2013-2014年人教版七年级上期末专题复习第二章整式的加减
人教版七年级上册期末专题复习04:第二章整式的加减(提升卷)

【人教版七年级数学(上)期末专题复习】专题04 第二章整式的加减(提升卷)(测试时间:60分钟 试卷总分:120分)班级:________ 姓名:________ 得分:________一、选择题(每小题3分,共30分)1.下列式子:x 2-1,1a +2,237ab ,ab c ,-5x ,3中,整式的个数有() A .6 B .5 C .4 D .32.若23m xy -与2385n x y -的和是单项式,则m 、n 的值分别是()A .m =2,n =2B .m =4,n =2C .m =4,n =1D .m =2,n =33.一个两位数,个位上是a ,十位上是b ,用代数式表示这个两位数是()A .abB .baC .10b +aD .10a +b4.下列各选项中,去括号错误的是()A .723121723121-++=+--+c b a c b a )()( B .b a n m b a n m -+-=-+-+)( C .213213+-=--y x y x )( D .33236421++-=+--y x y x )( 5.关于x ,y 的单项式2222132ax y bxy x y xy ,,,的和,合并同类项后结果是26xy -,则a b ,的值分别是()A .132a b =-=-,B .192a b =-=-,C .192a b ==-,D .132a b ==, 6.如果m 和n 互为相反数,则化简(3m -2n )-(2m -3n )的结果是()A .-2B .0C .2D .37.长方形一边长为3x +2y ,另一边长比它小x -y ,则这个长方形的周长为()A .4x +yB .8x +2yC .10x +10yD .12x +8y8.已知a -2b =-2,则4-2a +4b 的值是()A .0B .2C .4D .89.非零有理数a 、b 、c 满足a +b +c =0,则a b c abc a b c abc+++所有可能的值为() A .0 B .1或-1 C .2或-2 D .0或-210.如图1,是某年11月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是()A .a +d =b +cB .a -d =b -cC .a +c +2=b +dD .a +b +14=c +d二、填空题(每小题3分,共30分)11.单项式35x yπ-的系数是,次数是.12.若3x n y 2与xy 1-m 是同类项,则m +n =.13.已知n 是自然数,多项式23423x x x x n +-+是三次三项式,那么n 可以取的数是.14.若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为.15.某电影院的票价是成人25元,学生10元.现七年级(11)班由4名教师带队,带领x 名学生一起去该影院观看爱国主义题材电影,则该班电影票费用总和为_________元.16.长方形的周长为c 米,宽为a 米,则长为米.17.已知x 2-xy =7,2xy +y 2=4,则代数式x 2+xy +y 2的值是.18.用含m ,n 的代数式表示图中阴影部分的面积是.19.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n 棵树之间的间隔有____________米.20.观察下列单项式的规律:a 、-2a 2、3a 3、-4a 4、…第2016个单项式为.三、解答题(共60分)21.(6分)先化简,再求值:x 2+(2xy -3y 2)-2(x 2+yx -2y 2),其中x =-1,y =2.22.(6分)已知A =x 2-2x +1,B =2x 2-6x +3.求:(1)A +2B .(2)2A -B .23.(6分)关于y x 、的多项式422322323++-++x xy x nxy mx 不含三次项,求n m 32+的值.24. (6分)某轮船顺水航行3小时,逆水航行1.5小时,已知轮船在静水中的速度是m 千米/小时,水流速度是n 千米/小时,求轮船共航行多少千米?25.(8分)某种窗户的形状如图所示(图中长度单位:cm ),其上部是半圆形,下部是边长相同的四个小正方形,已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户的外框的总长.26.(8分)一个两位数的十位数字大于个位数字,如果把十位数字与个位数字交换位置,则原来的数与新得到的数的差必能被9整除,试说明其中的道理.27.(10分)某校七年级四个班的学生在植树节这天共义务植树(6a-3b)棵,一班植树a 棵,二班植树的棵数比一班的两倍少b棵,三班植树的棵数比二班的一半多1棵.(1)求三班的植树棵数(用含a,b的式子表示);(2)求四班的植树棵数(用含a,b的式子表示);(3)若四个班共植树54棵,求二班比三班多植树多少棵?28.(10分)某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为元;②涨价后,每个台灯的利润为元;③涨价后,商场的台灯平均每月的销售量为台.(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.参考答案1.C2.B3.C4.D .【解析】根据去括号法则可得选项A 、B 、C 正确,选项D 错误,正确为原式=-2x +3y -23,故答案选D . 5.B .【解析】由合并同类项法则可得3+b =-6,a +21=0,解得192a b =-=-,,故答案选B .6.B【解析】利用相反数的定义得到m +n =0,原式去括号合并后代入计算即可求出值. 解:原式=3m -2n -2m +3n =m +n ,由m 与n 互为相反数,得到m +n =0,则原式=0,故选B7.C .【解析】根据题意表示另一边的长为3x +2y -(x -y )=3x +2y -x +y =2x +3y ,所以长方形的周长=2(3x +2y +2x +3y )=10x +10y .故选C .8.D【解析】观察题中的两个代数式a -2b 和4-2a +4b 可以发现,-2a +4b =-2(a -2b ),因此整体代入即可求出所求的结果.解:∵a -2b =-2,代入4-2a +4b ,得4-2(a -2b )=4-2×(-2)=8.故选D .9.A .【解析】∵a +b +c =0,abc 不可能是0,∴a 、b 、c 三个数中既有正数也有负数,∴a 、b 、c 三个数中有一个负数或两个负数,∴若有两个负数,则a b c abc a b c abc+++=-1-1+1+1=0;若有一个负数,则a b c abc a b c abc +++=-1+1+1-1=0,∴a b c abc a b c abc+++所有可能的值为0.故选:A .10.B . 【解析】由对角线的角度看,两个数字的和相等,则a +d =b +c ,故A 正确;横向来看,左右两个数相差1,得b =a +1,d =c +1,则a +c +2=b +d ,故C 正确; 纵向看,上下两个数字相差7,得a +7=c ,b +7=d ,则a +b +14=c +d ,故D 正确; 由于a -b =-1,d -c =-1,则a -b ≠d -c ,即a -d ≠b -c ,故B 错误.故选B .11.-,4.【解析】根据单项式系数和次数的概念求解. 解:单项式-的系数为-,次数为4. 故答案为:-,4. 12.0【解析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,求出m ,n 的值,继而可求得m +n .解:∵3x n y 2与xy 1-m 是同类项,∴n =1,1-m =2,∴m =-1,n =1,则m +n =0.故答案为:0.13.1;2;3.【解析】此题主要考查了多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.根据题意可知,0<n ≤3,求出n 的值代入所求代数式即可.∵n 为自然数,代数式23423x x x x n +-+是三次多项式,∴0<n ≤3,∴n 的值可能是1;2;3.14.2.【解析】由题意可得:2x 2+3x +7=10,所以移项得:2x 2+3x =10-7=3,所求多项式转化为:6x 2+9x -7=3(6x 2+9x )-7=3×3-7=9-7=2,故答案为2.15.(10x +100).【解析】由题意可知,4个教师的成人票是25×4=100元,x 名学生的票价位10x 元,所以该班电影票费用总和为(10x +100)元.故答案为(10x +100).16.【解析】设长为x 米,利用矩形的周长的定义得到2a +2x =c ,然后解出关于x 的方程即可. 解:设长为x 米,则2a +2x =c ,所以x =(米). 故答案为.17.11.【解析】试题解析:∵x 2-xy =7,2xy +y 2=4,∴原式=(x 2-xy )+(2xy +y 2)=7+4=11.18.3.5mn .【解析】用大矩形的面积减去空白矩形的面积即可.解:观察图形知道,空白矩形的宽为2n -n -0.5n =0.5n ,故阴影部分的面积=2n ×2m -m ×0.5n =3.5mn ,故答案为:3.5mn .19.2(n -1).【解析】第一棵树与第n 棵树之间的间隔有2(n -1)米.故答案为:2(n -1).20.-2016a 2016.【解析】单项式的系数是正负间隔出现,系数的绝对值等于该项字母的次数,由此规律即可解答.解:第2016个单项式为:-2016a 2016,故答案为:-2016a 2016.21.3【解析】先根据去括号、合并同类项化简,然后再把x 、y 的值代入求解;解:x 2+(2xy -3y 2)-2(x 2+yx -2y 2),=x 2+2xy -3y 2-2x 2-2yx +4y 2,=-x 2+y 2,当x =-1,y =2时,原式=-(-1)2+22=-1+4=3.22.(1)5x 2-14x +7;(2)2x -1.【解析】(1)根据题意可得A +2B =x 2-2x +1+2(2x 2-6x +3),去括号合并可得出答案.(2)2A -B =2(x 2-2x +1)-(2x 2-6x +3),先去括号,然后合并即可.解:(1)由题意得:A +2B =x 2-2x +1+2(2x 2-6x +3),=x 2-2x +1+4x 2-12x +6,=5x 2-14x +7.(2)2A -B =2(x 2-2x +1)-(2x 2-6x +3),=2x 2-4x +2-2x 2+6x -3,=2x -1.23.12,3m n =-=值为-3 【解析】先化简整式,然后根据三次项的系数为0,求出m 、n 的值,然后代入代数式n m 32+计算即可.解:323223223224(2)(31)24mx nxy x xy x m x n xy x ++-++=++-++,因为多项式不含三次项,所以20,310m n +=-=,所以12,3m n =-=, 所以n m 32+=-4+1=-3.24.(4.5m +1.5n )千米.【解析】首先求得顺水速度为(m +n )千米/小时,逆水速度为(m -n )千米/小时,分别求得顺水路程和逆水路程相加得出答案即可.试题解析:3(m +n )+1.5(m -n )=3m +3n +1.5m -1.5n=4.5m +1.5n (千米).答:轮船共航行(4.5m +1.5n )千米.25.(1)221(4);2a cm π+(2)(6).acm π+ 【解析】(1)根据图示,用边长为acm 的4个小正方形的面积加上半径为acm 的半圆的面积,求出窗户的面积即可;(2)根据图示,用3条长度为2acm 的边的长度加上半径为acm 的半圆的周长,求出窗户的外框的总长是即可.解:(1)窗户的面积:222222424(4)();22a a a a a cm πππ+÷=+=+26.理由见解析.【解析】设原两位数的十位数字为b ,个位数字为a (b >a ),分别表示出原来的两位数和交换后的两位数,然后将其作差,整理后不难得到结论.解:设原两位数的十位数字为b ,个位数字为a (b >a ),则原两位数为10b +a ,交换后的两位数为10a +b .∵10b +a -(10a +b )=10b +a -10a -b=9b -9a=9(b -a )∴9(b -a )能被9整除.27.(1)[12(2a -b )+1]棵;(2)(2a -32b -1)棵;(3)8棵 【解析】(1)由一班植树a 棵,根据二班植树的棵数比一班的两倍少b 棵得出二班植树2a -b 棵,根据三班植树的棵数比二班的一半多1棵得出三班植树的棵数为12(2a -b )+1; (2)利用四个班植树的总棵树减去三个班植树的棵树得出四班的植树棵数;(3)代入54,求得a 、b 的关系,进一步列出二班比三班多植树的棵树,整理得出答案即可.解:(1)由题意得二班植树:(2a -b )棵,三班植树:[12(2a -b )+1]棵; (2)四班植树:6a -3b -a -2a +b -12(2a -b )-1=(2a -32b -1)棵; (3)由题意得6a -3b =54,即2a -b =18,则b =2a -18,二班比三班多:2a -b -12(2a -b )-1=a -12b -1=8棵 答:二班比三班多植树8棵.28.(1)40+a ,10+a ,600-10a .(2)经理甲与乙的说法均正确.【解析】(1)根据进价和售价以及每上涨1元时,其销售量就将减少10个之间的关系,列出代数式即可;。
人教版 七年级数学上册 第2章 整式的加减 复习题及答案

人教版七年级数学上册第2章整式的加减复习题一、选择题1. 下列式子:7x,3,0,4a2+a-5,1x-1,x2y3,12ab+1中,是单项式的有()A.3个B.4个C.5个D.6个2. 下列式子中,不是整式的是()A. B.+b C. D.4y3. 已知M=4x2-3x-2,N=6x2-3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能4. 某校组织若干名师生进行社会实践活动.若学校租用45座的客车x辆,则余下15人无座位;若租用60座的客车,则可少租用1辆,且最后一辆还没坐满,那么乘坐最后一辆60座客车的人数是() A.75-15x B.135-15xC.75+15x D.135-60x5. 观察如图所示的图形,则第n个图形中三角形的个数是()A.2n+2B.4n+4C.4nD.4n-46. 按图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=-4,y=-2C.x=2,y=4 D.x=4,y=27. 用一根长为a cm的铁丝,首尾相接围成一个正方形,现要将这个正方形按图K-26-1所示的方式向外等距扩1 cm得到新的正方形,则这根铁丝的长度需增加()图K-26-1A.4 cm B.8 cm C.(a+4)cm D.(a+8)cm8. 观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…,根据其中的规律,得出第10个单项式是()A.-29x10B.29x10C.-29x9D.29x99. 在一列数:a1,a2,a3,…a n中,a1=7,a2=1,从第三个数开始,每一个数都等于它前面两个数之积的个位数字,则这个数中的第2020个数是()A.1 B.3 C.7 D.910. 如图,在2020年10月份的月历表上,任意圈出一个正方形,则下列等式中错误的是()A.a+d=b+cB.a-c=b-dC.a-b=c-dD.d-a=c-b二、填空题11. 式子axy2-12x与14x-bxy2的和是单项式,则a,b的关系是________.12. 某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台的进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.13. 如图,将长和宽分别是a,b的长方形纸片的四个角各剪去一个边长为x的小正方形.用含a,b,x的式子表示长方形纸片剩余部分的面积为__________.14. 我校七年级学生在今年植树节栽了m棵树,若八年级学生比七年级学生多栽n棵树,则两个年级共栽树________棵.15. 如图是一个数表,现用一个长方形在数表中任意框出4个数,若右上角的数字用a来表示,则这4个数的和为________.三、解答题16. 计算:(1)3-(1-x)+(1-x+x2);(2)(-6x2+5xy)-12xy-(2x2-9xy);(3)2x2y+{2xy-[3x2y-2(-3x2y+2xy)]-4xy2}.17. 已知多项式-a12+a11b-a10b2+…+ab11-b12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?18. 如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C 区是边长为b m的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=20,b=10,求整个长方形运动场的面积.答案一、选择题1. 【答案】B [解析] 单项式有7x ,3,0,x 2y 3,共4个.2. 【答案】C [解析] +b 是多项式,是整式;4y 是单项式,是整式;只有不是整式.3. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.4. 【答案】B [解析] 总人数为45x +15,则乘坐最后一辆60座客车的人数为45x +15-60(x -2)=135-15x.故选B.5. 【答案】C [解析] 根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律:第n 个图形中三角形的个数是4n .6. 【答案】C [解析] 将四个选项分别按运算程序进行计算.A .当x =3,y =3时,输出结果为32+2×3=15,不符合题意;B .当x =-4,y =-2时,输出结果为(-4)2-2×(-2)=20,不符合题意;C .当x =2,y =4时,输出结果为22+2×4=12,符合题意;D .当x =4,y =2时,输出结果为42+2×2=20,不符合题意.故选C.7. 【答案】B [解析] 因为原正方形的周长为a cm ,所以原正方形的边长为a 4 cm.因为将该正方形按图中所示的方式向外等距扩1 cm ,所以新正方形的边长为(a 4+2)cm.所以新正方形的周长为4(a 4+2)=(a +8)cm.所以需要增加的铁丝长度为a +8-a =8(cm).故选B.8. 【答案】B9. 【答案】C [解析] 依题意得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,周期为6,2020÷6=336……4,所以a2020=a4=7.故选C.10. 【答案】D二、填空题11. 【答案】a=b[解析] axy2-12x+14x-bxy2=-14x+(a-b)xy2.因为axy2-12x与14x-bxy2的和是单项式,所以a-b=0,即a=b.12. 【答案】1.08a[解析] 由题意可得,该型号洗衣机的零售价为a(1+20%)×0.9=1.08a(元).故答案为1.08a.13. 【答案】ab-4x214. 【答案】(2m+n)[解析] 因为七年级学生在今年植树节栽了m棵树,八年级学生比七年级学生多栽n棵树,所以八年级学生栽树(m+n)棵,所以两个年级共栽树m+m+n=(2m+n)棵.15. 【答案】4a+8[解析] 由图可知,右上角的数为a,则左上角的数为a-1,右下角的数为a+5,左下角的数为a+4,所以这4个数的和为a+(a-1)+(a+4)+(a+5)=4a+8.三、解答题16. 【答案】解:(1)原式=3+x2.(2)原式=-6x2+5xy-12xy-2x2+9xy=-8x2+2xy.(3)原式=2x2y+[2xy-(3x2y+6x2y-4xy)-4xy2]=2x2y+(2xy-3x2y-6x2y+4xy-4xy2)=2x2y+2xy-3x2y-6x2y+4xy-4xy2=-7x2y-4xy2+6xy.17. 【答案】[解析] 观察所给条件,a的指数逐次减1,b的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a8b4,它的系数为-1,次数为12.(2)十二次十三项式.18. 【答案】解:(1)2[(a+b)+(a-b)]=2(a+b+a-b)=4a(m).(2)2[(a+a+b)+(a+a-b)]=2(a+a+b+a+a-b)=8a(m).(3)当a=20,b=10时,整个长方形运动场的长=a+a+b=50(m),整个长方形运动场的宽=a+a-b=30(m),所以整个长方形运动场的面积=50×30=1500(m2).。
人教版七年级数学上册--第二章 整式的加减章节复习(课件)

所以x+1=0,y﹣1=0,
所以x=﹣1,y=1,
所以3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y﹣3
=3x2y+3xy﹣2x2y+2xy﹣4x2y﹣3
=﹣3x2y+5xy﹣3
=﹣3×(﹣1)2×1+5×(﹣1)×1﹣3
【4-2】先化简,再求值:3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y﹣3,其中x、y
2.多项式的次数:多项式里,次数最高项的次数,叫做这个多项式的次数.
3.整式:单项式与多项式统称整式.
三、多项式及整式相关概念
在确定多项式的项和次数时应注意:
1.多项式的各项应包括它前面的符号;
2.多项式没有系数的概念,但其每一项均有系数,每一项的系数也包括前
面的符号;
3.要确定一个多项式的次数,先要确定此多项式中各项(单项式)的次数,
=-2x-(x -2x +6x)
2
9
2
=-2x-(-x2+6x)
= 3x − ( x + 3 + 2x 2 )
2
9
=-2x+x2-6x
2
= 3x − x − 3 − 2x 2
2
2
9
=x -8x
2
=x − x−3
2
2
2
3
整式的加减运算
例7.已知a,b,c三个数在数轴上对应的点如图所示,
化简: b − a − 2a − b + a − c − c
解:根据数轴可知:c < b < 0 < a,|c|>|a|>|b|,
人教版七年级数学上册第二章整式的加减复习课

合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
1.下列各式中,是同类项的是:__③__⑤_⑥______
① 2x2 y3 与 x3 y2 ② x2 yz 与 x2 y
③10mn与 2 mn
3
④ (a)5与 (3)5 ⑤ 3x2 y 与 0.5 yx2 ⑥-125与
5.单项式的系数应包括它前面的性质符号。
4
5 x2y 4
6.单项式次数是指所有字母的次数的和,与数字的次数没 有关系。
7.单独的数字不含字母, 规定它的次数是零次.
1,单项式的定义 例1,下列各式子中,是单项式的有 __①__、__②__、_④__、__⑦_(填序号)
①a;② 1 ;③x y;④xy;⑤ 2 ;⑥ x 1 ;⑦ x ;
对于(2),虽然好像它们的次数不一样,但其实它们都是常 数项,所以,它们都是同类项;
对于(4),虽然它们的系数不同,字母的顺序也不同,但它 依然满足同类项的定义,是同类项;
答:(2)、(4)是同类项,(1)(3)不是同类项;
例2 下列合并同类项的结果错误的 有_①__、__②_、__③__、__④__、_⑤.
单项式: 系数: 单项式中的__数_字__因__数__。 次数: 单项式中的___所_有__字__母__的__指_数__和___.
注意的问题:
12..当 当单式项子式分的母系中数出现是字1或母-1时时不,是“单1”项通式常。省略不2写如a²,–abc。
3.圆周率π是常数,不要看成字母。
x
4.当单项式的系数是带分数时,通常写成假分数1。1 x2 y
2.若 2x3 yn与 xm y2 是同类项,则m+n=__5_.
人教版七年级上册期末复习精选题考点-第二章《整式的加减》复习

人教版七年级上册期末复习精选题考点讲义第二章整式的加减知识点1:整式的相关概念1.单项式:由的积组成的叫做单项式,单独的或一个也是单项式.细节剖析(1)单项式的系数是指单项式中的数字.(2)单项式的次数是指单项式中所有字母的.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做的.细节剖析(1)在多项式中,不含字母的项叫做.(2)多项式中次数最高的项的,就是这个多项式的.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为次项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从到的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母排列.细节剖析(1)利用加法交换律重新排列时,各项应连同它的符号一起位置;(2)含有多个字母时,只按给定的字母进行或排列.4.整式:单项式和多项式统称为.知识点2:整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做.所有的都是同类项.细节剖析辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含相同;②相同字母的相同;(2)“两无关”是指:①与无关;②与字母的排列无关.2.合并同类项:把多项式中的同类项合并成一项,叫做同类项.细节剖析合并同类项时,只是相加减,所得结果作为,保持不变.1.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要.2.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都;添括号后,括号前面是“-”,括号内各项的符号都要.3.整式的加减运算法则:几个整式相加减,通常用括号把每一个括起来,再用连接,然后,.考点1:代数式 【例题1】(2017秋•柯桥区期末)请你写出一个同时符合下列条件的代数式,(1)同时含有字母a ,b ;(2)是一个4次单项式;(3)它的系数是一个正数,你写出的一个代数式是 .【变式1-1】(2020秋•碑林区期中)下列关于单项式254xy π-的说法中,正确的是( ) A .系数是54-,次数是4 B .系数是54π,次数是4 C .系数是54π-,次数是3 D .系数是5-,次数是3【变式1-2】(2020秋•泰兴市期中)下列关于多项式22381ab a bc -+的说法中,正确的是( )A .它是三次三项式B .它是四次两项式C .它的常数项是1-D .它的最高次项是28a bc -考点2:列代数式【例题2】(2019秋•仁怀市期末)四个长宽分别为a ,b 的小长方形(白色的)按如图所示的方式放置,形成了一个长、宽分别为m 、n 的大长方形,则下列各式不能表示图中阴影部分的面积是( )A .4mn ab -B .2mn ab am --C .24an bn ab +-D .22a ab am mn --+【变式2-1】(2019秋•辉县市期末)某商店经销一种品牌的空调,其中某一型号的空调每台进价为m 元,商店将进价提高30%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号空调的零售价为 元.【变式2-2】(2019秋•襄汾县期末)某种衣服售价为m 元时,每天的销量为n 件,经调研发现:每降价1元可多卖5件,那么降价x 元后,一天的销售额是 元.【变式2-3】(2019秋•和平区期末)小王购买了一套房子,他准备将地面都铺上地砖,地面结构如图所示,请根据图中的数据(单位:米),解答下列问题:(1)用含x ,y 的代数式表示地面总面积为 平方米;(2)若5y=,铺地砖每平方米的平均费用为100元,则铺地砖的总费用为元;x=,1(3)已知房屋的高度为3米,现需要在客厅和卧室的墙壁上贴壁纸,那么用含x的代数式表示至少需要平方米的壁纸;如果所粘壁纸的价格是100元/平方米,那么用含x的代数式表示购买该壁纸至少需要元.(计算时不扣除门,窗所占的面积)【变式2-4】(2019秋•汾阳市期末)国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.【变式2-5】(2019秋•南平期末)已知数轴上两点A,B(点B在点A的右侧),若数轴上存在一点C,使得2AC BC=,则称点C为点A,B的“3倍分=,则称点C为点A,B的“2倍分点”,若使得3AC BC点”,⋯,若使得AC kBC=,则称点C为点A,B的“k倍分点(k为正整数).请根据上述规定回答下列问题:(1)如图,若点A表示数1-,点B表示数2.①当点C表示数1时,则k=;②当点C为点A,B的“5倍分点”时,求点C表示的数;(2)若点A表示数a,6AB=,当点C为AB的“3倍分点”时,请直接写出点C表示的数.(用含a的代数式表示)考点3:代数式求值【例题3】(2019秋•平定县期末)某公园准备修建一块长方形草坪,长为a米,宽为b米.并在草坪上修建如图所示的十字路,已知十字路宽2米.(1)用含a、b的代数式表示修建的十字路的面积.(2)若30b=,求草坪(阴影部分)的面积.a=,20【变式3-1】(2020春•兴国县期末)按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是.【变式3-2】(2019秋•长春期末)新学期开学,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给的数据信息,解答下列问题.(1)一本数学课本的高度是多少厘米?(2)讲台的高度是多少厘米?(3)请写出整齐叠放在桌面上的x本数学课本距离地面的高度的代数式(用含有x的代数式表示)(4)若桌面上有56本同样的数学课本,整齐叠放成一摞,从中取走18本后,求余下的数学课本距离地面的高度.考点4:同类项【例题4】(2019秋•商河县期末)已知25m a b -和433n a b -是同类项,则12m n -的值是 .【变式4-1】(2014春•涿州市校级月考)已知532y x a b +与242y x b a -是同类项,那么x 、y 的值是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .035x y =⎧⎪⎨=-⎪⎩D .30x y =⎧⎨=⎩【变式4-2】(2017秋•榆树市期末)已知单项式21925x m n --和5325y m n 是同类项,求代数式152x y -的值.考点5:合并同类项【例题5】(2019秋•盐湖区期末)若5333343a b x y x y x y +-+=-,则ab 的值是 .考点6:去括号与添括号【例题6】(2017秋•唐县期末)下列各式由等号左边变到右边变错的有( )①()a b c a b c --=--②2222()2()2x y x y x y x y +--=+-+③()()a b x y a b x y -+--+=-++-④3()()33x y a b x y a b --+-=--+-.A .1个B .2个C .3个D .4个考点7:整式的加减【例题7】(2019秋•南浔区期末)有一个魔术,魔术师背对小聪,让小聪拿着扑克牌按下列四个步骤操作:这时,魔术师准确说出了中间一堆牌现有的张数,则他说出的张数是( )①第一步:分发左、中、右三堆牌,每堆牌不少于五张,且各堆牌的张数相同;②第二步:从左边一堆拿出五张,放入中间一堆;③第三步:从右边一堆拿出三张,放入中间一堆;④第四步:右边一堆有几张牌,就从中间一堆拿几张牌放入右边一堆.A .8B .9C .10D .11【变式7-1】(2019秋•岱岳区期末)下列运算中,正确的是( )A .33a b ab +=B .224325a a a --=-C .2(4)24x x --=--D .22232a b a b a b -+=-【变式7-2】(2019秋•新泰市期末)七年级某同学做一道题:“已知两个多项式A ,B ,221A x x =+-,计算2A B +”,他误将2A B +写成了2A B +,结果得到答案256x x +-,请你帮助他求出正确的答案.考点8:整式的加减—化简求值=【例题8】(2019秋•平舆县期末)若单项式253x y 与1312a b x y ---是同类项,求下面代数式的值: 22225[63(2)]ab a b ab a b --+.【变式8-1】(2019秋•苍溪县期末)先化简,再求值:22222222(22)3()3()x y x y x x y y --+++,其中1x =-,2y =.。
人教版七年级数学上册第二章 整式的加减 专题练习试题(含答案)

人教版七年级数学上册第二章整式的加减专题练习试题专题一、与整式加减相关的新定义问题方法指导:新定义问题,即给出一个新的数学符号标记,规定一种新的运算规则,并按新规定的运算规则进行计算.解题的关键是看懂规定的运算,将新规定的运算转化为整式加减运算问题,在转化过程中,要特别注意括号的作用.1.定义新运算:a#b=3a-2b,则(x+y)#(x-y)=x+5y.2.定义一种新运算:a⊕b=2a-b,a b=b-a,求(x⊕y)⊕(y x)=3x-y.专题二、利用数轴去绝对值符号化简1.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.有理数a,b在数轴上的位置如图所示,化简|a-b|-|b-a|的结果是(C)A.2a+2b B.2bC.0 D.2a4.有理数a,b在数轴上的位置如图所示,则化简|a-b|-2|a+b|的结果为(A)A.a+3b B.-3a-bC.3a+b D.-a-3b5.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C ,其位置如图所示,化简:2|b +c|-3|a -c|-4|a +b|.解:由数轴知,a <b <0<c ,且|b|<|c|,所以b +c >0,a -c <0,a +b <0,所以原式=2(b +c)-[-3(a -c)]-[-4(a +b)]=2b +2c +3(a -c)+4(a +b)=2b +2c +3a -3c +4a +4b=7a +6b -c.专题三、 整体思想在整式求值中的运用方法指导:整式的化简求值中,当单个字母的值不易求出或化简后的结果与已知值的式子相关联时,需要将已知式子的值整体代入计算.1.已知x -2y =5,那么5(x -2y)2-4(x -2y)-60的值为(B )A .55B .45C .80D .402.已知式子3y 2-2y +6的值是8,那么32y 2-y +1的值是(B ) A .1 B .2C .3D .43.若m -n =-1,则(m -n)2-2m +2n 的值为(A )A .3B .2C .1D .-14.若式子2x 2+3x +7的值是8,则式子4x 2+6x -9的值是(C )A .2B .-17C .-7D .75.已知x 2+2x -1=0,则3x 2+6x -2=1.6.如果m ,n 互为相反数,那么(3m -2n)-(2m -3n)=0.7.已知x =2y +3,则式子4x -8y +9的值是21.8.若2a -b =2,则6+4b -8a =-2.9.若a 2-5a -1=0,则5(1+2a)-2a 2的值为3.10.已知a 2+b 2=6,ab =-2,求(4a 2+3ab -b 2)-(7a 2-5ab +2b 2)的值.解:原式=-3a 2+8ab -3b 2=-3(a 2+b 2)+8ab ,因为a 2+b 2=6,ab =-2,所以原式=-3×6+8×(-2)=-34.专题四、 整式的化简与求值类型1 整式的加减运算1.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)3(m 2-2m -1)-2(m 2-3m)-3;解:原式=3m 2-6m -3-2m 2+6m -3=m 2-6.(3)-12(4x 2-2x -2)+13(-3+6x 2); 解:原式=-2x 2+x +1-1+2x 2=x.(4)3x2y-[2xy-2(xy-23x2y)+xy].解:原式=3x2y-(2xy-2xy+43x2y+xy)=3x2y-2xy+2xy-43x2y-xy=53x2y-xy.2.已知A=x2-2x+1,B=2x2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x2-2x+1+2(2x2-6x+3)=x2-2x+1+4x2-12x+6=5x2-14x+7.(2)2A-B=2(x2-2x+1)-(2x2-6x+3)=2x2-4x+2-2x2+6x-3=2x-1.类型2整式的化简求值3.先化简,再求值:(1)2(a2+3a-2)-3(2a+2),其中a=-2;解:原式=2a2+6a-4-6a-6=2a2-10.当a =-2时,原式=2×(-2)2-10=-2.(2)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12,y =-3; 解:原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时, 原式=-2×14-1-(-3)=32. (3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,b =14; 解:原式=2a 2b -2ab 2-3a 2b +3+2ab 2+1=-a 2b +4.当a =2,b =14时, 原式=-22×14+4=3. (4)(5a 2+3a -1)-3(a +a 2),其中a 2-2=0;解:原式=5a 2+3a -1-3a -3a 2=2a 2-1.因为a 2-2=0,即a 2=2,所以原式=2×2-1=3.(5)3x 2y -[2xy 2-2(xy -32x 2y)+xy]+3xy 2,其中|x -3|+(y +13)2=0. 解:原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.因为|x -3|+(y +13)2=0, 所以x =3,y =-13.所以原式=-1+13=-23.专题五、与整式的化简有关的说理题1.是否存在数m ,使化简关于x ,y 的多项式(mx 2-x 2+3x +1)-(5x 2-4y 2+3x)的结果中不含x 2项?若不存在,说明理由;若存在,求出m 的值.解:原式=mx 2-x 2+3x +1-5x 2+4y 2-3x=(m -6)x 2+4y 2+1.由题意,得m -6=0,所以m =6.2.有一道题“先化简,再求值:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因.解:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3=17x 2-8x 2-5x -4x 2-x +3+5x 2+6x -1-3=10x 2-1.因为当x =2 020和x =-2 020时,x 2的值相同,所以他计算的结果是正确的.3.已知关于x ,y 的多项式x 2+ax -y +b 与多项式bx 2-3x +6y -3的和的值与x 的取值无关,求式子3(a 2-2ab +b 2)-[4a 2-2(12a 2+ab -32b 2)]的值. 解:(x 2+ax -y +b)+(bx 2-3x +6y -3)=(b +1)x 2+(a -3)x +5y +b -3.因为该多项式的值与x 的取值无关,所以b +1=0,a -3=0.所以b =-1,a =3.原式=3a 2-6ab +3b 2-(3a 2-2ab +3b 2)=3a2-6ab+3b2-3a2+2ab-3b2=-4ab=12.4.嘉淇在计算一个多项式A减去多项式2b2-3b-5的差时,因一时疏忽忘了将两个多项式用括号括起来,因此得到的差是b2+3b-1.(1)求这个多项式A;(2)求这两个多项式运算的正确结果;(3)当b=-1时,求(2)中结果的值.解:(1)由题意,得A-2b2-3b-5=b2+3b-1,则A=(b2+3b-1)+(2b2+3b+5)=b2+3b-1+2b2+3b+5=3b2+6b+4.(2)这两个多项式运算的正确结果为(3b2+6b+4)-(2b2-3b-5)=3b2+6b+4-2b2+3b+5=b2+9b+9.(3)当b=-1时,原式=(-1)2+9×(-1)+9=1-9+9=1.5.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若a≠b,把这个两位数的十位数字与个位数字对换,得到一个新的两位数,则原两位数与新两位数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)由题意得,这两个数的和为(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.这两个数的差为(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),因为a,b都是整数,所以a-b也是整数.所以这两个数的差一定是9的倍数.专题六、规律探究类型1数式规律1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取的种子数是(2n+1)粒.2.按规律写出空格中的数:-2,4,-8,16,-32,64.3.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是13a+21b.4.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.5.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).6.观察以下图案和算式,解答问题:(1)1+3+5+7+9=25;(2)1+3+5+7+9+…+19=100;(3)猜想:1+3+5+7+…+(2n -1)=n 2.7.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .458.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .89.观察下列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n -1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n .(4)第2 019个单项式是-4 037x 2 019,第2 020个单项式是4 039x 2 020.类型2图形规律10.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为(D)A.3n B.6nC.3n+6 D.3n+311.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形中共有6_058个〇.…12.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.…。
人教版七年级数学上第2章 整式的加减知识点总结及题型汇总

整式的加减知识点总结及题型汇总整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。
人教新版七年级数学上学期期末单元复习 第2章 整式的加减 含答案

第2章整式的加减一.选择题(共12小题)1.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣2.若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.03.若单项式a m+1b2与的和是单项式,则m n的值是()A.3 B.4 C.6 D.84.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2 5.已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99 B.101 C.﹣99 D.﹣1016.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.2x2﹣5x﹣1 7.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b8.如果关于x的多项式3x3﹣4x2+x+k2x2﹣5中不含x2项,则k的值为()A.2 B.﹣2 C.2或﹣2 D.09.已知A是关于a的三次多项式,B是关于a的二次多项式,则A+B的次数是()A.二次B.三次C.四次D.五次10.下列去括号正确的是()A.4(x﹣1)=4x﹣1 B.a+2(﹣2b+c)=a﹣4b+2cC.a﹣(﹣2b+c)=a+2b+c D.﹣5(1﹣x)=﹣5﹣x11.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b (a>b),则a﹣b的值为()A.6 B.8 C.9 D.1212.如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A.3b﹣2a B.C.D.二.填空题(共9小题)13.若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是.14.单项式.的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.15.在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是.16.嘉淇准备完成题目:化简:(4x2﹣6x+7)﹣(4x2﹣口x+2)发现系数“口”印刷不清楚,妈妈告诉她:“我看到该题标准答案的结果是常数”,则题目中“口”应是.17.去括号合并:3(a﹣b)﹣(2a+3b)=.18.把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是.19.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为.20.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是.21.观察下面的一列单项式:﹣2x、4x3、﹣8x5、16x7、…根据你发现的规律,第n个单项式为.三.解答题(共4小题)22.(1)先化简,再求值:(a2b+ab2)﹣(a2b﹣1)﹣ab2﹣1,其中a=﹣2,b=2.(2)先化简,再求值:5ab2﹣[3ab﹣2(﹣2ab2+ab)],其中a是最小的正整数,b是绝对值最小的负整数.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a+c|.24.小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?25.有一道题“求代数式的值:(﹣4x2+2x﹣8y)﹣(x﹣2y),其中x=,y=2019”,小亮做题时把“y=2019”错抄成“y=﹣2019”,但他的结果也是正确的,为什么?参考答案与试题解析一.选择题(共12小题)1.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选:B.2.若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.0【分析】将原式合并同类项,可得知二次项系数为6﹣7m,令其等于0,即可解决问题.【解答】解:∵原式=x2y+(6﹣7m)xy+y3,若不含二次项,即6﹣7m=0,解得m=.故选:B.3.若单项式a m+1b2与的和是单项式,则m n的值是()A.3 B.4 C.6 D.8【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得x的指数要相等,y的指数也要相等,即可得到m,n的值,再代入所求式子计算即可.【解答】解:∵整式a m+1b2与的和为单项式,∴m+1=3,n=2,∴m=2,n=2,∴m2=22=4.故选:B.4.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求得.【解答】解:根据题意得:a+1=2,b=3,则a=1.故选:C.5.已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99 B.101 C.﹣99 D.﹣101【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵m﹣n=100,x+y=﹣1,∴原式=n+x﹣m+y=﹣(m﹣n)+(x+y)=﹣100﹣1=﹣101.故选:D.6.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.2x2﹣5x﹣1 【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(5x2+4x﹣1)﹣(3x2+9x)=5x2+4x﹣1﹣3x2﹣9x=2x2﹣5x ﹣1.故选:D.7.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选:B.8.如果关于x的多项式3x3﹣4x2+x+k2x2﹣5中不含x2项,则k的值为()A.2 B.﹣2 C.2或﹣2 D.0【分析】根据合并同类项,可得整式的化简,根据二次项的系数为零,可得关于k的一元二次方程,解一元二次方程,可得答案.【解答】解:原式=3x3+(k2﹣4)x2+x﹣5,由多项式不含x2,得k2﹣4=0,解得k=±2,故选:C.9.已知A是关于a的三次多项式,B是关于a的二次多项式,则A+B的次数是()A.二次B.三次C.四次D.五次【分析】因为三次项没有同类项,所以和中最高次是3次.【解答】解:因为三次项与二次项不可相加减所以A+B的次数是三次.故选:B.10.下列去括号正确的是()A.4(x﹣1)=4x﹣1 B.a+2(﹣2b+c)=a﹣4b+2cC.a﹣(﹣2b+c)=a+2b+c D.﹣5(1﹣x)=﹣5﹣x【分析】根据去括号法则解答.【解答】解:A、原式=4x﹣4,故本选项不符合题意.B、原式=a﹣4b+2c,故本选项符合题意.C、原式=a+2b﹣c,故本选项不符合题意.D、原式=﹣5+x,故本选项不符合题意.故选:B.11.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b (a>b),则a﹣b的值为()A.6 B.8 C.9 D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.12.如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A.3b﹣2a B.C.D.【分析】设小长方形的长为x,宽为y,根据题意求出x﹣y的值,即为长与宽的差.【解答】解:设小长方形的长为x,宽为y,根据题意得:a+y﹣x=b+x﹣y,即2x﹣2y=a﹣b,整理得:x﹣y=,则小长方形的长与宽的差是,故选:B.二.填空题(共9小题)13.若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是 2 .【分析】先合并同类项,再根据与字母x的取值无关,则含字母x的系数为0,求出m 的值.【解答】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.14.单项式.的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.【分析】直接利用多项式的次数以及单项式的次数确定方法分别得出m,n的值进而得出答案.【解答】解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.15.在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是﹣7x2+6x+2 .【分析】根据题意列出算式,去括号后求出即可.【解答】解:根据题意得:A=(﹣2x2+3x﹣4)﹣(5x2﹣3x﹣6)=﹣2x2+3x﹣4﹣5x2+3x+6=﹣7x2+6x+2,故答案为:﹣7x2+6x+2.16.嘉淇准备完成题目:化简:(4x2﹣6x+7)﹣(4x2﹣口x+2)发现系数“口”印刷不清楚,妈妈告诉她:“我看到该题标准答案的结果是常数”,则题目中“口”应是 6 .【分析】设“□”为a,根据整式的运算法则进行化简后,由答案为常数即可求出“□”的答案.【解答】解:设“□”为a,∴(4x2﹣6x+7)﹣(4x2﹣口x+2)=4x2﹣6x+7﹣4x2+ax﹣2=(a﹣6)x+5,∵该题标准答案的结果是常数,∴a﹣6=0,解得a=6,∴题目中“□”应是6.故答案为:6.17.去括号合并:3(a﹣b)﹣(2a+3b)=a﹣6b.【分析】直接利用去括号法则去掉括号,进而合并同类项得出答案.【解答】解:3(a﹣b)﹣(2a+3b)=3a﹣3b﹣2a﹣3b=a﹣6b.故答案为:a﹣6b.18.把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是+3﹣5m﹣m2n2+2m3.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是+3﹣5m﹣m2n2+2m3.故答案为:+3﹣5m﹣m2n2+2m3.19.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为 2 .【分析】由题意得2x2+3x=3,将6x2+9x﹣7变形为3(2x2+3x)﹣7可得出其值.【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.20.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是2ab.【分析】将等式右边的已知项移到左边,再去括号,合并同类项即可.【解答】解:依题意,空格中的一项是:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)﹣(5a2﹣6b2)=2a2+3ab﹣b2+3a2﹣ab﹣5b2﹣5a2+6b2=2ab.故答案是:2ab.21.观察下面的一列单项式:﹣2x、4x3、﹣8x5、16x7、…根据你发现的规律,第n个单项式为(﹣1)n2n x2n﹣1.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵﹣2x=(﹣1)1•21•x1;4x3=(﹣1)2•22•x3;8x5=(﹣1)3•23•x5;﹣16x7=(﹣1)4•24•x7.第n个单项式为(﹣1)n•2n•x2n﹣1.故答案为:(﹣1)n2n x2n﹣1.三.解答题(共4小题)22.(1)先化简,再求值:(a2b+ab2)﹣(a2b﹣1)﹣ab2﹣1,其中a=﹣2,b=2.(2)先化简,再求值:5ab2﹣[3ab﹣2(﹣2ab2+ab)],其中a是最小的正整数,b是绝对值最小的负整数.【分析】(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)原式去括号合并得到最简结果,确定出a与b的值,代入计算即可求出值.【解答】解:(1)原式=a2b+ab2﹣a2b+﹣ab2﹣1=﹣a2b+,当a=﹣2,b=2时,原式=﹣8+=﹣;(2)原式=5ab2﹣3ab﹣4ab2+2ab=ab2﹣ab,由题意得:a=1,b=﹣1,则原式=1+1=2.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a+c|.【分析】先由数轴上点的关系,可得a,、c互为相反数,再根据负数的绝对值是它的相反数,可化简去掉绝对值,再合并同类项,得答案.【解答】解:|b+c|﹣|b+a|+|a+c|=﹣(b+c)﹣(﹣b﹣a)+(a+c)=﹣b﹣c+b+a+a+c=2a.24.小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?【分析】(1)原式去括号、合并同类项即可得;(2)设“□”是a,将a看做常数,去括号、合并同类项后根据结果为6知二次项系数为0,据此得出a的值.【解答】解:(1)(3x2﹣6x+8)+(6x﹣5x2﹣2)=3x2﹣6x+8+6x﹣5x2﹣2=﹣2x2+6;(2)设“□”是a,则原式=(ax2﹣6x+8)+(6x﹣5x2﹣2)=ax2﹣6x+8+6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案是6,∴a﹣5=0,解得a=5.25.有一道题“求代数式的值:(﹣4x2+2x﹣8y)﹣(x﹣2y),其中x=,y=2019”,小亮做题时把“y=2019”错抄成“y=﹣2019”,但他的结果也是正确的,为什么?【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=﹣x2+x﹣2y﹣x+2y=﹣x2,结果与y的值无关,故小亮做题时把“y=2019”错抄成“y=﹣2019”,但他的结果也是正确的.。
人教版数学七年级上册第二章整式的加减复习课件

(3)、7x 3x 4 =4x 求多项式2x2-5x+x2+4x-3x2-2的值,其中x=2
2
2
2
☺
(4)、9a2b9b2 a0✓ ☺
例:化简
1 .4 (x 3 y 9 y 3 ) 3 ( x 2 y 2 8 y 3 )
2 . 1 3 ( 1 4 a 3 ) ( 1 a 2 a 2 ) ( 1 a a 2 a 3 ) 2.题,很多同学在化简为 : 14 33a3 1 a 2a2 1- a a2 - a3, 由于项比较多, 合并的时候存在漏项和 符号错误, 那么我们怎么处理呢?
同类项:所含字母相同,且相同字母的指数也相同的项
(1)、2x3x 5x =5x2 ☺ 2 2 把同类项的系数相加,所得的结果作为系数,
雄鹰必须比鸟飞得高,因为它的猎物就是鸟。
4
这个式子从和式的角度理解,可以避免我们符号错误,读作:“17,-3a3,+2a2,+a2,-a3的和,即把式子前面的符号理解为性质符号,
=-3-a43a-3a+33合a2并+1,7+2a2+a2合并,17不能合并写在后边,最后用“+”连接 不注是意, :保几持个不常变数,项放也后是面同!类项
无这钱个之 式人子脚从杆和硬式,的有角钱度之理人解骨,头可酥以。避免我们符号错误,读作:“17,-3a3,+2a2,+a2,-a3的和,即把式子前面的符号理解为性质符号, 2不(y作+1运)-算5(符1-0号. 无 2(y钱+1之)-人5(脚1-0杆. 硬,有钱之人骨头酥。 —这(个式)子(从负和括式号的)角。度理解,可以避免我们符号错误,读作:“17,-3a3,+2a2,+a2,-a3的和,即把式子前面的符号理解为性质符号, 这不个作式 运子算从符和号式的角度理解,可以避免我们符号错误,读作:“17,-3a3,+2a2,+a2,-a3的和,即把式子前面的符号理解为性质符号, 不如作果运 括算号符前号有系数,则先用乘法分配律运算后进行转化。
人教版七年级上册数学期末复习第二章整式的加减

D.
11 6
a-24
人
5.下列表达错误的是( D ) A.比a的2倍大1的数是2a+1 B.a的相反数与b的和是-a+b C.比a的平方小1的数是a2-1 D.a的2倍与b的差的3倍是2a-3b
6.(创新题)x表示一个两位数,y表示一个三位数,如果把x放
在y的左边组成一个五位数,那么表示这个五位数的代数式
知识点4 整式化简求值
1.若a-b=5,则3a+7+5b-6
a+
1 3
b
=(
B
)A.-7Fra bibliotekB.-8
C.-9
D.10
2.若a-b=1,则整式a-(b-2)的值是 3 .
3.若x=1,y=-2,代数式5x-(2y-3x)的值是 12 .
4.先化简,再求值:14(-4x2+2x-8)-
1 2
x-1
,其中 x=12.
解:原式=-x2+12x-2-12x+1=-x2-1,
2
当x=12时,原式=-
1 2
-1=-54.
5.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其 中a=-1,b=-2. 解:原式=-a2b+3ab2-a2b-4ab2+2a2b=-ab2, 当a=-1,b=-2时,原式=-(-1)×(-2)2=4.
6.化简:x2y-3xy2+2yx2-y2x. 解:原式=(1+2)x2y-(3+1)xy2=3x2y-4xy2.
7.化简:3x2+2xy-4y2-3xy+4y2-3x2. 解:原式=(3x2-3x2)+(2xy-3xy)+(4y2-4y2)=-xy.
知识点3 整式的加减 1.下面计算中,正确的是( D ) A.3x2-x2=3 B.3a2+2a3=5a5
人教版七年级数学上册第二章《整式的加减》复习课课件

知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.
人教版七年级上册数学教案:第二章整式的加减(复习)

整式的加减七年级数学上册(人教版)教学设计学科:数学年级:七年级设计人:课题第二章整式的加减(复习)教材分析本章的主要内容是整式的加减运算,这个内容是紧密结合实际问题展开的;单项式、多项式、整式的概念以及合并同类项、去括号是进行整式加减运算的基础。
通过本章的学习,一方面应使学生熟悉上述概念,掌握合并同类项法则和去括号时符号的变化规律,能够熟练进行整式的加减运算;另一方面,在学习这些概念和法则的过程中,应使学生在分析和列式表示实际问题中的数量关系方面得到一定的训练,为下一章学习做好准备。
学情分析七年级学生对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,在平时的上课过程中已经初步形成了合作交流、勇于探索的学习风气。
形象直观思维已比较成熟,但抽象思维能力还比较薄弱。
于是我根据学生和结合《新课标》的要求,设计了这节课。
教学目标1、理解同类项的概念,能正确合并同类项。
2、掌握去分括号的方法,能正确的去括号。
3、熟练掌握整式加减的运算。
4、运用整式的加减运算计算有关的应用问题。
教学重点难点重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:整式的加减运算的应用及探索规律列式。
教学方法分层次教学,情境激趣、讲授、练习相结合。
教学手段运用多媒体电子白板,清晰直观的展示学习任务。
教学突破思路括号前面为“—”号时去括号,里面各项的变号问题以及正确地进行数与整式相乘问题。
列代数式时,把单项式或多项式分别看作一个整体,用括号括起来。
教师导学学生活动设计意图知识回顾用字母表示数整单项式:系数、次数式单项式:项、次数、常数项同类项:定义、“两相同、两无关”合并同类项:定义、法则、步骤去括号:法则整式的加减:步骤问题导学1、请写出-8ab的一个同类项:___________。
学生独立思考,回顾本章相关概念。
引导学生回忆整式的有关概念。
同类项概念:所含____相同,并且_ _的指数也相同的项叫做同类项。
人教版七年级上册第二章整式的加减2.2.3整式的加减(教案)

四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的加减》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个物品价格总和的情况?”(如购买多个商品时的总价计算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式的加减的奥秘。
此外,合并同类项这一环节,学生的掌握情况也参差不齐。有的学生能够迅速找到同类项并合并,但有的学生却找不到规律。这可能是因为我在教学中没有充分强调同类项的识别方法。在以后的教学中,我会专门增加同类项识别的练习,帮助学生熟练掌握这一技巧。
在实践活动和小组讨论环节,我发现学生们表现得非常积极。他们能够将整式的加减应用于解决实际问题,并能够进行小组内的有效沟通。这说明学生们在合作学习方面有了很大的进步,也让我对他们的学习潜力更有信心。
然而,我也注意到,在学生讨论的过程中,有些学生发言不够积极,可能是对整式的加减还不够自信。为了提高这部分学生的积极性,我打算在接下来的课程中,多给予他们鼓励和支持,让他们在课堂上更加自信地表达自己的观点。
最后,我觉得在总结回顾环节,学生对整式的加减知识点的掌握情况还是不错的。但仍有少数学生对某些知识点存在疑问。为了确保每个学生都能跟上教学进度,我计划在课后对这部分学生进行个别辅导,帮助他们巩固整式的加减知识。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的加减的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对整式的理解和运用。希望大家能够掌握这些知识点,并在日常生活中灵活运用。如果对整式的加减有任何疑问或不明白的地方,请随时向我提问。