华东师大数学分析习题解答1
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)
的上半部分并取外侧为正向;
其中 S 是球面
并取外侧
为正向。
解:(1)因
所以原积分 (2)由对称性知只需计算其中之一即可。 由于
因此原积分=3 × 8=24。 (3)由对称性知,
(4)作球坐标变换,令
则
故
4 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
(5)由轮换对称知只计算
面所围的立方体表面并取外侧为正向; 其中 S 是以原点为中心,边长为 2 的立方体
表面并取外侧正向; 其中 S 是由平面 x=y=z=0 和 x+y+z=1 所围的四面
3 / 19
圣才电子书
体表面并取外侧为正向;
十万种考研考证电子书、题库视频学习平台
其中 S 是球面
解:(1)因
从而
(2)面积 S 由两部分 组成,其中 面上的投影区域都是
由极坐标变换可得
它们在:xOy
1 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
2.求均匀曲面 解:设质心坐标为
x≥0,y≥0,z≥0 的质心。 ,由对称性有:
其中 S 为所求曲面的面积, 而
解:
十万种考研考证电子书、题库视频学习平台
由柱面坐标变换
z=z,0≤0≤2π,0≤r≤h,r≤z≤h
(5)原曲线不封闭,故添加辅助曲面
有
2.应用高斯公式计算三重积分
≤1 与
所确定的空间区域。
解:
其中 V 是由 x≥0,y≥0,0≤z
3.应用斯托克斯公式计算下列曲线积分: 其中 L 为 x+y+z=1 与三坐标面的交线,
则
D 为 S 在 xOy 面投影
所以质心坐标为
华东师大数学分析习题解答1
《数学分析选论》习题解答第 一 章 实 数 理 论1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ∉=ξinf ,试证: (1)存在数列ξ=⊂∞→n n n a S a lim ,}{使;(2)存在严格递减数列ξ=⊂∞→n n n a S a lim ,}{使.证明如下:(1) 据假设,ξ>∈∀a S a 有,;且ε+ξ<'<ξ∈'∃>ε∀a S a 使得,,0.现依 次取,,2,1,1Λ==εn n n 相应地S a n ∈∃,使得Λ,2,1,=ε+ξ<<ξn a n n .因)(0∞→→εn n ,由迫敛性易知ξ=∞→n n a lim .(2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取Λ,3,2,,1min 1=⎭⎬⎫⎩⎨⎧+ξ=ε-n a n n n ,就能保证Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □2.证明§1.3例6的(ⅱ).证 设B A ,为非空有界数集,B A S ⋃=,试证:{}B A S inf ,inf m in inf =.现证明如下.由假设,B A S ⋃=显然也是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有{}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥⇒≥.另一方面,对任何,A x ∈ 有S x ∈,于是有S A S x inf inf inf ≥⇒≥;同理又有S B inf inf ≥.由此推得{}B A S inf ,inf m in inf ≤.综上,证得结论 {}B A S inf ,inf m in inf =成立. □3.设B A ,为有界数集,且∅≠⋂B A .证明: (1){}B A B A sup ,sup m in )sup(≤⋂; (2){}B A B A inf ,inf m ax )(inf ≥⋂. 并举出等号不成立的例子.证 这里只证(2),类似地可证(1).设B A inf ,inf =β=α.则应满足:β≥α≥∈∈∀y x B y A x ,,,有.于是,B A z ⋂∈∀,必有{}βα≥⇒⎭⎬⎫β≥α≥,max z z z , 这说明{}βα,max 是B A ⋂的一个下界.由于B A ⋂亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥⋂成立.上式中等号不成立的例子确实是存在的.例如:设)4,3(,)5,3()1,0(,)4,2(=⋂⋃==B A B A 则,这时3)(inf ,0inf ,2inf =⋂==B A B A 而,故得{}{}B A B A inf ,inf m ax inf >⋂. □ 4.设B A ,为非空有界数集.定义数集{}B b A a b a c B A ∈∈+==+,,证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.证 这里只证(2),类似地可证(1).由假设,B A inf ,inf =β=α都存在,现欲证β+α=+)(inf B A .依据下确界定义,分两步证明如下:1)因为,,,,β≥α≥∈∈∀y x B y A x 有所以B A z +∈∀,必有β+α≥+=y x z .这说明B A +β+α是的一个下界.2)B y A x ∈∈∃>ε∀00,,0,使得2,200ε+β>ε+α>y x .从而ε+β+α>+∈+=∃)(,0000z B A y x z 使得,故B A +β+α是的最大下界.于是结论 B A B A inf inf )(inf +=+ 得证. □5.设B A ,为非空有界数集,且它们所含元素皆非负.定义数集{}B b A a ab c AB ∈∈==,,证明:(1)B A AB sup sup )sup(⋅=; (2)B A AB inf inf )(inf ⋅=. 证 这里只证(1),类似地可证(2).⎪⎩⎪⎨⎧⋅≤≤≤=≥≥∈∈∃∈∀,sup sup ,sup ,sup ,,)0,0(,,)(B A c B b A a ab c b a B b A a AB c 且使由于因此B A sup sup ⋅是AB 的一个上界.另一方面,B b A a ∈∈∃>ε∀00,,0,满足ε->ε->B b A a sup ,sup 00,故)(000AB b a c ∈=∃,使得εε-+-⋅>])sup sup ([sup sup 0B A B A c .由条件,不妨设0sup sup >+B A ,故当ε足够小时,εε-+=ε'])sup sup ([B A 仍为一任意小正数.这就证得B A sup sup ⋅是AB 的最小上界,即 B A AB inf inf )(inf ⋅= 得证. □*6.证明:一个有序域如果具有完备性,则必定具有阿基米德性.证 用反证法.倘若有某个完备有序域F 不具有阿基米德性,则必存在两个正元素F ∈βα,,使序列}{αn 中没有一项大于β.于是,}{αn 有上界(β就是一个),从而由完备性假设,存在上确界λ=α}sup{n .由上确界定义,对一切正整数n ,有α≥λn ;同时存在某个正整数0n ,使α-λ>α0n .由此得出α+<λ≤α+)1()2(00n n ,这导致与0>α相矛盾.所以,具有完备性的有序域必定具有阿基米德性. □7.试用确界原理证明区间套定理. 证 设{}],[n n b a 为一区间套,即满足:0)(lim ,1221=-≤≤≤≤≤≤≤≤∞→n n n n n a b b b b a a a ΛΛΛ.由于{}n a 有上界k b ,{}n b 有下界k a (+∈N k ),因此根据确界原理,存在{}{}β≤α=β=α且,inf ,sup n n b a .倘若β<α,则有Λ,2,1,0=>λ=α-β≥-n a b n n ,而这与0)(lim =-∞→n n n a b 相矛盾,故ξ=β=α.又因Λ,2,1,=≤β=α≤n b a n n ,所以ξ是一切],[n n b a 的公共点.对于其他任一公共点Λ,2,1,],[=∈ηn b a n n ,由于∞→→-≤η-ξn a b n n ,0 ,因此只能是η=ξ,这就证得区间套{}],[n n b a 存在惟一公共点. □8.试用区间套定理证明确界原理.证 设S 为一非空有上界的数集,欲证S 存在上确界.为此构造区间套如下:令 ],[],[011M x b a =,其中M S S x ,)(0∅≠∈Θ为S 的上界.记2111b a c +=,若1c 是S 的上界,则令],[],[1122c a b a =;否则,若1c 不是S 的上界,则令],[],[1122b c b a =.一般地,若记2nn n b a c +=,则令 Λ,2,1,,,],[,,],[],[11=⎩⎨⎧=++n S c b c S c c a b a n n n n nn n n 的上界不是的上界当是.如此得到的{}],[n n b a 显然为一区间套,接下来证明这个区间套的惟一公共点ξ即为S 的上确界.由于上述区间套的特征是:对任何+∈Νn ,n b 恒为S的上界,而n a 则不为S 的上界,故S x ∈∀,有n b x ≤,再由ξ=∞→n n b lim ,便得ξ≤x ,这说明ξ是S 的一个上界;又因ξ=∞→n n a lim ,故ε-ξ>∃>ε∀n a ,0,由于n a 不是S 的上界,因此ε-ξ更加不是S 的上界.根据上确界的定义,证得S sup =ξ.同理可证,若S 为非空有下界的数集,则S 必有下确界. □ 9.试用区间套定理证明单调有界定理.证 设{}n x 为递增且有上界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111M x b a =;类似于上题那样,采用逐次二等分法构造区间套{}],[n n b a ,使n a 不是{}n x 的上界,n b 恒为{}n x 的上界.由区间套定理,],[n n b a ∈ξ∃,且使ξ==∞→∞→n n n n b a lim lim .下面进一步证明 ξ=∞→n n x lim .一方面,由∞→≤k b x k n 取,的极限,得到Λ,2,1,lim =ξ=≤∞→n b x k k n .另一方面,ε-ξ>∈∃>ε∀+K a K 使,,0Ν;由于K a 不是{}n x 的上界,故K N a x >∃;又因{}n x 递增,故当N n >时,满足N n x x ≥.于是有N n x x a n N K >ξ≤<<<ε-ξ,,这就证得ξ=∞→n n x lim .同理可证{}n x 为递减而有下界的情形. □ 10*.试用区间套定理证明聚点定理.证 设S 为实轴上的一个有界无限点集,欲证S 必定存在聚点.因S 有界,故0>∃M ,使得M x ≤,S x ∈∀.现设],[],[11M M b a -=,则],[11b a S ⊂.然后用逐次二等分法构造一区间套{}],[n n b a ,使得每次所选择的],[n n b a 都包含了S 中的无限多个点.由区间套定理,],[n n b a ∈ξ∃,n ∀.最后应用区间套定理的推论,,0>ε∀当n 充分大时,使得],[n n b a );εξ⊂(U ;由于],[n n b a 中包含了S 的无限多个点,因此);(εξU 中也包含了S 的无限多个点,根据聚点定义,上述ξ即为点集S 的一个聚点. □ 11*.试用有限覆盖定理证明区间套定理.证 设{}],[n n b a 为一区间套,欲证存在惟一的点Λ,2,1,],[=∈ξn b a n n . 下面用反证法来构造],[11b a 的一个无限覆盖.倘若{}],[n n b a 不存在公共点ξ,则],[11b a 中任一点都不是区间套的公共点.于是,∈∀x ],[11b a ,使,],[n n b a ∃],[n n b a x ∉.即);(x x U δ∃与某个],[n n b a 不相交( 注:这里用到了],[n n b a 为一闭区间 ).当x 取遍],[11b a 时,这无限多个邻域构成],[11b a 的一个无限开覆盖:{}],[);(11b a x x U H x ∈δ=.依据有限覆盖定理,存在],[11b a 的一个有限覆盖:{}H N i x U U H i x i i ⊂=δ==,,2,1);(~Λ,其中每个邻域N i b a U ii n n i ,,2,1,],[Λ=∅=⋂.若令{}N n n n K ,,,max 21Λ=,则N i b a b a i i n n K K ,,2,1,],[],[Λ=⊂,从而N i U b a i K K ,,2,1,],[Λ=∅=⋂. (Ж) 但是Y Ni iU 1=覆盖了],[11b a ,也就覆盖了],[K K b a ,这与关系式(Ж)相矛盾.所以必定存在Λ,2,1,],[=∈ξn b a n n .(有关ξ惟一性的证明,与一般方法相同.) □12.设S 为非空有界数集.证明:S S y x Sy x inf sup ||sup ,-=-∈.证 设η<ξ=η=ξ且,sup ,inf S S ( 若η=ξ,则S 为单元素集,结论显然成立 ).记{}Sy x y x E ∈-=,||,欲证ξ-η=E sup .首先,S y x ∈∀,,有ξ-η≤-⇒η≤ξ≥||,y x y x ,这说明ξ-η是E 的一个上界.又因2,0ε-η>ε∀ ⎪⎭⎫ ⎝⎛ε+ξ2不再是S 的上()下界,故S y x ∈∃00,,使ε-ξ-η≥-⇒⎪⎭⎪⎬⎫ε+ξ<ε-η>)(||220000y x y x , 所以ξ-η是E 的最小上界,于是所证结论成立. □13.证明:若数集S 存在聚点ξ,则必能找出一个各项互异的数列{}S x n ⊂,使ξ=∞→n n x lim .证 依据聚点定义,对S U x ⋂εξ∈∃=ε);(,1111ο.一般地,对于⎭⎬⎫⎩⎨⎧-ξ=ε-1,1m in n n x n ,Λο,3,2,);(=⋂εξ∈∃n S U x n n .如此得到的数列{}S x n ⊂必定满足:Λ,3,2,||||11=≠⇒ξ-<ξ---n x x x x n n n n ;ξ=⇒∞→→<ξ-∞→n n n x n n x lim )(01||. □ 41*.设S 为实轴上的一个无限点集.试证:若S 的任一无限子集必有属于S 的聚点,则(1)S 为有界集;(2)S 的所有聚点都属于S .证 (1)倘若S 无上界,则对1111,,1M x S x M >∈∃=使;一般地,对于{}Λ,3,2,,,,max 1=>∈∃=-n M x S x x n M n n n n n 使.这就得到一个各项互异的点列{}∞=⊂∞→n n n x S x lim ,使.S 的这个无限子集没有聚点,与题设条件相矛盾,所以S 必有上界.同理可证S 必有下界,故S 为有界集.(2)因S 为有界无限点集,故必有聚点.倘若S 的某一聚点S ∉ξ0,则由聚点的性质,必定存在各项互异的数列{}0lim ,ξ=⊂∞→n n n x S x 使.据题设条件,{}n x 的惟一聚点0ξ应属于S ,故又导致矛盾.所以S 的所有聚点都属于S . □51*.证明:{}{}n n a a ∉ξ=sup ,则必有ξ=∞→n n a lim .举例说明,当上述ξ属于{}n a 时,结论不一定成立.证 利用§1.3 例4,{}{}n n a a k ⊂∃,使ξ=∞→k n n a lim ,这说明ξ是{}n a 的一个聚点.又因ξ又是{}n a 的上界,故{}n a 不可能再有比ξ更大的聚点.所以ξ是{}n a 的上极限.当{}n a ∈ξ时,结论不一定成立.例如,1,111sup ⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧n n 显然不是⎭⎬⎫⎩⎨⎧n 1的上极限. □61*.指出下列数列的上、下极限:(1){}n)1(1-+; (2)⎭⎬⎫⎩⎨⎧+-12)1(n n n; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧πnn 3cos; (4)⎭⎬⎫⎩⎨⎧π+4sin 12n n n ;(5)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧π+n n n sin 12. 解(1)0lim ,2lim ,0,2122==≡≡∞→∞→-n n n n k k a a a a 故.(2))(211412,21142122∞→-→---=→+=-k k k a k ka k k ,故21lim ,21lim -==∞→∞→n n n n a a . (3))(13cos211∞→≤π≤←n n nn, 故 1lim lim lim ===∞→∞→∞→n n n n n n a a a .(4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--=+⋅--=+-=+=+++=+⋅=π+=.38,18,12222,8,12,4,0,28,12,38,18,12224sin 12k k n n nk n n n k n k n n n k k n n n n n n a n故2lim ,2lim -==∞→∞→n n n n a a . (5))(sin )1(sin 1222∞→π→ππ⋅+π=π+=n nn nn nn n a n ,故π===∞→∞→∞→n n n n n n a a a lim lim lim . □71*.设{}n a 为有界数列,证明:(1)1lim )(lim =-=-∞→∞→n n n n a a ; (2)n n n n a a ∞→∞→-=-lim )(lim .证 由)(sup )(inf ,)(inf )(sup k nk k nk k nk k nk a a a a ≥≥≥≥-=--=-,令∞→n 取极限,即得结论(1)与(2). □81*.设0lim >∞→n n a ,证明:(1)nn n n a a ∞→∞→=lim 11lim; (2)nn n n a a ∞→∞→=lim 11lim;(3)若11limlim =⋅∞→∞→n n n n a a ,或11lim lim =⋅∞→∞→nn n n a a ,则{}n a 必定收敛.证 由)(sup 11inf ,)(inf 11sup k nk k n k kn k k n k a a a a ≥≥≥≥=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,令∞→n 取极限,即得结论(1)与(2).若11limlim =⋅∞→∞→n n n n a a ,则由(1)立即得到 n n n n a a ∞→∞→=lim lim ,因此极限n n a ∞→lim 存在,即得结论(3).类似地,若11limlim =⋅∞→∞→nn n n a a ,则由(2)同样可证得(3). □。
数学分析课本(华师大三版)-习题及答案01
数学分析课本(华师大三版)-习题及答案01第一章实数集与函数习题§1实数1、设a 为有理数,x 为无理数。
证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明|22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗7、设x>0,b>0,a ≠b 。
证明x b x a ++介于1与ba 之间。
8、设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|§2数集、确界原理1、用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6;(3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<=""></b(4)sinx ≥22。
2、设S 为非空数集。
试对下列概念给出定义:(1)S 无上界;(2)S 无界。
3、试证明由(3)式所确定的数集S 有上界而无下界。
4、求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n 21,n ∈+N }。
数学分析课后习题答案(华东师范大学版)
152P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(153⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x)9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222154⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ155⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1πππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dx C x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2156C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin (157(23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =158Ct t t t t t dt t t t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212159⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:160⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-161所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311162⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(163C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x)12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dx164C x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有165⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12166⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12167⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=168⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222169⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-幂级数(圣才出品)
第14章幂级数§1幂级数1.求下列幂级数的收敛半径与收敛区域:解:(1)因故收敛半径R=1,收敛区间为(-1,1).又时,级数与级数均发散,故收敛域为(-1,1).(2)因为故收敛半径收敛区间为(-2,2).当时,级数收敛,故收敛域为[-2,2].(3)记所以,则收敛半径R=4.当时,级数为,通项为u故,即时级数发散,故收敛域为(-4,4).(4)因故收敛半径为收敛域为(5)设则故对任取定的x,有<1,故级数的收敛半径为收敛域为(6)设,则故级数收敛半径故,从而收敛区间为当时,原级数可化为对于级数,因为故级数收敛,又收敛,故时,原级数收敛.当时,原级数可化为因级数收敛,而级数发散,故时原级数发散,从而收敛域为(7)设故收敛半径,故时,原级数是发散的,从而收敛域为(-1,1).(8)设,则因此级数在时收敛,时发散,从而可得收敛半径R=1,收敛区域为[-1,1].2.应用逐项求导或逐项求积方法求下列幂级数的和函数(应同时指出它们的定义域):解:(1)设时,级数收敛,故原级数的收敛半径R =1.又当时,原级数可化为发散,从而得收敛域为(-1,1).设内逐项求导,得故和函数(2)记因为所以,收敛区域为(-1,1).因为所以(3)记则收敛区域为(-1,1).因为所以所以,因此3.证明:设在内收敛,若也收敛,则(注意:这里不管在x=R是否收敛),应用这个结果证明:证明:因在内收敛,所以有又x=R时,级数收敛,从而由定理14.6知的和函数在x=R 处左连续,从而又因为内收敛,且级数收敛,所以4.证明:(1)满足方程(2)满足方程证明:(1)设故,从而幂级数的收敛区间为,且y可在内任意阶可导,所以(2)设,故所以幂级数的收敛区间为且和函数y在具有任意阶导数,由,可得所以又由5.证明:设f为幂级数(2)在(-R,R)上的和函数,若f为奇函数,则级数(2)仅出现奇次幂的项,若f为偶函数,则(2)仅出现偶次幂的项.证明:由可得当f(x)为奇函数时,故此时有当f(x)为偶函数时,,故此时有6.求下列幂级数的收敛域:解:(1)设故收敛半径,又当故原幂级数在|x|=R时发散,收敛域为(-R,R).(2)设,则,故收敛半径为时,所以原级数在时发散,故收敛域为7.证明定理14.3并求下列幂级数的收敛半径:证明:对任意的x,据定理12.8推论2可得:。
华东师大数学分析答案完整版
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
华东师范大学数学分析试题解答
cos x(1 cos2 x) d (cos x)
1 cos2 x
t(t 2 1) dt
1t2
t
2t 1 t2
dt
= 1 cos2 x ln(1 cos2 x) C 2
yzF1 2xF2 xyF1 2zF 2
zxF1 2 yF2 xyF1 2zF2
,证明:
绕 x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出 S
的面积公式为:
A
2
b
a
f
(x)
1 f '(x)2 dx
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
华东师范大学20003年数学分析解答
华东师范大学 2003年数学分析试题及解答Tangshan0315一、(30分)简答题(只需写出正确答案):⑴ );31()3()1()1(sin lim 221=+--→x x x x⑵);2)1(2('),11arccos(222xx y x y ++=+=则 ⑶⎰++-=))2ln 2(ln (ln 22C x x x xdx⑷ )(),sin(dy z dx z dz yxy z y x x+==则 ⑸⎰⎰-=≤+=+Dy xe dxdy e y x y x D ))1((},1|),{(2222π则⑹ .)2(},1|),{(22⎰-=-=+=Lydx xdy y x y x L π取顺时针方向,则二、(20分)判别题(正确的说明理由,错误的举出反例); ⑴若0lim ,0lim ==∞→∞→n n n n n x x 则。
错;例如01lim=∞→n n ,但11lim =∞→n n n。
⑵若)(x f 在),0(+∞上可导,且)('x f 有界,则)(x f 在),0(+∞上一致连续.对设εεξδεδε=•≤-⋅=-<-+∞∈∀>=∃>∀+∞∈≤KK x x f x f x f x x x x Kx K x f "')(')"()'(,"'),0(",',0,0),,0(,)('并且则⑶若)(x f 在],[b a 上可积,⎰=xadt t f x F )()(在),(0b a x∈可导,则)()('00x f x F =。
错;例如0,1;10,0{)(=≤<=x x x f 在[-1,1]上可积,并且.1)0()0(,0)(]1,1[,,0)()(''1=≠≡⇒-∈≡=⎰-f F x F x dt t f x F x但是⑷若∑∞=-+1212)(n n n a a收敛,且0lim =∞→n n a 则∑∞=1n n a 收敛。
数学分析课本(华师大三版)-习题及答案Part-I
a1 = b1 = 1 > 0, an + bn 2 = (an −1 + bn −1 2) 2 . Find the limit lim
n →∞
an . b pn . n →∞ q n
28. Assume p1 > 0, q1 > 0, pn +1 = pn + 3qn , qn +1 = pn + qn . Find the limit lim 29. Assume x1 = a, x2 = b, xn +1 =
41. Prove that (1) (2)
f ( x) = 3 x is uniformly continuous on [0, +∞) ; g ( x) = e x cos 1 is not uniformly continuous on [0,1] . x
42. Suppose that f
is defined on [ a, +∞) . And | f ( x ) − f ( y ) |≤ k | x − y | (k > 0) holds
an =a; n →∞ n
an 1 1 ∈ [a − , a + ] (n = 1, 2L) . n n n
f ∈ C (−∞, +∞) and that | f ( x) − f ( y ) |≤ k | x − y | (0 < k < 1) holds for any
x, y ∈ (−∞, +∞) . Prove that f has the unique fixed point on (−∞, +∞) .
34. Let f ∈ C[ a, b] . And for arbitrary x ∈ [ a, b] , there exists y ∈ [ a, b] such that
(完整版)华东师大数学分析标准答案
第四章函数的连续性第一节连续性概念1.按定义证明下列函数在其定义域内连续:(1); (2)。
x x f 1)(=x x f =)( 证:(1)的定义域为,当时,有xx f 1)(= ),0()0,(+∞-∞=D D x x ∈0,由三角不等式可得: ,0011x x x x x x -=-00x x x x --≥ 故当时,有00x x x <-002011x x x x x x x x ---≤- 对任意给的正数,取则,当 且时,ε,01020>+=x x εεδ0x <δD x ∈δ<-0x x 有ε<-=-0011)()(x x x f x f 可见在连续,由的任意性知:在其定义域内连续。
)(x f 0x 0x )(x f (2) 的定义域为对任何的,由于x x f =)(),,(+∞-∞),(0+∞-∞∈x,从而对任给正数,取,当时,00x x x x -≤-εεδ=δ<-0x x 有 =-)()(0x f x f 00x x x x -≤-ε< 故在连续,由的任意性知,在连续。
)(x f 0x 0x )(x f ),(+∞-∞2.指出函数的间断点及类型: (1); (2); (3);=)(x f xx 1+=)(x f x x sin =)(x f ]cos [x (4); (5);=)(x f x sgn =)(x f )sgn(cos x (6);(7)=)(x f ⎩⎨⎧-为无理数为有理数x x x x ,,=)(x f ⎪⎪⎩⎪⎪⎨⎧+∞<<--≤≤--<<∞-+x x x x x x x 1,11sin )1(17,7,71解: (1)在间断,由于不存在,故是的第二类间断点。
)(x f 0=x 1(lim xx x +∞→0=x )(x f(2)在间断,由于 ,)(x f 0=x 1sin lim )(lim 0==++→→xxx f x x故是的跳跃间断点。
数学分析课后习题答案(华东师范大学版)
P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222 C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-函数列与函数项级数(圣才出品)
是单调递减的.
又对任意
故
由狄利克雷判别法知
致收敛.
(3)因为|x|>r≥1,所以
在
上一
当 r>1 时,因级数
收敛,所以 在| x |>r>1 上一致收敛.
3 / 23
圣才电子书
当 r=1 时,
十万种考研考证电子书、题库视频学习平台
所以级数
上不一致收敛.
(4)因
时.
,而
上不一致收敛. 考虑区间[0,M]时,
所以 在[0,M]上一致收敛且
上内闭一致收敛.
(5)任意给定的
(i)
,考虑区间[-1,1]时,
由(ii)知 在[0,+∞)
(ii)D=(-∞,+∞)时.
故 但由(i)知 在
所以
在(-∞,+∞)上不一致收敛.
上内闭一致收敛.
2.证明:设
2 / 23
若对每一个正整数 n 有
证明:必要性
总存在 的一个邻域 和 I 的一个内闭区间[a,b],使得
所以
而 在[a,b]上一致收敛于 f,因此 在
上一致收敛于 f.
充分性
由已知
使得 在
上一致收敛于
f.从而
当
时
有
显然,当
取遍[a,b]上所有点时,
覆盖[a,b].由有限覆盖定理,存在有限个区间覆盖[a,b].不妨设
取
,则当 n>N 时,
证明:不妨设存在 M≥0,对任意
有|g(x)|<M.因
在 D 上一致收敛于
S(x),故对任意
存在 N>0,当 n>N 时,对任意
,均有
从而,对任意
4 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台
华东师范大学数学分析第8章习题答案
华东师范⼤学数学分析第8章习题答案第⼋章⼀:不定积分概念与基本积分公式(教材上册P181) 1. 验证下列(1)、(2)等式并与(3)、(4)两试相⽐照: (1)'()()f x dx f x c =+?; (2) ()()df x f x c =+?; (3) [()]'()f x dx f x =?; (4) ()()()d f x d x f x dx =?;解: (1)'0(())''()'()'()()c f x c f x c f x f x dx f x c=∴+=+=∴=+? 与(3)相⽐(1)试求不定积分运算,(2)是求导运算,(1) (3)互为逆运算,不定积分相差⼀个常数但仍为原不定积分,该常数⽤c 表⽰,称为积分常数.(2)()'()()'()()df x f x dxdf x f x dx f x c===+??与(4)相⽐: (2)是先求导再积分,因此包含了⼀个积分常数,(4)是先积分再求导,因此右侧不含积分常数.2. 求⼀曲线y=f (x),使得在曲线上的每⼀点(x,y)处的切线斜率为2x,且通过点(2,5). 解:222dy xdxy dy xdx x c====+??将(x,y)=(2,5)代⼊得: 5=22+cC=1该曲线为21y x =+3. 验证2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数. 解:x>0时,y ’=2()'||2x x x ==x<0时,2'()'||2x y x x =-=-=x=0时,22000sgn 022'lim lim lim 002x x x x x x x y x x ++++→→→-====- 2200sgn 02'lim lim()0||02x x x x x y x x --→→-==-==- 因此'''0||y y y x +-====综上得2'(sgn )'||,(,)2x y x x x ==?∈+∞-∞2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数.4. 据理说明为什么每⼀个含有第⼀类间断点的函数都没有原函数?解: 设0x 是 f (x)的第⼀类间断点,且 f (x)在0()U x 上有原函数 F (x),则0'()(),()F x f x x U x =∈.从⽽由导数极限定理得00lim ()lim '()'()()x x x x f x F x F x f x +++→→=== 同理 000lim ()'()()x x f x F x f x -→==.可见0()f x x 点连续,推出⽭盾.⼆: 换元积分法与部分积分法(教材上册P188) 1. 应⽤换元积分法求下列积分 (1) cos(34)x dx +?; (2) 22xxe dx ?;(3) 21dx x +?; (4) (1)n x dx +?;(5)dx ?; (6) 232x dx +?;(7);(8)(9)2sin x x dx ?; (10) 2sin (2)4dxxx +?;(11) 1cos dx x +?; (12) 1sin dx x+?;(13)csc xdx ?;(14);(15)44xdx x +?; (16)ln dx x x ?;(17) 453(1)x dx x +?; (18) 382x dx x -?;(19)(1)dxx x +?; (20) cot xdx ?; (21) 5cos xdx ?; (22)sin cos dxx x ?;(23)x xdx e e -+?; (24) 22338x dx x x --+?; (25) 252(1)x dx x ++?;(26) (a>0);(27) 223/2(0)()dxa x a >+?;(28) 5;(29)(30).解: (1)34cos(34)cos 3t x t x dx d =++=11sin sin(34)33t c x c =+=++ (2) 22112222()'()22t x x t txe dx e d ==??112211()()()22224t t t t t ed e dt ==?? 221144t x e c e c =+=+ (3)21111ln ||ln |21|21222t x dx t d t c x c x t =+==+=+++??(4)①当1n ≠-时,111(1)(1)11n n t x nnt x x dx t dt c c n n ++=+++== +=+++?? ②当1n =-时,(1)ln |1|n x dx x c +=++?(5)dx =?c =+ (6)232323231212122222ln22ln 22ln2t x x t x x tt dx d c c c ++=++==+=+=+?(7)332222222()(83)3399t t td t dt t c x c -=-=-+=--+?(8)322/31333()(75)551010t t d tdt t c x c t -=-=-+=--+? (9)211112222211sin sin sin sin 22t x x x dx t tdt t t t dt tdt =-===211cos cos 22t c x c =-+=-+ (10)2422111cot cot(2)224sin (2)sin 42t x dxt c x c x t x tdππ=+==-+=-+++?? (11)222(2)12sec tan tan()1cos 1cos 22cos 2t x dx d t x dt tdt t c c x t t =====+=+++ (12) 22 1sin (sec sec tan )tan sec 1sin dx xdx x x x dx x x c x cos x-==-=-++ (13)2111csc sin sin cos tan cos2222xdx dx dx x x x x x ===?α2ln |tan |2tan 2x d x c x ==+? (14)21(1)2x c =--=(15)22242111()arctan()442421()2x x x dx d c x x ==+++??(16)ln 11ln ||ln |ln |ln t x t t dx de dt t c x c x x e t t====+=+ (17)4555253535311111(1)(1)(1)5(1)5(1)10x dx dx d x x c x x x -==--=-++--(18)4344888111|242816112x dx dx d c x x x ===-+----(19)11()ln ||ln |1|ln ||(1)11dx xdx x x c c x x x x x=-=-++=++++?? (20)cos cot ln ||ln |sin |sin xxdx dx t c x c x ==+=+??(21)52224cos (1sin )sin (12sin sin )sin xdx x d x x x d x =-=-+?sin 2sin sin 53x x x c =-++ (22)2cos tan ln |tan |sin cos sin cos tan dx xdx d x x c x x x x x ===+ (23)22arctan 1()1()x xx x x x x dx e de dx e c e e e e -===++++ (24)222223(38)ln(38)3838x d x x dx x x c x x x x --+==-++-+-+?? (25)2221533232(1)223123()(1)t x x t t t dx dt dt dt x t t t t t =++-+-+===-++ 222323 ln ||ln |1|(1)212t t c x x c t x --=+-+=++-+++(26)1()ln |x t ax t c a====+?1ln |ln |x c x c a =+=+(27)令tan x a θ=,sec 22t a tdt ππ-<<223/23322s e c 11c o t s i n ()s e c d xa t d t t d t tx a a t a a ===++??c =+ (28)55sin 42sin sin (cos 2cos 1)cos x d d cos θθθθθθθ===--+??35322121cos cos cos (1)535c xc θθθ=-+-+=--(29)32256642226666111t t t t dt t dt t dt t dt t t t ===-+--- 6 42266661tt t dt t dt t dt dt dt t =---+-?75366126ln ||751t t t t t c t+=----++- 165116661263ln ||751x x x x x c x +=----++- (30)1121t t tdt t -→=+?222(2)44ln |1|1t t dt t t tc t =-+=-++++?14ln |1|x c =+-+ 4ln |1|'x c =-+ 2. 应⽤分部积分法求下列不定积分 (1) arcsin xdx ?; (2) ln xdx ?;(3) 2cos x xdx ?; (4)3ln xdx x ?;(5) 2(ln )x dx ?; (6)tan xarc xdx ?;(7) 1[ln(ln )]ln x dx x+?;(8) 2(arcsin )x dx ? (9)3secxdx ?; (10)(0)a >.解 (1)arcsin arcsin arcsin arcsinxdx x x xd x x x =-=-122arcsin (1)x x x c =+++ (2)1ln ln ln ln ln xdx x x xd x x x xdx x x x c x=-=-=-+(3)222cos sin 2sin sin 2cos x xdx x x x xdx x x xd x =-=+?2sin 2cos 2cos x x x x xdx =+-?2sin 2cos 2sin x x x x x c =+-+(4)2223ln 11ln [ln (ln )]22x dx xdx x x x d x x ---=-=-- 222ln 11(ln 1)244x c x c x x x=--+=-++(5)2221(ln )(ln )2ln (ln )2ln x dx x x x x dx x x xdx x=-=-(参考(2)结果)2(ln )2ln 2x x x x x c =-++(6)2222111tan tan arctan 2221x xarc xdx arc xdx x x dx x ==-+ 221111arctan 2221x x dx dx x =-++?? 2111arctan arctan 222x x x x c =-++(7)11111[ln(ln )]ln(ln )ln(ln )ln ln ln ln x dx x dx dx x x x dx dx x x x x x +=+=-+ ln(ln )x x c =+ (8)12222(arcsin )(arcsin)2arcsin (1)x dx x x x x dx -=--??12222(sin )arcsin (1)(1)x arx x x x d x -=+--?1222(arcsin )2arcsin (1)x x xd x =+-?1222(arcsin )2(1)arcsin 2x x x x dx =+--?1222(arcsin )2(1)arcsin 2x x x x x c =+--+(9) 令3sec I xdx =?s e c t a ns e ct a nt a n s e c I x d x x x x x x d x==-?23sec tan (1cos )sec sec tan sec x x x xdx x x I xdx =--=-+??11sec tan sec 22I x x xdx =+?1(sec tan ln |sec tan |)2x x x x c =+++(10)11222222222(0)()2()I a x x a xdx x a x -=>=±=+-1122222222()()()x x x a I ax x a I a a =±-±=±-±则122222111()()(ln ||)222x I x x a a a x c a =±±=+ 3. 求下列不定积分(1)[()]()'(1)f x f x dx αα≠?; (2)2'()1[()]f x dx f x +?;(3)'()()f x dx f x ?; (4)()'()f x e f x dx ?. 解: (1)11[()]()'[()]()[()]1f x f x dx f x df x f x c αααα+==++?(2)122'()1()arctan[()](arccot[()])1[()]1[()]f x dx df x f x c f x c f x f x ==+=-+++??(3)'()1()ln |()|()()f x dx df x f x c f x f x ==+?? (4)()()()'()()f x f x f x ef x dx e df x e c ==+?三. 有理函数和可化为有理函数的不定积分(教材上册P198) 1. 求下列不定积分(1)31x dx x -?; (2)22712x dx x x --+?;(3)31dx x +?; (4)41dxx +?;(5)22(1)(1)dx x x -+?; (6)222(221)x dx x x -++?;解: (1)3321111111x x x x x x x -+==+++--- 3232111(1)ln |1|1132x dx x x dx x x x x c x x =+++=+++-+--?? (2)2223111712(3)(4)(3)(4)4(3)(4)x x x x x x x x x x x x ---+===+-+-------22211(4)7124712x dx d x dx x x x x x -=-+-+--+211(4)2(27)4(27)d x d x x x =-+---??2ln |4|ln |3|x x c =---+ (3)设321111A Bx Cx x x x +=+++-+ 则21(1)()(1)A x x Bx C x =-++++ 2()()A B x B C A x A C =+++-++, 则⽐较两端系数,得1 21,,333B C A =-== 321121311dx x dx x x x x -??=-++-+221111(1)31311d x d d x =+-+++?221(1)ln 61x c x x +=+-+(4)22422221111()11()21x d x x x x dx dx x x x x x x -+-+===++-+-+11x c -=+2224222211111||1()2x x xdx dx c x x x x x---===++++-则234441111112121x x dx dx dx x x x +-=-+++|c =++ (5)设1122222221(1)(1)11(1)B xC B x C A x x x x x ++=++-+-++ 则22211221(1)()(1)(1)()(1)A x B x C x x B x C x =+++-+++-432111112121212()()(2)()()A B x C B x AC B B x C C B B x A C C=++-+-++++--+-- ⽐较两边系数得到12211111,,,,44422A B C B C ==-=-=-=- 22222111111(1)(1)(1)(1)418141dx d x d x dx x x x x x =--+--+-++ 222221111(1)4(1)2(1) d x dx x x -+-++?? 2222111(1)2(1)21x dx dx x x x =++++?? 222111ln |1|ln(1)arctan (1)(1)482dx x x x x x ∴=--+--+?211(1)4x -++ 211(1)4x x c --++。
华东师大数学分析答案完整版
!!第一章实数集与函数内容提要!一!实数!"实数包括有理数和无理数!有理数可用分数"#!""#为互质整数##"#$表示#也可用有限十进小数或无限十进循环小数表示!!$是首先遇到的无理数#它与古希腊时期所发现的不可公度线段理论有直接联系#且可以表示为无限十进不循环小数!实数的无限十进小数表示在人类实践活动中被普遍采用#我们是由无限十进小数表示出发来阐述实数理论的!$"若$%%#%%!%$&%&&为非负实数#称有理数$&%%#%%!%$&%&为实数$的&位不足近似#而有理数$&%$&&!!#&称为$的&位过剩近似#&%##!#$#&!’"在数学分析课程中不等式占有重要的地位#在后继课程中#某些不等式可以成为某个研究方向的基础!数学归纳法是证明某些不等式的重要工具!二!数集"确界原理!"邻域是数学分析中重要的基本概念!某点的邻域是与该点靠近的数的集合#它是描述极限概念的基本工具!在无限区间记号!()#%’#!()#%$#(%#&)$#!%#&)$#!()#&)$中出现的()与& )仅是常用的记号#它们并不表示具体的数!在数学分析课程范围内#不要把&)#()#)当作数来运算!%!%!!数学分析同步辅导及习题全解#上册$$"有界集和无界集是本章中关键的概念!要熟练掌握验证某个数集’是有界集或无界集的方法#其中重要的是证明数(不是数集’的上界!或下界$的方法!’"确界是数学分析的基础严格化中的重要的概念!上!下$确界是最大!小$数在无限数集情况下的推广!确界概念有两种等价的叙述方法#以上确界为例)设’是)中一个数集#若数!满足!!$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意"%!#存在$##’#使得$#&"#则!又是’的最小上界’()!或!$$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意#&##存在$##’#使得$#&!(##则!又是’的最小上界’()!这两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中##为充分小的正数!定义!$$在某些证明题中使用起来更方便些!*"确界原理)设’是非空数集#若’有上界#则’必有上确界*若’有下界#则’必有下确界!确界原理是实数系完备性的几个等价定理中的一个!三!函数及其性质!"邻域!!$*!%#$$%!%($#%&$$称为%的$邻域#其中$&#!!$$*+!%*$$%!%($#%$*!%#%&$$%+$+#%+$(%+%$,称为%的空心$邻域#其中$&#!!’$*+&!%$%!%#%&,$和*+(!%$%!%(,#%$分别称为%的右邻域和左邻域#其中,&#!$"确界设给定数集’!!!$上确界!若存在数!#满足!$!$$!#,$#’*$$,$%!#都存在$##’#使$#&$#则称!为’的上确界#记为!%+,-$#’$!!$$下确界!若存在数%#满足!$$-%#,$#’*$$,&&%#都存在-##’#使-#%&#则称%为’的下确界#记为!%./0$$#’!!’$确界原理!#非空有上!下$界的数集#必有上!下$确界!$若数集有上!下$确界#则上!下$确界一定是惟一的!’"函数!!$函数定义给定两个非空实数集.和(#若有一个对应法则,#使.内每一个数$#都有惟一的一个数-#(与它对应#则称,是定义在.上的一个函数#记为-%,!$$#$#.#并称.为函数的定义域#称,!.$%+-+-%,!$$#$#.,!.($为函数的值域!!$$几个重要的函数#分段函数函数在其定义域的不同部分用不同公式表达的这类函数#常称为分段函数!$符号函数%"%第一章!实数集与函数+1/!$$%!#!!$&###$%#(!#$%’()#%狄利克雷函数.!$$%!#当$为有理数##当$+为无理数&黎曼函数)!/$%!##当$%"##"###0&"#为既约分数##当$%##!和!##!$’()中的无理数’复合函数-%,!1!$$$#$#2/其中-%,!3$#3#.#3%1!$$#$#2#2/%+$+1!$$#.,&2#2"4!’$反函数已知函数3%,!$$#$#.!若对,-##,!.$#在.中有且只有一个值$##使得,!$#$%-##则按此对应法则得到一个函数$%,(!!-$#-#,!.$#称这个函数,(!2,!.$0.为,的反函数!!*$初等函数#基本初等函数!常量函数"幂函数"指数函数"对数函数"三角函数"反三角函数这六类函数称为基本初等函数!$初等函数!由基本初等函数经过有限次四则运算与复合运算所得到的函数#统称为初等函数!%凡不是初等函数的函数#都称为非初等函数!*"有界性设-%,!$$#$#.!!$若存在数(#使,!$$$(#,$#.#则称,是.上的有上界的函数!!$$若存在数5#使,!$$-5#,$#.#则称,是.上的有下界的函数!!’$若存在正数6#使+,!$$+$6#则称,是.上的有界函数!!*$若对任意数(#都存在$##.#使,!$#$&(#则称,是.上的无上界函数#类似可定义无下界及无界函数!3"单调性设-%,!$$#$#.#若对,$!#$$#.#$!%$$#有!!$,!$!$$,!$$$#则称,在.上是递增函数!!$$,!$!$%,!$$$#则称,在.上是严格递增函数!类似可定义递减函数与严格递减函数!4"奇偶性设.是对称于原点的数集#-%,!$$#$#.!!!$若,$#.#都有,!($$%,!$$#则称,!$$是偶函数!!$$若,$#.#都有,!($$%(,!$$#则称,!$$是奇函数!%#%!!数学分析同步辅导及习题全解#上册$!’$奇函数图象关于原点对称#偶函数图像关于纵轴对称!5"周期性!!$设-%,!$$#$#.#若存在正数7#使,!$67$%,!$$#,$#.!则称,!$$为周期函数#7称为,的一个周期!!$$若,的所有周期中#存在一个最小周期#则为,的基本周期!典型例题与解题技巧%例!&!设,!$$在((%#%’上有定义#证明,!$$在((%#%’上可表示为奇函数与偶函数的和!分析!本题主要考察奇函数"偶函数的定义#采用构造法解题!证明!设,!$$%8!$$&9!$$#其中8!$$#9!$$分别为奇"偶函数#于是,!($$%8!($$&9!($$%(8!$$&9!$$而,!$$%8!$$&9!$$由之可得!!!8!$$%,!$$(,!($$$#9!$$%,!$$&,!($$$这里8!$$#9!$$分别是奇函数和偶函数!%例"&!求数集’%&!&$&!(!$!&�+,&的上"下确界!解题分析!当&%$7时#$7!&$$!7%$$7!&!$$!7#容易看出7%!时#$!&!$!$是偶数项中的最大数!当&%$7&!时#$7&!!&$(!$7&!!$%$7&!!&!$$7!&!&!#当7充分大时#奇数项与数!充分靠近!因为$!&!$!$!%3是’中最大数#于是+,-’!%3#由上面分析可以看出./0’%!!解题过程!因为!3是’中最大数#于是+,-’!%3!再证./0’%!#这是因为!!$,&#&!&$&!(!$!&-!*!"$设%%$7&!!&!$$7!&!#由等式%&(!%!%(!$!%&(!&%&($&&&!$可知$7&!!&!$$7!&!(!%!$$7&!%$7&%$7(!&&&!$!$$7&!于是,#&##17##0&只要7#&!$781$!#(!!$!$$#使得$7#&!!&!$$7#!&!(!$!$$7#&!%#即$7#&!!&!$$7#!&!%!&#%例#&!设函数,!$$定义在区间:上#如果对于任何$!#$$#:#及’#!##!$#恒有,(’$!&!!(’$$$’$’,!$!$&!!(’$,!$$$!证明)在区间:的任何闭子区间上,!$$有界!分析!本题主要考察函数的有界性#要充分利用已知条件给出的不等式#积极构造出类似的不等%$%第一章!实数集与函数式#以证出结论!证明!,(%#;’.:#,$#!%#;$#则存在’#!##!$#使$%%&’!;(%$有!$%’;&!!(’$%由已知不等式有,!$$%,(’;&!!(’$%’$’,!;$&!!(’$,!%$$’(&!!(’$(%(#其中(%9:;,!$$#,!;+,$,$#(%#;’#令-%!%&;$($#那么%&;$%$&-$,!%&;$$%,!$$&-$$$!$,!$$&!$,!-$$!$,!$$&!$(<,!$$-$,!%&;$$((%<!$由##$两式可知<!$,!$$$(#,$#!%#;$再由(的定义#可知,!$$$(#,$#(%#;’若令!<%9./+,!%$#,!;$#<!,#则<$,!$$$(#,$#(%#;’即,!$$在(%#;’上有界!历年考研真题评析!%题!&!!北京大学#$##3年$设,!$$在(%#;’上无界#求证)16#(%#;’#使得对,#&##,!$$在!#(##=&#$2(%#;’上无界!分析!本题采用闭区间套定理证明!证明!取%#;中点%&;$#则(%#%&;$’#(%&;$#;’中至少有一个区间使,!$$无界!如果两个都是可任取一个$#记为(%!#;!’!再取中点%!&;!$#又可得区间(%$#;$’#使,!$$在其上无界#这样继续下去有(%#;’3(%!#;!’3(%$#;$’3&3(%&#;&’3&使,!$$在每个区间上无界!由区间套原理#存在6%7.9&0)%&%7.9&0);&#则6#(%#;’#而对,#&##当&充分大时#有!=(##=&#$2(%#;’3(%&#;&’故,!$$在!=(##=&#$2(%#;’上无界!%题"&!!甘肃工业大学#$##4年$有下列几个命题)!!$任何周期函数一定存在最小正周期!!$$($’是周期函数!!’$+./!$不是周期函数!!*$$=8+$不是周期函数!其中正确的命题有!!!$!>"!个!!!?"$个!!!@"’个!!!A "*个%%%!!数学分析同步辅导及习题全解#上册$解题分析!本题主要考察周期函数的定义B 解题过程!选?!其中)!!$错B 比如,!$$%#B 那么任何正实数都是它的周期#而无最小正实数B !$$错B 设,!$$%($’的周期为C &##并设(C ’%9-#当9%#时#则C%!(%#其中#%%%!#那么(%&C ’%!#(%’%#!!!<(%&C ’"(%’这与C 为周期矛盾B !!!<9"#当9&#时#(C&!’%9&!#(!’%!!!!<(!&C ’"(!’#也矛盾B <($’不是周期函数B !’$对B D 若,!$$是定义域.上周期函数#那么存在函数>#使,$#.都有,!$6>$%,!$$!这必须有$6>#.!而本题定义域.%(##&)$#若是周期函数#则##.#必须(>#.#但(>4.#故不是周期函数!!*$对B 用反证法#设,!$$%$=8+$的周期为>&##则,!#$%#%,!>$%>=8+><=8+>%##>%&#(&($#&##E #且&#-#,!($&>$%,!(&&#($%!&#&!$(=8+(!&#&!$(’,!($$%($=8+($%##由,!($&>$%,!($$<=8+!&#&!$(%##矛盾B 即$=8+$不是周期函数!课后习题全解!!!F !!实数5!!设%为有理数#$为无理数!证明)!!$%?$是无理数*!!!!!!$$当%"#时#%$是无理数!!分析!根据有理数集对加"减"乘"除!除数不为#$四则运算的封闭性#用反证法证!!证明!!!$假设%?$是有理数#则!%?$$@%A $是有理数#这与题设$是无理数相矛盾#故%?$是无理数!!$$假设%$是有理数#则当%"#时#%$%A $是有理数#这与题设$为无理数相矛盾!故%$是无理数!6$!试在数轴上表示出下列不等式的解)!!$$!$$@!$&#*!!$$B $@!B %B $@’B *!’$$@!!@$$@!!-’$@!$!解!!!$由原不等式有$&#$$@!&+#!或!$%#$$@!%+#前一个不等式组的解集是C A +$B $&!,#后一个不等式组的解集是D A +$B @!%$%#,!故!!$的解集是C *D !如图!E !!%&%第一章!实数集与函数图!E !!$$由原不等式有$@!$@’%!#于是!?$$@’%!!所以@!%!?$$@’%!#即#%!’@$%!#则’@$&!#$%$!故!$$的解集为!@)#$$!如图!E $!图!E $!’$由原不等式应有’$@!$-##$@!!@$$@!!-##从而对原不等式两端平方有$@!?$$@!@$!$@!$!$$@!!$-’$@$因此有$!$@!$!$$@!!$$##所以!$@!$!$$@!!$A ##由此得$A !#或$A !$!但检验知$A !和$A !$均不符合原不等式!所以原不等式的解集为7!!小结!在!$$中是将绝对值不等式转化为不含绝对值的不等式去解!若直接利用绝对值的几何意义#其解集就是数轴上到点!的距离小于到点’的距离的点集#即数轴上点$左侧的点集!若直接考虑!’$的解$应使不等式中三个二次根式有意义#则必有$-!#但这时不等式左端为负而右端为正#显然不成立#故其解集为7!5’"设%";#$!证明)若对任何正数#有B %@;B %##则%A ;!!分析!用反证法#注意到题设中#的任意性#只要设法找到某一正数#使条件不成立即可!!证明!假设%";#则根据实数集的有序性#必有%&;或%%;!不妨设%&;#令#A %@;&##则B %@;B A %@;A ##但这与B %@;B A %@;%#矛盾#从而必有%A ;!5*"设$"##证明$?!$-$#并说明其中等号何时成立!!分析!由!%@;$$A %$@$%;?;$-##有%$?;$-$%;!!证明!因$"##则$与!$同号#从而有$?!$A B $B ?!B $B -$B $B %!B $!BA $等号当且仅当B $B A !B $B#即$AF !时成立!83"证明)对任何$#$有!!$B $@!B ?B $@$B -!*!!!!!$$B $@!B ?B $@$B ?B $@’B -$!!证明!直接由绝对值不等式的性质#对任意的$#$有!!$B $@!B ?B $@$B -B !$@!$@!$@$$B A B !B A !!$$B $@!B ?B $@$B ?B $@’B -B $@!B ?B $@’B -B !$@!$@!$@’$B A $64"设%";"=#$?!$?表示全体正实数的集合$!证明B %$?;!$@%$?=!$B $B;@=B !%’%!!数学分析同步辅导及习题全解#上册$你能说明此不等式的几何意义吗-!分析!用分析法证明!!证明!欲证B %$?;!$@%$?=!$B $B;@=B 只需证!%$?;!$@%$?=!$$$$!;@=$$即证!$%$@$!%$?;$$!%$?=$!$$@$;=只需证%$?;=$!%$?;$$!%$?=$!$只需证!!%$?;=$$$!%$?;$$!;$?=$$即证$%$;=$%$!;$?=$$由于%";"=#$?#所以$;=$;$?=$#%$&##所以有$%$;=$%$!;$?=$$成立!所以原不等式成立!其几何意义为)当;"=时#平面上以点C !%#;$"D !%#=$"G !###$为顶点的三角形中#B B C G B @B D G B B %B C D B *当;A =时#此三角形变成以点G !###$#C !%#;$为端点的线段!如图!@’!图!E ’!小结!利用分析法找到证题思路#再用综合法证明#过程更为简捷!65"设$&##;&##%";#证明%?$;?$介于!与%;之间!!分析!本题实质是要比较两数的大小#且该数符号不定#可用作差法!!证明!因$&##;&##%";#则由!@%?$;?$A ;@%;?$#%;@%?$;?$A $!%@;$;!;?$$得当%&;时#!%%?$;?$%%;*当%%;时#%;%%?$;?$%!!故总有%?$;?$介于!与%;之间!!小结!通常要证某数%介于另两数;与=之间#可转化为证!=@%$!;@%$%##这种方法在;与=大小关系不完全确定时#也不必分情况讨论#较为简捷!例如本题中)因为$&##;&##%";#则有!@%?$;?!$$%;@%?$;?!$$A @$!;@%$$;!;?$$$%#所以%?$;?$必介于!与%;之间!6G "设"为正整数!证明)若"不是完全平方数#则!"是无理数!!分析!本题采用反证法#联想到互质"最大公约数以及辗转相除法的有关知识点#可得结论!!证明!用反证法!假设!"为有理数#则存在正整数<"&使!"A<&#且<与&互质!于是<$A %(%第一章!实数集与函数"&$#<$A &%!"&$#可见&能整除<$!由于<与&互质#从而它们的最大公约数为!#由辗转相除法知)存在整数3"H 使<3?&H A !#则<$3?<&H A <!因&既能整除<$3又能整除<&H #故能整除其和#于是&能整除<#这样&A !#所以"A <$!这与"不是完全平方数相矛盾!!小结!本题证明过程比较独特#先假设有理数为互质的两个数的商#利用这两个数与"之间的关系#运用辗转相除法得出结论#注意知识点之间的内在联系!F $!数集"确界原理8!"用区间表示下列不等式的解)!!$B !@$B @$-#*!!$$$?!$$4*!’$!$@%$!$@;$!$@=$&#!%#;#=为常数#且%%;%=$*!*$+./$-!$$!!解!!!$原不等式等价于下列不等式组$%!!!@$$@$-+#!或!$-!!$@!$@$-+#前一个不等式组的解为$$!$*后一个不等式组的解集为空集#所以原不等式的解集为@)#!’!$!!$$绝对值不等式$?!$$4等价于@4$$?!$$4!这又等价于不等式组$&#@4$$$$?!$4+$!或!$%#4$$$$?!$@4+$而前一个不等式组的解集为(’@!$$#’?!$$’#后者的解集为(@’@!$$#@’?!$$’!因此原不等式的解集为(@’@!$$#@’?!$$’*(’@!$$#’?!$$’!’$作函数,!$$A !$@%$!$@;$!$@=$#$#$!则由%%;%=知,!$$%##当$#!@)#%$*!;#=$A ##当$A %#;#=&##当$#!%#;$*!=#?)’()$因此,!$$&##当且仅当!!!!$#!%#;$*!=#?)$故原不等式的解集为!%#;$*!=#?)$!*$若#$$$$(#则当且仅当$#(*#’*(’(时#+./$-!$$!再由正弦函数的周期性知)+./$-!$$的解集是$7(?(*#$7(?’*(’(#其中7为整数!8$"设’为非空数集!试对下列概念给出定义)!!$’无上界*!!!!!$$’无界!%)%!!数学分析同步辅导及习题全解#上册$!解!!!$设’是一非空数集!若对任意的(&##总存在$##’#使$#&(#则称数集’无上界!!$$设’是一非空数集!若对任意的(&##总存在$##’#使B $#B &(#则称数集’无界!8’"试证明由!’$式所确定的数集’有上界而无下界!!证明!由!’$式所确定的数集’A +-B -A $@$$#$#$,#对任意的$#$#-A $@$$$$#所以数集’有上界$!而对任意的(&##取$#A ’?!(#$#存在-#A $@$$#A $@’@(A@!@(#’#而-#%@(#因此数集’无下界!8*"求下列数集的上"下确界#并依定义加以验证)!!$’A +$B $$%$,*!!$$’A +$B $A &.#&#%?,*!’$’A +$B $为!##!$内的无理数,*!*$’A +$B $A !@!$&#&#%?,!!解!!!$+,-’A !$#./0’A@!$#下面依定义加以验证!因$$%$#等价于@!$%$%!$#所以对任意的$#’#有$%!$且$&@!$#即!$"@!$分别是’的上"下界!又对任意的正数##不妨设#%!$$#于是存在$#A !$@#$"$!A@!$?#$#使$#"$!#’#使$#&!$@##$!%@!$?##所以由上"下确界的定义+,-’A !$#./0’A@!$!!$$+,-’A?)#./0’A !#下面依定义验证!对任意的$#’#!$$%?)#所以!是’的下界!因为对任意的(&##令&A ((’?!#则&.&(#故’无上界#所以+,-’A?)*对任意的#&##存在$!A !.A !#’#使$!%!?##所以./0’A !!!’$+,-’A !#./0’A ##下面依定义验证!对任意的$#’#有#%$%!#所以!"#分别是’的上"下界!又对任意的#&##不妨设#%!#由无理数的稠密性#总存在无理数!#!###$#则有无理数$#A !@!#’#使$#A !@!&!@#*有无理数$!A !#’#使$!A !%#?##所以+,-’A !#./0’A #!!*$+,-’A !#./0’A !$#下面依定义验证!对任意的$#’#有!$$$%!#所以!"!$分别是’的上"下界!对任意的#&##必有正整数&##0/使!$&#%##则存在$#A !@!$&##’#使$#&!@##所以+,-’A !!又存在$!A !@!$A !$#’#使$!%!$?##所以./0’A !$!83"设’为非空有下界数集#证明)./0’A %#’9%A 9./’!!证明!:$!设./0’A %#’#则对一切$#’有$-%#而%#’#故%是数集’中最小的数#即%A 9./’!;$!设%A 9./’#则%#’*下面验证%A ./0’)!!$对一切$#’#有$-%#即%是’的下界*!"$对任何&&%#只需取$#A %#’#则$#%&!从而满足%A ./0’的定义!%*!%84"设’为非空数集#定义’@A +$B @$#’,!证明)!!$./0’@A@+,-’*!!$$+,-’@A@./0’!!证明!!!$%A ./0’@#由下确界的定义知#对任意的$#’@#有$-%#且对任意的&&%#存在$##’@#使$#%&!由’@A +$B @$#’,知#对任意的@$#’#@$$@%#且对任意的@&%@%#存在@$##’#使@$#&@&#由上确界的定义知+,-’A@%#存在@$##’#使@$#&@&#即./0’@A@+,-’!同理可证!$$成立!85"设C "D 皆为非空有界数集#定义数集C ?D A +I B I A $?-#$#C #-#D ,!证明)!!$+,-!C ?D $A +,-C ?+,-D *!!$$./0!C ?D $A ./0C ?./0D !!证明!!!$设+,-C A !!#+,-D A !$!对任意的I #C ?D #存在$#C #-#D #使I A $?-!于是$$!!#-$!$!从而I $!!?!$!对任意的#&##必存在$##C #-##D #使$#&!!@#$#-#&!$@#$#则存在I #A $#?-##C ?D #使I #&!!!?!$$@#!所以+,-!C ?D $A !!?!$A +,-C ?+,-D !同理可证!$$成立!6G"设%&##%"!#$为有理数!证明%$A+,-+%JB J 为有理数#J %$,#当%&!#./0+%JBJ 为有理数#J %$,#当%%!+!!分析!利用指数函数的单调性#把指数函数化归为对数函数讨论#并运用有理数的稠密性概念来证此题!!证明!只证%&!的情况#%%!的情况可以类似地加以证明!设C A +%J BJ 为有理数#J %$,!因为%&!#%J 严格递增#故对任意的有理数J %$#有%J%%$#即%$是C 的一个上界!对任意的"%%$#由%$&#及有理数的稠密性#不妨设"&#且为有理数!于是必存在有理数J #%$#使得"%%J #%%$!事实上#由781%$严格递增知)#%"%%$等价于781%"%781%%$A $#由有理数的稠密性#存在有理数J #使得781%"%J #%$#所以"A %781%"%%J #%%$!故%$A +,-C A +,-+%JB J 为有理数#J %$,#%&!!!小结!关于求数集的确界或证明数集确界的有关命题#主要利用确界的定义#进一步加深读者对数集上"下确界概念的理解#这对进一步学习极限理论及实数的完备性#使整个数学分析建立在坚实的基础上是十分重要的!F ’!函数概念8!"试作下列函数的图象)!!$-A $$?!*!!!!!!!$$-A !$?!$$*!’$-A !@!$?!$$*!*$-A +1/!+./$$*!3$-A ’$#B $B &!#$’#B $B %!#’#B $B A !’()!!解!利用描点作图法#各函数的图象如图!E *至图!E G !5$"试比较函数-A %$与-A 781%$分别当%A $和%A !$时的图象!%!!%图!E *!!!!!!!!!!图!E 3图!E 4!!!!!!!!!!图!E 5图!E G!分析!利用指数函数与对数函数性质#注意$在-A %$与-A 781%$的定义域上的取值范围是不同的!!解!当%A $时#-A %$是单调递增函数#当%A !$时#它是单调递减函数*当$A #时#!$!$$A $$A !#即两函数的图象都过点!##!$*当$&#时#!$!$$%!%$$#-A $$的图象在-A !$!$$的图象上方*当$%#时#!$!$$&!&$$#-A !$!$$的图象在-A $$的图象上方*对任意的$#$?#两函数值都大于##即函数的图象都在$轴上方#且-A $$的图象与-A!$!$$的图象关于-轴对称!%"!%-A 781%$是-A %$的反函数!当%A $时#是单调递增的#当%A !$时#是单调递减的*当#%$%!时#781!$$&#&781$$*当$A !时#781!$$A 781$$A #*当$&!时#781!$$%#%781$$*当$$#时#两个函数无定义#因此函数图象在-轴右方#且过点!!##$!-A 781!$$与-A 781$$的图象关于$轴对称!-A $$与-A 781$$的图象"-A!$!$$与-A 781!$$的图象皆关于直线-A $对称!如图!E H!图!E H !!!!!!!!!!!!!图!E !#8’"根据图!E !#写出定义在(##!’上的分段函数,!!$$和,$!$$的解析表达式!!解!利用直线的两点式方程或点斜式方程容易得到,!!$$A *$##$$$!$*@*$#!$%$$’()!,$!$$A !4$##$$$!*G @!4$#!*%$$!$##!$%$$’()!8*"确定下列初等函数的存在域)!!$-A +./!+./$$*!!!!!$$-A 71!71$$*!’$-A :I =+./71$!$!#*!*$-A 71:I =+./$!$!#!!解!!!$因为+./$的存在域为$#所以-A +./!+./$$的存在域为$!!$$因71$&#等价于$&!#所以-A 71!71$$的存在域是!!#?)$!!’$因为-A :I =+./3的存在域是(@!#!’#而@!$71$!#$!等价于!$$$!###所以-A :I =+./71$!$!#的存在域是(!#!##’!!*$因-A 713的存在域是!##?)$#而3A :I =+./$!#的值域为@($#((’$#由#%3$($%#!%有#%$!#$!#即#%$$!##所以-A 71:I =+./$!$!#的存在域是!##!#’!83"设函数,!$$A $?$#$$##$$#$&#+!求)!!$,!@’$#,!#$#,!!$*!!$$,!)$$@,!#$#,!@)$$@,!#$!)$&#$!!解!!!$,!@’$A $?!@’$A@!,!#$A $?#A $,!!$A $!A $!$$因为)$&##所以有,!)$$@,!#$A $)$@!$?#$A $)$@$,!@)$$@,!#$A $?!@)$$@!$?#$A@)$84"设函数,!$$A !!?$#求,!$?$$#,!$$$#,!$$$#,!,!$$$#,!,!$!$$!!解!,!$?$$A !!?!$?$$A!’?$,!$$$A !!?$$*,!$$$A !!?$$,!,!$$$A !!?!!?$A $?!$?$,!,!$!$$A !!?!,!$$A!!?!!?$$A !$?$85"试问下列函数是由哪些基本初等函数复合而成)!!$-A !!?$$$#*!!$$-A !:I =+./$$$$*!!’$-A 71!!?!?$!$$*!!*$-A $+./$$!!解!!!$-A 3$##3A H !?H $#H !A !#H $A $!$$-A 3$#3A :I =+./H #H A $$!’$-A 713#3A H !?H $#H !A !#H $A !’#’A H !?K #K A $$!*$-A $3#3A H $#H A +./$5G"在什么条件下#函数-A%$?;=$?L的反函数就是它本身-!分析!先把反函数求出#分别讨论原函数与反函数的定义域#再讨论参数!!解!首先;="%L #由-A %$?;=$?L #解得$A ;@L -=-@%#交换$与-得-A ;@L $=$@%!当="#时#原函数的定义域为$"@L =#反函数的定义域为$"%=!因此#要使二函数相同#必须%A@L #这时原函数为%$?;=$?L A;@L $=$@%#即为反函数!另外#当;A =A ##且%A L "#时亦满足!故当/;="%L 且%A@L 0或/;A =A #且%A L "#0时#该函数的反函数就是其本身!8H"试作函数-A :I =+./!+./$$的图象!%$!%!解!-A :I =+./!+./$$是以$(为周期的函数#其定义域为$#值域为@($#((’$的分段函数#其在一个周期区间(@(#(’上的表达式为-A (@$#($%$$($#@($$$$($@!(?$$#@($$%@(’()$其图象如图!E!!!图!E !!8!#"试问下列等式是否成立)!!$J :/!:I =J :/$$A $#$#$*!$$:I =J :/!J :/$$A $#$"7(?($#7A ##F !#F $#&!!解!!!$由J :/$与:I =J :/$的定义知#!!$式成立!!$$因为J :/$的定义域为$"7(?($#7A ##F !#F $#&#而:I =J :/$的值域仅为@($#(!$$!所以!$$式不成立!例如当$A ’*(时#:I =J :/!J :/$$A :I =J :/!@!$A@(*"$!8!!"试问-A B $B 是初等函数吗-!解!因-A B $B A $!$是由-A !3与3A $$复合而成的#所以-A B $B 是初等函数!8!$"证明关于函数-A ($’的如下不等式)!!$当$&#时#!@$%$!(’$$!*!$$当$%#时#!$$!(’$%!@$!!证!由定义知!(’$是不超过!$的最大整数#故有#$!$@!(’$%!所以!!!!!!!!!!!!$@!%!(’$$!$#%%!%!!$当$&#时#给#两端同乘以$得!@$%$!(’$$!!$$当$%#时#给#两端同乘以$得!$$!(’$%!@$ F*!具有某些特性的函数8!"证明,!$$A$$$?!是$上的有界函数!!证明!利用不等式$B$B$!?$$有#对一切$#$都有B,!$$B AB$B$$?!A!$$B$B$$?!$!$成立#故,!$$是$上的有界函数!8$"!!$叙述无界函数的定义*!$$证明,!$$A!$$为!##!$上的无界函数*!’$举出函数,的例子#使,!$$为闭区间(##!’上的无界函数!!解!!!$设,!$$为定义在.上的函数#若对任意的正数(#都存在$##.#使B,!$#$B&(#则称函数,!$$为.上的无界函数!!$$证明)对任意的正数(#存在$#A!(?!!#!##!$#使B,!$#$B A!$$#A(?!&(#所以,!$$A!$$是!##!$上的无界函数!!’$设,!$$A!$$#$#!##!’!#$A’()#!由!$$的证明知,!$$为(##!’上的无界函数!8’"证明下列函数在指定区间上的单调性) !!$-A’$@!在!@)#?)$上严格递增*!$$-A+./$在@($#((’$上严格递增*!’$-A=8+$在(##(’上严格递减!!分析!!$$"!’$两小题都是三角函数#要牢记三角函数的半角"倍角公式!后面讨论周期性以及傅里叶级数时都会用到!!证明!!!$任取$!"$$#!@)#?)$#$!%$$#则有,!$!$@,!$$$A’!$!@!$@!’$$@!$A’!$!@$$$%#可见,!$!$%,!$$$#所以,!$$A’$@!在!@)#?)$上严格递增!!$$任取$!#$$#@($#((’$#$!%$$#则有@($%$!?$$$%($#!@($$$!@$$$%#因此=8+$!?$$$&##!+./$!@$$$%#%& !%从而,!$!$@,!$$$A +./$!@+./$$A $=8+$!?$$$+./$!@$$$%##,!$!$%,!$$$!所以,!$$A +./$在@($#((’$上严格递增!!’$任取$!#$$#(##(’#$!%$$#则有#%$!?$$$%(#!@($$$!@$$$%##从而有+./$!?$$$&##+./$!@$$$%##故,!$!$@,!$$$A =8+$!@=8+$$A@$+./$!?$$$+./$!@$$$&##从而,!$!$&,!$$$#所以,!$$在(##(’上严格递减!8*"判别下列函数的奇偶性)!!$,!$$A !$$*?$$@!*!!!$$,!$$A $?+./$*!’$,!$$A $$K @$$*!*$,!$$A 71!$?!?$!$$!!解!!!$因为,!@$$A !$!@$$*?!@$$$@!A !$$*?$$@!A ,!$$#故,!$$A !$$*?$$@!是偶函数!!$$对任意的$#!@)#?)$有#,!@$$A !@$$?+./!@$$A@$@+./$A@!$?+./$$A@,!$$#故,!$$A $?+./$为!@)#?)$上的奇函数!!’$,!$$A $$K @$$在!@)#?)$上有定义#对任意的$#!@)#?)$有#,!@$$A !@$$$K @!@$$$A $$K @$$A ,!$$#故,!$$为!@)#?)$上的偶函数!!*$,!$$A 71!$?!?$!$$在!@)#?)$上有定义#对每一个$#!@)#?)$有#,!@$$A 71!@$?!?!@$$!$$A 71!@$?!?$!$$A@71!$?!?$!$$A@,!$$#所以,!$$A 71!$?!?$!$$为!@)#?)$上的奇函数!53"求下列函数的周期)!!$=8+$$*!!$$J :/’$*!!’$=8+$$?$+./$’!!分析!求三角函数周期时#应先转化为一次函数#再求周期#如!!$!如果有两个或两个以上的函数#分别求出它们各自的周期#再求最小公倍数#如!’$!!解!!!$,!$$A =8+$$A !$!!?=8+$$$#而!?=8+$$的周期是(#所以,!$$A =8+$$的周期是(!!$$因为J :/$的周期是(#所以,!$$A J :/’$的周期是(’!!’$因+./$"=8+$的周期是$(#所以=8+$$的周期是*(#+./$’的周期是4(#故,!$$A =8+$$?$+./$’的周期是!$(!84"设函数,!$$定义在(@%#%’上#证明)!!$M !$$A ,!$$?,!@$$#$#(@%#%’为偶函数*!$$8!$$A ,!$$@,!@$$#$#(@%#%’为奇函数*%’!%!’$,可表示为某个奇函数与某个偶函数之和!!证明!!!$因(@%#%’关于原点对称#M !$$在(@%#%’上有定义#对每一个$#(@%#%’有M !@$$A ,!@$$?,!$$A ,!$$?,!@$$A M !$$!故M !$$为(@%#%’上的偶函数!!$$因(@%#%’关于原点对称#8!$$在(@%#%’上有定义#对每一个$#(@%#%’有8!@$$A ,!@$$A@,!$$A@(,!$$@,!@$$’A@8!$$!故8!$$为(@%#%’上的奇函数!!’$由!!$"!$$得M !$$?8!$$A $,!$$#从而有,!$$A M !$$?8!$$$A !$M !$$?!$8!$$#而!$M !$$是偶函数#!$8!$$是奇函数!从而,!$$可表示为一个奇函数!$8!$$与一个偶函数!$M !$$之和!85"设,"1为定义在.上的有界函数#满足,!$$$1!$$#$#.!证明)!!$+,-$#.,!$$$+,-$#.1!$$*!!$$./0$#.,!$$$./0$#.1!$$!!证明!!!$记!A +,-$#.1!$$#则对任意的$#.有#1!$$$!#又因,!$$$1!$$#所以,!$$$1!$$$!!因此!是,!$$的上界#而+,-$#.,!$$是,!$$的最小上界#故+,-$#.,!$$$!A +,-$#.1!$$!!$$同理可证!8G"设,为定义在.上的有界函数#证明)!!$+,-$#.+@,!$$,A@./0$#.,!$$*!!$$./0$#.+@,!$$,A@+,-$#.,!$$!!证明!!!$记./0$#.,!$$A %!由下确界的定义知#对任意的$#.#,!$$-%#即@,!$$$@%#可见@%是@,!$$的一个上界*对任意的#&##存在$##.#使,!$#$&%?##即@,!$#$%@%@##可见@%是@,!$$的上界中最小者!所以+,-$#.+@,!$$,A@%A@./0$#.,!$$!!$$同理可证结论成立!也可直接用!!$的结论来证!事实上#在!!$中换,!$$为@,!$$得#+,-$#.,!$$A +,-$#.+@!,!$$$,A@./0$#.+@,!$$,#两边同乘以@!得./0$#.+@,!$$,A@+,-$#.,!$$6H"证明)J :/$在@($#(!$$上无界!而在@($#(!$$内任一闭区间(%#;’上有界!!分析!要证J :/$在!@($#($$上无界#只需在$##!@($#($$取一点#使J :/$#&(即可!证在!@($#($$上#存在区间(%#;’使J :/$有界#只需证J :/$$(##且有J :/%%J :/$%J :/;!!证明!对任意的(&##取$#A :I =J :/!(&!$#(($#(!$$#有+J :/$#+%+J :/!:I =J :/!L&!$$+%L&!&L #所以,!$$%J :/$在(($#(!$$内是无界函数!但任取(%#;’.@($#(!$$#由于J:/$在(%#;’上严格递增#从而当$#(%#;’时#J :/%%(!%$J:/$$J :/;#记(A 9:;+B J :/%B #B J :/;B ,#则对一切$#(%#;’有B J :/$B $(#所以J :/$是(%#;’上的有界函数!!小结!证明函数的有界性#往往要利用函数的单调性#同时往往利用放缩法#这是极限理论的基础#也是今后学习分析学的基础!6!#"讨论狄利克雷函数.!$$A !#当$为有理数###当$’()为无理数的有界性"单调性与周期性!!分析!狄利克雷函数由定义可证得有界性#单调性也比较明显#对周期性分有理数与无理数讨论!!解!由.!$$的定义知#对任意的$#$#有B .!$$B $!#所以.!$$是$上的有界函数!由于对任意的有理数$!与无理数$$#无论$!%$$还是$$%$!#都有.!$!$&.!$$$!所以.!$$在$上不具有单调性!对任意的有理数J 有$?J A 有理数#当$为有理数时无理数#当$’()为无理数时于是对任一$#$#有.!$?J $A !#当$为有理数时##当$’()为无理数时A .!$$所以#任意有理数J 都是.!$$的周期!但任何无理数都不是.!$$的周期!事实上#对任一无理数"#对无理数@"#.!@"$A ##而.!"?!@"$$A .!#$A !".!@"$!!小结!狄利克雷函数与黎曼函数是一类特殊函数#在以后的连续性以及极限理论中具有重要地位#要特别注意!8!!"证明),!$$A $?+./$在$上严格增!!证明!任取$!"$$#!@)#?)$#$!%$$#则,!$$$@,!$!$A !$$@$!$?!+./$$@+./$!$A !$$@$!$?$=8+$!?$$$+./$$@$!$-!$$@$!$@$=8+$!?$$$%+./$$@$!$&!$$@$!$@$%$$@$!$A #D +./$$@$!$%B $$@$!B !$$即,!$!$%,!$$$#所以,!$$A $?+./$在!@)#?)$上严格增!6!$"设定义在(%#?)$上的函数,在任何闭区间(%#;’上有界!定义(%#?)$上的函数)<!$$A ./0%$-$$,!-$#(!$$A +,-%$-$$,!-$!试讨论<!$$与(!$$的图象#其中!!$,!$$A =8+$#$#(##?)$*!!$$,!$$A $$#$#(@!#?)$!%)!%!分析!在讨论上述两个函数时#首先应分割区间#在区间内讨论其单调性然后再讨论有界性!!解!!!$由<!$$及(!$$的定义知#对%%$#当,!-$在(%#$’上为递增函数时#<!$$A ,!%$#(!$$A ,!$$!当,!-$在(%#$’上为减函数时#<!$$A ,!$$#(!$$A ,!%$!由此可知)对,!$$A =8+$#当#$$$(时#<!$$A =8+$#(!$$A !!而$#((#?)$时#由于@!$=8+$$!#所以#<!$$A@!#(!$$A !#即有<!$$A =8+$##$$$(@!#($$%?)+!!(!$$<!#$#(##?)$其图象见图!E !$!图!E !$!!!!!!!!!!图!E!’!$$同上理#当$#(@!##’时#(!$$A !#<!$$A $$*当$#!##?)$时#<!$$<#*当$#(@!#!’时#(!$$<!*当$#!!#?)$时#(!$$A $$!即有<!$$A $$#$#(@!##’##当$#!##?)+’(!$$A!#$#(@!#!’时$$#当$#!!#?)$+时其图象见图!E !’!!小结!确界理论是学习数学分析的基础#对后面学习连续"微分"积分等都具有重要作用!总练习题8!"设%#;#$#证明)!!$9:;+%#;,A !$!%?;?B%@;B $*!$$9./+%#;,A !$!%?;@B%@;B $!!证明!因为!$!%?;?B %@;B $A%#当%-;时;#当%%;+时!$!%?;@B%@;B $A %#当%%;时;#当%-;+时所以!9:;+%#;,A !$!%?;?B%@;B $9./+%#;,A !$!%?;@B %@;B $%*"%第一章!实数集与函数8$"设,和1都是.上的初等函数!定义(!$$A 9:;+,!$$#1!$$,#<!$$A 9./+,!$$#1!$$,#$#.!试问(!$$和<!$$是否为初等函数-!解!由习题!得(!$$A!$(,!$$?1!$$?B ,!$$@1!$$B ’A!$(,!$$?1!$$?(,!$$@1!$$’!$’<!$$A !$(,!$$?1!$$@B ,!$$@1!$$B ’A!$(,!$$?1!$$@(,!$$@1!$$’!$’所以#(!$$与<!$$都是由.上的初等函数,!$$"1!$$经四则运算和有限次复合而成的函数!所以#(!$$和<!$$都是初等函数!8’"设函数,!$$A !@$!?$#求),!@$$#,!$?!$#,!$$?!#,!!$$#!,!$$#,!$$$#,!,!$$$!!解!,!@$$A !?$!@$*!,!$?!$A @$$?$*!,!$$?!A !@$!?$?!A $!?$*,!!$$A !@!$!?!$A $@!$?!*!!,!$$A !?$!@$*!,!$$$A !@$$!?$$*,!,!$$$A !@!@$!?$!?!@$!?$A $$$A $5*"已知,!!$$A $?!?$!$#求,!$$!!分析!本题采用倒代换的方法#即!$A K #但是根号中移出的数要加绝对值!!解!令!$A K #则$A !K !所以,!K $A !K?!?!!$K!$A!K ?!?K !$B K B#故,!$$A !$?!?$!$B $B #故,!$$A !$?!?$!$B $B!83"利用函数-A ($’求解)!!$某系各班级推选学生代表#每3人推选!名代表#余额满’人可增选!名!写出可推选代表数-与班级学生数$之间的函数关系!假设每班学生数为’#)3#人$*!$$正数$经四舍五入后得整数-#写出-与$之间的函数关系!!解!!!$因余额满’人可补选一名#即就是可在原来基础上增加$人后取整#于是-A $?$(’3!!$A ’##’!##$!$$由($’的定义知!-A ($?#"3’#$&#%!"%!!数学分析同步辅导及习题全解#上册$54"已知函数-A ,!$$的图象#试作下列各函数的图象)!!$-A@,!$$*!!$$-A ,!@$$*!!’$-A@,!@$$*!*$-A B ,!$$B *!!3$-A +1/,!$$*!4$-A !$(B ,!$$B ?,!$$’*!!5$-A!$(B ,!$$B @,!$$’!!分析!作函数图象找出函数关于原函数的对称点"对称中心!有绝对值号的要分类讨论!!解!!!$-A@,!$$和-A ,!$$的图象关于$轴对称!!$$-A ,!@$$的图象与-A ,!$$的图象关于-轴对称!!’$-A@,!@$$的图象与-A ,!$$的图象关于原点对称!!*$-A B ,!$$B A ,!$$#!!$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),!3$-A +1/,!$$A !#!!!$#.!A +$B ,!$$&#,##$#.$A +$B ,!$$A #,@!#$#.’A +$B ,!$$%#’(),!4$-A !$(B ,!$$B ?,!$$’A ,!$$#$#.!A +$B ,!$$-#,##$#.$A +$B ,!$$%#’(),!5$-A !$(B ,!$$B @,!$$’A ##$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),其图象如图!E !*至图!E!5!图!E !*!!!!!!!!!!!图!E!3图!E !4!!!!!!!!!!!图!E !555"已知函数,和1的图象#试作下列函数的图象)!!$*!$$A 9:;+,!$$#1!$$,*!!$$+!$$A 9./+,!$$#1!$$,!%""%第一章!实数集与函数!分析!将9:;+,#1,与9./+,#1,转化为分段函数再讨论!!解!!!$*!$$A 9:;+,!$$#1!$$,A ,!$$#$#.!A +$B ,!$$-1!$$,1!$$#$#.$A +$B ,!$$%1!$+$,!$$+!$$A 9./+,!$$#1!$$,A 1!$$#$#.!A +$B ,!$$-1!$$,,!$$#$#.$A +$B ,!$$%1!$+$,其图象如图!E !G 和图!E !H !!!!图!E !G !!!!!!!!!!!图!E !H 5G "设,"1和N 为增函数#满足,!$$$1!$$$N !$$#$#$!证明),!,!$$$$1!1!$$$$N !N !$$$!!分析!本题己经给出了,"1"N 为增函数#把1!$$与N !$$看成中间变量!利用复合函数及其单调性质#可证得结论!!证明!因对任意的$#$#有,!$$$1!$$$N !$$#且,!$$"1!$$和N !$$均为增函数#所以#有,!,!$$$$,!1!$$$$1!1!$$$$1!N !$$$$N !N !$$$即,!,!$$$$1!1!$$$$N !N !$$$8H"设,和1为区间!%#;$上的增函数#证明第5题中定义的函数*!$$和+!$$也都是!%#;$上的增函数!!证明!对任意的$!"$$#!%#;$#$!%$$#由,!$$"1!$$在!%#;$上递增知,!$$$-,!$!$#1!$$$-1!$!$#因此*!$$$-,!$$$-,!$!$#*!$$$-1!$$$-1!$!$#所以*!$$$-9:;+,!$!$#1!$!$,A *!$!$#故*!$$在!%#;$上是增函数!同理可证+!$$是!%#;$上的增函数!8!#"设,为(@%#%’上的奇!偶$函数!证明)若,在(##%’上增#则,在(@%##’上增!减$!!证明!任取$!"$$#(@%##’#$!%$$#有@$!"@$$#(##%’且@$!&@$$!由,!$$为(@%#%’上的奇函数及在(##%’上递增得#,!$!$A@,!@$!$%@,!@$$$A ,!$$$!所以,!$$在(@%##’上是递增的!同理可证,!$$为偶函数时的相应结论成立!8!!"证明)!!$两个奇函数之和为奇函数#其积为偶函数*!$$两个偶函数之和与积之都为偶函数*!’$奇函数与偶函数之积为奇函数!!分析!对于!!$来说#./0$#.,!$$$,!$$#然后利用,!$$?1!$$@1!$$A ,!$$以及@./0$#.+@,!$$,A +,-$#.+,!$$,证得结论!%#"%。
华东师大2000年数学分析试题及答案
华东师大2000年数学分析试题一、(24分)计算题:求011lim()ln(1)x x x→-+;求32cos sin 1cos x x dx x +⎰ 设(,)z z x y =是由方程222(,)0F xyz x y z ++=所确定的可微隐函数,试求grad z 。
二、(14分)证明:(1)11(1)n n+⎧⎫+⎨⎬⎩⎭为递减数列:(2)111ln(1),1,21n n n n<+<=+⋅⋅⋅⋅ 三、(12分)设f(x)在[],a b 中任意两点之间都具有介质性,而且f 在(a ,b )内可导,'()f x K ≤ (K 为正常数),(,)x a b ∈证明:f 在点a 右连续,在点b 左连续。
四、(14分)设120(1)nn I xd x=-⎰,证明:12,2,3,21,1,2,n nI n n n -==⋅⋅⋅⋅+≥=⋅⋅⋅⋅n n (1)I (2)I ()f x =五、(12分)设S 为一旋转曲面,它由光滑曲线段 [](),,,0y f x x a b z =∈= (()0)f x ≥ 绕x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出S 的面积公式为:2(baA f x π=⎰六、(24分)级数问题:设sin,01,0()xx xx f x ≠=⎧=⎨⎩{}[]() x a,b ()()11()()n nnf x f x f x f x f x ∈⇒⇒,求()(0),1,2,k fk =(1) 设1nn a∞=∑收敛,lim 0n x na →∞=,证明:111()nn n n n n aa a ∞∞+==-=∑∑。
(2) 设{}()n f x 为[]a,b 上的连续函数序列,且()()n f x f x ⇒,[]x a,b ∈,证明:若()f x 在[]a,b 上无零点,则当n 充分大时,()n f x 在[]a,b 上也无零点;并有11()()n f x f x ⇒,[]x a,b ∈。
华东师范大学数学分析试题及解答
华东师范大学 数学分析考研试题一、判别题(6*6=30分)(正确的说明理由,错误的举出反例)1.数列{}∞=1n n a 收敛的充要条件是对任意0>ε,存在正整数N ,使得当N n >时,恒有ε<-n n a a 2。
2.若),(y x f 在),(00y x 处可微,则在),(00y x 的某个邻域内yfx f ∂∂∂∂,存在。
3.设)(x f 在[]b a ,上连续,且()0=⎰dx x f ba,则)(x f 在[]b a ,上有零点。
4.设级数∑∞=1n n a 收敛,则∑∞=1n nn a 收敛。
5.设),(y x f 在),(00y x 的某个邻域内有定义且()()()00,,lim lim ,lim lim 0000y x f y x f y x f x x y y y y x x ==→→→→,则),(y x f 在),(00y x 处连续。
6. 对任意给定的R x ∈0,任意给定的严格增加正整数列 ,2,1,=k n k ,存在定义在R 上的函数)(x f 使得 ,2,1,0)(0)(==k x fk n ,()(0)(x f k 表示)(x f 在点0x 处的k 阶导数)。
二、计算题 (10*3=30分)(计算应包括必要的计算步骤)1.求 [].11sin )1(1lim41--++→xx e x x2.设 ()y x z z ,= 为由方程组⎪⎩⎪⎨⎧===uvz v e y ve x uu sin cos 所确定的隐函数。
求.,,2y x z y z x z ∂∂∂∂∂∂∂3.计算,321333dxdy r z dzdx r y dydz r x iS -+-+-⎰⎰其中 ()()()222321-+-+-=z y x r ,()()()1321:2221=-+-+-z y x S ,()()()1332211:2222=-+-+-z y x S ,积分沿曲面的外侧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析选论》习题解答第 一 章 实 数 理 论1.把§1、3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ∉=ξinf ,试证: (1)存在数列ξ=⊂∞→n n n a S a lim ,}{使;(2)存在严格递减数列ξ=⊂∞→n n n a S a lim ,}{使.证明如下:(1) 据假设,ξ>∈∀a S a 有,;且ε+ξ<'<ξ∈'∃>ε∀a S a 使得,,0.现依 次取,,2,1,1==εn n n 相应地S a n ∈∃,使得,2,1,=ε+ξ<<ξn a n n .因)(0∞→→εn n ,由迫敛性易知ξ=∞→n n a lim 、(2) 为使上面得到的}{n a 就是严格递减的,只要从2=n 起,改取,3,2,,1min 1=⎭⎬⎫⎩⎨⎧+ξ=ε-n a n n n ,就能保证,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □2.证明§1、3例6的(ⅱ).证 设B A ,为非空有界数集,B A S ⋃=,试证:{}B A S inf ,inf m in inf =.现证明如下.由假设,B A S ⋃=显然也就是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有{}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥⇒≥.另一方面,对任何,A x ∈ 有S x ∈,于就是有S A S x inf inf inf ≥⇒≥;同理又有S B inf inf ≥.由此推得{}B A S inf ,inf m in inf ≤.综上,证得结论 {}B A S inf ,inf m in inf =成立. □3.设B A ,为有界数集,且∅≠⋂B A .证明: (1){}B A B A sup ,sup m in )sup(≤⋂; (2){}B A B A inf ,inf m ax )(inf ≥⋂. 并举出等号不成立的例子.证 这里只证(2),类似地可证(1).设B A inf ,inf =β=α.则应满足:β≥α≥∈∈∀y x B y A x ,,,有.于就是,B A z ⋂∈∀,必有{}βα≥⇒⎭⎬⎫β≥α≥,max z z z , 这说明{}βα,max 就是B A ⋂的一个下界.由于B A ⋂亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥⋂成立.上式中等号不成立的例子确实就是存在的.例如:设)4,3(,)5,3()1,0(,)4,2(=⋂⋃==B A B A 则,这时3)(inf ,0inf ,2inf =⋂==B A B A 而,故得{}{}B A B A inf ,inf m ax inf >⋂. □ 4.设B A ,为非空有界数集.定义数集{}B b A a b a c B A ∈∈+==+,,证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.证 这里只证(2),类似地可证(1).由假设,B A inf ,inf =β=α都存在,现欲证β+α=+)(inf B A .依据下确界定义,分两步证明如下:1)因为,,,,β≥α≥∈∈∀y x B y A x 有所以B A z +∈∀,必有β+α≥+=y x z .这说明B A +β+α是的一个下界.2)B y A x ∈∈∃>ε∀00,,0,使得2,200ε+β>ε+α>y x .从而ε+β+α>+∈+=∃)(,0000z B A y x z 使得,故B A +β+α是的最大下界.于就是结论BA B A inf inf )(inf +=+ 得证.□5.设B A ,为非空有界数集,且它们所含元素皆非负.定义数集 {}B b A a ab c AB ∈∈==,,证明:(1)B A AB sup sup )sup(⋅=; (2)B A AB inf inf )(inf ⋅=. 证 这里只证(1),类似地可证(2).⎪⎩⎪⎨⎧⋅≤≤≤=≥≥∈∈∃∈∀,sup sup ,sup ,sup ,,)0,0(,,)(B A c B b A a ab c b a B b A a AB c 且使由于因此B A sup sup ⋅就是AB 的一个上界.另一方面,B b A a ∈∈∃>ε∀00,,0,满足ε->ε->B b A a sup ,sup 00,故)(000AB b a c ∈=∃,使得εε-+-⋅>])sup sup ([sup sup 0B A B A c .由条件,不妨设0sup sup >+B A ,故当ε足够小时,εε-+=ε'])sup sup ([B A 仍为一任意小正数.这就证得B A sup sup ⋅就是AB 的最小上界,即 B A AB inf inf )(inf ⋅= 得证. □*6.证明:一个有序域如果具有完备性,则必定具有阿基米德性.证 用反证法.倘若有某个完备有序域F 不具有阿基米德性,则必存在两个正元素F ∈βα,,使序列}{αn 中没有一项大于β.于就是,}{αn 有上界(β就就是一个),从而由完备性假设,存在上确界λ=α}sup{n .由上确界定义,对一切正整数n ,有α≥λn ;同时存在某个正整数0n ,使α-λ>α0n .由此得出α+<λ≤α+)1()2(00n n ,这导致与0>α相矛盾.所以,具有完备性的有序域必定具有阿基米德性. □7.试用确界原理证明区间套定理. 证 设{}],[n n b a 为一区间套,即满足:0)(lim ,1221=-≤≤≤≤≤≤≤≤∞→n n n n n a b b b b a a a .由于{}n a 有上界k b ,{}n b 有下界k a (+∈N k ),因此根据确界原理,存在{}{}β≤α=β=α且,inf ,sup n n b a .倘若β<α,则有,2,1,0=>λ=α-β≥-n a b n n ,而这与0)(lim =-∞→n n n a b 相矛盾,故ξ=β=α.又因 ,2,1,=≤β=α≤n b a n n ,所以ξ就是一切],[n n b a 的公共点.对于其她任一公共点 ,2,1,],[=∈ηn b a n n ,由于∞→→-≤η-ξn a b n n ,0 ,因此只能就是η=ξ,这就证得区间套{}],[n n b a 存在惟一公共点. □8.试用区间套定理证明确界原理.证 设S 为一非空有上界的数集欲证S 存在上确界.为此构造区间套如下:令 ],[],[011M x b a =,其中M S S x ,)(0∅≠∈ 为S 的上界.记2111b a c +=,若1c 就是S 的上界,则令],[],[1122c a b a =;否则,若1c 不就是S 的上界,则令],[],[1122b c b a =.一般地,若记2nn n b a c +=,则令 ,2,1,,,],[,,],[],[11=⎩⎨⎧=++n S c b c S c c a b a n n n n nn n n 的上界不是的上界当是.如此得到的{}],[n n b a 显然为一区间套,接下来证明这个区间套的惟一公共点ξ即为S 的上确界.由于上述区间套的特征就是:对任何+∈Νn ,n b 恒为S的上界,而n a 则不为S 的上界,故S x ∈∀,有n b x ≤,再由ξ=∞→n n b lim ,便得ξ≤x ,这说明ξ就是S 的一个上界;又因ξ=∞→n n a lim ,故ε-ξ>∃>ε∀n a ,0,由于n a 不就是S 的上界,因此ε-ξ更加不就是S 的上界.根据上确界的定义,证得S sup =ξ.同理可证,若S 为非空有下界的数集,则S 必有下确界. □ 9.试用区间套定理证明单调有界定理. 证 设{}n x 为递增且有上界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111M x b a =;类似于上题那样,采用逐次二等分法构造区间套{}],[n n b a ,使na 不就是{}n x 的上界,nb 恒为{}n x 的上界.由区间套定理,],[n n b a ∈ξ∃,且使ξ==∞→∞→n n n n b a lim lim .下面进一步证明 ξ=∞→n n x lim .一方面,由∞→≤k b x k n 取,的极限,得到,2,1,lim =ξ=≤∞→n b x k k n .另一方面,ε-ξ>∈∃>ε∀+K a K 使,,0Ν;由于K a 不就是{}n x 的上界,故K N a x >∃;又因{}n x 递增,故当N n >时,满足N n x x ≥.于就是有N n x x a n N K >ξ≤<<<ε-ξ,,这就证得ξ=∞→n n x lim .同理可证{}n x 为递减而有下界的情形. □ 10*.试用区间套定理证明聚点定理.证 设S 为实轴上的一个有界无限点集,欲证S 必定存在聚点.因S 有界,故0>∃M ,使得M x ≤,S x ∈∀.现设],[],[11M M b a -=,则],[11b a S ⊂.然后用逐次二等分法构造一区间套{}],[n n b a ,使得每次所选择的],[n n b a 都包含了S 中的无限多个点.由区间套定理,],[n n b a ∈ξ∃,n ∀.最后应用区间套定理的推论,,0>ε∀当n 充分大时,使得],[n n b a );εξ⊂(U ;由于],[n n b a 中包含了S 的无限多个点,因此);(εξU 中也包含了S 的无限多个点,根据聚点定义,上述ξ即为点集S 的一个聚点. □11*.试用有限覆盖定理证明区间套定理.证 设{}],[n n b a 为一区间套,欲证存在惟一的点 ,2,1,],[=∈ξn b a n n . 下面用反证法来构造],[11b a 的一个无限覆盖.倘若{}],[n n b a 不存在公共点ξ,则],[11b a 中任一点都不就是区间套的公共点.于就是,∈∀x ],[11b a ,使,],[n n b a ∃ ],[n n b a x ∉.即);(x x U δ∃与某个],[n n b a 不相交( 注:这里用到了],[n n b a 为一闭区间 ).当x 取遍],[11b a 时,这无限多个邻域构成],[11b a 的一个无限开覆盖:{}],[);(11b a x x U H x ∈δ=.依据有限覆盖定理,存在],[11b a 的一个有限覆盖:{}H N i x U U H i x i i ⊂=δ==,,2,1);(~,其中每个邻域N i b a U ii n n i ,,2,1,],[ =∅=⋂.若令{}N n n n K ,,,max 21 =,则N i b a b a i i n n K K ,,2,1,],[],[ =⊂,从而N i U b a i K K ,,2,1,],[ =∅=⋂. (Ж) 但就是Ni iU 1=覆盖了],[11b a ,也就覆盖了],[K K b a ,这与关系式(Ж)相矛盾.所以必定存在 ,2,1,],[=∈ξn b a n n .(有关ξ惟一性的证明,与一般方法相同.) □12.设S 为非空有界数集.证明:S S y x Sy x inf sup ||sup ,-=-∈.证 设η<ξ=η=ξ且,sup ,inf S S ( 若η=ξ,则S 为单元素集,结论显然成立 ).记{}Sy x y x E ∈-=,||,欲证ξ-η=E sup .首先,S y x ∈∀,,有ξ-η≤-⇒η≤ξ≥||,y x y x ,这说明ξ-η就是E 的一个上界.又因2,0ε-η>ε∀ ⎪⎭⎫ ⎝⎛ε+ξ2不再就是S 的上()下界,故S y x ∈∃00,,使ε-ξ-η≥-⇒⎪⎭⎪⎬⎫ε+ξ<ε-η>)(||220000y x y x , 所以ξ-η就是E 的最小上界,于就是所证结论成立. □13.证明:若数集S 存在聚点ξ,则必能找出一个各项互异的数列{}S x n ⊂,使ξ=∞→n n x lim .证 依据聚点定义,对S U x ⋂εξ∈∃=ε);(,1111 .一般地,对于⎭⎬⎫⎩⎨⎧-ξ=ε-1,1m in n n x n ,,3,2,);(=⋂εξ∈∃n S U x n n .如此得到的数列{}S x n ⊂必定满足:,3,2,||||11=≠⇒ξ-<ξ---n x x x x n n n n ;ξ=⇒∞→→<ξ-∞→n n n x n n x lim )(01||. □ 41*.设S 为实轴上的一个无限点集.试证:若S 的任一无限子集必有属于S 的聚点,则(1)S 为有界集;(2)S 的所有聚点都属于S .证 (1)倘若S 无上界,则对1111,,1M x S x M >∈∃=使;一般地,对于{},3,2,,,,max 1=>∈∃=-n M x S x x n M n n n n n 使.这就得到一个各项互异的点列{}∞=⊂∞→n n n x S x lim ,使.S 的这个无限子集没有聚点,与题设条件相矛盾,所以S 必有上界.同理可证S 必有下界,故S 为有界集.(2)因S 为有界无限点集,故必有聚点.倘若S 的某一聚点S ∉ξ0,则由聚点的性质,必定存在各项互异的数列{}0lim ,ξ=⊂∞→n n n x S x 使.据题设条件,{}n x 的惟一聚点0ξ应属于S ,故又导致矛盾.所以S 的所有聚点都属于S . □51*.证明:{}{}n n a a ∉ξ=sup ,则必有ξ=∞→n n a lim .举例说明,当上述ξ属于{}n a 时,结论不一定成立.证 利用§1、3 例4,{}{}n n a a k ⊂∃,使ξ=∞→k n n a lim ,这说明ξ就是{}n a 的一个聚点.又因ξ又就是{}n a 的上界,故{}n a 不可能再有比ξ更大的聚点.所以ξ就是{}n a 的上极限.当{}n a ∈ξ时,结论不一定成立.例如,1,111sup ⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧n n 显然不就是⎭⎬⎫⎩⎨⎧n 1的上极限. □61*.指出下列数列的上、下极限:(1){}n)1(1-+; (2)⎭⎬⎫⎩⎨⎧+-12)1(n n n; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧πnn 3cos; (4)⎭⎬⎫⎩⎨⎧π+4sin 12n n n ;(5)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧π+n n n sin 12. 解(1)0lim ,2lim ,0,2122==≡≡∞→∞→-n n n n k k a a a a 故.(2))(211412,21142122∞→-→---=→+=-k k k a k ka k k ,故21lim ,21lim -==∞→∞→n n n n a a . (3))(13cos211∞→≤π≤←n n nn, 故 1lim lim lim ===∞→∞→∞→n n n n n n a a a .(4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--=+⋅--=+-=+=+++=+⋅=π+=.38,18,12222,8,12,4,0,28,12,38,18,12224sin 12k k n n nk n n n k n k n n n k k n n n n n n a n故2lim ,2lim -==∞→∞→n n n n a a .(5))(sin )1(sin 1222∞→π→ππ⋅+π=π+=n nn nn nn n a n ,故π===∞→∞→∞→n n n n n n a a a lim lim lim . □71*.设{}n a 为有界数列,证明:(1)1lim )(lim =-=-∞→∞→n n n n a a ; (2)n n n n a a ∞→∞→-=-lim )(lim .证 由)(sup )(inf ,)(inf )(sup k nk k nk k nk k nk a a a a ≥≥≥≥-=--=-,令∞→n 取极限,即得结论(1)与(2). □81*.设0lim >∞→n n a ,证明:(1)nn n n a a ∞→∞→=lim 11lim; (2)nn n n a a ∞→∞→=lim 11lim;(3)若11limlim =⋅∞→∞→n n n n a a ,或11lim lim =⋅∞→∞→nn n n a a ,则{}n a 必定收敛.证 由)(sup 11inf ,)(inf 11sup k nk k n k kn k k n k a a a a ≥≥≥≥=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,令∞→n 取极限,即得结论(1)与(2).若11limlim =⋅∞→∞→nn n n a a ,则由(1)立即得到 n n n n a a ∞→∞→=lim lim ,因此极限n n a ∞→lim 存在,即得结论(3).类似地,若11limlim =⋅∞→∞→nn n n a a ,则由(2)同样可证得(3). □10 10。