最小值为
A. B.5C. D.10
9.若 均为任意实数,且 ,则 的最小值为( )
21.已知点 在圆 上运动,且存在一定点 ,点 为线段 的中点.
(1)求点 的轨迹 的方程;
(2)过 且斜率为 的直线 与点 的轨迹 交于不同的两点 ,是否存在实数 使得 ,并说明理由.
22.已知圆经过 两点,并且圆心在直线 上。
(1)求圆的方程;
(2)求圆上的点到直线 的最小距离。
23.在平面直角坐标系 中,曲线 与坐标轴的交点都在圆 上.
A. B.
C. D.
3.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )
A.9πB.πC.2πD.由m的值而定
4.圆 的半径是( )
A. B.2C. D.4
5.已知圆 与圆 相交于A、B两点,则线段AB的垂直平分线的方程为
A. B. C. D.
A. B. C. D.
中考数学复习圆的基本性质练习题含答案解析
第六单元圆第24课时圆的基本性质点对点·课时内考点巩固30分钟1. (2019柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A. ∠BB. ∠CC. ∠DEBD. ∠D第1题图2. (2019宜昌)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A. 50°B. 55°C. 60°D. 65°第2题图3. (2019兰州)如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A. 110°B. 120°C. 135°D. 140°第3题图4. (2019甘肃省卷)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A. 22.5°B. 30°C. 45°D. 60°第4题图5.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A. 15°B. 20°C. 25°D. 30°第5题图6.(2019西安高新一中模拟)如图,四边形ABCD内接于⊙O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A. 48°B. 96°C. 114°D. 132°第6题图7. (2019陕西黑马卷)如图,在⊙O中,弦AB∥CD,连接BC,OA,OD.若∠BCD=25°,CD=OD,则∠AOD的度数是()A. 140°B. 120°C. 110°D. 100°第7题图8. (2019赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A. 30°B. 40°C. 50°D. 60°第8题图9. (2019贵港)如图,AD 是⊙O 的直径,AB ︵=CD ︵,若∠AOB =40°,则圆周角∠BPC 的度数是( ) A. 40° B. 50° C. 60° D .70°第9题图10. 如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,AD =6,则BD 的长为( ) A. 3 B. 2 3 C. 4 3 D. 12第10题图11. 如图,AB 为⊙O 的直径,∠CAB =30°,CB =3,∠ACB 的平分线CD 交⊙O 于点D ,则弦AD 的长为( )A. 2 3B. 2 2C. 3 3D. 32第11题图12. 如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于点D ,连接BC 、BD 、BF 、CF .若∠BFC =20°,则∠DBC =( )A. 30°B. 29°C. 28°D. 20°第12题图13. (2019西工大附中模拟)如图,已知△ABC 内接于⊙O ,EF 为⊙O 的直径,且点F 是弧BC ︵的中点.若∠B =40°,∠C =60°,则∠AFE 的度数为( )A. 10°B. 20°C. 30°D. 40°第13题图14. (2019西安铁一中模拟)如图,在半径为3的⊙O 中,弦BC 、DE 所对的圆周角分别是∠A 、∠F ,且∠A +∠F =90°.若BC =4,则DE 的长为( )A. 13B. 4C. 5D. 25第14题图15.在圆内接四边形ABCD中,∠ACB=∠ACD=60°,对角线AC、BD交于点E.已知BC=32,CD =22,则线段CE的长为()第15题图A. 32 2B. 7 5C. 62 5D. 22 316. (2019株洲)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=________度.第16题图17.(2019安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________.第17题图18.已知半径为5的⊙O中,弦AB=52,弦AC=5,则∠BAC的度数是________.点对线·板块内考点衔接10分钟1. (2019襄阳)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A. AP=2OPB. CD=2OPC. OB⊥ACD. AC平分OB第1题图2. (2019西工大附中模拟)如图,已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC =130°,则∠ABE的度数为()A. 25°B. 30°C. 35°D. 40°第2题图3.(2019天水)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A. 20°B. 25°C. 30°D. 35°第3题图4.(2019柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为________.5.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心,1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP、OA,则△AOP面积的最大值为________.第5题图点对面·跨板块考点迁移2分钟1. (2019安顺)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为()第1题图A. 13 B. 22 C.223 D.24参考答案第24课时 圆的基本性质点对点·课时内考点巩固1. D 【解析】在⊙O 中,∵∠A 与∠D 都是BC ︵所对的圆周角,∴∠A =∠D .2. A 【解析】∵OB =OC ,∴∠OCB =∠OBC =40°.∴在△OBC 中,∠BOC =180°-∠OCB -∠OBC =180°-40°-40°=100°.∴∠A =12∠BOC =12×100°=50°.3. D 【解析】∵四边形ABCD 内接于⊙O ,∠A =40°,∴∠C =180°-∠A =140°.4. C 【解析】如解图,设圆心为O ,半径为r ,则AB =2r .连接OA 、OB ,则r 2+r 2=(2r )2,∴△OAB 为等腰直角三角形,∠AOB =90°.∴∠ASB =12∠AOB =45°.第4题解图5. B 【解析】如解图,连接AC ,∵AB 为直径,∴∠ACB =90°,∴∠ACD =∠DCB -∠ACB =110°-90°=20°,∴∠AED =∠ACD =20°.第5题解图6. B 【解析】∵AD ∥BC ,∴∠B =180°-∠DAB =132°,∵四边形ABCD 内接于⊙O ,∴∠D =180°-∠B =48°,由圆周角定理得,∠AOC =2∠D =96°.7. C 【解析】如解图,连接OC ,∵AB ∥CD ,∴∠B =∠BCD =25°,∴∠AOC =50°,∵CD =OD ,OD =OC ,∴OC =OD =CD ,∴△COD 为等边三角形,∴∠COD =60°,∴∠AOD =∠AOC +∠COD =110°.第7题解图8. D 【解析】∵OC ⊥AB ,∴点C 是AB ︵的中点,即AC ︵=BC ︵.∴∠BOC =∠AOC =2∠ADC =60°. 9. B 【解析】∵AB ︵=CD ︵,∴∠COD =∠AOB =40°,∴∠BOC =100°,∴∠BPC =12∠BOC =50°.10. C 【解析】∵∠BAC =120°,AB =AC ,∴∠BCA =12×(180°-120°)=30°.∴∠D =∠BCA =30°.∵BD为⊙O 的直径,∴∠BAD =90°.在Rt △BAD 中,BD =AD cos30°=632=4 3. 11. D 【解析】如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,在Rt △ABC 中,∵∠CAB =30°,∴AB =2CB =6,∵CD 平分∠ACB ,∴∠BCD =45°,∵∠BAD =∠BCD =45°,∴△ABD 为等腰直角三角形,∴AD =22AB =22×6=3 2.第11题解图12. A 【解析】∵∠BFC =20°,∴∠BAC =2∠BFC =40°,∵AB =AC ,∴∠ABC =∠ACB =12(180°-40°)=70°.又∵EF 是线段AB 的垂直平分线,∴AD =BD ,∴∠ABD =∠BAC =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°.13. A 【解析】如解图,连接OC 、CF .∵∠B =40°,∠ACB =60°,∴∠BAC =80°,∠AFC =∠ABC =40°,∵点F 是弧BC ︵的中点,∴∠BAF =∠CAF =40°,∴∠COF =2∠CAF =80°,∵OF =OC ,∴∠OFC =12(180°-80°)=50°,∴∠AFE =∠OFC -∠AFC =10°.第13题解图14. D 【解析】如解图,连接DO 并延长,交⊙O 于点G ,连接EG 、FG ,则∠DFG =∠DEG =90°,又∵∠A +∠DFE =90°,∠GFE +∠DFE =90°,∴∠A =∠GFE .则GE =BC =4.∵⊙O 的半径为3,∴DG =6.在Rt △DEG 中,DE =DG 2-GE 2=62-42=2 5.第14题解图15. C 【解析】如解图,作BM ⊥AC 于点M ,DN ⊥AC 于点N ,则BM ∥DN ,∴△BME ∽△DNE ,∴MENE =BM DN ,∵∠ACB =∠ACD =60°,∴∠CBM =∠CDN =30°,∴CM =12BC =322,CN =12CD =2,∴BM =3CM =362,DN =3CN =6,∴MN =CM -CN =122,∴ME NE =32,∴EN =25MN =25,∴CE =CN +EN =2+25=625.第15题解图16. 20 【解析】∵AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,∴∠ADC =12∠AOC =45°.∵∠AEC=65°,且∠AEC 是△ADE 的一个外角,∴∠BAD =∠AEC -∠ADC =20°.17. 2 【解析】如解图,连接OA 、OC ,∵∠CBA =45°,∴∠AOC =90°.又∵OA =OC =2,∴AC =2 2.在Rt △ACD 中,∠CDA =90°,∠CAD =30°,∴CD =AC ·sin30°= 2.第17题解图18. 105°或15° 【解析】如解图,连接OC ,OA ,OB .∵OC =OA =AC =5,∴△OAC 是等边三角形,∴∠CAO =60°,∵OA =OB =5,AB =52,∴OA 2+OB 2=AB 2,∴△OAB 是等腰直角三角形,∠OAB =45°,点C 的位置有两种情况,如解图①时,∠BAC =∠CAO +∠OAB =60°+45°=105°;如解图②时,∠BAC =∠CAO -∠OAB =60°-45°=15°.综上所述,∠BAC 的度数是105°或15°.第18题解图点对线·板块内考点衔接1. A 【解析】如解图,连接OC .∵四边形OBCD 是平行四边形,OD =OB ,∴四边形OBCD 是菱形.∴OD =OC =CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∵CD ∥OB ,∴CD =2OP ,OB ⊥AC .故B 、C 选项正确.∵△CBP ≌△COP (HL),∴BP =OP .故D 选项正确.第1题解图2. B 【解析】如解图,连接OA ,OB ,OC ,OE ,∵AB =BC =CE ,∴AB ︵=BC ︵=CE ︵,∠1=∠2=∠3,在四边形BCDE 中,∵∠D =130°,∴∠CBE =50°,∠2=2∠CBE =100°,∴∠1=∠3=∠2=100°,∠AOE=360°-3×100°=60°,∴∠ABE =12∠AOE =30°.第2题解图3. C 【解析】∵∠AEB +∠AEC =∠D +∠AEC =180°,∠D =80°,∴∠AEB =∠D =80°.∵四边形ABCD是菱形,∴∠B =∠D =80°,AB =BC ,∴∠B =∠AEB .∴∠BAE =180°-2∠B =20°,∠BAC =∠ACB =12(180°-∠B )=50°.∴∠EAC =∠BAC -∠BAE =30°.4. 52 【解析】如解图,四边形ABCD 为正方形,BD 为⊙O 的直径,OA 为半径,则OA =OB =5,OA ⊥OB ,∴AB = OA 2+OB 2=52+52=5 2.第4题解图5. 174【解析】如解图,延长AO 至C 点,过点D 作DF ⊥AC 于点F ,延长FD 交⊙D 于点P ′,连接AP ′,OP ′,要使△AOP 面积最大,则只需AO 边上的高最大,此时P ′满足条件,即P ′F 为△AOP 的AO 边上最大的高.∵DF =AD ·CD AC =4×342+32=125,∴P ′F =DF +DP ′=125+1=175,AO =12AC =52,∴△AOP 的最大面积为12AO ·P ′F =12×52×175=174.第5题解图点对面·跨板块考点迁移1. D 【解析】如解图,连接AC 、AO ,得到等腰三角形AOC ,过A 点作AD ⊥OC ,垂足为点D ,∴∠CAD =12∠CAO =∠OBC ,∵点C 坐标为(0,2),∴CD =OD =1,∴在Rt △ACD 中,AD =AC 2-CD 2=32-12=22,∴tan ∠OBC =tan ∠CAD =CD AD =122=24.第1题解图。
小学六年级《圆》知识点专项练习题附答案(基础题)
小学六年级《圆》学问点专项练习题一.选择题(共 10 题,共 20 分)1.画圆的第一步是〔〕。
A.定圆心B.定半径C.两者都可2.圆上任意一点到圆心的距离都是〔〕的。
A.相等B.不相等C.不确定3.连接圆上任意两点的线段,它的长度肯定〔〕直径。
A.小于B.大于C.不大于4.在一张长 6 cm、宽 4 cm 的长方形纸上画一个最大的圆,这个圆的半径是〔〕cm。
A.6B.4C.3D.25.以下说法正确的选项是〔〕。
A.圆周率就是3.14B.圆心的位置打算圆的大小C.直径是圆内最长的线段D.直径是线段,半径是射线6.用一个长 5 厘米,宽 3 厘米的长方形纸片剪一个最大的圆,这个圆的周长是〔〕。
A.9.42 厘米B.15.7 厘米C.4.71 厘米D.9.42 平方厘米7.如以下图,以大圆的半径为直径画一小圆,大圆的周长是小圆周长的〔〕倍。
8.把下面的图形沿着虚线剪开,用可以拼成一个〔〕。
A.长方形B.正方形C.圆9.如图,正方形的面积是20 平方厘米,圆的面积是〔〕平方厘米。
A.31.4B.62.8C.125.610.下面图形中阴影局部的面积与左图相等的有〔〕个。
二.推断题(共 10 题,共 20 分)1.一个圆的直径和一个正方形的边长相等,那么正方形的面积肯定大于圆面积。
〔〕2.画圆时,圆规两脚间的距离是直径的长度。
〔〕3.圆的直径和周长的最简洁的整数比是〔π取3.14〕。
〔〕4.两个圆的周长相等,它们的面积也相等。
〔〕5.圆的周长总是半径的π倍。
〔〕6.每个圆都有很多条对称轴。
〔〕7.半径不相等的两个圆,周长肯定不相等。
〔〕8.圆的周长是和它半径一样的半圆的周长的2 倍。
〔〕9.小圆半径是大圆半径的,那么小圆周长也是大圆周长的。
〔〕10.直径就是两端都在圆上的线段。
〔〕三.填空题(共10 题,共26 分)1.画圆时,圆规两脚分开的距离是6 厘米,所画圆的半径是〔〕厘米,直径是〔〕厘米。
2.看图填空〔单位:厘米〕。
六年级上册北师大版数学第一章:圆 练习题 附答案解析
六上第一章:圆练习题一.选择题(共10小题)1.车轮滚动一周,所行的路程是求车轮的()A.直径B.周长C.面积2.草坪内旋转式水龙喷头的射程是5米,5米相当于圆的()A.半径B.直径C.周长D.面积3.在一个边长6分米的正方形中画一个最大的圆,圆的半径是()分米.A.8B.6C.4D.34.一个半圆的半径是r,它的周长是()A.πrB.πr+2r C.2πr5.如图,以大圆的半径为直径画一小圆,大圆的周长是小圆周长的()倍.A.2B.4C.6D.86.圆的半径扩大3倍,面积扩大()A.3倍B.6倍C.9倍7.有大、小两个圆,大圆半径是5厘米,小圆半径是4厘米,小圆面积是大圆面积的() A.B.C.倍8.用同样长铁丝围成长方形、正方形和圆形,则围成的()面积最大.A.长方形B.正方形C.圆形9.我国古代数学家祖冲之是世界上第一个把圆周率的值精确到小数点后第7位的人。
通常圆周率保留两位小数约是()A.3.13B.3.14C.3.15D.3.1610.用圆规画一个周长是12.56厘米的圆,圆规两脚之间的距离是()A.2厘米B.3厘米C.4厘米D.6厘米二.填空题(共6小题)11.连接和任意一点的线段叫做半径.决定圆的位置,决定圆的大小.12.一个环形的外圆直径是10cm,内圆直径是8cm,它的面积是cm2.13.一个挂钟时针长5厘米,它的尖端一昼夜走了厘米.14.李师傅想把3根横截面直径都是10厘米的圆木用铁丝紧紧地捆绑在一起(如图),捆一圈(接头处不计)至少需铁丝厘米.15.图中阴影部分的周长是厘米.(单位:厘米)16.把一个圆等分成16份,拼成一个近似的长方形,周长增加了6cm,这个圆的面积是2cm.17.两端都在圆上的线段是圆的直径..(判断对错)18.周长相等的两个圆,它们的面积一定相等.(判断对错)19.半圆的周长就是圆周长的一半.(判断对错)20.圆越大圆周率越大,圆越小圆周率越小..(判断对错)四.计算题(共5小题)21.计算如图所示各圆的周长和面积.(1)(2)22.求下列图形的周长.23.求阴影部分的面积.(单位:厘米)24.在一个圆内作一个最大的正方形(如图).已知正方形的面积是8平方厘米,则圆的面积是多少平方厘米?25.求下面图形中阴影部分的周长和面积.26.摩天轮的半径大约是10米,笑笑坐着它转动5周,她大约在空中转过多少米?27.某小区门口有一块圆形空地,直径是12米,现在要给这块地全部铺草皮,如果每平方米草皮的价格是10元,那么铺满草皮需要多少元?28.一种洒水车的前轮直径是6分米,如果它每分钟转3周,它每分钟前进多少米?29.公园中圆形花坛的周长是31.4m.(1)这个花坛的占地面积是多少平方米?(2)如果要在这个花坛的周围铺一条宽为1m的小路,这条小路的面积是多少平方米?30.某一圆形草地的周长是31.4米,其中的面积种植月季,其余是草皮.种植草皮的面积是多少平方米?六上(北师版)第一章:圆练习题参考答案与试题解析一.选择题(共10小题)1.车轮滚动一周,所行的路程是求车轮的()A.直径B.周长C.面积【分析】车轮滚动一周,所行的路程就是这个车轮的周长,可采用化曲为直的方法进行计算.【解答】解:车轮滚动一周所行的路程就是车轮一周的长度,即周长.答:车轮滚动一周,所行的路程是求车轮的周长.故选:B.【点评】此题主要考查的是利用圆的周长求车轮的所行路程.2.草坪内旋转式水龙喷头的射程是5米,5米相当于圆的()A.半径B.直径C.周长D.面积【分析】旋转式水龙喷头的射程是5米,喷头相当于圆的圆心,而射程是圆心出发到圆上任意一点的距离,此距离处处相等,所以射程5米就是指圆的半径;据此解答.【解答】解:旋转式水龙喷头的射程是5米,5米就是指圆的半径.故选:A。
小学六年级数学圆的练习题及答案
小学六年级数学圆的练习题及答案小学六年级数学圆的练题及答案圆是小学数学的重要内容之一,与圆锥、圆柱、扇形等几何图形有联系。
在小升初考试中,圆相关问题主要出现在选择题和填空题中,解答题相对较少,多以求阴影部分面积为主。
只有掌握好这部分知识,才能为以后初中、高中的数学几何研究打下坚实的基础。
一、填空。
1.一个车轮的直径为50cm,车轮转动一周,大约前进多少米?答案:周长为πd,所以车轮转动一周前进π×50≈157.08cm。
2.在一张长8厘米,宽12厘米的长方形纸上画一个最大的圆,这个圆的直径是多少?面积是多少?周长是多少?答案:最大圆的直径为长方形的短边,即8cm;面积为πr²,即16π≈50.27平方厘米;周长为πd,即8π≈25.13厘米。
3.一个环形的外圆直径是10cm,内圆直径是8cm,它的面积是多少平方厘米?答案:环形的面积为外圆面积减去内圆面积,即πR²-πr²,其中R为外圆半径,r为内圆半径。
所以环形的面积为(π×5²-π×4²)≈9.42平方厘米。
4.一个圆的半径扩大2倍,它的周长扩大几倍?面积扩大几倍?答案:半径扩大2倍,周长也扩大2倍,面积扩大4倍。
5.用一根12.56厘米的铁丝弯成一个圆形铁环,铁环的直径是多少?面积是多少平方厘米?答案:铁环的直径为铁丝长度,即12.56厘米;面积为πr²,其中r为半径,即(12.56/π/2)²≈5.02平方厘米。
7.一个圆的半径扩大2倍,它的周长扩大几倍?面积扩大几倍?答案:半径扩大2倍,周长也扩大2倍,面积扩大4倍。
8.圆是由一条围成的。
圆是一个图形,它有一条对称轴,圆的任意一条直径所在的直线都是圆的对称轴。
9.圆有一条直径,有一条半径。
叫做直径,用字母表示d;叫做半径,用字母表示r。
10.当圆规两脚间的距离为5厘米时,画出圆的周长是多少厘米?答案:圆的周长为2πr,所以当圆规两脚间的距离为5厘米时,画出的圆的周长为10π≈31.42厘米。
圆的基础习题(含答案)
一、选择题1.对于下列命题:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中,正确的有( ).A.1个 B.2个 C.3个D.4个2.下列命题正确的是( ).A.相等的圆周角对的弧相等 B.等弧所对的弦相等C.三点确定一个圆 D.平分弦的直径垂直于弦3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为( ).A.米B.米C.米D.米4.已知两圆的半径分别为2、5,且圆心距等于2,则两圆位置关系是( ).A.外离B.外切C.相切D.内含5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF =6,则圆的直径长为( ).A.12 B.10 C.4 D.15第3题图第5题图第6题图第7题图6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ).A.(2,-1) B.(2,2) C.(2,1) D.(3,1)7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB 等于( ).A.55°B.90°C.110°D.120°8.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ).A.60°B.90°C.120°D.180°二、填空题9.如图所示,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________(只填一个即可).10.已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.第9题图第11题图第12题图第15题图12.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.13.点M到⊙O上的最小距离为2cm,最大距离为10 cm,那么⊙O的半径为________________.14.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且,则AC的长为_______.15.如图所示,⊙O是△ABC的外接圆,D是弧AB上一点,连接BD,并延长至E,连接AD,若AB=AC,∠ADE=65°,则∠BOC=________________.16.已知⊙O的直径为4cm,点P是⊙O外一点,PO=4cm,则过P点的⊙O的切线长为________________cm,这两条切线的夹角是________________.三、解答题17.如图,是半圆的直径,过点作弦的垂线交半圆于点,交于点使.试判断直线与圆的位置关系,并证明你的结论;18.在直径为20cm的圆中,有一弦长为16cm,求它所对的弓形的高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.圆的基本概念一.选择题(共1小题)1.(2013•)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2二.解答题(共23小题)2.(2007•双柏县)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.3.(2007•)如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.4.(1998•)如图,AB、CD是⊙O的弦,M、N分别为AB、CD的中点,且∠AMN=∠CNM.求证:AB=CD.5.如图,过圆O一点M的最长的弦长为10,最短的弦长为8,求OM的长.6.(1997•)已知AB是⊙O的弦,P是AB上一点,AB=10,PA=4,OP=5,求⊙O的半径.7.(2010•黔东南州)如图,水平放置的圈柱形水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留π)8.安定广场南侧地上有两个石球,喜爱数学的小明想测量球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,请你算出这个石球的半径.9.(1999•)已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别是OA、OB的中点.求证:MC=NC.10.已知:如图,∠PAC=30°,在射线AC上顺次截取AD=2cm,DB=6cm,以DB为直径作⊙O交射线AP于E、F 两点,又OM⊥AP于M.求OM及EF的长.11.(2013•)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.12.(2013•长宁区二模)如图,已知等腰直角△ABC中,∠BAC=90°,圆心O在△ABC部,且⊙O经过B、C两点,若BC=8,AO=1,求⊙O的半径.13.(2011•集区模拟)如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C,若AB是⊙O的直径,D 是BC的中点.试判断AB、AC之间的大小关系,并给出证明.14.(2008•)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,AB=8,求⊙O直径的长.15.(2006•)已知:如图,两个等圆⊙O1和⊙O2相交于A,B两点,经过点A的直线与两圆分别交于点C,点D,经过点B的直线与两圆分别交于点E,点F.若CD∥EF,求证:(1)四边形EFDC是平行四边形;(2).16.(1999•)如图,⊙O1和⊙O2都经过A,B两点,经过点A的直线CD交⊙O1于C,交⊙O2于D,经过点B的直线EF交⊙O1于E,交⊙O2于F.求证:CE∥DF.17.如图①,点A、B、C在⊙O上,连接OC、OB.(1)求证:∠A=∠B+∠C.(2)若点A在如图②所示的位置,以上结论仍成立吗?说明理由.18.(2013•闸北区二模)已知:如图,在⊙O中,M是弧AB的中点,过点M的弦MN交弦AB于点C,设⊙O半径为4cm,MN=cm,OH⊥MN,垂足是点H.(1)求OH的长度;(2)求∠ACM的度数.19.(2013•)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC 绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.20.(2013•)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.21.(2013•)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.22.(2013•)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.23.(2013•)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)24.(2011•德宏州)如图,在平面直角坐标系中,每个小正方形的边长都为1个单位长度.(1)画出△ABC关于点O的中心对称图形△A1B1C1;(2)画出将△A1B1C1向右平移5个单位长度得到的△A2B2C2;(3)画出△A1B1C1关于x轴对称的图形△A3B3C3.2013年10月dous的初中数学组卷参考答案与试题解析一.选择题(共1小题)1.(2013•)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:压轴题;探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE 的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二.解答题(共23小题)2.(2007•双柏县)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.考点:垂径定理;勾股定理.专题:几何综合题;压轴题.分析:(1)AB是⊙O的直径,则AB所对的圆周角是直角,BC是弦,OD⊥BC于E,则满足垂径定理的结论;(2)OD⊥BC,则BE=CE=BC=4,在Rt△OEB中,由勾股定理就可以得到关于半径的方程,可以求出半径.解答:解:(1)不同类型的正确结论有:①BE=CE;②弧BD=弧DC;③∠BED=90°;④∠BOD=∠A;⑤AC∥OD;⑥AC⊥BC;⑦OE2+BE2=OB2;⑧S△ABC=BC•OE;⑨△BOD是等腰三角形;⑩△BOE∽△BAC…说明:1、每写对一条给1分,但最多给5分;2、结论与辅助线有关且正确的,也相应给分.(2)∵OD⊥BC,∴BE=CE=BC=4,设⊙O的半径为R,则OE=OD﹣DE=R﹣2,(7分)在Rt△OEB中,由勾股定理得:OE2+BE2=OB2,即(R﹣2)2+42=R2,解得R=5,∴⊙O的半径为5.(10分)点评:本题主要考查了垂径定理,求圆的弦,半径,弦心距的长问题可以转化为解直角三角形的问题.3.(2007•)如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.考点:垂径定理;等腰三角形的性质;勾股定理.专题:压轴题.分析:可通过构建直角三角形进行求解.连接OA,OC,那么OA⊥BC.在直角三角形ACD中,有AC,CD的值,AD就能求出了;在直角三角形ODC中,用半径表示出OD,OC,然后根据勾股定理就能求出半径了.解答:解:连接OA交BC于点D,连接OC,OB,∵AB=AC=13,∴=,∴∠AOB=∠AOC,∵OB=OC,∴AO⊥BC,CD=BC=12在Rt△ACD中,AC=13,CD=12所以AD=设⊙O的半径为r则在Rt△OCD中,OD=r﹣5,CD=12,OC=r所以(r﹣5)2+122=r2解得r=16.9.点评:本题主要考查了垂径定理和勾股定理的综合运用.4.(1998•)如图,AB、CD是⊙O的弦,M、N分别为AB、CD的中点,且∠AMN=∠CNM.求证:AB=CD.考点:垂径定理.专题:证明题;压轴题.分析:连接OM,ON,OA,OC,先根据垂径定理得出AM=AB,CN=CD,再由∠AMN=∠CNM得出∠NMO=∠MNO,即OM=ON,再由OA=OC可知Rt△AOM≌Rt△CON,故AM=CN,由此即可得出结论.解答:证明:连接OM,ON,OA,OC,∵M、N分别为AB、CD的中点,∴OM⊥AB,ON⊥CD,∴AM=AB,CN=CD,∵∠AMN=∠CNM,∴∠NMO=∠MNO,即OM=ON,在Rt△AOM与Rt△CON中,∵,∴Rt△AOM≌Rt△CON(HL),∴AM=CN,∴AB=CD.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.如图,过圆O一点M的最长的弦长为10,最短的弦长为8,求OM的长.考点:垂径定理;勾股定理.分析:过M的最长弦应该是⊙O的直径,最短弦应该是和OM垂直的弦(设此弦为CD);可连接OM、OC,根据垂径定理可得出CM的长,再根据勾股定理即可求出OM的值.解答:解:连接OM交圆O于点B,延长MO交圆于点A,过点M作弦CD⊥AB,连接OC∵过圆O一点M的最长的弦长为10,最短的弦长为8,(2分)∴直径AB=10,CD=8∵CD⊥AB∴CM=MD=(4分)在Rt△OMC中,OC=;∴OM=.(6分)点评:此题考查的是垂径定理及勾股定理的应用,解答此题的关键是理解过M点的最长弦和最短弦.6.(1997•)已知AB是⊙O的弦,P是AB上一点,AB=10,PA=4,OP=5,求⊙O的半径.考点:垂径定理;勾股定理.分析:过O作OE⊥AB,垂足为E,连接OA,先求出PE的长,利用勾股定理求出OE,在Rt△AOE中,利用勾股定理即可求出OA的长.解答:解:过O作OE⊥AB,垂足为E,连接OA,∵AB=10,PA=4,∴AE=AB=5,PE=AE﹣PA=5﹣4=1,在Rt△POE中,OE===2,在Rt△AOE中,OA===7.点评:本题主要考查垂径定理和勾股定理的应用.作辅助线构造直角三角形是解题的突破口.7.(2010•黔东南州)如图,水平放置的圈柱形水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留π)考点:垂径定理的应用.专题:探究型.分析:连接OA、OB,过O作OD⊥AB,交AB于点E,由于水面的高为3m可求出OE的长,在Rt△AOE中利用三角函数的定义可求出∠AOE的度数,由垂径定理可知,∠AOE=∠BOE,进而可求出∠AOB的度数,根据扇形及三角形的面积可求出弓形的面积.解答:解:连接OA、OB,过O作OD⊥AB,交AB于点E,∵OD=0.6m,DE=0.3m,∴OE=OD﹣DE=0.6﹣0.3=0.3m,∴cos∠AOE===,∴∠AOE=60°∴AE=OA•sin∠AOE=0.6×=,AB=2AE=∴∠AOB=2∠AOE=2×60°=120°,∴S阴影=S扇形OAB﹣S△OAB=﹣××0.3=m2.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.安定广场南侧地上有两个石球,喜爱数学的小明想测量球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,请你算出这个石球的半径.考点:垂径定理的应用;勾股定理.专题:计算题.分析:经过圆心O作地面的垂线,垂足为C点,连接AB,交OC于点D,可得出OC与AB垂直,利用垂径定理得到D为AB的中点,由AB的长求出AD的长,设圆的半径为xcm,即OA=OC=xcm,在直角三角形AOD 中,OD=OC﹣CD=(x﹣10)cm,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为这个石球的半径.解答:解:过圆心O作地面的垂线OC,交地面于点C,连接AB,与OC交于点D,如图所示,由AB与地面平行,可得出OC⊥AB,∴D为AB的中点,即AD=BD=AB=30cm,又CD=10cm,设圆的半径为xcm,则OA=OC=xcm,∴OD=OC﹣CD=(x﹣10)cm,在Rt△AOD中,根据勾股定理得:OA2=AD2+OD2,即x2=302+(x﹣10)2,整理得:x2=900+x2﹣20x+100,即20x=1000,解得:x=50,则石球的半径为50cm.点评:此题考查了垂径定理的应用,以及勾股定理,利用了方程的思想,结合图形构造直角三角形是解本题的关键.9.(1999•)已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别是OA、OB的中点.求证:MC=NC.考点:圆心角、弧、弦的关系;全等三角形的判定与性质.专题:证明题.分析:根据圆的性质可证OM=ON,又已知∠AOC=∠BOC,OC=OC,根据SAS可证△MOC≌△ONC,即证MC=NC.解答:证明:∵OA、OB为⊙O的半径,∴OA=OB,(2分)∵M是OA中点,N是OB中点,∴OM=ON,(4分)∵∠AOC=∠BOC,OC=OC,∴△MOC≌△NOC,(6分)∴MC=NC.(7分)点评:本题考查了圆的性质和全等三角形的判定.10.已知:如图,∠PAC=30°,在射线AC上顺次截取AD=2cm,DB=6cm,以DB为直径作⊙O交射线AP于E、F 两点,又OM⊥AP于M.求OM及EF的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:连接OF,由DB=6cm,求得OD的长,则可求得OA的长,由OM⊥AP,∠PAC=30°,即可求得OM的长,然后在Rt△OMF中,利用勾股定理即可求得FM的长,又由垂径定理,即可求得EF的长.解答:解:连接OF,∵DB=6cm,∴OD=3cm,∴AO=AD+OD=2+3=5cm,∵∠PAC=30°,OM⊥AP,∴在Rt△AOM中,OM=AO=×5=cm∵OM⊥EF,∴EM=MF,∵MF==cm∴EF=cm.点评:此题考查了直角三角形中30°角的性质、勾股定理、垂径定理等几个知识点.此题难度不大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.11.(2013•)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.考点:圆周角定理;等腰三角形的判定与性质;勾股定理.分析:(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x﹣2)2+x2=42,解此方程即可求得CB的长,继而求得CE的长.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.点评:此题考查了圆周角定理、线段垂直平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度适中,注意掌握方程思想与数形结合思想的应用.12.(2013•长宁区二模)如图,已知等腰直角△ABC中,∠BAC=90°,圆心O在△ABC部,且⊙O经过B、C两点,若BC=8,AO=1,求⊙O的半径.考点:垂径定理;勾股定理.分析:连结BO、CO,延长AO交BC于点D,由于△ABC是等腰直角三角形,故∠BAC=90°,AB=AC,再根据OB=OC,可知直线OA是线段BC的垂直平分线,故AD⊥BC,且D是BC的中点,在Rt△ABC中根据AD=BD=BC,可得出BD=AD,再根据AO=1可求出OD的长,再根据勾股定理可得出OB的长.解答:解:连结BO、CO,延长AO交BC于D.∵△ABC是等腰直角三角形,∠BAC=90°,∴AB=AC∵O是圆心,∴OB=OC,∴直线OA是线段BC的垂直平分线,∴AD⊥BC,且D是BC的中点,在Rt△ABC中,AD=BD=BC,∵BC=8,∴BD=AD=4,∵AO=1,∴OD=BD﹣AO=3,∵AD⊥BC,∴∠BDO=90°,∴OB===5.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.13.(2011•集区模拟)如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C,若AB是⊙O的直径,D 是BC的中点.试判断AB、AC之间的大小关系,并给出证明.考点:圆周角定理;等腰三角形的判定与性质.专题:证明题.分析:连接AD;由圆周角定理可得AD⊥BC,又D是BC的中点,因此AD是BC的垂直平分线,由此可得出AB=AC 的结论.解答:解:AB=AC.证法一:连接AD.∵AB是⊙O的直径,∴AD⊥BC.∵AD为公共边,BD=DC,∴Rt△ABD≌Rt△ACD(SAS).∴AB=AC.证法二:连接AD.∵AB是⊙O的直径,∴AD⊥BC.又BD=DC,∴AD是线段BD的中垂线.∴AB=AC.点评:本题考查了圆周角定理、等腰三角形的判定与性质.解题时,通过作辅助线AD构造△ABC的中垂线来证明AB=AC的.14.(2008•)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,AB=8,求⊙O直径的长.考点:圆周角定理;垂径定理.专题:综合题.分析:(1)利用垂径定理可以得到弧AD和弧BD相等,然后利用圆周角定理求得∠DEB的度数即可;(2)利用垂径定理在直角三角形OAC中求得AO的长即可求得圆的半径.解答:解:(1)∵OD⊥AB,垂足为C,交⊙O于点D,∴弧AD=弧BD,∵∠AOD=52°,∴∠DEB=∠AOD=26°;(2)∵OD⊥AB,∴AC=BC=AB=×8=4,∴在直角三角形AOC中,AO===5.∴⊙O直径的长是10.点评:本题考查了圆周角定理及垂径定理的知识,解题的关键是利用垂径定理构造直角三角形.15.(2006•)已知:如图,两个等圆⊙O1和⊙O2相交于A,B两点,经过点A的直线与两圆分别交于点C,点D,经过点B的直线与两圆分别交于点E,点F.若CD∥EF,求证:(1)四边形EFDC是平行四边形;(2).考点:圆接四边形的性质;平行四边形的判定.专题:证明题.分析:(1)已知了CD∥EF,需证CE∥DF;连接AB;由圆接四边形的性质,知:∠BAD=∠E,∠BAD+∠F=180°,可证得∠E+∠F=180°,即CE∥DF,由此得证;(2)由四边形CEFD是平行四边形,得CE=DF.由于⊙O1和⊙O2是两个等圆,因此.解答:证明:(1)连接AB,∵ABEC是⊙O1的接四边形,∴∠BAD=∠E.又∵ADFB是⊙O2的接四边形,∴∠BAD+∠F=180°.∴∠E+∠F=180°.∴CE∥DF.∵CD∥EF,∴四边形CEFD是平行四边形.(2)由(1)得:四边形CEFD是平行四边形,∴CE=DF.∴.点评:此题考查了圆接四边形的性质、平行四边形的判定以及等圆或同圆中等弦对等弧的应用.16.(1999•)如图,⊙O1和⊙O2都经过A,B两点,经过点A的直线CD交⊙O1于C,交⊙O2于D,经过点B的直线EF交⊙O1于E,交⊙O2于F.求证:CE∥DF.考点:圆接四边形的性质.专题:证明题.分析:连接AB.根据圆接四边形的对角互补,外角等于它的对角,即可证明一组同旁角互补,从而证明结论.解答:证明:连接AB.∵四边形ABEC是⊙O1的接四边形,∴∠BAD=∠E.又∵四边形ABFD是⊙O2的接四边形,∴∠BAD+∠F=180°.∴∠E+∠F=180°.∴CE∥DF.点评:此题考查了圆接四边形的性质以及平行线的判定.17.如图①,点A、B、C在⊙O上,连接OC、OB.(1)求证:∠A=∠B+∠C.(2)若点A在如图②所示的位置,以上结论仍成立吗?说明理由.考点:圆周角定理;圆接四边形的性质.分析:(1)连接OA,由OA=OB,OA=OC,利用等边对等角即可.(2)同(1),连接OA,由OA=OB,OA=OC,利用等边对等角即可证得结论成立.解答:(1)证明:连接OA,∵OA=OB,OA=OC,∴∠BAO=∠B,∠CAO=∠C,∴∠BAC=∠BAO+∠CAO=∠B+∠C;(2)成立.理由:连接OA,∵OA=OB,OA=OC,∴∠BAO=∠B,∠CAO=∠C,∴∠BAC=∠BAO+∠CAO=∠B+∠C.点评:此题考查了圆周角的性质、等腰三角形的性质.此题比较简单,解题的关键是注意掌握数形结合思想的应用,注意准确作出辅助线.18.(2013•闸北区二模)已知:如图,在⊙O中,M是弧AB的中点,过点M的弦MN交弦AB于点C,设⊙O半径为4cm,MN=cm,OH⊥MN,垂足是点H.(1)求OH的长度;(2)求∠ACM的度数.考点:垂径定理;含30度角的直角三角形;勾股定理.专题:计算题.分析:(1)连接MO交弦AB于点E,由OH⊥MN,O是圆心,根据垂径定理得到MH等于MN的一半,然后在直角三角形MOH中利用勾股定理即可求出OH;(2)由M是弧AB的中点,MO是半径,根据垂径定理得到OM垂直AB,在直角三角形OHM中,根据一条直角边等于斜边的一半,那么这条这条直角边所对的角为30度,即角OMH等于30度,最后利用三角形的角和定理即可求出角ACM的度数.解答:解:连接MO交弦AB于点E,(1)∵OH⊥MN,O是圆心,∴MH=MN,又∵MN=4cm,∴MH=2cm,在Rt△MOH中,OM=4cm,∴OH===2(cm);(2)∵M是弧AB的中点,MO是半径,∴MO⊥AB∵在Rt△MOH中,OM=4cm,OH=2cm,∴OH=MO,∴∠OMH=30°,∴在Rt△MEC中,∠ACM=90°﹣30°=60°.点评:此题考查了垂径定理,勾股定理,以及含30°角的直角三角形,熟练掌握垂径定理是解本题的关键.19.(2013•)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC 绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.考点:作图-旋转变换;作图-轴对称变换.分析:△ABC绕A点逆时针旋转90°得到△A1B1C1,△A1B1C1沿直线B1C1作轴反射得出△A2B2C2即可.解答:解:如图所示:点评:此题主要考查了图形的旋转变换以及轴对称图形,根据已知得出对应点位置是解题关键.20.(2013•)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.考点:作图-旋转变换;轴对称-最短路线问题.分析:(1)延长AC到A1,使得AC=A1C,延长BC到B1,使得BC=B1C,利用点A的对应点A2的坐标为(0,﹣4),得出图象平移单位,即可得出△A2B2C2;(2)根据△△A1B1C绕某一点旋转可以得到△A2B2C2进而得出,旋转中心即可;(3)根据B点关于x轴对称点为A2,连接AA2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.解答:解:(1)如图所示:(2)如图所示:旋转中心的坐标为:(,﹣1);(3)∵PO∥AC,∴=,∴=,∴OP=2,∴点P的坐标为(﹣2,0).点评:此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.21.(2013•)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.考点:作图-旋转变换;作图-轴对称变换.分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.解答:解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).点评:本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.22.(2013•)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题;压轴题.分析:(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为,∴S△A1B1C1:S△A2B2C2=()2=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,还利用了相似三角形面积的比等于相似比的平方的性质.23.(2013•)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)考点:作图-旋转变换;作图-平移变换.分析:(1)根据△ABC向上平移3个单位,得出对应点位置,即可得出A1的坐标;(2)得出旋转后的△A2B2C2,再利用弧长公式求出点B所经过的路径长.解答:解:(1)如图所示:A1的坐标为:(﹣3,6);(2)如图所示:∵BO==,∴==π.点评:此题主要考查了弧长公式的应用以及图形的旋转与平移变换,根据已知得出对应点位置是解题关键.24.(2011•德宏州)如图,在平面直角坐标系中,每个小正方形的边长都为1个单位长度.(1)画出△ABC关于点O的中心对称图形△A1B1C1;(2)画出将△A1B1C1向右平移5个单位长度得到的△A2B2C2;(3)画出△A1B1C1关于x轴对称的图形△A3B3C3.考点:作图-旋转变换;作图-轴对称变换;作图-平移变换.分析:(1)根据原点坐标对称点的坐标性质得出A1,B1,C1,各点坐标即可得出答案;(2)将A1,B1,C1,各点向右平移5个单位即可得出A2,B2,C2,各点坐标即可得出答案;(3)根据关于x轴对称的点的坐标,横坐标不变,纵坐标改变符号,即可得出对应点坐标,得出答案即可.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:△A3B3C3,即为所求.点评:此题主要考查了关于原点对称的点的坐标特点以及关于x轴对称点的性质,根据已知得出对应点位置是解题关键.成功就是先制定一个有价值的目标,然后逐步把它转化成现实的过程。