人教版七年级数学上册有理数的加法
有理数的加法七年级数学人教版上册
(2)4+(-6)=_______;
A.1 ℃ B.3 ℃
知识点2 异号两数相加
2.气温由-2 ℃上升3 ℃后是
()
6.下表记录的是今年长江某一周内的水位变化情况,这一周的上周
末的水位已达到警戒水位(正号表示水位比前一天上升,负号表示水位比
前一天下降).
星期
一
二
三
四
五
六
水位变化/米 +0.2 +0.8 -0.4 +0.2 +0.3 -0.2
第一章 有理数
有理数的加减法
第1课时 有理数的加法(1)
有理数的加法法则 (1)同号两数相加,取相同的___符__号___,并把__绝__对__值____相加. (2)异号两数相加,取绝对值__较__大____的加数的符号,并用较大的 绝对值减去较小的绝对值. 互为相反数的两个数相加得___0__. (3)一个数同0相加,仍得这个数.
___-__2_5__,于是可得(-40)+(+15)=___-__2_5__.
3.计算(-2)+(-3)的结果是
(A )
A.-5
B.-1
C.1
D.5
知识点1 同号两数相加 例1 计算: (1)(-2)+(-11); (2)(+20)+(+12);
(3)-112+-23.
4.计算: (1)(-0.9)+(-2.7);
(7)不等式、推理与证明。此专题中不等式是重点,注重不等式与其他知识的整合。 学法指导必须与教学改革同走进行,协调开展,持之以恒。我们在数学教学的同时应关于理论联系实际,因人而异,因材施教,充分调动学生的学习积极性。
2.海平面的高度为0 m.一艘潜艇从海平面先下潜40 m,再上升
15 m,此时潜艇在水下25 m处.把上升记为正,下潜记为负,于是下 潜40 m可记作-40,上升15 m可记作___+__1_5__,水下25 m处可记为
有理数的加法七年级数学人教版上册
D. -6
3. 若a,b互为相反数,则(-2 021)+a+2 020+b=__-__1___,|a+10+
b|=____1_0___.
4. 5袋大米以每袋50 kg为基准,超过的部分记为正,不足的部分记为负, 称重(单位:kg)记录如下:+4.5,-4,+2.3,-3.5,+2.5.这5袋 大米共超过基准___1_._8___kg,总质量是__2_5_1_._8___kg.
5. 用适当的方法计算: (1) (-34)+18+(-26)+22; -20
(2) 20.96+(-1.4)+(-13.96)+1.4;
7
(3) (-36)+(+14.5)+(-161)+(-51);
7
7
2
-11
(4) (-1.5)+(+31)+2.75+(-81).
4
2
-4
6. 给出下列计算过程:① 24+(-18)+6+(-12)=[(-18)+(-12)]+
10. 计算: (1) (-21)+(+42)+(-19)+(-14)+(-11);
-23
(2) 1.75+(-61)+33+(-13)+2 5;
2
8
4
8
-1
2
(3) (-3.14)+(+4.96)+(+2.14)+(-7.96)+(+0.4); -3.6
(4) (-11)+(-6.25)+31+(-1.75)+(+23).
1. 下列说法正确的是
(B)
A. 异号两数相加,取较大的加数的符号
B. 绝对值不相等的异号两数相加,取绝对值较大的加数的符号
C. 同号两数相加,把绝对值相加即可
D. 两数相加,取第一个加数的符号
2. (2020·天津)计算30+(-20)的结果为
人教版七年级数学上册:1.3.1《有理数的加法》说课稿
人教版七年级数学上册:1.3.1《有理数的加法》说课稿一. 教材分析《有理数的加法》是人民教育出版社出版的七年级数学上册第一章第三节第一课时内容。
这一节主要介绍有理数的加法运算方法,是学生学习有理数运算的基础知识。
在本节课中,学生将学习如何利用数轴理解有理数的加法,掌握加法的运算律,并能够熟练地进行有理数的加法运算。
二. 学情分析七年级的学生已经具备了一定的数理基础,对数的运算有一定的了解。
但是,对于有理数的加法运算,学生可能还存在着一些困难,如对有理数的概念理解不深,对数轴的使用不熟练等。
因此,在教学过程中,需要注重对学生基础知识的巩固,以及对数轴使用的指导。
三. 说教学目标1.知识与技能目标:学生能够理解有理数的加法概念,掌握有理数的加法运算方法,能够熟练地进行有理数的加法运算。
2.过程与方法目标:通过数轴的使用,学生能够直观地理解有理数的加法,培养学生的数形结合思想。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:有理数的加法运算方法,加法的运算律。
2.教学难点:对有理数加法概念的理解,数轴的使用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过数形结合的方式理解有理数的加法,培养学生的独立思考能力和合作探究能力。
2.教学手段:使用多媒体课件,辅助学生直观地理解有理数的加法,同时利用数轴帮助学生进行运算。
六. 说教学过程1.导入新课:通过简单的实例,引导学生复习已学的数的概念,为新课的学习做好铺垫。
2.探究新知:引导学生通过数轴观察,发现有理数加法的规律,引导学生总结出加法的运算律。
3.巩固新知:通过例题讲解,让学生动手练习,巩固对加法运算的理解。
4.拓展应用:引导学生将加法运算应用于实际问题中,培养学生的应用能力。
5.小结:对本节课的内容进行总结,强调重点知识。
6.布置作业:布置适量的作业,巩固所学知识。
人教版七年级数学上册有理数的加法课件
解: (3) 0+(-7)=-7; (4)(-9)+(+9)= 0.
可要记住哟!
有理数加法的运算步骤:
一要辨别加数的类型(同号、异号); 二要确定和的符号; 三要计算绝对值的和(或差).
即“一看、二定、三算”.
【课本P18 练习 第1题】
1.用算式表示下面的结果: (1)温度由-4 ℃上升7 ℃; -4+7=3 (2)收入7元,又支出5元. 7-5=2
你能用精炼的语言表述这一结论吗? 你能把该规律用字母表示吗? 有理数加法中,两个数相加,交换加数的位 置,和不变.
加法交换律: a b b a
[8+ (-5)]+(-4) ,8+[(-5) +(-4)] 两次所得的和相同吗?换几个加数再试一试.
从上述计算中,你能得出什么结论?
有理数的加法中,三个数相加,先把前两个 数相加,或者先把后两个数相加,和不变.
拓展延伸
3.数a,b表示的点如图所示,则 (1)a + b __>___ 0; (2)a + (-b)__<___ 0; (3)(-a) + b __>___ 0; (4)(-a) + (-b) __<___0. (填“>”“<”或“=”)
课堂小结
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值 相加.
数分别为+1,+1,+1.5,-1,+1.2,+1.3,
-1.3,-1.2,+1.8,+1.1.
1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-
1.2)+1.8+1.1
= [1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+
(1+1.5+1.8+1.1)
= 5.4. 90×10+5.4 = 905.4.
七年级数学上册第一章1.3有理数的加减法(人教版)
七年级数学上册第一章1.3有理数的加减法(人教版)1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则1.了解有理数加法的意义.2.理解有理数加法法则的合理性.3.能运用有理数加法法则正确进行有理数加法运算.阅读教材P16~18,思考并回答下列问题.结合教材对两个有理数相加的7个算式,类似地再列举出相应的算式并结合数轴解释,得出结果如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0],根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数的两个数相加,一个有理数和0相加,和分别为多少?知识探究有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.自学反馈计算:(1)16+(-8)=8;(2)(-12)+(-13)=-56;(3)(+312)+(-72)=0;(4)(+8)+(-3)=5;(5)(-0.125)+(18)=0;(6)0+(-9.7)=-9.7.在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.活动1小组讨论例1计算:(1)(-3)+(-9);(2)(-4.7)+3.9.解:(1)-12.(2)-0.8.例2足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0.活动2跟踪训练1.计算:(1)(+3)+(+8)(2)(+14)+(-12);(3)(-312)+(-3.5);(4)(-314)+(+213);(5)(-19)+8.3;(6)-3.4+4.解:(1)11.(2)-14.(3)-7.(4)-1112.(5)10.7.(6)0.6.注意计算的符号,特别是负号.2.某县某天夜晚平均气温是-10℃,白天比夜晚高12℃,那么白天的平均气温是多少?解:2℃.3.两个数的和为负数,则下列说法中正确的是(D)A.两个均是负数B.两个数一正一负C.至少有一个正数D.至少有一个负数4.一个正数与一个负数的和是(D)A.正数B.负数C.零D.不能确定符号活动3课堂小结有理数加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3.任意有理数和零相加,仍得这个数.第2课时有理数的加法运算律1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算.3.能根据有理数加法算式的特点选择适当的简便运算方法.阅读教材P19~20,思考并回答下列问题.知识探究加法交换律的文字表达:两个数相加,交换加数的位置,和不变.加法交换律的字母表达:a+b=b+a.加法交换律的例子说明:1+2=2+1.加法结合律的文字表达:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.加法结合律的字母表达:(a+b)+c=a+(b+c).加法结合律的例子说明:(1+2)+3=1+(2+3).自学反馈计算:(1)(-7.34)+(-12.74)+7.34+12.4;(2)(-35+15)+(-45);(3)(-37)+(+15)+(+27)+(-115);(4)(-20.75)+314+(-4.25)+1934;(5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7).解:(1)-0.34.(2)-65.(3)-117.(4)-2.(5)1.活动1小组讨论例1计算:(1)(-2)+3+1+(-3)+2+(-4);(2)16+(-25)+24+(-35);(3)314+(-235)+534+(-825);(4)(-7)+6+(-3)+10+(-6).解:(1)-3.(2)-20.(3)-2.(4)0.例210袋小麦称后记录如图所示(单位:kg).10袋小麦一共多少千克?如果每袋小麦以90kg为标准,10袋小麦总计超过多少千克或不足多少千克?解法1:先计算10袋小麦一共多少千克:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4.再计算总计超过多少千克:905.4-90×10=5.4.解法2:每袋小麦超过90kg的千克数记作正数,不足的千克数记作负数.10袋小麦对应的数分别为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1=1+(-1)]+1.2+(-1.2)]+1.3+(-1.3)]+(1+1.5+1.8+1.1)=5.4.90×10+5.4=905.4.答:10袋小麦一共905.4kg,总计超过5.4kg.注意运算律的运用.活动2跟踪训练1.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)-10.(2)23.(3)-3.(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-18. (1)将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为a升/千米,这天下午汽车共耗油多少升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发点0千米.(2)118a升.活动3课堂小结1.有理数的加法交换律、结合律:加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c).2.简便运算:①运用运算律;②运用相反数的和为零;③凑整.1.3.2有理数的减法第1课时有理数的减法法则1.掌握有理数的减法法则.2.熟练地进行有理数的减法运算.3.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.阅读教材P21~22,思考下列问题.通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x,使x+(-3)=4,易知x=7,所以4-(-3)=7.①另一方面,4+(+3)=7.②由①②,有4-(-3)=4+(+3).再试着把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7).得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a-b=a+(-b).减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.知识探究有理数减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a-b=a+(-b).自学反馈计算:(1)(-3)-(-6);(2)0-8;(3)6.4-(-3.6);(4)(-312)-(+514).解:(1)3.(2)-8.(3)10.(4)-834.(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a-b=a+(-b).活动1小组讨论例计算:(1)(-38)-(-36);(2)0-(-711);(3)1.7-(-3.5);(4)(-234)-(-112);(5)323-(-234);(6)(-334)-(+1.75).解:(1)-2.(2)711.(3)5.2.(4)-114.(5)6512.(6)-5.5.活动2跟踪训练1.计算:(1)(-23)-(+112)-(-14);(2)(-0.1)-(-813)+(-1123)-(-110);(3)(-1.5)-(-1.4)-(-3.6)+(-4.3)-(+5.2);(4)(5-6)-(7-9).解:(1)-12.(2)-313.(3)-6.(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数;(2)-13的绝对值的相反数与23的相反数的差.解:(1)-0.81-1.8=-2.61.(2)-|-13|-(-23)=-13+23=13.活动3课堂小结1.有理数的减法法则:a-b=a+(-b).2.转化原则:减号变加号,减数变成相反数.第2课时有理数的加减混合运算1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,提高运算的速度和准确度.3.能把有理数加法运算省略加号和括号,理解有理数的和.4.形成解决有理数加减混合运算问题的一些基本策略.阅读教材P23~24,体会加法与减法的统一和书写的简约.知识探究把下列算式统一为加法,并写成省略括号的形式:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7;(-7)+(+5)+(-4)-(-10)=(-7)+(+5)+(-4)+(+10)=-7+5-4+10.注意有理数的加减混合运算写成省略括号的和的形式的意义.自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略括号的和的形式,并计算.解:23-45-15+13-1=-1.活动1小组讨论例1计算:(1)(+27)+(-49)-(+59)-(-57)-(+1);(2)-7-(-8)-(-712)-(+9)+(-10)+1112;(3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1.(2)1.(3)50.(4)-5050.例2银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1200元,存进2500元,取出1025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?解:增加了,增加了1625元.例3把-a+(+b)-(-c)+(-d)写成省略括号的和的形式为-a+b+c -d.总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算;(2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加;(4)按有理数加法法则计算.活动2跟踪训练1.把下列算式写成省略括号的和的形式.(1)(+9)-(+10)+(-2)-(-8)+3;(2)(-13)-(+22)+(-17)-(-18).解:(1)9-10-2+8+3.(2)-13-22-17+18.2.计算:(1)(-7)-(+5)+(-4)-(-10);(2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1;(4)-2.4+3.5-4.6+3.5.解:(1)-6.(2)-0.5.(3)-314.(4)0.活动3课堂小结1.有理数的加减混合运算.2.省略加号和括号.。
人教版七年级数学上册有理数的加减法.1有理数的加法第1课时 有理数的加法法则
2.计算: (1)3+(+5)=____8; (-7)+(-4)=____-__1_1_; (2)4+(-12)=_____-__8_; 13+(-5)=____;8 (3)0+(-6)=_____-_;6 (-5)+5=____.0
3.(202X·湖州)计算(-20)+16的结果是( A) A.-4 B.4 C.-202X D.202X 4.(202X·呼和浩特)互为相反数的两个数的和为( A) A.0 B.-1 C.1 D.2 5.(202X·温州)计算(+5)+(-2)的结果是( C) A.7 B.-7 C.3 D.-3
七年级数学上册(人教版)
第一章 有理数
1.3 有理数的加减法
1.3.1 有理数的加法 第1课时 有理数的加法法则
有理数加法法则: (1)同号两数相加,取___相__同___的符号,并把绝对值_相__加____; (2)绝对值不相等的异号两数相加,取绝对值__较__大____的加数的符号,并 用较大的绝对值___减__去___较小的绝对值.互为相反数的两个数相加得____, 即0若a,b互为相反数,则a+b=____; 0 (3)一个数同0相加,仍得__这__个__数____,即a+0=__a__.
练习.计算: (1)(-7)+(-4)=____-__1_1_; (2)3+(-12)=_-__9_;
(3)7+(-7)=___0_.
知识点一:有理数加法法则 1.(1)+4与2的和的符号取__+__号; (2)-4与-2的和的符号取_-___号; (3)+4与-2的和的符号取_+___号; (4)-4与2的和的符号取_-___号;
D.-3
14.若x的相反数是3,|y|=5,则x+y的值为( D ) A.-8 B.2 C.8或-2 D.-8或2 15.若|a+b|=|a|+|b|,则a,b的关系是( D ) A.a,b的绝对值相等 B.a,b异号 C.a+b的值是非负数 D.a,b同号或至少有一个为0
人教版七年级数学上册1.3.1有理数的加法(教案)
5.通过有理数加法的学习,培养学生的逻辑思维能Байду номын сангаас和解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言进行表达与交流的能力,通过有理数加法的学习,增强数学表达和逻辑推理的素养。
2.激发学生的数学抽象思维,提高对有理数概念及其加法法则的理解,培养数学抽象和模型构建的核心素养。
人教版七年级数学上册1.3.1有理数的加法(教案)
一、教学内容
人教版七年级数学上册1.3.1有理数的加法,主要包括以下内容:
1.掌握有理数的定义,了解有理数的分类(正有理数、负有理数、零)。
2.学习有理数的加法法则,包括同号相加、异号相加、零与任何有理数相加的情况。
3.能够运用有理数加法法则解决实际问题,进行数值计算。
3.培养学生运用数学知识解决实际问题的能力,将加法运算与生活实际相结合,提升数学应用和问题解决的素养。
4.培养学生的数据分析和逻辑推理能力,通过有理数加法运算的训练,提高数据处理和推理的素养。
5.培养学生的团队合作意识,在小组讨论和互助学习中,增强合作交流与批判性思考的能力。
三、教学难点与重点
1.教学重点
五、教学反思
在今天的有理数加法教学中,我发现学生们对于有理数的概念和加法法则的理解整体上是积极的。他们对于正有理数、负有理数的分类能够较快掌握,但在异号相加的规则上,尤其是绝对值的处理上,还存在一些困难。这让我意识到,在讲解这部分内容时,需要更加细致和具体。
我尝试通过生活实例引入有理数加法,如温度变化、收支情况等,学生们对这些例子很感兴趣,能够更好地将数学与实际联系起来。但在实际操作中,我发现在将问题抽象为数学运算这一步骤上,学生们还是显得有些吃力。这可能是因为他们还没有形成将实际问题转化为数学模型的思维方式。
初中数学人教版七年级上册有理数的加法
-3
-5
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
-8
两次运动后小球从起点向左运动了8米,记 作-8米。
写成算式是: (-5)+(-3)=-8
尝试总结同号两数相加的法则
(+5)+(+3)=+8 (-5)+(-3)=-8
和的符号是怎么来的呢?
和的绝对值与两个加数 的绝对值有什么关系?
你认为哪一种情况比较复杂?
例1 计算
(1)(-3) + (- 9)
(2)(-4.7) + 3.9
解:
(1)(-3) + (- 9) = - ( 3 + 9 ) =-12
↓
↓
↓
同号两数相加 取相同符号 并把绝对值相加
(2)(-4.7) + 3.9 = - ( 4.7 – 3.9) =-0.8
异号两数相加 取绝对值较大 用较大的绝对值
根据以上两个算式能否尝试总结同号两数相加的法则?
结论:同号两数相加,取相同符号,并把绝对值相加。
如果小球先向右运动5米,再向左运动3米,
那么两次运动的最后结果是什么?
-3 +5
-5 -4 -3 -2 -1 0 1 2 3
+2
45
两次运动后小球从起点向右运动了2米,
写成算式就是:(+5)+(-3)=+2
(2) 4+(-6); (4) (-3)+3;
(6) (-14)+4;
(8) 0+(-9).
3.用“>”或“<”填空:
(1) 如果a>0,b>0,那么a+b__>__0;
(2) 如果a<0,b<0,那么a+b__<__0; (3) 如果a>0,b<0,|a|>|b|,那么a+b_>___0; (4) 如果a>0,b<0, |a|<|b|,那么a+b_<___0;
人教版七年级数学上册:1.3.1《有理数的加法》教学设计3
人教版七年级数学上册:1.3.1《有理数的加法》教学设计3一. 教材分析《有理数的加法》是人教版七年级数学上册第一章第三节的第一课时,本节课的主要内容是让学生掌握有理数的加法法则,并能够熟练地进行有理数的加法运算。
教材通过引入日常生活中借贷的概念,让学生感受正负数的加法运算,从而引出有理数的加法法则。
通过本节课的学习,为学生后续学习有理数的减法、乘法和除法打下基础。
二. 学情分析学生在进入七年级之前,已经学习了整数和分数的加减法运算,对于加法的概念和运算规则有一定的了解。
但是,对于有理数的加法,学生可能还存在着一定的困惑,特别是在理解正负数的加法运算时。
因此,在教学过程中,需要引导学生从日常生活中熟悉的概念出发,逐步过渡到有理数的加法运算。
三. 教学目标1.理解有理数的加法概念,掌握有理数的加法法则。
2.能够熟练地进行有理数的加法运算。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:有理数的加法法则,有理数的加法运算。
2.教学难点:理解正负数的加法运算,掌握有理数的加法法则。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过引入日常生活中借贷的概念,让学生感受正负数的加法运算,从而引出有理数的加法法则。
同时,通过设计丰富的例题和练习题,让学生在实践中掌握有理数的加法运算。
在教学过程中,鼓励学生积极参与,进行小组讨论,培养学生的团队合作能力。
六. 教学准备1.教学课件:制作精美的教学课件,内容包括教材中的重点知识点、例题和练习题。
2.教学素材:准备一些与生活相关的实例,如购物、存钱等,用于引导学生理解有理数的加法。
3.练习题:准备一些有梯度的练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)利用课件展示一些与生活相关的实例,如购物、存钱等,引导学生思考这些实例中涉及的加法运算。
通过与学生互动,引出有理数的加法概念。
2.呈现(10分钟)利用课件呈现有理数的加法法则,引导学生理解并记忆这些法则。
人教版七年级数学上册课件第1课时 有理数的加法法则
相同符号
学科网
异号(绝对值 取绝对值较大
不相等) 的加数的符号
相加 相减
异号(互为相 反数)
结果是0
与0相加
仍是这个数
(-2)+(-1)= -(2+1)=-3
你从上面两个式子中发现了什么? 有理数加法法则一: 同号两数相加,取相同的符号,并把绝对值相加.
讲授新课
想一想
(1) 如果小狗先向西行走3米,再继续向东行走 2米,则小狗两次一共向哪个方向行走了多少米?
东
-3 -2 -1 0 1 2 3 4
小狗两次一共向西走了(3-2)米.用算式表 示为: -3+(+2)=-(3-2)(米)
有理数加法法则二: 异号两数相加,绝对值相等时和为0;绝对值 不相等时,取绝对值较大的加数的符号,并 用较大的绝对值减去较小的绝对值.
讲授新课
想一想
如果小狗先向西行走3米,然后在原地休息, 则小狗向哪个方向行走了多少米?
东
-2 -1 0 1 2 3 4
小狗向西行走了3米.写成算式为: (-3)+0= -3(米)
当堂练习
6.某城市一天早晨的气温是-25℃,中午上升了 11℃,夜间又下降了13℃,那么这天中午、夜间 的气温分别是多少?
解:中午的气温为-25+11=-14(℃), 夜间的气温为-14+(-13)=-27(℃)
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
有理数的加法法则:
确定类型
定符号
绝对值
同号
有理数加法法则三: 一个数同0相加,仍得这个数.
讲授新课
总结 有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加. 2.绝对值不相等的异号两数相加,取绝对值较大的加
人教新版(2024)七年级数学上册-2.1.1 有理数的加法(教案)
2.1.1有理数的加法第1课时【教学目标】1.了解有理数加法的意义,理解有理数加法法则的合理性.2.能运用该法则准确进行有理数的加法运算.3.经历探索有理数加法法则的过程,理解并掌握有理数加法法则.【教学重点难点】重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.【教学过程】一、温故知新,导入新课(一)复习:1.比较下列各数的大小:747-4-74-7-4.2.如果向东走5米记作+5米,那么向西走3米记作.3.已知a=-5,b=+3,|a|+|b|=.4.已知a=-5,b=+3,|a|-|b|=.(二)导入新课:在小学,我们学过正数及0的加法运算,引入负数后,在有理数范围内怎样加法运算呢?在实际问题中,有时会遇到与负数有关的加法运算,例如:李明同学经常对家里的生活垃圾分类,并卖出积攒的可回收物.这样既保护了环境,又增加了零花钱.如表是他某个月零花钱的部分收支情况.收支情况表日期收入(+)或支出(-)/元结余/元备注2日3.518.5卖可回收物8日-6.512.0买中性笔、记号笔12日-15.2-3.2买科普书,同学代付你知道结余如何求吗?怎样列式子计算8日及12日的结余呢?这样的算式如何计算呢?这就是本节课我们要研究的内容.二、探究归纳探究点1:有理数的加法法则一只可爱的小企鹅,在一条东西走向的笔直公路上行走,现规定向东为正,向西为负.问题1:如果小企鹅先向东行走2米,再继续向东行走1米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅一共向东行走了米,写成算式为:(+2)+(+1)=+()(米)问题2:如果小企鹅先向西行走2米,再继续向西行走1米,则小企鹅两次一共向哪个方向行走了多少米?解:两次行走后,小企鹅向西走了米.用算式表示:(-2)+(-1)=-()(米).要点归纳:有理数加法法则一:同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.问题3:(1)如果小企鹅先向西行走3米,再继续向东行走2米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅两次一共向西走了米.用算式表示为:(-3)+(+2)=-()(米)(2)如果小企鹅先向西行走2米,再继续向东行走3米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅两次一共向东走了()米.用算式表示为:-2+(+3)=+()(米).(3)如果小企鹅先向西行走2米,再继续向东行走2米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅一共行走了米.写成算式为:(-2)+(+2)=(米).要点归纳:有理数加法法则二:绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.想一想:如果小企鹅先向西行走3米,然后在原地休息,则小企鹅向哪个方向行走了多少米?解:小企鹅向西行走了米.写成算式为:(-3)+0=(米).要点归纳:有理数加法法则三:一个数与0相加,仍得这个数.显然,两个有理数相加,和是一个有理数.【典例剖析】例1:教材P27【例1】【解题反思】一、法则挖掘有理数加法运算的步骤:师生活动:学生逐题作答后师生共同总结.进行有理数加法,先要判断两个加数是同号还是异号,加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.归纳总结【方法技巧】1.先判断加数的类型(同号、异号);2.再确定和的符号:同号取相同的符号;异号取绝对值较大的加数的符号;3.最后进行绝对值的加减运算.二、和与加数的关系借助数轴,思考以下问题:1.以任何一个点为起点(任意数),往正方向移动任意距离(加上一个正数),终点的位置(所表示的数是两个数的和)在起点的哪边?2.以任何一个点为起点(任意数),往负方向移动任意距离(加上一个负数),终点的位置(所表示的数是两个数的和)在起点的哪边?3.根据利用数轴比较有理数大小的方法,你能得到什么结论?你能用有理数的加法法则进行验证你的结论吗?【归纳总结】任何一个数加上一个正数,和比这个数大,任何一个数加上一个负数,和比这个数小.【设计意图】1.通过对法则的深度挖掘,帮助学生熟悉法则,使学生明晰做有理数加法运算时的常用方法和步骤,并养成“算必有据”的习惯.同时将有理数的加法运算转化为小学学习过的数的加减运算,渗透了化归思想.2.借助数轴,研究和与加数的关系,使学生明确,引入负数之后,有理数加法运算的结果与小学阶段得到的认知(和大于等于任意一个加数)是不同的.例2:足球循环赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=+(4-2)=2;黄队共进2球,失4球,净胜球数为(+2)+(-4)=-(4-2)=;蓝队共进球,失球,净胜球数为=.要点归纳:在解与有理数加法有关的实际应用问题时,先利用正负数表示实际问题中的量,再列式计算.三、检测反馈1.如果规定存款为正,取款为负,请根据李明同学的存取款情况填空:①一月份先存入10元,后又存入30元,两次合计存入 元,就是(+10)+(+30)= .②三月份先存入25元,后取出10元,两次合计存入 元,就是(+25)+(-10)= .2.计算:(1)(-2.2)+(-3.8).(2)413+(-516). (3)(-516)+0. (4)(+215)+(-2.2). 3.解决问题:某潜水员先潜入水下61米,然后又上升32米,这时潜水员处在什么位置?【拓展提高】4.若|x |=3,|y |=2,且x >y ,则x +y 的值为 ( )A.1B.-5C.-5或-1D.5或1 5.(1)a +|a |=0,a 是什么数?(2)若|a +1|=2,那么a 的取值为多少?四、本课小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法法则.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.五、布置作业P28练习,P34T1六、板书设计七、教学反思本节课采用以学生为主体教师为主导的方式进行合作探究的教学方法.通过创设问题情境,提供开展自主、合作、交流的学习的背景;整个探究新知的教学过程基本上由5个问题统领,在教师引导下,学生能对有理数的加法法则进行探究.学生积极思考问题,大部分主动参与讨论,敢于发表自己的见解.学生能多样化理解有理数的加法法则,并运用类比、数形结合、游戏等手段形象具体地理解有理数的加法法则.以问题为主线,能减少教师占用课堂时间,把主要时间交给学生去探索新知识,避免教师“讲得太多”.第2课时【教学目标】1.能概括出有理数的加法交换律和结合律.2.灵活熟练地运用加法交换律、结合律简化运算.3.在学生已有的知识经验基础上,通过主动探索有理数加法的运算律,培养学生观察、比较、归纳及运算能力.4.经历对有理数的运算过程,领悟解决问题应选择适当的方法.【教学重点难点】重点:掌握有理数的加法交换律和结合律.难点:灵活运用加法交换律、结合律简化运算.【教学过程】一、创设情境1.叙述有理数加法法则.2.计算:(1)6.18+(-9.18).(2)(+5)+(-12).(3)(-12)+(+5).(4)3.75+2.5+(-2.5).(5)12+(-23)+(-12)+(-13). 3.有了有理数的加法法则后,还要研究加法运算律,我们以前学过加法交换律、结合律,对于有理数的加法它们还成立吗?这就是我们这节课要研究的内容.二、探究归纳探究点1:加法运算律问题1:观察下面的算式,你们能再举一些数字也符合这样的结论吗?试试看!(1)(-8)+(-9)(-9)+(-8)(2)4+(-7)(-7)+4(3)6+(-2)(-2)+6(4)[2+(-3)]+(-8)2+[(-3)+(-8)](5)10+[(-10)+(-5)][10+(-10)]+(-5)问题2:通过上面的计算和对比你能发现什么?你能用字母表示出这个规律吗?要点归纳:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).【思考】多个有理数相加,可以任意交换加数的位置吗?交换了加数的位置后,能先把其中的几个数相加吗?【归纳总结】根据加法交换律和结合律,多个有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.【典例剖析】例1:教材P29【例2】思考:怎样使计算简化?这样做的根据是什么?解:(1)8+(-6)+(-8)=[8+(-8)]+(-6)=0+(-6)=-6.(2)16+(-25)+24+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20.要点归纳:把正数与负数分别相加,从而计算简化,这样做既运用加法交换律又运用加法的结合律.例2:计算:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5).(2)(+325)+(-278)+(-3512)+(-118)+(+535)+(+5512). (3)(+614)+(+12)+(-6.25)+(+13)+(-79)+(-56). 思考:回顾以上例题的解答,将怎样的加数结合在一起,可使运算简便?要点归纳:(1)互为相反数的两个数可先相加.(2)几个数相加得整数时,可先相加.(3)同分母的分数可以先相加,将带分数拆开,计算比较简便.一定要注意不要遗漏括号;相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或通过拆数、部分结合凑成相反数抵消掉,计算比较简便.(4)符号相同的数可以先相加.探究点2:有理数加法运算律的应用例3:教材P29【例3】【解题引导】1.求10袋小麦的总重,可以使用什么方法?2.根据相反意义的量,在给定质量标准的情况下,我们如何来表示这10袋小麦的重量?3.计算10袋小麦总计超过或不足多少千克时,使用哪种表示重量的方法更简便,为什么?【解题反思】对比两种解法,哪种方法更简便?解法2中,使用了哪些运算律?解法1中能运用运算律简便计算吗?为什么?三、检测反馈1.P30练习T12.P36T93.计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100).四、本课小结三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的位置,简化运算.常见技巧有:(1)凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加.(2)同号集中:按加数的正负分成两类分别结合相加,再求和.(3)同分母结合:把分母相同或容易通分的结合起来.(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加.注意带分数拆开后的两部分要保持原来分数的符号.五、布置作业P30练习T2,3;P34T2;P35T8六、板书设计七、教学反思1.过去不少人错误地认为,推理训练是几何教学的目的,代数可以不讲理由.其实,计算本身就是推理.计算法则、运算性质都是进行计算的根据.学生要知道每进行一步运算都要有理有据.这样通过运算就能逐步培养学生的逻辑思维能力.运算教学时,要求学生明确每一步变形或计算的依据,鼓励学生提供多种计算方法.2.在课堂教学中,应当把更多的时间交给学生,本节课中有理数运算律的探究、例题的讲解、习题的完成、知识的总结尽可能全部交给学生完成,教师所起的作用是点拨、评价和指导,这样做,可以更好地体现以学生为中心的教学思想,能更好地提高学生的综合能力.。
2.1.1 有理数的加法(第2课时 有理数的加法运算律)七年级数学上册(人教版2024)
一
二
三
四
五
六
日
路程/km
-8
-11
-14
+10
-16
+31
+8
则他家私家车这周一共行驶多少千米?
【解】[(-8)+(-11)+(-14)+(+10)+(-16)+(+31)+(+8)]+50×7
=0+350=350(km).
答:他家私家车这周一共行驶350 km.
7. [2024·枣庄峄城区期中·尊老爱幼]尊老爱幼是我国的传统美德.九九重
2.某银行储蓄卡中存有人民币450元,先取出80元,随后又存入150
元,储蓄卡中还存有人民币多少元?
解:450+(-80)+150
=450+150+(-80)
=600-80
=520(元)
答:储蓄卡中还存有人民币520元.
课本练习
3.一辆飞机从9000 m的高度先下降300 m,再上升500 m,这时飞机的
两次所得的和相同吗?换几个加数再试一试.
从上述计算中,你能得出什么结论?
有理数加法中,三
个数相加,先把前
两个数相加,或者
先把后两个数相加,
和不变.
加法交换律:
(a+b)+c=a+(b+c).
概念归纳
1.加法交换律:在有理数加法中,两个数相加,交换
加数的位置,和不变.
用字母表示为:a+b=b+a
2.加法结合律:在有理数的加法中,三个数相加,先
人教版(2024)七年级数学上册 第二章 有理数的运算
2.1.1 有理数的加法
(第二课时) 有理数加法运算律
目录/CONTENTS
最新2024人教版七年级数学上册2.1.1 第1课时 有理数的加法法则--教案
2.1.1 有理数的加法第 1 课时有理数的加法法则主要师生活动一、创设情境,导入新知魏晋时期的数学家刘徽在其著作《九章算术注》中用不同颜色的算筹(小棍形状的记数工作)分别表示正数和负数(红色为正,黑色为负). 你能写出下列算筹表示的数和最终结果吗?请思考有负数的加法如何计算?师生活动:教师引导学生观察,写出算式.二、小组合作,探究概念和性质知识点一:有理数的加法探究一一个物体作左右方向的运动,我们规定向左为负,向右为正. 向右运动5m 记作5m ,向左运动5m 记作-5m.1. 如果物体先向右运动5 m,再向右运动3 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:师:引导学生注意在确定结果时必须确定其位置的“方向”和“距离”,从而认识到有理数加法必须确定和的符号和绝对值,为以下几种情形的探索作铺垫. 教师引导学生共同归纳:两次运动的最后结果是两次运动结果的累积,物体从起点向右运动了8 m,写成算式就是:(+3) + (+5) = +8.2. 如果物体先向左运动5 m,再向左运动3 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:教师引导学生共同归纳:两次运动的最后结果是,物体从起点向左运动了8 m,写成算式是:-3 + (-5) = -8.师生活动:通过以上两个活动的探究,初步体会同号的两个数加法的规律:同号两数相加,符号不变.典例精析:例1 填表:师生活动:通过例1的探究,进一步归纳同号的两个数加法的规律:同号两数相加,取相同的符号,并把绝对值相加;3.如果物体先向左运动3 m,再向右运动5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:教师引导学生共同归纳:两次运动的最后结果是,小球从起点向右运动了2m,用算式表示:(-3 )+ 5 = +2.4. 如果物体先向右运动3 m,再向左运动5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:共同归纳:写成算式就是:3 + (-5) = -2.师:引导学生类比上述探究在确定结果时必须确定其位置的“方向”和“距离”.5. 如果物体先向左运动5 m,再向右运动5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?师生活动:共同归纳:写成算式就是:5+(-5)=06. 如果物体第1s 向右(或左)运动5 m,第2s 原地不动,那么2s 后物体从起点向右(或左)运动了多少,请列出算式.师生活动:共同归纳:写成算式就是:5+0=5 或-5+0=-5师生活动:师:从上述算式可以得出什么结论?(也就是结果的符号怎么定? 绝对值怎么算? )先让学生思考,师生交流,师引导学生观察和的正负号和绝对值的关系入手,发现规律.生:大胆说出自己的不同想法,相互交流、补充,概括法则,再由学生自己归纳出有理数加法则: 例2 计算: (1) (-3)+(-9); (2) (-8)+0; (3) 12+(-8); (4) (-4.7)+3.9; (5) (−12) + (+12)师生活动:师生共同完成,教师规范写出解答过程,注意解答过程中讲解对法则的应用教师点评法则 运用过程中的注意点:有理数加法运算,先定符号,再算绝对值. 想一想 任何一个数加上一个正数,和与原来的数有怎样的大小关系?加上一个负数呢?请你先借助数轴直观地得出结论,再利用有理数的加法法则进行说明. 师生活动: 教师在黑板画数轴,可以先用具体的数字来解释: 提问:“如果给数字 3 加上正数 2,在数轴上会有什么变化?” 学生:“会向右移动 2 个单位长度,到 5 的位置。
人教版数学七年级上册1.3.1《有理数的加法》教案2
人教版数学七年级上册1.3.1《有理数的加法》教案2一. 教材分析《有理数的加法》是初中数学的重要内容,也是学习更复杂数学运算的基础。
本节课的内容主要包括有理数的加法法则、加法的运算律以及加法运算的优先级。
通过学习,学生能够理解有理数加法的概念,掌握有理数加法的运算方法,并能够运用加法法则解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数的概念、加减法的基本运算,对数学运算有一定的基础。
但部分学生可能对有理数加法的理解不够深入,对于加法的运算律和优先级规则可能存在模糊之处。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.理解有理数加法的概念,掌握有理数加法的运算方法。
2.掌握有理数加法的运算律和优先级规则。
3.能够运用加法法则解决实际问题。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数加法的运算方法。
2.有理数加法的运算律和优先级规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过案例分析,让学生深入了解有理数加法的应用;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.PPT课件。
2.教学案例和习题。
3.的黑板和粉笔。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的加法实例,如购物时物品的总价、烹饪时食材的配比等,引导学生关注加法在实际生活中的应用。
同时,提出问题:“你们认为加法有什么运算规律吗?”2.呈现(10分钟)通过PPT课件呈现有理数加法的定义和运算方法,讲解加法的运算律和优先级规则。
结合案例,让学生了解加法在数学中的应用。
3.操练(10分钟)让学生进行有理数加法的运算练习,教师巡回指导,及时发现并纠正学生的错误。
在此过程中,引导学生发现加法的运算律和优先级规则,并加以运用。
4.巩固(5分钟)通过PPT课件呈现一些有关有理数加法的应用题,让学生独立解答。
有理数的加法【人教版】七年级数学(上册)-【完整版】
6. 为了有效控制酒后驾车,广东省城管的汽车在一 条东西方向的公路上巡逻,如果规定向东为正, 向西为负,从出发点开始所走的路程为:+2,-3, +2,+1,-2,-1,-2(单位:千米).
(1)此时,这辆城管的汽车司机如何向队长描述 他的位置?
(2)如果队长命令他马上返回出发点,这次巡逻 (含返回)共耗油多少升?(已知每千米耗油0.2 升)
有理数的加法人教版七年级数学上册- 精品课 件ppt( 实用版 )
有理数的加法人教版七年级数学上册- 精品课 件ppt( 实用版 )
解:(1)计算每天的水位得, 周一:+0.2,周二:+0.2+0.8=+1, 周三:+1+(-0.4)=+0.6, 周四:+0.6+0.2=+0.8, 周五:+0.8+0.3=1.1, 周六:1.1+(-0.2)=+0.9. 答:本周五水位最高,高于警戒水位1.1 m之上. (2)通过表格可得, +0.2+0.8+(-0.4)+0.2+0.3+(-0.2)=0.9(m). 答:与上周周末相比,本周周末长江的水位上 升了,上升了0.9 m.
有理数的加法人教版七年级数学上册- 精品课 件ppt( 实用版 )
解:(1)原式=[22+12]+[(-5)+(-7)] =34+(-12)=22. (2)原式=(-12)+12+8+(-22)=0+8+ (- 22)=8+(-22)=-14.
有理数的加法人教版七年级数学上册- 精品课 件ppt( 实用版 )
人教版七年级数学上册1.3有理数的加法 (共20张PPT)
有理数加法法则: 1.同号两数相加,取相同符号,并 把绝对值相加. 2.绝对值不相等的异号两数相加取 绝对值较大的加数的符号,并用较大的绝 对值减去较小的绝对值,互为相反数的两 个数相加得0. 3.一个数同0相加,仍得这个数.
例1 计算:
(1)(3) (9) (2)(4.7) 3.9 解: (1) (3) (9) (3 9) 12 (2)(4.7) 3.9 (4.7 3.9) 0.8
例2 足球循环赛中,红队胜黄队4:1, 黄队胜蓝队1:0,蓝队胜红队1:0,计算各 队的净胜球数. 解:每个队的进球总数记为正数,失球 总数记为负数,这两数的和为这队的净胜球 数. 红队共进4球,失2球,所以红队的净 胜球数为:(4) (2) (4 2) 2 黄队共进 2 球,失 4 球,净胜球数为 (2) (4) = 2. 蓝队共进 1 球,失 1 球,净胜球数为 (1) (1) = 0 .
再计算总计超过多少千克:
905.4 90 10 5.4
例4 10袋小麦称后记录如图所示(单位:kg).10袋小 麦一共多少千克?如果每袋小麦以90 kg为标准,10袋小麦总 计超过多少千克或不足多少千克?
91
91
91.5
89
91.2
解法2:每袋小麦超过90 kg 的千克数记作正数,不足的千克 数记作负数.10袋小麦对应的数分别为 1,1, , , 1.5 1,1.2 1.3, 1.3, 1.2, 1.8,1.1. 1 1 1.5 (1) 1.2 1.3 (1.3) (1.2) 1.8 1.1
5 (5) 0
⑤
从算式①②可以看出:符号相同的两个数相加, 结果的符号不变,绝对值 相加. 从算式③④可以看出:符号相反的两个数相加, 结果的符号与绝对值 较大的加数的符号相同,并用 较大的绝对值 减去较小的绝对值. 从算式⑤可以看出:互为相反数的两个数相加, 结果为 0 . 从算式⑥可以看出:一个数同0相加,仍 得 这个数. 如果物体第1s向右(向左)运动5m,第2s 原地不动,2s后物体从起点向右(或向左)运动 了5m. 写成算式就是: 50 5 (或 (5) 0 5) ⑥
2.1.1 有理数的加法(1) 有理数加法法则 课件 人教版七年级数学上册
5.请你用生活实例解释(-3)+2=-1,(-3)+(-2)=-5有理数加法法则: 1.同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和. 2.绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数 的绝对值中较大者与较小者的差. 互为相反数的两个数相加得0; 3.一个数同0相加,仍得这个数. 若a,b互为相反数,则a+b=0.若a+b=0,则a,b互为相反数. 2.还有没解决的问题吗?
若将起点放在原点O,则该算式可以在数轴上表示如下:
3m
1m
0
4m
思考2
如果物体沿着一条直线做左右方向的运动,规定享有为正,向左为负,请问小华先向左运动1米,再向左运 动2米,最后的运动结果是什么?怎样用算式表示?
不难得出,两次运动后,小华共向左运动了4米,写成算是就是: (-1)+(-3)=-4
若将起点放在原点O,则该算式可以在数轴上表示如下:
若将起点放在原点O,则该算式可以在数轴上表示如下: 1m -3m
2m
0
总结
由思考3,4可得:符号相反的两个数相加,结果的符号与绝对值较大的加数的符号相同,并用较大的绝对 值减去较小的绝对值.
思考5
如果物体沿着一条直线做左右方向的运动,规定享有为正,向左为负,请问小华先向左运动3米,再向右运 动3米,最后的运动结果是什么?怎样用算式表示?
我们可以把赢一个球记为+1,输一个球记为-1,此时该队的净胜球数为: (+1)+(-1)=0
思考1
如果物体沿着一条直线做左右方向的运动,规定享有为正,向左为负,请问小华先向右运动3米,再向右运 动1米,最后的运动结果是什么?怎样用算式表示?
不难得出,两次运动后,小华共向右运动了4米,写成算是就是: 3+1=4
人教版七年级数学上册有理数的加减法
人教版七年级数学上册有理数的加减法第三讲有理数的加减法知识点一:有理数的加法有理数的加法有以下规律:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.3.一个数同相加,仍得这个数。
例如:1.计算-2+3的结果是1.2.下列各式的值等于5的是-9+4.3.两个数的和为零,则这两个数互为相反数。
4.一个数是15,另一个数比15的相反数大4,则两个数的和是26.5.有理数的加法规律是:两个负数相加,取负号,把绝对值相减;零加正数,和为正数;负数加正数,和为负数;两正数相加,和为正数。
知识点二:有理数的加法运算律有理数的加法运算律有以下规律:1.加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a。
2.加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c)。
在运算时,一定要根据需要灵活运用以下规律,以达到简化运算的目的:1.互为相反数的两个数可先相加——相反数结合法。
2.同分母的分数可先相加——同分母结合法。
3.几个数相加得整数时,可先相加——凑整法。
4.符号相同的数可先相加——同号结合法。
5分数可拆成整数和真分数两部分再相加,这是同形结合法的应用。
例如,9、7+(-3)+(-4)+18+(-11)=(7+8)+[(-3)+(-4)+(-11)]。
例9的应用了加法结合律。
七年级(1)班一学期班费收支情况如下(收入为正):+250元,-55元,-120元,+7元,则该班期末时班费结余为82元。
若m、n互为相反数,则m+5+n=0;已知a+c=-2013,b+(-d)=2014,则a+b+c+(-d)=-1.利用加法运算律运算:1)(-5)+3+(+5)+(-2);2)(-3)+(+) +(-0.5)+(1);3)4.5+(-2.5)+9+(-15)+2.例13,计算-10-8所得的结果是-18.下列计算错误的是A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把正数与负数分别相加, 从而计算简化,这样做既 运用加法交换律又运用加 法的结合律
灵活运用
运用加法交换律和结合律做简便运算
(1)(-25)+(+56)+(-39)+(+28) (2)(-1.9)+3.6+(-10.1)+1.4
(3) 1 3 1 1 18 3 4 3 4 19
有理数的加法中,三个数相加,先把前两个数相加,或 先 把后两个数相加 , 和 不变.
(a+b)+c=a+(b+c)
例1 计算16+(-25)+24+(-35)
解: 16+(-25)+24+(-35)
=16+24+[(-25)+ (-35)]
=40+(-60)
=-20
怎样使计算简化的? 这样做的根据是什么?
解:原式
1 3
1 3
1 4
3 4
18 19
0 1 18
19 1
19
同分母结合相加 相反数结合相加
(4) 3 3 12.5 16 4 2.5
7
7
合理运用运算 律简化计算,
解:原式
有哪些方法?
3
3 7
16
4 7
12.5
2.5
20 10
10
同分母结合相加
能“凑整”结合 相加
(2)(-1.9)+3.6+(-10.1)+1.4
解:原式=[(-1.9)+(-10.1)]+[(+3.6)+(+1.4)]
=(-12)+5 =-7
能“凑整”的结合相加
合理运用运算律简 化计算,有哪些方 法?
(理运用运算 律简化计算, 有哪些方法?
使用运算律通常有下列情形: (1)互为相反数的两个数可先相加; (2)几个数相加得整数时,可先相加; (3)同分母的分数可以先相加; (4)符号相同的数可以先相加。
相反数结合法
凑整法
同分母结合法
同号结合法
1. 计算:
考考你自己!
(-5)+9+(-6)+7 _ _ ____ 5
2. 绝对值小于5的所有整数的和为_ _ ____
规律探究:相信你能行! 加法的交换律:
有理数的加法中,两个数相加,交换加数的位置, 和 不变,
a+b=b+a
情景创设:
_ ( 3 ﹢ -5 )﹢ -7 ﹦ -9 _ 3 ﹢( -5 ﹢ -7 )﹦ -9
活动2:
通过以上的运算你能发现什么? 你还能举出类似的例子吗?
规律探究:相信你能行! 加法的结合律:
有理数的加法
第2课时
学习目标
1、了解有理数加法运算律. 2、能运用加法运算律简化加法运算. 重点:有理数加法运算律. 难点:灵活运用加法运算律.
做一做 (口答)确定下列各题中和的符号,并计算:
(1)(+5 )+(+7) (2)(-10)+(+3)
=12
(3)(+6)+(-5) =(14) 0+
1
解:记向东为正,根据题意得: (1)、(+15)+(-25)+(+20)+(-35)
(2)、|+15|+|-25|+|+20|+|-35|
=-25 =95
答:小明的遥控车最后停在A地的西边25米处, 一共行驶了95千米。
练习1
1.用简便方法计算:
(1)(+45.3)+(-9.5)+(+4.7)
(2)(+2.5)+(+3 —56
(4) 3 3 12.5 16 4 2.5
7
7
(1)(-25)+(+56)+(-39)+(+28)
解:原式=56+28+(-25)+(-39) =(56+28)+[(-25)+(-39)]
=84+(-64) =20
同号结合相加
问题:此题你是抓住数的什么特点使计算简化的? 依据是什么?
与0相加
仍是这个数
问题1:在小学中我们学过哪些加法的运算律?
加法交换律: 加法结合律:
a+b=b+a (a+b)+c=a+(b+c)
问题2:加法的运算律是不是也可以扩充到有理数范围?
情景创设:
3 ﹢ -5 -5 ﹢ 3
活动1:
_ ﹦ -2 _ ﹦ -2
通过以上的运算你能发现什么?
你还能举出类似的例子吗?
)+(+1—1)+1 2
—1 6
温故而知新,相信自己——
有效课堂 1.3.1有理数的加法 第二课时
0
3. 在括号里填写每步运上算的根据:
(-8)+(-5)+8
=(-8)+8+(-5)
(
加法交换律
)
=〔(-8)+8〕+(-5) (
加法结合律
)
=0+(-5) =-5
( 互为相反数的两数之和为0 ) ( 0与任何数相加仍得这个数)
例1 小明遥控一辆玩具赛车,让它从A地出发,先向东行驶15m,
再向西行驶25m,然后又向东行驶20m,再向西行驶35m,问玩 具赛车最后停在何处?一共行驶了多少米?
1
5= 5
(5)(-11)+(-9) (=-62)0(-3.5)+(+7)
=-7 =3.5
(7)(-1.08)+0
=-1(.088)(+ )+(32 - )
2 3
=0
有理数的加法法则:
确定类型
定符号
同号
相同符号
异号(绝对值不相 取绝对值较大的加
等)
数的符号
异号(互为相反数)
结果是0
绝对值 相加
相减