SPC基础知识和应用

合集下载

SPC统计过程控制基础知识

SPC统计过程控制基础知识

不合格件数 累计百分比
铸件不合格项目排列图
120 104 100
83
88
91
93
100 100 80
80
73
60
60 40 20
52 42
20
10
6
4
40 14 20
0
0
弯曲 擦伤 砂眼 断裂 污染 裂纹 其他
管制图
• 管制图用来对过程状态进行监控,并可度 量、诊断和改进过程状态。SPC过程控制 分析用图。
确保制程持续稳定、可预测;为制程 分析提供依据;区分变差的特殊原因和普 通原因,作为采取局部措施或对系统采取 措施的指南;有效地降低了成本与不良率, 同时减少返工和浪费;提高劳动生产率和核 心竞争力;赢得广泛客户;更好地理解和实施 质量体系。
四.质量管理七大工具
• 质量管理七大工具 1.直方图 2.流程图 3.排列图 4.管制图 5.调查表 6.因果图 7.水平对比法
由于过程波动具有统计规律性,当过程
受控时,过程特性一般服从稳定的随机分 布;而失控时,过程分布将发生改变。 SPC正是利用过程波动的统计规律性对过 程进行分析控制的。因而,它强调过程在 受控和有能力的状态下进行,从而使产品 和服务稳定地满足顾客的要求。
• SPC的实施: SPC的实施分为两个阶段: 一是分析阶段; 二是监控阶段。 在这两个阶段所使用的控制图分别被 称为分析用控制图和控制用控制图。
调查表
调查表又叫检查表、统计分析表等,用来系 统地收集资料和积累数据,确认事实并对数 据进行粗略整理和分析的统计图表。
因果图
• 因果图又叫鱼刺图,用来罗列问题的原因, 并将众多的原因分类、分层的图形。
水平对比法
• 水平对比法是通过不断地将企业流程与世 界处于领先地位的企业相比较,以获得有

统计过程控制(SPC)

统计过程控制(SPC)

11
控制图的选择
控制图的选定
计量值 数据性质
计数值
平均值
“n”=10~25 “n”是否较大
n≧1 样本大小 n≧2
Cl的性质
中位数 “n”=2~5
“n”=1
不良数
缺陷数
不良数或
缺陷数
不一定
一定
“n”是否一定
单位大小 是否一定 不一定 一定
X-s 图
X-R 图
X-R
X-Rm “p”

图图
“np” “c”
数据类别: 计数值数据:只以缺陷数和个数表示,不能连续取值的数据 计量值数据:以产品本身的特性来表示,可以连续取值的数据
2
两种变异
普通性(特定性)变异:不易避免的原因(普通 原因)造成的变异,如操作人员的熟练程度的 差异、设备精度与保养好坏的差异、同批原材 料本身的差异
特殊性(偶尔性)变异:可以避免也必须避免 的原因(特殊原因)造成的变异,如不同原材料 之间的差异、设备故障
“u”
图图

12
案例1(控制图的选择)
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用什么图
13
答案1
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用控制图 均值极差控制图
通常用来消除变差的普通原因 几乎总是要求管理措施,以便纠正 大约可纠正85%的过程问题
8
控制图的目的
控制图和一般的统计图不同,因其不仅能 将数值以曲线表示出来,以观其变异之趋 势,且能显示变异系属于机遇性或非机遇 性,以指示某种现象是否正常,而采取适 当之措施。

SPC (统计过程控制)基础知识

SPC (统计过程控制)基础知识

SPC(统计过程控制)基础知识 统计过程控制) 统计过程控制
4.X-Rs 控制图。多用于下列场合:对每一个产品都进行检验,采用自动化检查和 测量的场合;取样费时、昂贵的场合;以及如化工等过程、样品均匀,多抽样也无 太大意义的场合。由于它不像前三种控制图那样能取得较多的信息,所以它判断过 程的灵敏度也要差一些。
以 客 贯 彻
户 为

心 宗


质 量 目 标 的 制 定
有 目 期 况
无 制 定 可 测 量 的 质 量 目 标 ? 质 量 标 有 无 分 解 到 各 职 能 层 ? 有 无 定 测 量 评 估 各 质 量 目 标 的 达 成 情 ?
职 责 和 权 限
各 部 门 , 各 职 能 岗 位 有 无 定 义 相 关 的 职 责 和 权 限 ?
4 .2 .2
质 量 手 册
有 无 编 写 符 合 要 求 的 质 量 手 册 ?
SPC(统计过程控制)基础知识 统计过程控制) 统计过程控制
3.4 分层图 用于将数据分类比较 250
不良率(PPM)
目标线
150 100 50 0 1 2 3 4
工作周
C班 B班 A班
5
6
7
8
9
SPC(统计过程控制)基础知识 统计过程控制) 统计过程控制
3.5 控制图 什么是控制图? 什么是控制图? 控制图是对过程质量加以测定,记录从而进行控制管理的一种用科学方法设计的图。 控制图的理论基础是概率论。依据概率论,我们把“小概率的事件如果发生了,我 们认为有异常存在”。 控制图的种类: 控制图的种类
数据 计量值 分布 正态分布 控制图名称 均值-极差 图 均值-标准差 图 中位数-极差 图 单值-移动极差 图 不合格品率图 不合格品数图 单位缺陷数 缺陷数 简记 X-R chart X-S chart X-R chart X-Rs chart P chart Pn chart U chart C chart

SPC

SPC

3-1 分析极差图上的数据点 3-1-1 判定准则: 1.点子超出或落在控制线上; 2.控制界线内的点子排列有下列缺陷:
缺陷

图例 UCL
链状况-连 续9点以上在中 心线同一侧出现。
● ● ● ●

● ● ●
● ●
● ● ●
● ● ●


CL



LCL
UCL
趋势状况- 连续6点以上上 升或下降。
1-1-3 子组数:子组越多,变差越有机会出现。一般为25 组,首次使用管制图选用35 组数据,以便调整。 1-2 建立控制图及记录原始数据 (见下图)
管理项目:某一尺寸 规格要求:25+/-5
24 25 27 26 24 26 23 26 26 25 26 25 27 25 25 24 26 25 26 25 24 25 28 25 24 26 26 27 24 25 26 23 26 24 25 26 25 24 25 26 27 24 24 25 23 24 24 24 23 27 24 25 23 25 22 24 25 26 25 26 26 24 24 25 25 25 25 26 25 22 24 24 26 24 25 26 24 26 26 25 25 25 25 24 26 26 25 24 26 27 25 26 27 24 25 24 25 25 26 25 25 26 25 24 23 26 26 25 25 24 25 27 27 25 24 25 26 27 27 25 26 26 25 24 25
注:排除代表不稳定条件的子组并不仅是“丢弃坏数据”。而 是排除受已知的特殊原因影响的点。并且一定要改变过程, 以使特殊原因不会作为过程的一部分重现。 3-4 延长控制限,作为实际运用控制图的控制限

spc基础培训资料全

spc基础培训资料全

spc基础培训资料全第⼀章节重新认识SPC内容主要有:过程的概念;过程变差;过程能⼒分析;计量型控制图(X—R图,X—S图等);计数型控制图(p图,np图,c图,u图等);第⼆章节SPC应⽤的基础●质量数据1.数据的特点:①波动性;②规律性;2.质量特性:反映产品特定性质之内容;(如:尺⼨、重量、硬度、⼒度、电阻值、丝印寿命、外观等)3.质量特性数据:测量质量特性所得的数据;(如:“⼒度150g”、“⼒度偏重20g”、“⼒度偏重5pcs”)4.数据分类:①计量值数据:(如单位为“mm、g、℃、Ω”的数据)②计数值数据:(如单位为“PCS、箱、桶、罐”的数据)●数据参数1.数据表达式:公式中⼀般⽤X1 X2……Xn表⽰⼀组数据中n个数据。

2.频数:同⼀记录中同⼀数据出现的数据。

公式中⼀般⽤n1 n2 n3…ni表⽰个数。

3.平均数:所有数据的和与总数和商。

4.百分率:单项数据与所有数据总和的商的百分值。

5.累计百分率:顺序排列中,第1项的累计百分率,等于前N-1项百分率的和。

标准⽅差:6.●数据的分层1.概念:将数据依照使⽤⽬的,按其性质,来源,影响等进⾏分类,把性质相同,在同⼀⽣产条件下收集到的质量特性数据归并在⼀起的⽅法;2.作⽤:分层的⽬的是为有利于查找⽣产质量问题的原因。

3.分层⽅法:①操作⼈员:按个⼈分,按现场分,按班次分,按经验分;②机床设备:按机器分,按⼯夹⼑具分;③材料:按供应单位分,按品种分,按进⼚批分④加⼯⽅法:按不同的加⼯、装配、测量、检验等⽅法分,按⼯作条件分;⑤时间:按上、下午分,按年、⽉、⽇分,按季节分;⑥环境:按⽓象情况分,按室内环境分,按电场、磁场影响分;⑦其他:按发⽣情况分,按发⽣位置分等。

4.两点原则:作频数分布表时要确定组距、组数和组的边界值。

例:某零件的⼀个长度尺⼨的测量值(mm)共100个,测量单位为0.01mm①从数据中选出最⼤值和最⼩值,这时应去掉相差悬殊的异常数据.最⼤值为42.44,最⼩值为42.27②⽤测量单位的1、2、5倍除以最⼤值与最⼩值之差(极差),并将所有得值取整数.极差=42.44-42.27=0.17mm已知测量单位为0.01mm,为了求出组距,可⽤0.01mm的1、2、5的倍数除以极差0.17mm.0.17÷0.01=17 0.17÷0.02=8.5(取整数为9) 0.17÷0.05=3.4(取整数为3)数据为④确定分组组界时,可把数据中的最⼩值分在第⼀组的中部,并把分组组界定在最⼩测量单位的1/2处,以避免测量值恰好落在边界上。

SPC基本知识

SPC基本知识

SPC 基础知识一、 什么是SPCSPC 是Statistical process control 的缩写,即统计过程控制。

是应用统计方法对过程中的各个阶段进行临控,从而达到质量保证与质量改进的目的,在此可将统计学看成是从一系列数据中收集信息的工具,它是通过预防而不是通过检测来避免浪费。

二、 SPC 目的1. 预防问题的发生 2. 减少浪费三、 SPC 的管制图原理与益处1.根据3σ原理,在分布范围μ ±3 σ内,对于服从或近似服从正态分布的统计量,大约有99.73%的数据点会落在上下控制界限之内,数据点落在上下控制界限之外的概率约为0.27%,根据小概率原则,可判为异常点.图示如上.2.SPC管制图举例下面是Minitab R14 制作的Xbar-R 管制图。

从图可以看出制程有多个超出控制限的点,说明需要查找原因,采取措施,加以消除,不再出现,纳于标准。

合理使用管制图能够:1.区分变差的普通原因和特殊原因,作为采取局部措施和系统措施的指南。

2.有助于过程在质量上和成本上能持续地、可预测地保持下去。

3.使过程达到:A、更高的质量 B、更低的单位成本C、更高的有效能力。

四、 SPC制程能力分析1.Cp、Cpk与Pp、Ppk的含义与区别如下:Cp指数= 规格宽度工序宽度Cp:(Capability of Process)过程能力指数Cpk:修正的过程能力指数Pp: (Performance of Process)过程性能指数Ppk:修正的过程性能指数2..Cp、Cpk与Pp、Ppk的计算:过程能力指数的计算公式如下:过程性能指数计算公式如下:1.经济性:有效的抽样管制,不用全数检验,不良率,得以控制成本。

使制程稳定,能掌握品质、成本与交期。

2.预警性:制程的异常趋势可实时对策,预防整批不良,以减少浪费。

3.分辨特殊原因:作为局部问题对策或管理阶层系统改进之参考。

4.善用机器设备:估计机器能力,可妥善安排适当机器生产适当零件。

SPC 基础知识及应

SPC 基础知识及应

1 DPMO 的算法
第三章 如何判读QI软件图
1 数据的分布
数据大体可以分为两种类型:计量型measure、计数型count。其 中计量型数据大部分服从正态分布 。通俗讲正态分布是指中间多两 边少的分布形式。讲个最简单的例子,我们现在统计全国青少年的 身高,发现70%的人在170cm左右,超过190cm的很少,同样小于 150cm的也很少,我们就说身高的分布情况符合正态分布。
Cpk = (1-K) × Cp
T : USL-LSL 规格限宽度 K : 规格线中心值(目标值)和 实际数据均值/mean/ X的偏移系数
=
1 n-1
n

( X i -X)
2
i=1
标准偏差 是衡量数据离散程度的指数, 越大表示数PK的顺序:
K=
=
= 0.103
CPK CPK=(1-K) × CP = (1-0.103) × 2.20 = 1.97
※CPK的另一种算法
CPU: USL-X CPU= CPL: CPL=

X -LSL 3×
CPK=MIN(CPL:CPU)
两种方法计算结果是一样的, 有兴趣的话可以自己验证一下
习题一
右图是锡膏厚度图, 可以看见锡膏厚度大部 份都是140左右(在两 条平行线内),接近控 制线的数据是很少的。 我们可以说锡膏厚度的 分布是服从正态分布的。
1.1正态分布图

μ (平均)

μ +3σ
这就是正态分布图,可以看到该图有两个重要参数:平均值μ和 标准偏差σ 。图上的曲线是概率密度曲线,在X=+ σ 、X=- σ 以 及曲线所组成的面积 (即阴影部分) 称为数据分布在( μ - σ , μ + σ )范围内的概率。事实上只要数据服从正态分布,这个 (即阴影部分)面积是固定的:0.6826即68.26% μ± 2σ界限范围内的概率是 95.46% μ± 3σ界限范围内的概率是 99.73% 6σ是LG对我们的要求,这是什么概念呢?3.4 PPM,即百万分之3.4。 从工艺角度来讲即:USL= μ+6σ,LSL= μ-6σ。

SPC基础知识培训讲义

SPC基础知识培训讲义

SPC基础知识培训讲义SPC基础知识⼀、什么是SPCSPC是英⽂Statistical Process Control的前缀简称。

即统计过程控制。

SPC就是应⽤统计技术对过程中的各个阶段进⾏监控。

从⽽达到改进与保证质量的⽬的。

SPC强调全过程的预防。

SPC的特点是:1.SPC是全系统的,全过程的,要求全员参加,⼈⼈有责。

这点与全⾯质量管理的精神完全⼀致。

2.SPC强调⽤科学⽅法(主要是统计技术,尤其是控制图理论)来保证全过程的预防。

3.SPC不仅⽤于⽣产过程,⽽且可⽤于服务过程和⼀切管理过程。

⼆、SPC发展简史过程控制的⽅法早在20世纪20年代就由美国的休哈特提出。

迄今为⽌已经经历了三个发展阶段,即:SPC,SPCD和SPCDA。

1.SPC(Statistical Process Control):它能使⼈们采取措施,消除异常,恢复过程的稳定。

这就是科学地区分出⽣产过程中产品质量的正常波动与异常波动,从⽽对过程的异常及时告警,谓统计过程控制。

2.SPCD(Statistical Process Control and Diagnosis)的前缀简称,即统计过程与诊断。

SPC虽然能对过程的异常进⾏告警,但是它并不能告诉我们是什么异常,发⽣于何处,即不能进⾏诊断。

1982年我国张公绪⾸创两种质量诊断理论,突破了传统的美国休哈特质量控制理论,开辟了统计质量诊断的新⽅向。

3.SPCDA(Statistical Process Control , Diagnosis and Adhustment)的前缀简称,即统计过程控制、诊断与调整。

正如同病⼈确诊后要进⾏治疗,过程诊断后⾃然要加以调整。

⽬前尚⽆实⽤性的成果。

三、成都公司在TS16949标准基础上建⽴的《统计技术应⽤规定》中推荐了⼏种⽤于质量改进的统计⼯具和技术序号⼯具和技术应⽤1调查表系统地收集资料,以得到真实清晰的实况⽤于⾮数字资料的⼯具和技术2因果图分析和表达因果图解关系;通过从症状到原因分析到寻找答案的过程,促进问题的解决3流程图描述现存的过程;设计新的过程4特性要因图表⽰某个论题与其组成要素之间的关系⽤于数字资料的统计⼯具和技术5控制图诊断:评估过程的稳定性;控制:决定何时某⼀过程需要调整,何时该过程需要继续保持下去。

SPC过程控制精选全文完整版

SPC过程控制精选全文完整版

可编辑修改精选全文完整版1.统计过程控制SPC即统计过程控制。

是利用统计方法对过程中的各个阶段进行控制,从而达到改进与保证质量的目的。

SPC强调以全过程的预防为主。

也是中国人民武装警察部队特种警察学院的简称,该学院又叫做武装特警学院.它是训练特种兵的学院,同时还是执行任务的机构.目录一、spc的基础知识1.关于控制、过程、统计2.特性及其分类3.统计学基础二、spc的基本原理4.过程的理解与过程控制5.波动及波动的原因6.局部措施和系统措施三、统计过程的控制思想1.正态分布简介2.统计控制状态及两种错误3.过程控制和过程能力4.过程改进循环四、控制图类型1.控制图应用说明2.控制图的定义和目的3.控制图解决问题思路4.控制图益处5.控制图分类6.控制图的选择五、建立计算型控制图的步骤和计算方法1.均值和极差图2.均值和标准差图3.中位数和极差图4.单值和移动极差图六、计数型控制图与过程能力指数1.过程能力解释前提2.过程能力的计算3.过程能力指数4.过程绩效指数七、过程判异准则以下是常用的八项判异准则:1、一点落在A区以外;2、连续9点落在中心线同一侧;3、连续6点递增或递减;4、连续14点相邻点上下交替;5、连续3点有2点落在中心线同一侧的B区以外;6、连续5点中有4点落在中心线同一侧的C区以外;7、连续15点在C区中心线上下;8、连续8点在中心线同侧。

SPC统计过程控制1、前言─SPC的由来、发展和基本要求2、识别关键控制点3、数据变异的衡量和分析· 直方图4、数据的动态变异· 控制图4.1、随机波动与异常波动4.2、ISO 8258:1991《休哈特控制图》(Control Chart)要点4.3、常规控制图的类型和实例s 控制图的结构和概念解释s 控制图类型和用途1) X平均与极差图(均值—极差控制图、均值—标准差控制图、中位数—极差控制图、单值—移动极差控制图)s 结构和应用流程s 举例2) I和MR控制图s 结构和应用流程s 举例3) 离散U、C、P、NP控制图s 结构和应用流程s 举例s 如何收集数据s 采样及数据收集s 设定和维持控制界限4.4、控制图制订和使用中的若干实际问题4.5、现代控制图技术案例5、过程能力与过程性能(Process Capability / Performance)分析以及相应的指数CPK、PPK的应用6、过程能力/性能的保证和提高---查找原因采取纠正/预防措施的逻辑推理工具s 5M1E要素s 分层法与排列图s 用于因果关系和逻辑关系分析的非数字资料方法工具: 因果图、系统图与“5Why分析表”、关联图、故障树分析(FTA)、过程决策程序图(PDPC)法7、如何实现有效的SPC现场控制s 受控的标准s 流程失控的表现s 失控的现场应对s 练习制作控制图进行失控分析s SPC实施中现场“看得见管理”应用的直观显示图表8、SPC的效果评估的方法s 显著性检验s 统计抽样检验9、回归分析s 一元线性回归分析s 曲线回归s 双列相关分析10、方差分析s 方差分析的基本概念及其应用s 方差分析在MSA(测量系统分析)中的应用s 多重比较:q检验11、试验设计(Design of Experiment, DOE) --介绍正交试验设计12、SPC项目的开展(SPC在QCC/QIT、6Sigma项目活动中的应用)如何创建SPC系统1、关键流程的确定2、稳定工艺过程3、过程能力的测定和分析4、确定控制标准5、选择和建立控制图6、制定反馈行动计划7、MSA测量系统分析8、SPC应用的有效性评估9、SPC应用的团队活动10、案例分析及实施疑难探讨SPC的有效实施一、原因分析目前我们国内许多企业也开始逐步认识和推广SPC,但并没有达到预期的效果,为什么呢?究其原因,主要可以分为以下几点:1、企业对SPC缺乏足够的全面了解2、企业对实施SPC的前期准备工作重视不够3、未能有效地总结和借鉴其他企业的经验二、改进对策针对以上原因,要保证SPC实施成功,企业应重视如下几方面的工作:1、领导的重视2、工程技术人员的认识和重视3、加强培训4、重视数据5、实施PDCA循环,达到持续改进统计工序控制即SPC(Statistical Process Control)。

详细全面的SPC详解(培训资料)

详细全面的SPC详解(培训资料)
第一讲SPC的基础
介绍内容: 1.SPC的基础知识 2.SPC的基本原理 3.SPC的控制图 4.过程能力方面的内容
第一讲SPC的基础知识
1.1 控制 SPC讲的是统计过程控制
与控制有关的要素: 首先应找到 (最适)范围
付出的代价
(经济)成本
控制
合理的范围 付出代价高,约束能力越高 超出控制范围存在风险 要求: 1.最佳范围 2.经济成本 3减少风险 这中间体现一种控制能力 即:内涵的证明 4展现能力
• •

1.5统计学的概念 是数学的一个分支,为了了解被检查总体的某些隐含的特性,运用合理的抽样方法从 被调查总体中取得适当的样本,通过研究样本来发现总体的特性。 例:我国人口调查,人口普查工作量大、成本高、时间长,人口是总体,人口变化进 行抽样分析
• • • • • • • • • •
统计学实质:是科学的以偏概全、以点带面,看中整体不注重个体的一种分 析问题和解决问题的方法和手段。 统计学概念: 总体N:调查研究对象的全部 样本n:研究总体的某种情形或某种目的,从总体中抽取一部分的样本(代表 者) 变异:变化的范围,在统一条件下执行统一动作所存在的一种变动性。 如2个人对一个公司工资水平抽样,可能结果不一致 算术平均数 中位数:如果是偶数,从小到大排列,中间两个数相加,取平均值。 极差: 标准差:看一组数的平均离散程度,一般用
顾客 识别不断变化 的需求和期望
输入
顾客的呼声
过程控制用到测量方法 三种测量:进料测量、加工过程测量、最终测量 产品质量是制造出来的,不是检验出来的
•检验: 事后检验,控制结果,出现不良判定其返修或报废 •控制: 应用数理统计方法进行生产过程控制
•预防: 根据过程现况,预测将来的趋势与变化,防止不合

SPC培训教材专业知识

SPC培训教材专业知识
42
第三章 控制图原理
控制图原理旳第三种解释
统计过程控制SPC理论是利用统计措施对过程进行控制, 既然其目旳是“控制”,就要以某个原则作为基准来管理 将来,经常选择稳态作为原则。稳态是统计过程控制SPC 理论中旳主要概念。 稳态,也称统计控制状态(state in statistical control),即过程中只有偶因没有异因旳状态。 稳态是生产追求旳目旳。
•正态方差旳无偏估计常用旳只有一种,就是样本方差s2
•正态原则差旳无偏估计也有两个,一种是对样本极差R=X(n)-X(1) 进行修偏而得,另一种是对样本原则差S进行修偏而得,详细是:
其中d2与C4是只与样本量n有关旳常数。
13
第二章
SPC中常用统计分布
SPC有关统计基础知识
14
第二章
正态分布基础知识

18
第二章 SPC有关统计基础知识
计量值抽样分布:均值旳抽样分布
19
第二章 SPC有关统计基础知识
计量值抽样分布:中位数旳抽样分布
20
第二章 SPC有关统计基础知识
计量值抽样分布:原则差旳抽样分布
21
第二章 SPC有关统计基础知识
计量值抽样分布:极差旳抽样分布
22
第二章 SPC有关统计基础知识 计数值抽样分布:np旳抽样分布
5
第一章 SPC产生旳历史背景及其意义
贝尔试验室旳课题组 当代质量管理旳基石
为了确保预防原则旳实现,20世纪23年代美国 贝尔电话试验室成立了两个研究质量旳课题组,一 为过程控制组,学术领导人为休哈特(walter a.shewhart);另一为产品控制组,学术领导人为 道奇(Harold f.dodge)。
在外旳概率 50.00% 31.74% 5.00% 4.55% 1.00% 0.27%

SPC常用计算方法

SPC常用计算方法

SPC常用计算方法SPC基础知识及常用计算方法SPC基础知识一、SPC定义:1、SPC——统计制程管制:是指一套自制程中去搜集资料,并加以统计分析,从分析中去发气掘制程的异常,立即采取修正行动,使制程恢复正常的方法。

也就是说:品质不应再依赖进料及出货的抽样检验,而应该采取在生产过程中,认良好的管理方法,未获得良好的品质。

2、良好品质,必须做到下面几点:①变异性低②耐用度③吸引力④合理的价格3、变异的来源:大概来自5个方面:①机器②材料③方法④环境⑤作业人员应先从机器,材料方法,环境找变异,最后考虑人。

4、SPC不是一个观念,而是要行动的步骤一、确立制程流程——首先制程程序要明确,依据制程程序给制造流程图,并依据流程图订定工程品质管理表。

步骤二、决定管制项目——如果把所有对品质有影响的项目不论大小,轻重缓急一律列入或把客户不很重视的特性一并管制时,徒增管制成本浪费资料且得不赏失,反之如果重要的项目未加以管制时,则不能满足设计者,后工程及客户的需求,则先去管制的意义。

步骤三、实施标准化——欲求制程管制首先即得要求制程安定,例如:在风浪很大的船上比赛乒乓球,试部能否确定谁技高一筹,帮制程作业的安定是最重要的先决条件,所以对于制程上影响产品口质的重要原因,应先建立作业标准,并透过教育训练使作业能经标准进行。

步骤四、制程能力调查——为了设计、生产、销售客户满意且愿意购买的产品,制造该产品的制程能力务必符合客户的要求。

因此制程的能力不足时,必顺进行制程能力的改善,而且在制程能力充足后还必须能继续,所以在品质管理的系统中制程能力的掌握很重要。

步骤五、管制图运用——SPC的一个基本工具就是管制图,而管制图又分计量值管制图与计数值管制图。

步骤六、问题分析解决——制程能力调查与管制图是可筛提供问题的原因系由遇原因或非机遇原因所造成,但无法告知你确切的原因为何及如何解决决问题?解决问题?而问题的解决技巧,在于依据事实找出造成变异的确切原因,并提此对策加以改善,及如何防止再发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LSL 64 72 76 LCL UCL
USL 80
68
SPC基础知识和应用
落地炉线 中心值 管制上限 管制下限
2月22日
2月24日 2月26日 2月28日 3 月1 日 3 月3 日 3 月5 日 3 月7 日
上图是我们发泡过程的一组数据,对应SPC中控制图的基本判定准则: 1.X个点超出管制界限 2.续X点分布在管制界限的同侧 3.连续X点的上升或下降 可以说明,我们应当结合实际生产控制需求制定适合我们的SPC控制。
X LSL Cp ˆ 3σ
状态不理想,需改进为A级 制程不良,必须提升制成能力 制成能力太差,必须分析原因,重新设计制成 制程
产品规格设计值为3.5mm 0.1mm, 今在稳定量产线上抽检5个样 品,测量值为: 3.52, 3.53, 3.57, 3.54, 3.53,则Cp计算如下: T=3.6-3.4=0.2, σ=0.0192,X=3.538
Cp 0.2 1.73 0.0192 6
SPC基础知识和应用
Cpk计算公式介绍 :
USL X X LSL , ) 双边规格 :Cpk min( ˆ ˆ 3 3
单边规格:以Cp表示:Cpk=Cp
仅定规格上限
Cp
Cpk=Cp=
仅定规格下限
USL X ˆ 3σ
双边规格也可采用以下公式计算Cpk: Cpk=Cp*(1-Ca)
练习: 设计产品规格为3.5mm±0.1mm, 今在量产线上抽测5个样品, 其 测量值如下:3.52, 3.53, 3.57, 3.54, 3.53,则Ca值计算如下: U=3.50, T=3.6-3.4=0.2, X=3.538
Ca 3.538 3.50 0.038 38% 0.2 / 2 0.1
1 月1 日 1 月3 日 1 月5 日 1 月7 日 1 月9 日 1月11日 1月13日 1月15日 1月17日
1月19日
1月21日 1月23日 1月25日 1月27日 1月29日 1月31日 2 月2 日 2 月4 日 2 月6 日 2 月8 日 2月10日 2月12日 2月14日 2月16日 2月18日 2月20日
等级 A+ A B C D Cpk值 ≧1.67 1.33 ≦ Cpk < 1.67 1.00 ≦ Cpk < 1.33 0.67 ≦ Cpk < 1.00 Cpk < 0.67 处理原则
无缺点,制成优良,可考虑降低成本 状态良好,继续保持 制成能力稍欠缺,需改进至A级 制成不良较多,务必改进制成 制成很差,停线改进制成方可生产
SPC基础知识和应用
简单来说, SPC中管制界限的设定,应当是以一组不少25个的无异常情况的正确 数据统计而来。 数据统计的样本数,统计过程中的稳定性以及测量方法的正确性都是在进行SPC 活动中首要确保的事物。 在制定了管制界限之后,稳定的制程应当在中值μ 附近波动。这种波动我们称为变 差。识别变差是维持SPC稳定的必修课。变差分为以下两种。 普通变差: 是指过程在受控的状态下,出现的具有稳定的且可重复的分布过程的变差的原因 。普通原因表现为一个稳系统的偶然原因。只有过程变差的普通原因存在且不改 变时,过程的输出才可以预测。例如必然发生的设备的磨损。 SPC特殊原因:是指造成不是始终作用于过程的变差的原因,即当它们出现时将 造成(整个)过程的分布改变。只用特殊原因被查出且采取措施,否则它们将继续 不可预测的影响过程的输出。 例如非必然发生的设备故障。
准确度偏移
精确度偏移
SPC基础知识和应用
介绍Cpk,Ca, Cp计算方式之前,先介绍一下以下几个概念: USL (Upper specification limit):规格上限 LSL (Low specification limit): 规格下限 U或者μ :规格中心 σ :标准差
EXCEL公式中的STDEV
X=(X1+X2+… …+Xn)/n 平均值 (n为样本数) T=USL-LSL 规格公差 单边规格:只有规格上限和规格中心或只有下限或规格中心的规格 双边规格:有上下限与中心值,而上下限与中心值对称的规格;
SPC基础知识和应用
XU Ca T/2
一般制成要求Ca12.5%
等级
A B C D
SPC基础知识和应用
T 双边规格 Cp ˆ 6
USL X X LSL 单边规格 Cp 或 Cp ˆ ˆ 3σ 3σ
处理原则
等级 Cp值 A+ ≧1.67 A 1.33 ≦ Cp < 1.67 B 1.00 ≦ Cp < 1.33 C 0.67 ≦ Cp < 1.00 D Cp < 0.67
SPC基础知识和应用
SPC: Statistical Process Control---统计过程控制(统计制程管制)
SPC是一种对统计数据进行数理分析,达到监控质量水平漂移的方 法。相比于其他质量工具,SPC更适用于帮助制定合理的控制水平 以及预防重要制程的问题出现。 A.O采用的红蓝预控图,在一定程度上运用了SPC的原理,尤其在 特殊过程的应用中,起到了监控和预防的重要作用。
Ca值
|Ca|<12.5%
处理原则
作业员遵守作业标准操作,并达到规格之要求,需继续保持
12.5%<|Ca|<25% 有必要尽可能将其改造成A级 25%<|Ca|<50% 50%<|Ca|
作业员可能看错规格,不按作业标准操作,需检讨规格及作业标 准 应采取紧急措施,全面检讨所有可能影响之因素,必要时停止生 产,待问题原因解决才能重启生产。
SPC基础知识和应用
管制界限的制定,可以采用比较简便的等分法,即(规格上限-规 格下线)/6,上下各1/6为黄区。 在管制界限制定上,基于“小概率事件” 指发生的概率小于5%的 事件在一次试验中是几乎不可能发生的。由此可见X落在(μ-3σ, μ+3σ)以外的概率小于千分之三,基本上可以把区间(μ-3σ, μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布 的“3σ”原则。 公式表现为: OOC=OOS±3σ 或者上文的 (μ-3σ,μ+3σ) PS: 6σ意味着99.99966%无缺陷。
SPC基础知识和应用
CPK是衡量我们SPC控制能力的标准,CPK称为制程能力指数( Complex Process Capability index )。 CPK可理解为2个部分组成: 准确度(Capability of Accuracy )简称 Ca 精确度(Capability of Precision )简称 Cp Ca、Cp、Cpk都是由统计数据与规格值的数理运算得出,数值越 高,制程越稳定。一般要求Cpk≥1.33。
相关文档
最新文档