简述以样本均值估计总体均值的理由

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述以样本均值估计总体均值的理由

概率论与数理统计中样本均值为什么是总体均值最好的估计量

哈佛孙一峰

哈佛孙一峰

首先什么是最优估计量,以下是定义:

An estimator W of a parameter, say τ(θ), is called the best unbiased estimator, or uniform minimum variance unbiased estimator

换成中文来说就是一个估计量如果它无偏并且方差最小那么他就是最优的。样本均值是总体均值的无偏估计用大数定理就自然而然知道了(当然这里就要假设期望有界了)。那怎么知道他是方差最小的呢?我们需要用到Cramer-Rao Inequality.

简而言之就是任何一个估计量的方差是有下界的。这个部分的证明并不复杂。用Cauchy-Schwarz Inequality可以很轻松的证明出来。

因为要涉及的概念实在太多了,所以略过很多复杂的证明,最后直接跳到结论就是在指数分布族里,样本均值是分布均值的无偏估计且方差就是估计量方差下界。

更具体的可以搜索Lehmann Scheffe theorem。虽然这部分我觉得本科生的概率论并不会接触到。

(sample),是指从总体中抽出的一部分个体。样本中所包含个体数目称样本容量或含量,用符号N或n表示。

总体(population)是指客观存在的,并在同一性质的基础上结合起来的许多个别单位的整体,即具有某一特性的一类事物的全体,又叫母体或全域。简单地说,总体也就是我们所研究的性质相同个体的总和。

样本是受审查客体的反映形象或其自身的一部分。按一定方式从总体中抽取的若干个体,用于提供总体的信息及由此对总体作统计推断。又称子样。例如因为人力和物力所限,不能每年对全国的人口进行普查,但可以通过抽样调查的方式来得到需要的信息。从总体中抽取样本的过程叫抽样。最常用的抽样方式是简单随机抽样,按这种方式抽

样,总体中每个个体都有同等的机会被抽入样本,这样得到的样本称简单随机样本。样本的平均值称样本均值,样本偏离样本均值的平方的平均值称为样本方差,在数理统计中,常常用样本均值来估计总体均值,用样本方差来估计总体方差。

相关文档
最新文档