高考双曲线经典题
高三数学双曲线试题
高三数学双曲线试题1.已知双曲线的一条渐近线与函数的图象相切,则双曲线的离心率等于()A.B.C.D.【答案】D【解析】由函数,.可得.假设渐近线与函数的切点为.则渐近线的斜率为所以可得.解得.所以可得.又因为.即可解得.故选D.【考点】1.双曲线的性质.2.函数的导数的几何意义.3.算两次的一个等式的数学思想.2.已知双曲线的右焦点与抛物线焦点重合,则此双曲线的渐近线方程是()A.B.C.D.【答案】D【解析】抛物线的焦点坐标为,由题意知,故双曲线的方程为,因此双曲线的渐近线方程为,故选D.【考点】1.双曲线与抛物线的几何性质;2.双曲线的渐近线3. [2013·陕西高考]双曲线-=1的离心率为,则m等于________.【答案】9【解析】由双曲线方程知a=4.又e==,解得c=5,故16+m=25,m=9.4.已知离心率为2的双曲线的右焦点与抛物线的焦点重合,则="____________" .【答案】【解析】由题意可得m+n=1,,解得m=,n=,所以=【考点】双曲线和抛物线的性质.5.如图,已知双曲线的左、右焦点分别为,P是双曲线右支上的一点,轴交于点A,的内切圆在上的切点为Q,若,则双曲线的离心率是A.3B.2C.D.【答案】B【解析】设,由图形的对称性及圆的切线的性质得,因为,所以,所以,所以又,所以,,所以故选B.【考点】1、双曲线的标准方程;2、双曲线的简单几何性质;3、圆的切线的性质.6.抛物线的顶点在坐标原点,焦点与双曲线-=1的一个焦点重合,则该抛物线的标准方程可能是()A.x2=4y B.x2=-4yC.y2=-12x D.x2=-12y【答案】D【解析】由题意,得c==3.所以抛物线的焦点坐标为(0,3)或(0,-3).所以抛物线的标准方程为x2=12y或x2=-12y.7.已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2B.4C.6D.8【答案】B【解析】法1.由余弦定理得cos∠F1PF2=∴|PF1|•|PF2|=4法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4;故选B.8.在平面直角坐标系中,曲线的离心率为,且过点,则曲线的标准方程为.【答案】【解析】因为曲线的离心率为,所以曲线为等轴双曲线,其方程可以设为.因为过点,所以标准方程为.【考点】双曲线的性质9.已知双曲线的两条渐近线与以椭圆的左焦点为圆心、半径为的圆相切,则双曲线的离心率为()A.B.C.D.【答案】A【解析】椭圆的左焦点为,双曲线的渐近线为,即,由题意,解得,双曲线的半焦距为,双曲线离心率为.【考点】双曲线的性质,椭圆的性质,直线与圆相切.10.已知双曲线的离心率为,则实数m的值为.【答案】4【解析】由题意,,,解得.【考点】双曲线的离心率.11.双曲线的左、右焦点分别为,若为其上一点,且,,则双曲线的离心率为( )A.B.C.D.【答案】C【解析】,那么在中,根据余弦定理得:,,整理得:,,故选C.【考点】1.双曲线的定义;2.余弦定理.12.已知双曲线-=1的右焦点为(3,0),则该双曲线的离心率等于()A.B.C.D.【答案】C【解析】由a2+5=9得a2=4,∴a=2,∴e==.故选C.13.己知抛物线的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过点F,则该双曲线的离心率为()A.+1B.2C.D.-1【答案】A【解析】由题意得抛物线上的点在双曲线上,而,所以点在双曲线上,因此又因为,所以.【考点】抛物线通径的应用14.已知双曲线(,),过其右焦点且垂直于实轴的直线与双曲线交于两点,为坐标原点,若,则双曲线的离心率为()A.B.C.D.【答案】D【解析】画出图形,根据双曲线的对称性及,可得是等腰直角三角形(不妨设点在第一象限),平分角,所以,即(因为由得到,所以),所以,整理得,解得.由双曲线,可得,故选D.【考点】离心率双曲线15.若双曲线=1(a>0,b>0)与直线y=x无交点,则离心率e的取值范围是().A.(1,2)B.(1,2]C.(1,)D.(1,]【答案】B【解析】因为双曲线的渐近线为y=±x,要使直线y=x与双曲线无交点,则直线y=x应在两渐近线之间,所以有≤,即b≤a,所以b2≤3a2,∴c2-a2≤3a2,则c2≤4a2,故1<e≤2.16.抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是().A.B.C.1D.【答案】B【解析】抛物线y2=4x的焦点F(1,0),双曲线x2-=1的渐近线是y=±x,即x±y=0,故所求距离为=.选B.17.双曲线的顶点到其渐近线的距离等于____________.【答案】【解析】不妨设顶点为 ,一条渐近线为即,点直线的距离为.【考点】1、双曲线的性质;2、点到直线的距离.18.双曲线y2=1的离心率e= ;渐近线方程为。
高中数学选择性必修一双曲线(习题课)
题型四 双曲线的综合问题
例 4 (2021·新高考Ⅰ卷)在平面直角坐标系 Oxy 中,已知点 F1(- 17,0), F2( 17,0),点 M 满足|MF1|-|MF2|=2.记 M 的轨迹为 C.
(1)求 C 的方程; (2)设点 T 在直线 x=12上,过 T 的两条直线分别交 C 于 A,B 两点和 P,Q 两 点,且|TA|·|TB|=|TP|·|TQ|,求直线 AB 的斜率与直线 PQ 的斜率之和.
【解析】 (1)因为|MF1|-|MF2|=2<|F1F2|=2 17, 所以点 M 的轨迹 C 是以 F1,F2 分别为左、右焦点的双曲线的右支. 设双曲线的方程为ax22-by22=1(a>0,b>0),半焦距为 c,则 2a=2,c= 17, 得 a=1,b2=c2-a2=16, 所以点 M 的轨迹 C 的方程为 x2-1y62 =1(x≥1). (2)设 T(12,t),由题意可知直线 AB,PQ 的斜率均存在且不为 0,设直线 AB 的方程为 y-t=k1(x-12)(k1≠0),直线 PQ 的方程为 y-t=k2(x-12)(k2≠0),
+2kx-2=0.
4k2+8(1-k2)>0,
由题设条件得-1-2kk2<0,
∴- 2<k<-1.
-1-2 k2>0,
设 A(x1,y1),B(x2,y2),如图,
则 Qx1+2 x2,y1+2 y2, y1+y2
kPQ=x1+2 2x2+2=(x1y+1+x2y)2 +4. ∵x1+x2=k22-k 1,
( 3,0). (1)求双曲线 C 的方程; (2)若直线 l:y=kx+ 2与双曲线 C 恒有两个不同的交点 A 和 B,且O→A·O→B
>2(其中 O 为原点),求 k 的取值范围. 【解析】 (1)设双曲线方程为ax22-by22=1(a>0,b>0), 由已知得 a= 3,c=2,∴b=1. 故所求双曲线方程为x32-y2=1.
高考数学专题复习:双曲线(含解析)
高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。
修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。
2.理解数形结合的思想。
3.了解双曲线的实际背景及其简单应用。
一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。
点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。
2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。
点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。
双曲线的通径为 $2a$。
3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。
100题双曲线历年高考真题及解析
【答案】B
【解析】略
28.(2014·天津高考真题(理))已知双曲线 的一条渐近线平行于直线 : ,双曲线的一个焦点在直线 上,则双曲线的方程为
A. B.
C. D.
【答案】A
【解析】
试题分析:由已知得 在方程 中令 ,得 所求双曲线的方程为 ,故选A.
考点:1.双曲线的几何性质;2.双曲线方程的求法.
A. B.
C. D.
【答案】A
【详解】
圆心为 ,渐近线方程为 ,所以半径为 ,所以圆的方程是 ,即 ,选A.
15.(2007·辽宁高考真题(理))设 为双曲线 上的一点, 是该双曲线的两个焦点,若 ,则 的面积为()
A. B. C. D.
【答案】B
【解析】
试题分析:由已知可得 又
是直角三角形 ,故选B.
【解析】
试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出 的值.
的渐近线方程是 ,即 ,又圆心是 ,所以由点到直线的距离公式可得 ,故选A.
考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.
11.(2009·福建高考真题(文))若双曲线 的离心率为2,则 等于( )
解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),
即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣ ,则p=4,
解:渐近线y=± x.
准线x=± ,
求得A( ).B( ),
左焦点为在以AB为直径的圆内,
得出 ,
,
b<a,
c2<2a2
∴ ,
故选B.
点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1.
高考双曲线及标准方程经典题型
一、单选题1.双曲线224121x y -=上的点P 到左焦点的距离为6,则P 到右焦点的距离为( )A .2B .10C .2或10D .122.在平面直角坐标系xOy 中,已知点()()125,0,5,0F F -,动点P 满足128PF PF -=,则动点P 的轨迹是( ) A .椭圆B .抛物线C .双曲线D .圆3.已知双曲线2213x y m +=的焦距为4,则m 的值为( )A .1B .1-C .7D .7-4.若方程222141x y m m-=-+表示焦点在y 轴上的双曲线,则实数m 的取值范围为( )A .()2-∞-,B .()21--,C .()22-,D .()11-,5.当0ab <时,方程22ax ay b -=所表示的曲线是( ) A .焦点在x 轴的椭圆 B .焦点在x 轴的双曲线 C .焦点在y 轴的椭圆D .焦点在y 轴的双曲线6.已知12,F F 为双曲线22:1169x yC -=的左、右焦点,点P 在双曲线C 上,且122PF PF =,则12cos F F P ∠=( ) A .2340-B .35C .5564 D .457.已知()0,4A ,双曲线22145x y -=的左、右焦点分别为12,F F ,点P 是双曲线右支上一点,则1PA PF +的最小值为( ) A .5B .7C .9D .118.已知12,F F 是双曲线2222:1(0,0)x yE a b a b-=>>的左,右焦点,点P 在E 上,D 是线段12F F 上点,若1212,:1:2,43F PF F D F D PD π∠===,则当12PF F △面积最大时,双曲线E 的方程是( ) A .221129x y -=B .221912x y -=C .22136x y -=D .22163x y -=二、多选题9.已知方程221mx ny +=,其中220m n +≠,则( ) A .0mn >时,方程表示椭圆 B .0mn <时,方程表示双曲线 C .0n =时,方程表示抛物线D .0n m >>时,方程表示焦点在x 轴上的椭圆 10.过点(11),且2ba= ) A .2221x y -= B .2221x y -= C .2221y x -=D .2221y x -=11.若()15,0F -,()25,0F ,动点P 满足122PF PF a -=,当3a =和5a =时,点P 轨迹( ) A .双曲线B .双曲线的一支C .一条射线D .一条直线12.已知2a =,4c =,则双曲线的标准方程为( ) A .221412x y -=B .221124x y -=C .221412y x -=D .221124y x -=三、填空题13.两定点()15,0F -,()25,0F ,动点(),M x y 满足128MF MF -=,则动点M 的轨迹方程为______.14.已知双曲线2211648x y -=的左右两个焦点分别是12,F F ,双曲线上一点P 满足110PF =,则2PF =_____.15.已知方程221410x y k k+=--表示双曲线,则实数k 的取值范围为___________.16.已知1F 、2F 分别是双曲线22:14x C y -=的左、右焦点,动点P 在双曲线的左支上,点Q为圆22:(2)1G x y ++=上一动点,则2||||PQ PF +的最小值为________. 四、解答题17.已知双曲线22:166x y C k k -=-+的焦距长为8.(1)求C 的方程;(2)若0k >,过点()4,0的直线l 交C 于,A B 两点,若142AB =l 的方程.18.已知焦点在x 轴上的双曲线Γ经过点(6,2,23,6M N --.(1)求双曲线Γ的标准方程;(2)若直线3:1l y x =-与双曲线Γ交于,A B 两点,求弦长AB . 19.在①左顶点为3,0,①双曲线过点()32,4,①离心率53e =这三个条件中任选一个,补充在下面问题中并作答.问题:已知双曲线与椭圆2214924x y +=共焦点,且______. (1)求双曲线的方程;(2)若点P 在双曲线上,且18PF =,求2PF . 注:如果选择多个条件分别解答,按第一个解答计分. 20.已知曲线22:(2)(2),C mx m y m m m +-=-∈R . (1)若曲线C 是椭圆,求m 的取值范围; (2)若曲线C 是双曲线,求m 的取值范围21.在平面直角坐标系xOy 中,已知()1,0A -,()10B ,,动点C 满足直线AC 与直线BC 的斜率乘积为3.(1)求动点C 的轨迹方程E .(2)过点()2,0作直线l 交曲线E 于P ,Q 两点(P ,Q 在y 轴两侧),过原点O 作直线1l 的平行线2l 交曲线E 于M ,N 两点(M ,N 在y 轴两侧),试问2MN PQ是否为定值?若是,求出该定值;若不是,请说明理由.22.已知1(2,0)F -,2(2,0)F ,点P 满足12||||2PF PF -=,记点P 的轨迹为E , (1)求轨迹E 的方程;(2)若直线l 过点2F 且法向量为(),1n a =,直线与轨迹E 交于P 、Q 两点.①过P 、Q 作y 轴的垂线PA 、QB ,垂足分别为A 、B ,记PQ AB λ=,试确定λ的取值范围;①在x 轴上是否存在定点M ,无论直线l 绕点2F 怎样转动,使0MP MQ ⋅=恒成立?如果存在,求出定点M ;如果不存在,请说明理由。
2024年新高考版数学专题1_9.3 双曲线及其性质(分层集训)
A. 22
2
B. 4 10
5
答案 D
C. 7
D. 10
4.(2017课标Ⅲ理,5,5分)已知双曲线C:
x a
2 2
-
y2 b2
=1(a>0,b>0)的一条渐近线方
程为y= 5 x,且与椭圆 x2 + y2 =1有公共焦点,则C的方程为 ( )
2
12 3
A. x2 - y2 =1
8 10
B. x2 - y2 =1
C.互为共轭的双曲线的离心率为e1、e2,则e1e2≥2
D.互为共轭的双曲线的4个焦点在同一圆上
答案 CD
7.(多选)(2021广东揭阳4月联考,9)已知一组直线x±2y=0,则以该组直线为
渐近线的双曲线的方程可能是 ( )
A.x2-4y2=1 B.4y2-x2=1
C.x2- y2 =1
4
答案 ABD
y
k1
x2 y2 16
x
1 2
m,
1(x 1),
得
(16-
k12
)x2+(
k12
-2k1m)x-
1 4
k12
+k1m-m2-16=0,
设A(x1,y1),B(x2,y2),
则x1+x2=
k12 2k1m k12 16
,x1x2=
1 4
k12
m2 k1m k12 16
16
,
则|TA|=
设其方程为 x2 - y2 =1(a>0,b>0,x≥a),
a2 b2
则2a=2,2c=2 17 ,解得a=1,c= 17 ,
则b2=c2-a2=( 17 )2-12=16,
高考数学双曲线性质典型例题
(二)双曲线性质典型例题例1 求与双曲线191622=-y x 共渐近线且过()332-,A 点的双曲线方程及离心率. .例2 求以曲线0104222=--+x y x 和222-=x y 的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.例3 已知双曲线的渐近线方程为023=±y x ,两条准线间的距离为131316,求双曲线标准方程. 例4 中心在原点,一个焦点为()01,F 的双曲线,其实轴长与虚轴长之比为m ,求双曲线标准方程.例5 求中心在原点,对称轴为坐标轴经过点()31-,P 且离心率为2的双曲线标准方程.例6 已知点()03,A ,()02,F ,在双曲线1322=-y x 上求一点P ,使PF PA 21+的值最小. 例7 已知:()11y x M ,是双曲线12222=-by a x 上一点.求:点M 到双曲线两焦点1F 、2F 的距离.例9 如图所示,已知梯形ABCD 中,CD AB 2=,点E 满足EC AE λ=,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4332≤≤λ时,求双曲线离心率的取值范围. 例10 设双曲线12222=-by a x )0(b a <<的半焦距为c ,直线l 过)0,(a 、),0(b 两点, 且原点到直线l 的距离为c 43,求双曲线的离心率.例11 在双曲线1131222=-x y 的一支上有三个点),(11y x A 、)6,(2x B 、),(33y x C 与焦点)5,0(F 的距离成等差. (1)求31y y +; (2)求证线段AC 的垂直平分线经过某个定点,并求出定点的坐标.例12 根据以下条件,分别求出双曲线的标准方程. (1)过点)2,3(-P ,离心率25=e . (2)已知双曲线的右准线为4=x ,右焦点为)0,10(F ,离心率2=e .(3)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,且︒=∠6021PF F ,31221=∆F PF S ,又离心率为2. 例13 已知双曲线12222=-by a x 的离心率21+>e ,左、右焦点分别为1F 、2F ,左准线为l ,能否在双曲线的左支上找到一点P ,使得1PF 是P 到l 的距离d 与2PF 的等比中项?例14 直线1+=kx y 与双曲线122=-y x 的左支相交于A ,B 两点,设过点)0,2(-和AB 中点的直线l 在y 轴上的截距为b ,求b 的取值范围.例15 已知1l ,2l 是过点)0,2(-P 的两条互相垂直的直线,且1l ,2l 与双曲线122=-x y 各有1A ,1B 和2A ,2B 两个交点. (1)求1l 的斜率1k 的取值范围;(2)若22115B A B A =,求1l ,2l 的方程; (3)若1A 恰是双曲线的一个顶点,求22B A 的值. 例16 已知双曲线的渐近线方程是043=+y x ,043=-y x ,求双曲线的离心率.例17 已知双曲线S 的两条渐近线过坐标原点,且与以)0,2(A 为圆心,1为半径的圆相切,双曲线S 的一个顶点'A 和A 关于直线x y =对称,设直线l 过点A ,斜率为k .(1)求双曲线S 的方程;(2)当1=k 时,在双曲线S 的上支求点B ,使其与直线l 的距离为2;(3)当10<≤k 时,若双曲线S 的上支上有且只有一个点B 到直线l 的距离为2,求斜率k 的值及点B 的坐标. 例18 如右图,给出定点)0,(a A )0(>a 和直线1-=x l :, B 是直线l 上的动点,BOA ∠的角平分线交AB 于C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系\例19 已知双曲线C 的实轴在直线2=x 上,由点)4,4(-A 发出的三束光线射到x 轴上的点P 、Q 及坐标原点O 被x 轴反射,反射线恰好分别通过双曲线的左、右焦点1F 、2F 和双曲线的中心M .若4=PQ ,过右焦点的反射光线与右准线交点的纵坐标为98,求双曲线C 的方程和入射光线AP 、AQ 所在直线的方程.。
高考数学一轮复习双曲线的综合问题
3
<y0< .
3
3
答案 (1)A
2 2
(2)设P是双曲线 - =1上一点,M,N分别是两圆(x-5)2+y2=4和(x
9
16
+5)2+y2=1上的点,则|PM|-|PN|的最大值为
A.6
B.9
C.12
D.14
(
)
解析
2 2
(2)如图所示,设双曲线 - =1的左、右焦点分别为F1,F2,则点F1
2 2
曲线 2- 2 =1上,依题意得a=680,c=1 020,∴b2=c2-a2=1 0202-6802=
2
2
5×3402,故双曲线方程为 2 -
=1,将y=-x 代入上式,得x=
680
5×3402
±680 5,∵|PB|>|PA|,∴x=-680 5,y=680 5,即P(-680 5,
+
=2k+
1 −2 2 −2
1 −2
2 −2
1 −2
2 −2
(2−2)(1 +2 −4)
(2−2)×2(2−3)(+2)
=2k+
=3.
1 2 −2(1 +2 )+4
−4(−1)(+2)
|解题技法|
直线与双曲线位置关系的判断方法
将直线方程与双曲线方程联立消去一个未知数,得到一个一元二次方程,以ax2
故选B.
答案 (2)B
|解题技法|
与双曲线有关最值(范围)问题的解题方法
(1)几何法:若题目中的待求量有明显的几何特征,则考虑利用双曲线的定
义、几何性质以及平面几何中的定理等知识确定极端位置后数形结合求解;
秒杀题型 双曲线的渐近线(双曲线)(详细解析版)
秒杀题型一:由双曲线的方程求渐近线:
秒杀思路: 已知双曲线方程求渐近线方程: ;
若焦点在x轴上,渐近线为 ;
若焦点在y轴上,渐近线为 。
1.(高考题)双曲线 的渐近线方程是( )
A. B. C. D.
【解析】:选C。
2.(2013年新课标全国卷 4)已知双曲线 : ( )的离心率为 ,则 的渐近线方程为( )
12.(2018年新课标全国卷I11)已知双曲线 , 为坐标原点, 为 的右焦点,过 的直线
与 的两条渐近线的交点分别为 .若 为直角三角形,则 = ( )
A. B.3C. D.4
【解析】:渐近线方程为 ,∵ 为直角三角形,假设 , ,
∴ ,∴ ,选B。
13.(2018年新课标全国卷 11)设 是双曲线 的左,右焦点, 是坐标原
A. B. C. D.
【解析】:由上题,选C。
7.(2009年新课标全国卷4)双曲线 - =1的焦点到渐近线的距离为( )
A. B.2 C. D.1
【解析】:由秒杀公式得 ,选A。
8.(2014年新课标全国卷I4)已知 是双曲线 : 的一个焦点,则点 到 的一条渐近线的距离为( )
A. B.3 C. D.
【解析】:由秒杀公式得 ,选A。
9.(高考题)已知双曲线 的右焦点与抛物线 的焦点重合,则该双曲线的焦点到其渐近线
的距离等于( )
A. B. C.3 D.5
【解析】:抛物线与双曲线的焦点为 ,则b= ,所以双曲线的焦点到其渐近线的距离等于 ,选
A。
10.(2018年江苏卷)在平面直角坐标系 中,若双曲线 的右焦点 到一条渐近线的距离为 ,则其离心率的值是.
秒杀思路: 。
高考数学专题《双曲线》习题含答案解析
专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x ya ba b-=>>的一条渐近线与直线230x y-+=平行,则该双曲线的离心率是()A B C.2D【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为by xa=±,易知by xa=与直线230x y-+=平行,所以=2bea⇒=故选:D.2.(2021·北京高考真题)若双曲线2222:1x yCa b-=离心率为2,过点,则该双曲线的程为()A.2221x y-=B.2213yx-=C.22531x y-=D.22126x y-=【答案】B【分析】分析可得b,再将点代入双曲线的方程,求出a的值,即可得出双曲线的标准方程.【详解】2cea==,则2c a=,b=,则双曲线的方程为222213x ya a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a=,故b=因此,双曲线的方程为2213yx-=.故选:B3.(2021·山东高考真题)已知1F是双曲线22221x ya b-=(0a>,0b>)的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,那么双曲线的离心率是()练基础AB C .2 D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20b y a =,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可. 【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =, 因为直线1PF 与x 轴垂直,且1PF a =, 所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e = 故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )A B C .2 D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0) 则a =( )A B .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c =,=,解得12a = , 故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的C 的焦距等于( ).A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.221412x y -=B.221124x y -=C.2213x y -=D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m -=>0my +=,则C 的焦距为_________. 【答案】4 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a ,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y =.【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A B C .2D【答案】B 【解析】由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)222224322b c bc a b cc+-∴=⇒=⋅ e ∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )练提升A B .3CD .3【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==. 故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2BCD 【答案】A 【解析】因为OPQ △为等边三角形, 所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴= 所以2222223,4,4,2c a a c a e e -=∴=∴=∴=. 故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅=,利用向量垂直的坐标表示,列方程求0x 即可. 【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+,200(2,)F P x =-,又220120403x F P F P x ⋅=-+=,∴0x = 故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1, 所以圆心()0,5到0bx ay -=的距离d 的范围为24d << 即24<<,而222+=a b c 所以524a c <<,即5542e << 故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c =(c 上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确; 由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确. 【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确; 对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x , 当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=, 在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=, 又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( ) A .点P 的轨迹是椭圆 B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMNS =【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项. 【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =, 当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩, 所以132PMN S PM PN ==△,故C 对; 选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩, 所以162PMN S PM MN ==△,故D 对, 故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b -=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案. 【详解】因为双曲线()22122:10,0x y C a b a b -=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3 【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案. 【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-. 当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯=. 当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=. 故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1 【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案; 【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=1==c e a .11. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=( ) A B C D【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2 D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,11224PFO P S OF y ∴=⋅==△,故选A . 5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====.。
高考数学《双曲线》专题检测试卷(含答案)
高考数学《双曲线》专题检测试卷一、单项选择题(共8小题,每小题5分,共40分)1.过点()1,2P -的直线与双曲线2214x y -=的公共点只有1个,则满足条件的直线有()A .2条B .3条C .4条D .5条2.双曲线E :2213y x -=的左,右顶点分别为,A B ,曲线E 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则mn =()A .3B .3-C .13D .13-3.双曲线222:1(0)y C x a a-=>的上焦点2F 到双曲线一条渐近线的距离为2a ,则双曲线两条渐近线的斜率之积为()A .4-B .4C .2-D .24.若双曲线2222:1(0,0)x y C a b a b-=>>,右焦点为F ,点E 的坐标为(,b c a b ,则直线OE (O 为坐标原点)与双曲线的交点个数为()A .0个B .1个C .2个D .不确定5.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过焦点2F 且垂直于x 轴的弦为AB ,若190AF B ∠= ,则双曲线的离心率为()A .522B 1-C 1D .2226.已知双曲线C :221169x y -=的左,右焦点分别为1F ,2F ,过2F 的直线与双曲线C 的右支交于A ,B 两点,且6AB =,则1F AB 的周长为()A .20B .22C .28D .367.已知点P 是双曲线2211620x y -=右支上的一点,点A B 、分别是圆22(6)4x y ++=和圆22(6)1x y -+=上的点.则PA PB -的最小值为()A .3B .5C .7D .98.双曲线2222:1(0,0)y x a b a bΓ-=>>的两焦点分别为12,F F ,过2F 的直线与其一支交于A ,B两点,点B 在第四象限.以1F 为圆心,Γ的实轴长为半径的圆与线段11,AF BF 分别交于M ,N 两点,且12||3||,AM BN F B F B =⊥,则Γ的渐近线方程是()A.y =B.y x =C.y x =D.y x=二、多项选择题(共3小题,每小题6分,共18分)9.已知双曲线C :()2220mx y m -=>,左右焦点分别为12,F F ,若圆()2248x y -+=与双曲线C 的渐近线相切,则下列说法正确的是()A .双曲线C的离心率e =B .若1PF x ⊥轴,则1PF =C .若双曲线C 上一点P 满足122PF PF =,则12PF F的周长为4+D .存在双曲线C 上一点P ,使得点P 到C10.已知双曲线2222 :1(0)x y M a b a b-=>>的焦距为4,两条渐近线的夹角为60︒,则下列说法正确的是()A .MB .M 的标准方程为2212x y -=C .M的渐近线方程为y =D .直线20x y +-=经过M 的一个焦点11.已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为M ,且12π6MF F =∠,双曲线2C 和椭圆1C 有相同的焦点,且双曲线2C 的离心率为2e ,P 为曲线1C 与2C 的一个公共点.若12π2F PF ∠=,则()A.21e e =B.12e e =C .221294e e +=D .22211e e -=三、填空题(共3小题,每小题5分,共15分)12.双曲线C :()222210,0x y a b a b-=>>的两个焦点为1F 、2F,点)A在双曲线C 上,且满足120AF AF ⋅=,则双曲线C 的标准方程为__________.13.已知双曲线1C :()22210y x b b-=>与椭圆2C:(2221x y a a +=>有公共的焦点1F ,2F ,且1C 与2C 在第一象限的交点为M ,若12MF F △的面积为1,则a 的值为__________.14.设1F 、2F 为双曲线Γ:()222109x ya a -=>左、右焦点,且Γ,若点M 在Γ的右支上,直线1F M 与Γ的左支相交于点N ,且2MF MN =,则1F N =__________.四、解答题(共5小题,共77分)15.设双曲线2222:1(0,0)x y a b a bΓ-=>>,斜率为1的直线l 与Γ交于,A B 两点,当l 过Γ的右焦点F 时,l 与Γ的一条渐近线交于点(P -.(1)求Γ的方程;(2)若l 过点(1,0)-,求||AB .16.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为2(1)求双曲线C 的方程;(2)直线():1,0l y k x k =+>与双曲线C 有唯一的公共点,求k 的值.17.已知双曲线C :22221x y a b-=(0a >,0b >)的右顶点()1,0E ,斜率为1的直线交C 于M 、N 两点,且MN 中点()1,3Q .(1)求双曲线C 的方程;(2)证明:MEN 为直角三角形;(3)若过曲线C 上一点P 作直线与两条渐近线相交,交点为A ,B ,且分别在第一象限和第四象限,若AP PB λ= ,1,23λ⎡⎤∈⎢⎥⎣⎦,求AOB V 面积的取值范围.18.某高校的志愿者服务小组受“进博会”上人工智能展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如下图:A 、B 两个信号源相距10米,O 是AB 的中点,过O 点的直线l 与直线AB 的夹角为45︒.机器猫在直线l 上运动,机器鼠的运动轨迹始终满足;接收到A 点的信号比接收到B 点的信号晚08v 秒(注:信号每秒传播0v 米).在时刻0t 时,测得机器鼠距离O 点为4米.(1)以O 为原点,直线AB 为x 轴建立平面直角坐标系(如图),求时刻0t 时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l 不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?19.已知离心率为72的双曲线1C :()222210,0x y a b a b -=>>过椭圆2C :22143x y +=的左,右顶点A ,B .(1)求双曲线1C 的方程;(2)()()0000,0,0P x y x y >>是双曲线1C 上一点,直线AP ,BP 与椭圆2C 分别交于D ,E ,设直线DE 与x 轴交于(),0Q Q x ,且20102Q x x λλ⎛⎫=<< ⎪⎝⎭,记BDP △与ABD △的外接圆的面积分别为1S ,2S参考答案15.(1)2214y x -=(2)82316.(1)22124x y -=(2)k =2.17.(1)2213y x -=(2)证明略(3)⎦18.(1)(4,0)(2)没有“被抓”风险19.(1)22143x y -=(2)⎫+∞⎪⎪⎝⎭。
双曲线及其标准方程习题
5.若点 M 在双曲线错误!-错误!=1 上,双曲线的焦点为 F1,F2,且|MF1|=3|MF2|,则|MF2|
等于
A.2
B.4
C.8
D.12
解析:选 B.双曲线中 a2=16,a=4,2a=8,由双曲线定义知||MF1|-|MF2||=8,又|MF1|=
3|MF2|,所以 3|MF2|-|MF2|=8,解得|MF2|=4.
以对于所求双曲线 a=1,c=2,b2=3,焦点在 y 轴上,双曲线的方程为 y2-错误!=1.
4.在方程 mx2-my2=n 中,若 mn<0,则方程表示的曲线是 A.焦点在 x 轴上的椭圆 B.焦点在 x 轴上的双曲线 C.焦点在 y 轴上的椭圆 D.焦点在 y 轴上的双曲线
解析:选 D.将方程化为错误!-错误!=1.
A.5,10 C.10,+∞
B.-∞,5 D.-∞,5∪10,+∞
解析:选 A.由题意得 10-k5-k<0,解得 5<k<10.
3.以椭圆错误!+错误!=1 的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的 方程是
-y2=1 -错误=1
B.y2-错误!=1 -错误!=1
解析:选 B.椭圆错误!+错误!=1 的焦点为 F10,1,F20,-1,长轴的端点 A10,2,A20,-2,所
由错误!·错误!=0,得 PF1⊥PF2.根据勾股定理得 |PF1|2+|PF2|2=2c2,即|PF1|2+|PF2|2=20. 根据双曲线定义有|PF1|-|PF2|=±2a. 两边平方并代入|PF1|·|PF2|=2 得 20-2×2=4a2,解得 a2=4,从而 b2=5-4=1, 所以双曲线方程为错误!-y2=1. 答案:错误!-y2=1 3.设圆 C 与两圆 x+错误!2+y2=4,x-错误!2+y2=4 中的一个内切,另一个外切.求 C 的圆心轨迹 L 的方程. 解:设两圆 x+错误!2+y2=4,x-错误!2+y2=4 的圆心分别为 F1-错误!,0,F2错误!,0, 两圆相离, 由题意得||CF1|-|CF2||=4<2错误!=|F1F2|, 从而得动圆的圆心 C 的轨迹是双曲线, 且 a=2,c=错误!,所以 b=错误!=1, 所求轨迹 L 的方程为错误!-y2=1. 4.如图,若 F1,F2 是双曲线错误!-错误!=1 的两个焦点. 1 若双曲线上一点 M 到它的一个焦点的距离等于 16,求点 M 到另一个焦点的距离; 2 若 P 是双曲线左支上的点,且|PF1|·|PF2|=32,试求△F1PF2 的面积. 解:双曲线的标准方程为错误!-错误!=1, 故 a=3,b=4,c=错误!=5. 1 由双曲线的定义得||MF1|-|MF2||=2a=6,又双曲线上一点 M 到它的一个焦点的距离等 于 16,假设点 M 到另一个焦点的距离等于 x,则|16-x|=6,解得 x=10 或 x=22. 故点 M 到另一个焦点的距离为 10 或 22. 2 将||PF2|-|PF1||=2a=6,两边平方得 |PF1|2+|PF2|2-2|PF1|·|PF2|=36, ∴|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100. 在△F1PF2 中,由余弦定理得 cos∠F1PF2=错误! =错误!=0, ∴∠F1PF2=90°, ∴S△F1PF2=错误!|PF1|·|PF2|=错误!×32=16.
高考数学真题:双曲线含答案
专题九 解析几何第二十七讲 双曲线2019年1.(2019全国III 理10)双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .3.(2019全国I 理16)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.4.(2019年全国II 理11)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是A B .1CD .26.(2019天津理5)已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为C.22010-2018年一、选择题1.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)2.(2018全国卷Ⅰ)已知双曲线C :2213-=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若∆OMN 为直角三角形,则||MN =A .32B .3C .D .43.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .2=±y x D .2=±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD5.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -=6.(2017新课标Ⅱ)若双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为A .2BCD .37.(2017新课标Ⅲ)已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=8.(2017天津)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -= 9.(2016天津)已知双曲线222=1(0)4x y b b->,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为A .22443=1y x -B .22344=1y x -C .2224=1x y b -D .2224=11x y - 10.(2016年全国I)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–1,3)C .(0,3)D .(0,3)11.(2016全国II)已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为A B .32C D .2 12.(2015四川)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则AB =A B . C .6 D .13.(2015福建)若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于A .11B .9C .5D .314.(2015湖北)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 15.(2015安徽)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A .2214y x -= B .2214x y -= C .2214y x -= D .2214x y -= 16.(2015新课标1)已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A .(B .(C .(,33-D .(33- 17.(2015重庆)设双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,右顶点为A ,过F作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a 则该双曲线的渐近线斜率的取值范围是A .(1,0)(0,1)-∪B .(,1)(1,)-∞-+∞∪C .∪D .(,1))-∞-∞∪18.(2014新课标1)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C的一条渐近线的距离为A B .3 C D .3m19.(2014广东)若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等20.(2014天津)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为 A .221520x y B .221205x yC .2233125100x y D .2233110025x y21.(2014重庆)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A .34 B .35 C .49D .322.(2013新课标1)已知双曲线C :22221x y a b-=(0,0a b >>C的渐近线方程为A .14y x =± B .13y x =± C .12y x =± D .y x =± 23.(2013湖北)已知04πθ<<,则双曲线1C :22221cos sin x y θθ-=与2C :22sin y θ2221sin tan y θθ-=的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D . 离心率相等 24.(2013重庆)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A .(2]3 B .[,2)3 C .()3+∞ D .[)3+∞ 25.(2012福建)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .14B .4 C .32D .4326.(2012湖南)已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1B .25x -220y =1C .280x -220y =1 D .220x -280y =1 27.(2011安徽)双曲线x y 222-=8的实轴长是A .2B .C .4D .28.(2011山东)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 29.(2011湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3 C .2 D .130.(2011天津)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1)--,则双曲线的焦距为A .B .C .D .31.(2010新课标)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y -= 32.(2010新课标)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2)-,则它的离心率为A B C .2 D .233.(2010福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为A .2B .3C .6D .8 二、填空题34.(2018上海)双曲线2214x y -=的渐近线方程为 . 35.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为2c ,则其离心率的值是 . 36.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .37.(2017新课标Ⅰ)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若MAN ∠=60°,则C 的离心率为________.38.(2017山东)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .39.(2017北京)若双曲线221y x m-=m =_________.40.(2016年北京)双曲线22221(0,0)x y a b a b-=>>的渐近线为正方形OABC 的边,OA OC所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =______.41.(2016山东)已知双曲线E :22221x y a b-=(0,0)a b >>,若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是 .42.(2015北京)已知双曲线()22210x y a a-=>0y +=,则a = .43.(2015江苏)在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为 .44.(2015山东)平面直角坐标系xOy 中,双曲线1C :22221x y a b-=(0,0)a b >>的渐近线与抛物线2C :22x py =(0p >)交于,,O A B ,若△OAB 的垂心为2C 的焦点,则1C 的离心率为_______.45.(2014山东)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 .46.(2014浙江)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是____.47.(2014北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.48.(2013陕西)双曲线221169x y -=的离心率为 .49.(2014湖南)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.50.(2013辽宁)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为 .51.(2012辽宁)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为 .52.(2012天津)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b = .53.(2012江苏)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 .54.(2011山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .55.(2011北京)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .三、解答题56.(2014江西)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y axx l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF 恒为定值,并求此定值.57.(2011广东)设圆C 与两圆2222(5)4,(5)4x y x y ++=+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点M 3545(,5,0)55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.专题九 解析几何第二十七讲 双曲线答案部分2019年1. 解析 双曲线22:142x y C -=的右焦点为6,0)F ,渐近线方程为:22y x =±,不妨设点P 在第一象限,可得2tan POF ∠=63P ,所以PFO △的面积为: 133262=.故选A .2. 解析 因为双曲线2221(0)y x b b-=>经过点(3,4),所以221631b-=,解得22b =,即2b =. 又1a =,所以该双曲线的渐近线方程是2y x =±. 3.解析 如图所示,因为1F A AB =,所以A 为1F B 的中点. 又O 为12F F 的中点,所以212AOBF ,212AO BF =. 因为120F B F B ⋅=,所以1290F BF ∠=︒, 且O 为12F F 的中点,所以12212OB F F OF c ===. 由212AOBF 得2121BOF AOF BF F ∠=∠=∠,所以2OB BF =, 因此2OPF △为等边三角形,260BOF ∠=︒,即渐近线的斜率为3,也即3ba=, 所以2212b e a=+=.4.A 解析:解法一:由题意,把2c x =代入222x y a +=,得2224c PQ a =-,再由PQ OF =,得2224ca c -=,即222a c =,所以222c a=,解得2c e a ==.故选A .解法二:如图所示,由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,所以,22c c P ⎛⎫± ⎪⎝⎭,代入222x y a +=得222a c =, 所以222c a=,解得2c e a ==.故选A .解法三:由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,则1222OP a OF ===,2c e a ==故选A . 5.解析 根据渐进线方程为0x y ±=的双曲线,可得a b =,所以2c a =,则该双曲线的离心率为2ce a==C . 6.解析 因为抛物线24y x =的焦点为F ,准线为l ,所以()1,0F ,准线l 的方程为1x =-.因为与双曲线()222210,0x y a b a b=>>的两条渐近线分别交于点A 和点B ,且4AB OF =(为原点),所以2b AB a =,1OF =,所以24b a=,即2b a =, 所以225c a b a +=,所以双曲线的离心率为5ca==.故选D .2010-2018年1.B 【解析】由题可知双曲线的焦点在x 轴上,因为222314c a b =+=+=,所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .2.B 【解析】因为双曲线2213-=x y 的渐近线方程为33=±y x ,所以60∠=MON .不妨设过点F 的直线与直线3=y 交于点M ,由∆OMN 为直角三角形,不妨设90∠=OMN ,则60∠=MFO ,又直线MN 过点(2,0)F ,所以直线MN 的方程为3(2)=-y x ,由2)⎧=-⎪⎨=⎪⎩y x y x,得32⎧=⎪⎪⎨⎪=⎪⎩x y3(,22M ,所以||==OM所以|||3==MN OM .故选B . 3.A 【解析】解法一由题意知,==ce a,所以=c,所以=b ,所以=b a=±=by x a,故选A .解法二由===c e a,得=ba,所以该双曲线的渐近线方程为=±=by x a.故选A . 4.C 【解析】不妨设一条渐近线的方程为by x a=, 则2F 到by x a =的距离d b ==, 在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得22212)cos cos 2a c aPOF POF ac c+-∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==.故选C . 5.C 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a,2(,)b B c a -,取双曲线的一条渐近线为直线0bx ay -=,由点到直线的距离公式可得221bc b d c -==,222bc b d c +==, 因为126d d +=,所以226bc b bc b c c-++=,所以26b =,得3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 6.A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2bd c==,圆心(2,0)到弦的距离也为d ==所以2b c =222c a b =+,所以得2c a =,所以离心率2ce a==,选A . 7.B【解析】由题意可得:b a =,3c =,又222a b c +=,解得24a =,25b =, 则C 的方程为2145x y 2-=.选B . 8.B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c-==-,由题意有4bc a=,又c a =222c a b =+,得b =,a =.选B .9.D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y b y x ⎧+=⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, 故四边形ABCD的面积为2324424bxy b b ===+,解得212b =.故所求的双曲线方程为2224=11x y -,选D . 10.A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.11.A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac -∠=====,12222c a e a c e -=-=210e --=,所以e =A . 12.D 【解析】由双曲线的标准方程2213y x -=得,右焦点(2,0)F ,两条渐近线方程为y =,直线AB :2x =,所以不妨设取(2,A,(2,B -,则||AB =,选D .13.B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .14.D【解析】由题意1e ==2e ==∵()()b b m m b a a a m a a m +--=++,由于0m ,0a ,0b , 所以当a b 时,01b a <<,01b m a m +<<+,b b m a a m +<+,22()()b b m a a m+<+, 所以12e e <;当a b <时,1ba>,1b m a m +>+,而b b m a a m +>+,22()()b b m a a m +>+, 所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.15.C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C . 16.A 【解析】由题意知22a,21b ,所以23c,不妨设1(F,2F ,所以100(,)=--MF x y ,200(3,)=-MF x y ,又∵00(,)M x y 在双曲线上,所以220012x y -=,即220022x y =+,222120003310MF MF x y y ⋅=-+=-<,所以033-<<y ,故选A . 17.A 【解析】 由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得221b b a a c x a c-⋅=---,解得42()b c x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a⇒<01b a ⇒<<,而双曲线的渐近性斜率为ba±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)-,选A .18.A 【解析】双曲线方程为22133x y m -=,焦点F 到一条渐近线的距离为b =A . 19.A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,选A .20.A 【解析】 依题意得22225ba cc a b ,所以25a,220b ,双曲线的方程为221520x y .21.B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,所以22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b aa --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率53e ==.22.C 【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 23.D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D . 24.A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满足3b a <,所以21()33b a <≤,241()43b a<+≤,2<,又双曲线的离心率为c e a ==23e <≤. 25.C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2∵c =3,∴32c e a ==,故选C . 26.A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴==,∴C 的方程为220x -25y =1.27.C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C . 28.A 【解析】圆22:(3)4C x y -+=,3,c =而32bc =,则22,5b a ==,应选A . 29.C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.30.B 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-=-,即4p =, 又∵42p a +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴c ==2c =31.B 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 32.D 【解析】设双曲线的方程为22221(0,0)x y a b a b -=>>,其渐近线为x aby ±=,∵点(4,2)-在渐近线上,所以12b a =,由2e ==. 33.C 【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=, 解得22003(1)4x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++203(1)4x -=20034x x ++, 此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅取得最大值222364++=,选C . 34.12y x =±【解析】由题意2a =,1b =,∴12b y x x a =±=±.35.2【解析】不妨设双曲线的一条渐近线方程为b y x a =2b ==,所以222234b c a c =-=,得2c a =,所以双曲线的离心率2ce a==. 36.232a x c ==,渐近线的方程为3y x =±,设3(,22P,则3(,22Q -,1(2,0)F -,2(2,0)F , 所以四边形12F PF Q的面积为1211||||422F F PQ =⨯=. 37.3【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°, x所以30HAN ∠=,又MN 所在直线的方程为by x a=, (,0)A a 到MN的距离AH =,在Rt HAN ∆中,有cos HA HAN NA =,所以2==因为222c a b =+a c =,所以c e a ==.38.y x =【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为2y x =±. 39.2【解析】221,a b m ==,所以1c a ==,解得2m =. 40.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=a41.2【解析】由题意||2BC c =,所以||3AB c =,于是点3(,)2cc 在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==,应填2. 42.3【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a=故3a =. 43.2(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -== 44.32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F , 则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 45.y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b+= ①,由||AF c =得2224p a c += ②,由①②得22a b =,即a b =,所以所求双曲线的渐近线方程为y x =±.46.2【解析】联立直线方程与双曲线渐近线方程by x a=±可解得交点为(,)33am bm A b a b a --,(,)33am bm B b a b a -++,而13AB k =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,所以e =47.221312x y -= 2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.48.45【解析】。
双曲线练习题
1、已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( ) A .2 B.62 C.52 D .1 2、若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等 3、设F 1, F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为( ) A. 2 B.15 C .4 D.17 4、过双曲线C :x 2a 2-y 2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A 。
若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1B.x 27-y 29=1C.x 28-y 28=1D.x 212-y 24=1 5、.点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)与圆C 2:x 2+y 2=a 2+b 2的一个交点,且2∠PF 1F 2=∠PF 2F 1,其中F 1、F 2分别为双曲线C 1的左、右焦点,则双曲线C 1的离心率为( )A.3+1B.3+12C.5+12D.5-1 6、已知双曲线x 2a-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________。
7、过双曲线x 23-y 26=1的右焦点F 2,倾斜角为30°的直线交双曲线于A ,B 两点,O 为坐标原点,F 1为左焦点。
(1)求|AB |;(2)求△AOB 的面积。
1、双曲线C:22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A. 2B.C.4D.2、设双曲线22221(a 0,b 0)x y a b-=>>的右焦点是F ,左、右顶点分别是12A ,A ,过F 做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为( )(A) 12± (B) ± (C) 1± (D) 3、设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.4、已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为 .5、过双曲线22145x y -=的左焦点1F ,作圆224x y +=的切线交双曲线右支于点P ,切点为T ,1PF 的中点为M ,则||||MO MT -=_____________.6、已知双曲线14222=+-m y m x 的一条渐近线方程为x y 3=,则实数m 的值为______. 7、【2016年湖北安庆一中高三一模测试】设点A 、(),0F c 分别是双曲线22221x y a b-=(0a >,0b >)的右顶点和右焦点,直线2a x c=交双曲线的一条渐近线于点P .若PAF ∆是等腰三角形,则求此双曲线的离心率双曲线练习31、在双曲线),0,0(1222222b a c b a by a x +=>>=-中,已知b a c ,,成等差数列,则该双曲线的渐近线的斜率等于( ) A. 43± B. 35± C. 34± D.53± 2、过双曲线),0,0(1:222222b a c b a b y a x C +=>>=-的左焦点F 作圆⊙4222c y x =+的切线,且点为E ,延长PE 交双曲线C 右支于点P ,若E 为PF 的中点,,则双曲线C 的离心率为( )A .12+B .212+C .13+D .213+ 3、设12,F F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,P 是C 的右支上的点,射线PT 平分12F PF ∠,过原点O 作PT 的平行线交1PF 于点M ,若121||||3MP F F =,则C 的离心率为( )A.324、设双曲线()222210,0x y a b a b-=>>的半焦距为,原点到直线:l ax by ab +=的距离等于113c +,则的最小值为 .5、【2016年江西师大附中鹰潭一中联考】过双曲线)0,0(12222>>=-b a by a x 的右焦点F 作一条直线,当直线斜率为1时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为( )A. B. C. D.6、【2016届广东省华南师大附中高三5月测试】已知C ∆AB 的边AB 在直角坐标平面的轴上,AB 的中点为坐标原点,若C 12AB⋅A =AB ,C 32BA⋅B =BA,又E 点在C B 边上,且满足32C BE =E ,以A 、B 为焦点的双曲线经过C 、E 两点. (Ⅰ)求AB 及此双曲线的方程;(Ⅱ)若圆心为()0,0x T 的圆与双曲线右支在第一象限交于不同两点M ,N ,求T 点横坐标0x 取值范围.双曲线练习4基础1、双曲线x 24-y 212=1的焦点到渐近线的距离为( ) A .23 B .2 C . 3 D .12、已知双曲线x 2+my 2=1的虚轴长是实轴长的2倍,则实数m 的值是( )A .4B .14C .-14D .-43、双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么它的离心率为( ) A .2 B .3 C . 2 D .324、已知双曲线的一个焦点F (0,5),它的渐近线方程为y =±2x ,则该双曲线的标准方程为________________.5、设F 1,F 2分别是双曲线x 2-y 2b 2=1的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线右支于点B ,则△F 1AB 的面积等于______. 能力提升1、(2015·福建高考)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .32、已知双曲线x 2a 2-y 2=1(a >0)的一条渐近线与直线2x -y +3=0垂直,则该双曲线的准线方程是( )A .x =±32B .x =±52C .x =±433D .x =±4553、设F 1,F 2分别是双曲线x 2a 2-y 2b2=1的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°且|AF 1|=3|AF 2|,则双曲线的离心率为( ) A .52 B .102 C .152 D . 54、(2015·重庆高考)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B, C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12B .±22C .±1D .±25、已知过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为A ,B ,若1 F A = AB ,则双曲线的渐近线方程为( )A .3x ±y =0B .x ±3y =0C .2x ±3y =0D .3x ±2y =06、双曲线x 24-y 212=1的两条渐近线与直线x =1围成的三角形的面积为______. 7、若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的离心率为______.8、已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M (3,m )在双曲线上.(1)求双曲线的方程;(2)求证:1 MF ·2 MF =0; (3)求△F 1MF 2的面积.9、已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点,O 为坐标原点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且 OA · OB >2,求k 的取值范围.。
双曲线历年高考真题100题 原卷版
1高考真题一、单选题A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=A .2B .C .D .1A .B .3C .D .A .B .C .D .A .B .C .D .3A .(1,3)B .(]1,3 C .(3,+∞)D .[)3,+∞ A . B . C . D .A .(√2,2)B .(√2,√5)C .(2,5)D .(2,√5)A .3B .C .D .A .B .2C .3D .6A .2 BC .32D .12 A . B .5 C . D .A .22124x y -=B .22142-=x yC .22146x y -=D .221410x y -=A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=A.B .12 C.D .24ABCDA .√2B .√3C .√3+12D .√5+12A .By=0 C .="0" D±y=0ABC.D. A .12m > B .1m ≥ C .1m > D .2m >A .12B.2C .1 DA .22182x y +=B .221126x y +=3C .221164x y +=D .221205x y +=A .12或32B .23或2 C .12或2 D .23或32A .2 B.C .4 D. A .4 B .3C .2D .1ABC .2D .3A.ab B .22b a + C .a D .bA .221520x y -=B .221205x y -=C .D .A .(0,)B .(1,)C .(,1)D .(,+∞)A .2B .2C .4D .4A .B .C .D .A .a 2=B .a 2=3C .b 2=D .b 2=2A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等A.14y x=±B.13y x=±C.12y x=±D.y x=±A.y=±2x B.y=C.12y x=±D.y=A.B.C.D.ABC.2 D.3A.22154x y-=B.22145x y-=C.22136x y-=D.22163x y-=A.1 B.2 C.3 D.4A.B.2CD.1A.B.C.D.A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=145AB .54C .43D .53A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -AB .2CDA .2 B.C .4D.A .14B .13C.4D.3A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=A .13 B .1 2C .2 3D .3 2得的弦长为2,则C 的离心率为 ( ) A .2 BCDA.223=1 44x y-B.224=1 43x y-C.22=1 44x y-D.22=1 412x y-A.y=B.y=C.2y x=±D.2y x=±A.32B.3 C.D.4A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=A.(√2,+∞)B.(√2,2)C.(1,√2)D.(1,2)A.221412x y-=B.221124x y-=C.2213xy-=D.2213yx-=A.221412x y-=B.22179x y-=C.22188x y-=D.221124x y-=A.220x-25y=1 B.25x-220y=1 C.280x-220y=1 D.220x-280y=1A.(1,0)(0,1)-6B.(,1)(1,) -∞-+∞C.(⋃D.(,(2,) -∞+∞A.2B.C.4D.A.3 B.2CDA.14B.35C.34D.45二、填空题7P,Q,其焦点是F1,F2,则四边形F1P F2Q的面积是________.三、解答题已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;89(1)求12,C C 的方程;已知中心在原点的双曲线C 的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C 的方程; (Ⅱ)若以为斜率的直线与双曲线C 相交于两个不同的点M ,N ,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.(Ⅰ)求点P 的轨迹方程; (Ⅱ)设d 为点P 到直线l : 12x =的距离,若22PM PN =,求PM d的值.(Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(21)图,已知过点()11,M x y 的直线1l : 1144x x y y +=与过点()22,N x y (其中21x x ≠)的直线2l :的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求·OG OH 的值.10(1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF的面积为求直线l 的方程第3小题满分7分.已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点. 记·MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM 截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.(1)设F 是C 的左焦点,M 是C 右支上一点. 若|MF|=2,求过M 点的坐标;(2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的 面积; (3)设斜率为的直线l2交C 于P 、Q 两点,若l 与圆相切,求证:OP ⊥OQ ;(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.11(Ⅰ)求该双曲线的方程;(Ⅱ)如图,点A的坐标为(0),B是圆22(1x y +=上的点,点M 在双曲线右支上,求MA MB +的最小值,并求此时M 点的坐标(Ⅰ)若2322,,2a a a +成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线2221n y x a -=的离心率为n e ,且253e =,证明:121433n nn n e e e --++⋅⋅⋅+>.(Ⅰ)求E 的方程;(Ⅱ)试判断以线段MN 为直径的圆是否过点F ,并说明理由.四、双空题。
高考题集椭圆双曲线
高考椭圆双曲线题 集1、已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为( B )A .32B .62C .3D .62、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且FD BF 2=,则C 的离心率为 .3、设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐 近线垂直,那么此双曲线的离心率为( D )(A)2 (B)3 (C)312+ (D) 512+ 【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,则F (c,0),B(0,b)直线FB :bx+cy-bc=0与渐近线y=b x a 垂直,所以1b bc a-=-,即b 2=ac 所以c 2-a 2=ac ,即e 2-e -1=0,所以152e +=或152e -=(舍去)4、点00()A x y ,在双曲线221432x y -=的右支上,若点A 到右焦点的距离等于02x ,则0x = 【答案】 2【解析】考查圆锥曲线的基本概念和第二定义的转化, a=2.c=6,200023()2a x x x c =-⇒= 5、椭圆22221()x y a b a b+=>>0的右焦点F,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是(D )(A )20,2⎛⎤ ⎥ ⎝⎦(B )10,2⎛⎤ ⎥⎝⎦ (C ) )21,1⎡-⎣ (D )1,12⎡⎫⎪⎢⎣⎭ 解析:由题意,椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,即F 点到P 点与A 点的距离相等而|FA |=22a b c c c-= |PF |∈[a -c ,a +c ] 于是2b c∈[a -c ,a +c ]即ac -c 2≤b 2≤ac +c 2 ∴222222ac c a c a c ac c ⎧-≤-⎪⎨-≤+⎪⎩ ⇒1112c a c c aa ⎧≤⎪⎪⎨⎪≤-≥⎪⎩或又e ∈(0,1) 故e ∈1,12⎡⎫⎪⎢⎣⎭答案:D6、设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I) 求椭圆C 的离心率; (II) 如果|AB|=154,求椭圆C 的方程. 解:设1122(,),(,)A x y B x y ,由题意知1y <0,2y >0.(Ⅰ)直线l 的方程为3()y x c =-,其中22c a b =-.联立22223(),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)2330a b y b cy b ++-= 解得221222223(2)3(2),33b c a b c a y y a b a b -+--==++因为2AF FB =,所以122y y -=.2222223(2)3(2)233b c a b c a a b a b +--=∙++得离心率23c e a ==. ……6分 (Ⅱ)因为21113AB y y =+-,所以22224315343ab a b∙=+.由23c a =得53b a =.所以51544a =,得a=3,5b =.椭圆C 的方程为22195x y +=. ……12分7、已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点。
双曲线标准方程及其性质经典题型分类总结
双曲线标准方程及其性质重点内容1:基础专练:1. 双曲线116922=-y x 的a=______、b=______、c=______;实轴长为______、虚轴长为______、焦点坐标______、离心率为______、渐近线方程为___________。
2. 双曲线1162522=-x y ,实半轴长为_____、虚半轴长为______、焦距为______、离心率为______、渐近线方程为____________。
3. 已知,双曲线上的动点到距离之差为6,则双曲线的方程为:4.双曲线的渐近线为,则离心率为5.已知双曲线的渐近线方程是,焦点在x 轴上且焦距是10,则此双曲线的方程为 ;6.(烟台调研)与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 12(5,0),(5,0)F F -P 21,F F x y 23±=2xy ±=C.x 23-y 23=1 D .x 2-y 22=1题型(一):求轨迹(定义法)例1:已知动圆M 与圆C 1:(x+4)2+y 2=16外切,与圆C 2:(x-4)2+y 2=64外切,求动圆圆心M 的轨迹方程.练习1 :动圆与两圆和都外切,求动圆圆心的轨迹?变式1:在△ABC 中,已知|AB|=42,且三内角A 、B 、C 满足2sinA+sinC=2sinB ,建立适当的坐标系,求顶点C 的轨迹方程.122=+y x 012822=+-+x y x题型(二):求双曲线方程1.(重庆高考)已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的一条渐近线为y =kx (k >0),离心率e =5k ,则双曲线方程为( ) A.x 2a 2-y 24a 2=1 B.x 2a 2-y 25a 2=1 C.x 24b 2-y 2b 2=1 D.x 25b 2-y 2b2=12.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线方程为y =±33x ,若顶点到渐近线的距离为1,则双曲线方程为____________.3.已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( ) 120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x4.已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .题型(三):利用双曲线定义求参数范围例1.若方程x2|k|-2+y25-k =1表示双曲线,则实数k 的取值范围是( )A .k<-2,或2<k<5B .-2<k<5C .k<-2,或k>5D .-2<k<2,或k>5练习1:若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等 变式1:已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等 题型(四):共焦点求双曲线方程例1.与椭圆1422=+y x 共焦点且过点P(2,1)的双曲线方程是( )A. 1422=-y xB.1222=-y xC.13y 322=-x D .1222=-y x练习1: 已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22x y =1169+有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 ?例2:求与双曲线有公共焦点,且过点(,2)的双曲线方程。
新课标双曲线历年高考题精选(精)
B.
y x=±23C.y x=±94
D.
yx=±4
9
6.(2009安徽卷理下列曲线中离心率为的是
A .22124x y-=
B .22142xy-=
C .22146xy -=
D.221
410
xy -=7.(2009宁夏海南卷理双曲线24x-212
y=1的焦点到渐近线的距离为(
8.(2009天津卷文设双曲线0,0(122
4.(07天津理4设双曲线22
221(0
0xy ab ab
-=>>,抛物线
24y x=的准线重合,则此双曲线的方程为(
A.
22
11224x y-=
B.
2214896xy-=C.22
2133xy-=D.
22
136
x y -=5.(04北京春理3双曲线x y 22
49
1-=的渐近线方程是(A.
yx=±3
12||:||3:2
PFPF =,则
12
PFF △的面积为(
A.
B .12
C.
D.24
24.(07四川理5如果双曲线12
42
2=-y x上一点P到双曲线右焦点的距离是2,那么点P 到
y轴的距离是
25(07陕西理7已知双曲线C :122
22=-b
yca(a >0,b>0,以C的右焦点为圆心且与C的浙
近线相切的圆的半径是A.
为
1
5
,则m=(DA .1B .2C .3 D .4 18.(04湖南文4如果双曲线112
132
2=-y x上一点P到右焦点的距离为
13,那么点P到右准线
的距离是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、设双曲线2222by a x -=1( a > 0, b > 0 )的右顶点为A ,P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP 分别交于Q 和R 两点.(1) 证明:无论P 点在什么位置,总有|→--OP |2= |→-OQ ·→--OR | ( O 为坐标原点); (2) 若以OP 为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围;解:(1) 设OP :y = k x, 又条件可设AR: y =ab(x – a ), 解得:→--OR = (b ak ab --,b ak kab --), 同理可得→-OQ = (b ak ab +,bak kab+),∴|→-OQ ·→--OR | =|b ak ab --b ak ab ++b ak kab --b ak kab+| =|b k a |)k 1(b a 222222-+. 设→--OP = ( m, n ) , 则由双曲线方程与OP 方程联立解得:m 2 =22222k a b b a -, n 2 = 222222k a b b a k -, ∴ |→--OP|2 = :m 2 + n 2 =22222k a b b a -+ 222222k a b b a k -=222222ka b )k 1(b a -+ , ∵点P 在双曲线上,∴b 2 – a 2k 2 > 0 .∴无论P 点在什么位置,总有|→--OP |2= |→-OQ ·→--OR | .(2)由条件得:222222ka b )k 1(b a -+= 4ab, 即k 2 =22a 4ab abb 4+-> 0 , ∴ 4b > a, 得e >4172、已知以向量v =(1,21)为方向向量的直线l 过点(0, 45),抛物线C :px y 22=(p >0)的顶点关于直线l 的对称点在该抛物线上.(Ⅰ)求抛物线C 的方程;(Ⅱ)设A 、B 是抛物线C 上两个动点,过A 作平行于x 轴的直线m ,直线OB 与直线m 交于点N ,若02=+⋅p (O 为原点,A 、B 异于原点),试求点N 的轨迹方程. 解:(Ⅰ)由题意可得直线l :4521+=x y ① 过原点垂直于l 的直线方程为 x y 2-= ② 解①②得21-=x . ∵抛物线的顶点关于直线l 的对称点在该抛物线的准线上. ∴2212⨯-=-p ,2=p ∴抛物线C 的方程为x y 42=.(Ⅱ)设),(11y x A ,),(22y x B ,),(y x N ,由02=+⋅p ,得042121=++y y x x .又1214x y =,2224x y =. 解得 821-=y y ③ 直线ON :x x y y 22=,即x y y 24= ④ 由③、④及1y y =得,点N 的轨迹方程为2-=x )0(≠y .3、已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线方程为x y 3=,两条准线的距离为l .(1)求双曲线的方程;(2)直线l 过坐标原点O 且和双曲线交于两点M 、N ,点P 为双曲线上异于M 、N 的一点,且直线PM ,PN 的斜率均存在,求k PM ·k PN 的值.(1)解:依题意有:.3,1,,12,3222222==⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==b a c b a c aa b解得可得双曲线方程为.1322=-y x (2)解:设).,(,),,(0000y x N y x M --可得由双曲线的对称性,33,33,13.),,(222020220222020000-=-==---=++⋅--=⋅P P P P P P P P PNPM P P x y x y y x x x y y x x y y x x y y k k y x P 同理所以又则设所以.3333322202=-+--=⋅x x x x k k P P PNPM 4、已知点,A B 分别是射线()1:0l y x x =≥,()2:0l y x x =-≥上的动点,O 为坐标原点,且OAB ∆的面积为定值2.(I )求线段AB 中点M 的轨迹C 的方程;(II )过点()0,2N 作直线l ,与曲线C 交于不同的两点,P Q ,与射线12,l l 分别交于点,R S ,若点,P Q 恰为线段RS 的两个三等分点,求此时直线l 的方程. 解:(I )由题可设()11,A x x ,()22,B x x -,(),M x y ,其中120,0x x >>.则1212,(1)2,(2)2x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩ 1分∵OAB ∆的面积为定值2,∴)121211222OAB S OA OB x x ∆=⋅===. 2分22(1)(2)-,消去12,x x ,得:222x y -=. 4分由于120,0x x >>,∴0x >,所以点M 的轨迹方程为222x y -=(x >0).5分(II )依题意,直线l 的斜率存在,设直线l 的方程为2y kx =+.由222,2,y kx x y =+⎧⎨-=⎩消去y 得:()221460k x kx ---=, 6分 设点P 、Q 、R 、S 的横坐标分别是P x 、Q x 、R x 、P x ,∴由,0P Q x x >得()2222210,162410,40,160,1P Q P Q k k k k x x k x x k ⎧-≠⎪∆=+->⎪⎪⎨+=>⎪-⎪-⎪=>⎪-⎩8分解之得:1k <<-.∴21P Q x x k -==-. 9分由2,,y kx y x =+⎧⎨=⎩消去y 得:21R x k =-,由2,,y kx y x =+⎧⎨=-⎩消去y 得:21S x k =--,∴241R S x x k -=-. 10分 由于,P Q 为RS 的三等分点,∴3R S x x -=P Q x x -. 11分 解之得53k =-. 5、设双曲线C :1222=-y x 的左、右顶点分别为A 1、A 2,垂直于x 轴的直线m 与双曲线C 交于不同的两点P 、Q 。
(Ⅰ)若直线m 与x 轴正半轴的交点为T ,且121=⋅A A ,求点T 的坐标; (Ⅱ)求直线A 1P 与直线A 2Q 的交点M 的轨迹E 的方程;(Ⅲ)过点F (1,0)作直线l 与(Ⅱ)中的轨迹E 交于不同的两点A 、B ,设FB FA λ=,若||],1,2[+--∈求λ(T 为(Ⅰ)中的点)的取值范围。
解:(Ⅰ)由题,得)0,2(),0,2(21A A -,设),(),,(0000y x Q y x P -则).,2(),,2(002001y x A y x A --=+=由.3,1212020202021=-=--⇒=⋅y x y x A A 即 …………① 又),(00y x P 在双曲线上,则.122020=-y x …………② 联立①、②,解得 20±=x 由题意, .2 ,000=∴>x x∴点T 的坐标为(2,0) …………3分(Ⅱ)设直线A 1P 与直线A 2Q 的交点M 的坐标为(x ,y ) 由A 1、P 、M 三点共线,得)2()2(00+=+x y y x …………③ …………1分由A 2、Q 、M 三点共线,得)2()2(00--=-x y y x …………④ …………1分联立③、④,解得 .2,200xyy x x ==…………1分 ∵),(00y x P 在双曲线上, ∴.1)2(2)2(22=-xy x∴轨迹E 的方程为).0,0( 1222≠≠=+y x y x …………1分 (Ⅲ)容易验证直线l 的斜率不为0。
故可设直线l 的方程为 12122=++=y x ky x ,代入中,得 .024)2(22=+++ky y k设 00),,(),,(212211≠≠y y y x B y x A 且则由根与系数的关系,得22221+-=+k k y y ……⑤.22221+-=k y y ……⑥ …………2分∵λ= ∴有.021<=λλ,且y y将⑤式平方除以⑥式,得242124222222221+-=++⇒+-=++k k k k y y y y λλ …………1分由0212125]1,2[≤++⇒-≤+≤-⇒--∈λλλλλ .72072024212222≤≤⇒≤⇒≤+-≤-⇒k k k k …………1分∵).,4(),,2(),,2(21212211y y x x TB TA y x TB y x TA +-+=+∴-=-=又.2)1(42)(4,22222121221++-=-+=-+∴+-=+k k y y k x x k k y y 故2212212)()4(||y y x x TB TA ++-+=+222222222222)2(8)2(28)2(16)2(4)2()1(15+++-+=++++=k k k k k k k 222)2(822816+++-=k k令720.2122≤≤+=k k t ∴21211672≤+≤k ,即 ].21,167[∈t ∴.217)47(816288)(||222--=+-==+t t t t f而 ]21,167[∈t , ∴].32169,4[)(∈t f∴].8213,2[||∈+TB TA 6、已知中心在原点,左、右顶点A 1、A 2在x 轴上,离心率为321的双曲线C 经过点P (6,6),动直线l 经过△A 1PA 2的重心G 与双曲线C 交于不同两点M 、N ,Q 为线段MN 的中点。
(1)求双曲线C 的标准方程(2)当直线l 的斜率为何值时,022=⋅PA QA 。
本小题考查双曲线标准议程中各量之间关系,以及直线与双曲线的位置关系。
解(1)设双曲线C 的方程为()0,012222>>=-b a by a x,34,37,37,321222222=∴=+=∴=ab a b a e e 即 又P (6,6)在双曲线C 上,1363622=-∴b a 由①、②解得.12,922==b a所以双曲线C 的方程为112922=-y x 。
(2)由双曲线C 的方程可得()()()6,6P ,0,3,0,321又A A - 所以△A 1PA 2的重点G (2,2)设直线l 的方程为()22+-=x k y 代入C 的方程,整理得()()()()()()002211222,,,,,0421211234y x Q y x N y x M k k x k k xk 又设=+---+-()()()()()11263116,1,0.1263183,2.431822;4316222220020022102222-=-+-∴-=⋅∴=⋅-+-=-==--=+-=--=+=k k k k k PA QA k k k x y k k k k x k y k k k x x x QA PA QA PA 整理得041032=+-k k 解得3135±=k 由③,可得()⎪⎩⎪⎨⎧>+--=∆≠-016854803422k k k解得332,54645464±≠-<<+-k k 且 由④、⑤,得3135-=k7、已知12(2, 0), (2, 0)F F -,点P 满足12||||2PF PF -=,记点P 的轨迹为E .① ②③④⑤(Ⅰ)求轨迹E 的方程;(Ⅱ)若直线l 过点2F 且与轨迹E 交于P 、Q 两点.(i )设点(, 0)M m ,问:是否存在实数m ,使得直线l 绕点2F 无论怎样转动,都有0MP MQ ⋅=成立?若存在,求出实数m 的值;若不存在,请说明理由.(ii )过P 、Q 作直线12x =的垂线PA 、QB ,垂足分别为A 、B ,记||||||PA QB AB λ+=,求λ的取值范围.解:(Ⅰ)由12||||2PF PF -=<12||F F 知,点P 的轨迹E 是以1F 、2F 为焦点的双曲线右支,由2,22c a ==,∴23b =,故轨迹E 的方程为).1(1322≥=-x y x …(3分) (Ⅱ)当直线l 的斜率存在时,设直线l 方程为(2)y k x =-,与双曲线方程联立消y 得0344)3(2222=++--k x k x k ,设11(,)P x y 、22(,)Q x y ,∴2212221223004034303k k x x k k x x k ⎧-≠⎪∆>⎪⎪⎨+=>-⎪⎪+⎪⋅=>-⎩, 解得23k > ………………………………………(5分)(i )∵1212()()MP MQ x m x m y y ⋅=--+212122222121222222222()()(2)(2)(1)(2)()4(1)(43)4(2)433x m x m k x x k x x k m x x m kk k k k m m k k k =--+--=+-+++++++=-++--2223(45)3m k m k -+=+-……………………(7分) 假设存在实数m ,使得0MP MQ ⋅=,故得2223(1)(45)0m k m m -+--=对任意的32>k 恒成立,∴2210450m m m ⎧-=⎪⎨--=⎪⎩,解得 1.m =-∴当1m =-时,0MP MQ ⋅=.当直线l 的斜率不存在时,由(2,3),(2,3)P Q -及(1,0)M -知结论也成立,综上,存在1m =-,使得0MP MQ ⋅=. …………………………………………(8分)(ii )∵1,2a c ==,∴直线12x =是双曲线的右准线,…………………………(9分) 由双曲线定义得:2211||||||2PA PF PF e ==,21||||2QB QF =,方法一:∴21||2||PQ AB λ==21=== …………………………………………(10分)∵23k >,∴21103k <<,∴123λ<<………………………………………(11分) 注意到直线的斜率不存在时,21|,|||==λ此时AB PQ , 综上,.33,21⎪⎪⎭⎫⎢⎣⎡∈λ ………………………………………………………………(12分)8、已知双曲线)0,0(12222>>=-b a by a x 的离心率e =2,且1B 、2B 分别是双曲线虚轴的上、下端点(Ⅰ)若双曲线过点Q (2,3),求双曲线的方程;(Ⅱ)在(Ⅰ)的条件下,若M 、N 是双曲线上不同的两点,且2221,B M B N B M B N λ=⊥,求直线MN 的方程解:(Ⅰ)∵双曲线方程为 2),0,0(12222=>>=-e b a by a x∴22223,2a a c b a c =-==,∴双曲线方程为 132222=-ay a x ,又曲线C 过点Q (2,3), ∴9,3,13342222===-b a aa ∴双曲线方程为 .19322=-y x ………………5分(Ⅱ)∵22B M B N λ=,∴M 、B 2、N 三点共线∵21B M B N ⊥, ∴1MN B N ⊥(1)当直线MN 垂直x 轴时,不合题意 (2)当直线MN 不垂直x 轴时,由B 1(0,3),B 2(0,-3), 可设直线MN 的方程为3-=kx y ,①∴直线1B N 的方程为 .31+-=x ky ② 由①,②知 222633(,),11k k N k k -++ 代入双曲线方程得 9)1()1(9)1(3632222222=+--+⨯k k k k ,得01624=+-k k ,解得 23k =±∴1)k =±,故直线MN 的方程为 1)3y x =±-40、(广东省四校联合体第一次联考)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2且过点(4,-10) (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:点M 在以F 1F 2为直径的圆上; (3)求△F 1MF 2的面积. 解:(1) ∵离心率e=2∴设所求双曲线方程为x 2-y 2=λ(λ≠0) 则由点(4,-10)在双曲线上 知λ=42-(-10)2=6 ∴双曲线方程为x 2-y 2=6(2)若点M(3,m)在双曲线上则32-m 2=6 ∴m 2=3由双曲线x 2-y 2=6知F 1(23,0),F 2(-23,0)∴09)32()332,)(332,(2221=-+=+---=⋅m m m MF MF ∴21MF MF ⊥,故点M 在以F 1F 2为直径的双曲线上. (3)22MF F S ∆=21×2C ×|M|=C|M|=23×3=69、已知平面上一定点C (4,0)和一定直线P x l ,1:=为该平面上一动点,作l PQ ⊥,垂足为Q ,且0)2)(2(=-+→--→--→--→--PQ PC PQ PC .(1)问点P 在什么曲线上?并求出该曲线的方程;(2)设直线1:+=kx y l 与(1)中的曲线交于不同的两点A 、B ,是否存在实数k ,使得以线段AB 为直径的圆经过点D (0,-2)?若存在,求出k 的值,若不存在,说明理由.解:(1)设P 的坐标为),(y x ,由0)2()2(=-⋅+得 0||4||22=-PQ PC (2分) ∴(,0)1(4)4222=--+-x y x (4分) 化简得.112422=-y x ∴P 点在双曲线上,其方程为.112422=-y x (6分) (2)设A 、B 点的坐标分别为),(11y x 、),(22y x , 由⎪⎩⎪⎨⎧=-+=1124122y x kx y 得,0132)3(22=---kx x k (7分) 221221313,32k x x k k x x --=-=+∴,(8分) ∵AB 与双曲线交于两点,∴△>0,即,0)13)(3(4422>---k k 解得.213213<<-k (9分) ∵若以AB 为直径的圆过D (0,-2),则AD ⊥BD ,∴1-=⋅BD AD k k , 即1222211-=+⋅+x y x y ,(10分) ∴12121212(2)(2)0(3)(3)0,y y x x kx kx x x +++=⇒+++= ∴)12.(09323)313)(1(09)(3)1(22221212分=+-⋅+--+⇒=++++kk k k k x x k x x k 解得)213,213(414,872-∈±=∴=k k ,故满足题意的k 值存在,且k 值为414±.10、过双曲线2233y x -=的上支上一点P 作双曲线的切线交两条渐近线分别于点,A B .(1)求证:OA OB ⋅为定值;(2)若OB AM =,求动点M 的轨迹方程.解:(1)设直线AB :0,>+=b b kx y由⎩⎨⎧=-+=3322x y bkx y 得()0323222=-++-b kbx x k()()()()()030,0,,,,A 33342,0322212211222222=->>=+∴=---=∆≠-x y y y y x B y x b k b k kb k 双曲线的渐近线方程为则 设…………………………………….3分 ()()()2330,03,3,13012344,0302303212121212122222121222122222222222=⋅+⋅=⋅∴=⋅=⋅∴>>==-=-=⋅>=--=∆≠-*=++-⎩⎨⎧=-+=y y x x x x y y y y x y x y k b x x b k b b k k b kbx x k x y b kx y 且 得由 …………………………………………………………………………………………….7分(2)AM = ,所以四边形BOAM 是平行四边形()()得则由设*+=∴,,M y x ……………………………………………………………….9分 bk k kb x x x ,232221=--=+= ① ()()bb b k b b k b x x k y y y 622222222121=+=+=++=+= ② 由①②及141232222=-=+x y b k 得……………………………………………..13分 ()01412M ,06022>=->=∴>y x y b y b 的轨迹方程为所以点 …………14分 11、双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为F 1、F 2,O 为坐标原点,点A 在双曲线的右支上,点B 在双曲线左准线上,.,22OF F ⋅=⋅=(1)求双曲线的离心率e ;(2)若此双曲线过C (2,3),求双曲线的方程;(3)在(2)的条件下,D 1、D 2分别是双曲线的虚轴端点(D 2在y 轴正半轴上),过D 1的直线l 交双曲线M 、N ,l N D M D 求直线,22⊥的方程。