数学建模复习资料参考答案

合集下载

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。

A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。

当矩形的面积最大时,求矩形的长和宽。

A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。

求该直线的方程。

A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。

A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。

假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。

求两辆车首次相遇的时间。

A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。

答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。

答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。

数学建模复习资料参考答案

数学建模复习资料参考答案

《数学建模》复习资料参考答案一、不定项选择1、建模能力包括 A、B、C、D 。

A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力2、按照模型的应用领域分的模型有 A、E 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型3、对黑箱系统一般采用的建模方法是 C 。

A、机理分析法B、几何法C、系统辩识法D、代数法4、一个理想的数学模型需满足 A、B 。

A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性5、按照建立模型的数学方法分的模型有 B、C、D 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型6、下列说法正确的有 A、C 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解不清楚。

7、力学中把 A 的量纲作为基本量纲。

A、质量、长度、时间B、密度、时间、长度C、质量、密度D、时间、长度8、下列说法错误的有 B 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解清楚。

9、建立数学模型的方法和步骤有ABCDE。

A、模型假设。

B、模型求解。

C、模型构成。

D、模型建立。

E、模型分析。

10、模型按照替代原型的方式可以简单分为AB。

A、形象模型B、抽象模型C、生态模型D、白箱模型11、形象模型可以具体分为ABC。

A.直观模型B、物理模型C、分子结构模型等;12、抽象模可以具体分为ABC。

A 思维模型B符号模型C数学模型D分子结构模型13建模的一般原则为ABCD。

A目的性原则B简明性原则C真实性原则D全面性原则;14 模型的结构大致分为ABC。

A、灰箱模型B、白箱模型C、黑箱模型15A、建立递阶层次结构模型;B、构造出各层次中的所有判断矩阵;C、层次单排序及一致性检验;D、层次总排序及一致性检验。

数学建模试卷A参考答案

数学建模试卷A参考答案

数学建模试卷(A )卷参考答案一、答:二、解:对应的约束条件代表的区域为如下图中阴影部分:两线的交点坐标为()()12,6,4x x =,由图可知z 值在交点处最大,即max 36z =。

三、解:设z 为利润,123,,x x x 分别表示,,A B C 生产的件数,123,,y y y 分别表示,,A B C 生产是否生产(为0-1变量,0表示不生产,1表示生产)。

则 目标函数:()()()123112233max 200025003000300503208040070z y y y y x y x y x =+++-+-+-约束条件:1231231231231232350024000350000,0,0;,0 1;x x x x x x x x x x x x y y or ++≤⎧⎪++≤⎪⎨++≤⎪⎪≥≥≥=⎩四、解:(一)(二)目标层准则层方案层11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦1(),0,ij n n ij ji ijA a a a a ⨯=>=层次分析法的基本步骤成对比较阵和权向量元素之间两两对比,对比采用相对尺度设要比较各准则C 1,C 2,… , C n 对目标O 的重要性:i j ijC C a ⇒A ~成对比较阵 A 是正互反阵要由A 确定C 1,… , C n 对O 的权向量选择旅游地(三)111122221212n n n n n n w w w w w w w w w w w w A w w w w w w ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎤⎥⎢⎥⎢⎥⎣⎦23a =一致比较允许不一致,但要确定不一致的允许范围考察完全一致的情况12(1),,nW w w w =⇒/ij i ja w w =令12(,,)~T n w w w w =权向量“选择旅游地”中准则层对目标的权向量及一致性检验11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦准则层对目标的成对比较阵最大特征根λ=5.073权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T 5.07350.01851CI -==-一致性指标随机一致性指标 RI=1.12 (查表) 一致性比率CR =0.018/1.12=0.016<0.1通过一致性检验五、解:()221max ni i i a bx y =+-∑,对,a b 分别求偏导数,可以求解得0.9726,0.0500b a ==。

数学建模答案(完整版)

数学建模答案(完整版)

1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。

在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数 x=567.889与0.0368处的近似值(保留有()f x =效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算的值,其中a=2.3,b=4.89.()f x >> syms a b >> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans = 2.08644用matlab 计算函数在x=处的值.()f x =3π>> syms x >> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans = 12.09625用matlab 计算函数在x=1.23处的值.()arctan f x x =+>> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans = 1.78376 用matlab 计算函数在x=-2.1处的值.()()f x f x ==>> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.ln 10y x =+[20,15]-->> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线 虚线绘制函数在[-10,10]上步长为0.2的图像.sin(22x y π=->> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数在上步长为0.2的图像.sin(2)3y x π=+[0,4]πsin(2)sin()[0,4]322x y x y πππ=+=->> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与.y =>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加234,,y x y x y x ===各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像2sin x t y t z t ⎧=⎪=⎨⎪=⎩>> syms x y t z >> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面在上的3维图像(1cos )cos (1cos )sin sin x u v y u v z u =+⎧⎪=+⎨⎪=⎩(0,2)(0,2)ππ⨯>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u);>> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right') ans = 216 求极限1201lim (3x x +→>> syms y x >> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right') ans = 017求极限lim x >> syms x y >> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf) ans = 018 求极限21lim (1x x x x →+∞+->> syms x y >> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf) ans = exp(4)19 求极限01cos 2lim sin x xx x →->> syms x y >> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0) ans = 220 求极限 x →>> syms x y >> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y >> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf) ans = 122 求函数y=的导数5(21)arctan x x -+>> syms x y >> y=(2*x-1)^5+atan(x);>> diff(y) ans = 10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=的导数2tan 1x x y x=+>> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数的导数3tan x y e x -=>> syms y x >> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x) y = exp(-3*x)*tan(x) >> diff(y) ans = exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=在x=1的导数22ln sin 2x x π+>> syms x y >> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3 >> syms x y >> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y) dxdy = 2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi = 226 求函数y=的二阶导数01cos 2lim sin x x x x →-11x x-+>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y >> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y) ans = (((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间()内求函数的最值.,-∞+∞43()341f x x x =-+>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN y = NaN >> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x = NaN y = NaN29在区间(-1,5)内求函数发的最值.()(f x x =->> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y = -0.3470>> >> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x = 4.9999y = -10.505930 求不定积分(ln 32sin )x x dx -⎰(ln 32sin )x x dx -⎰>> syms x y >> y=log(3*x)-2*sin(x);>> int(y) ans = 2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分 >> syms x y >> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰>> syms x y >> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)xe x dx -+⎰>> syms x y >> y=exp(-x)*(3*x+2);>> int(y,0,1) ans = 5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0x →120(1)cos x arc xdx+⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y >> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;2122x x dx +∞++-∞⎰>> syms y x >> y=(1/(x^2+2*x+2));>> int(y,-inf,inf) ans = pi 38.计算广义积分;20x dx x e +∞-⎰>> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。

大学数学建模-参考答案

大学数学建模-参考答案

20XX年复习资料大学复习资料专业:班级:科目老师:日期:参考答案一.填空题:(每题2分,共20XXXX 分)1. 阻滞增长模型0.5(10.001)(0)100dx x x dt x ⎧=-⎪⎨⎪=⎩的解为 x(t)=20XXXX00/(1+9exp(-0.5t) )。

2. 用Matlab 做常微分方程数学实验,常用的命令有 ode45,ode23等等。

(写欧拉法等方法而非Matlab 命令的不给分)(本题着重考察数学实验有没有认真做!)3. 整数m 关于模20XXXX 可逆的充要条件是:m 和20XXXX 没有质数公因子。

4. 根据Malthus 模型,如果自然增长率为2%,则人口数量增长为初值3倍所需时间为(假设初值为正)50ln354.93≈5. 请补充判断矩阵缺失的元素131219193121A ⎛⎫ ⎪= ⎪ ⎪⎝⎭。

二.选择题:(每题2分,共20XXXX 分)1.C ;2. A;3.B;4.C.5.C三.判断题(每题2分,共20XXXX 分)1.×;2..√;3.×;4. ×;5. ×(应考虑谱半径=1的特殊情况)四.应用题(共70分)1).中间关键步骤不能少,否则不给分!2)开头计算错误,但整体思路、算法正确适当给一些分。

1.(5分)解:设x1、x2分别为每个集装箱中甲乙两种货物的托运包数,f 为总利润,则该问题可以视为整数线性规划问题,其数学模型为:1212121212max 2010.. 54242513 ,0,,f x x s t x x x x x x x x Z=++≤+≤≥∈ 目标函数1分,每个约束条件各1分常见错误:没有非负、整数约束,未写ILP 标准形式2(20XXXX 分)解:问题的物理量有:波速v 与波长λ、水深d 、水的密度ρ和重力加速度g 。

令 (,,,,)0v d g ϕλρ=.取 g 1=λ,g 2=v ,g 3=d ,g 4=ρ,g 5=g基本量纲为M , L , T ,各物理量的量纲为:[g 1]=L , [g 2]=LT -1,[g 3]=L , [g 4]= M -1L -3, [g 5]= LT -2。

(完整版)数学建模复习内容带习题答案

(完整版)数学建模复习内容带习题答案

考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。

一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。

问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。

(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。

A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。

(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3) 结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000 fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。

数学建模习题集及答案解析课后习题集

数学建模习题集及答案解析课后习题集

第一局部课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。

学生们要组织一个10人的委员会,试用以下方法分配各宿舍的委员数:〔1〕按比例分配取整数的名额后,剩下的名额按惯例分给小数局部较大者。

〔2〕2.1节中的Q值方法。

〔3〕d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种方法的道理吗。

如果委员会从10人增至15人,用以上3种方法再分配名额。

将3种方法两次分配的结果列表比较。

〔4〕你能提出其他的方法吗。

用你的方法分配上面的名额。

2.在超市购物时你注意到大包装商品比小包装商品廉价这种现象了吗。

比方洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。

试用比例方法构造模型解释这个现象。

〔1〕分析商品价格C与商品重量w的关系。

价格由生产本钱、包装本钱和其他本钱等决定,这些本钱中有的与重量w成正比,有的与外表积成正比,还有与w无关的因素。

〔2〕给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。

解释实际意义是什么。

3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。

假定鱼池4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大〔如图〕。

假设知道管道长度,需用多长布条〔可考虑两端的影响〕。

如果管道是其他形状呢。

5.用尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。

6.动物园里的成年热血动物靠饲养的食物维持体温根本不变,在一些合理、简化的假设下建立动物的饲养食物量与动物的某个尺寸之间的关系。

7.举重比赛按照运发动的体重分组,你能在一些合理、简化的假设下建立比赛成绩与体重之间的关系吗。

数学建模复习题答案

数学建模复习题答案

数学建模复习题答案数学建模复习题答案数学建模是一门综合性学科,通过数学方法解决实际问题。

在数学建模的学习过程中,复习题是非常重要的一部分,它们可以帮助我们巩固所学的知识,并提供实践操作的机会。

下面,我将为大家提供一些数学建模复习题的答案。

1. 题目:某公司生产一种产品,每天的产量与生产成本之间存在着一定的关系。

已知每天的产量为x(单位:个),生产成本为C(单位:元)。

已知当产量为100个时,生产成本为300元;当产量为200个时,生产成本为500元。

求生产成本与产量之间的关系。

答案:设生产成本与产量之间的关系为C=f(x),其中f(x)为一个函数。

根据已知条件,我们可以列出方程组:f(100)=300f(200)=500根据这两个方程,我们可以求出函数f(x)的表达式:f(x)=1.5x+150所以,生产成本与产量之间的关系为C=1.5x+150。

2. 题目:某城市的人口增长速度与时间成正比。

已知2010年时,该城市的人口为100万人;2015年时,该城市的人口为150万人。

求该城市人口增长速度与时间的关系。

答案:设人口增长速度与时间的关系为V=f(t),其中f(t)为一个函数。

根据已知条件,我们可以列出方程组:f(2010)=100f(2015)=150根据这两个方程,我们可以求出函数f(t)的表达式:f(t)=10t+1990所以,人口增长速度与时间的关系为V=10t+1990。

3. 题目:某公司的销售额与广告投入之间存在着一定的关系。

已知广告投入为x(单位:万元),销售额为y(单位:万元)。

已知当广告投入为10万元时,销售额为20万元;当广告投入为20万元时,销售额为30万元。

求销售额与广告投入之间的关系。

答案:设销售额与广告投入之间的关系为y=f(x),其中f(x)为一个函数。

根据已知条件,我们可以列出方程组:f(10)=20f(20)=30根据这两个方程,我们可以求出函数f(x)的表达式:f(x)=x+10所以,销售额与广告投入之间的关系为y=x+10。

数学建模答案--完整版

数学建模答案--完整版
a 2 b2 的值,其中 a=2.3,b=4.89. a b



4、用 MATLAB 计算函数 f ( x ) 实
sin x cos x 在 x= 处的值. 2 3 1 x
5、用 MATLAB 计算函数 f ( x) arctan x ln( x 1) 在 x=1.23 处的值.

15、求极限 lim
x 0
sin 2 x 1 cos x

>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x)); >> limit(y,x,0,‘right’) ans =

2
1 21x ( ) 16、求极限 lim x 0 3
>> syms x y >> y=(1/3)^(1/(2*x)); >> limit(y,x,0,'right') ans = 0 17、求极限 xlim
y x 2 , y x3 , y x 4 这三条曲线的
图形,并要求用两种方法加各种标注.
x t2 13、作曲线 y sin t 的 3 维图象. z t

x (1 cos u ) cos v 14、作环面 y (1 cos u ) sin v 在 (0, 2 ) (0, 2 ) 上的 3 维图象. z sin u

19、求极限 lim
1 cos 2 x x 0 x sin x
>> syms x y >> y=(1-cos(2*x))/(x*sin(x)); >> limit(y,x,0) 过 ans = 2 20、求极限 lim

2022年秋季-福师《数学建模》在线作业二-[复习资料]-答案3

2022年秋季-福师《数学建模》在线作业二-[复习资料]-答案3

2022年秋季-福师《数学建模》在线作业二-0003
试卷总分:100 得分:100
一、判断题 (共 40 道试题,共 80 分)
1.最小二乘法估计是常见的回归模型参数估计方法
<-A.->错误
<-B.->正确
【正确答案】:B
2.样本平均值和理论均值不属于参数检验方法
<-A.->错误
<-B.->正确
【正确答案】:A
3.量纲齐次原则指任一个有意义的方程必定是量纲一致的<-A.->错误
<-B.->正确
【正确答案】:B
4.对实际问题建模没有确定的模式
<-A.->错误
<-B.->正确
【正确答案】:B
5.数学建模以模仿为目标
<-A.->错误
<-B.->正确
【正确答案】:A
6.利用乘同余法可以产生随机数
<-A.->错误
<-B.->正确
【正确答案】:B
7.大学生走向工作岗位后就不需要数学建模了
<-A.->错误
<-B.->正确
【正确答案】:A。

(完整版)数学建模复习内容带习题答案

(完整版)数学建模复习内容带习题答案

考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。

一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。

问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。

(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。

A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。

(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3)结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。

数学建模试题(带答案)大全

数学建模试题(带答案)大全

(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0

bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2

2023高中数学数学建模与应用复习 题集附答案

2023高中数学数学建模与应用复习 题集附答案

2023高中数学数学建模与应用复习题集附答案2023高中数学数学建模与应用复习题集附答案本文为高中数学数学建模与应用复习题集,涵盖了相关题目及其解答。

以下是题目与解答的具体内容:一、单选题1. 已知函数$f(x)=\frac{1}{2}x^2+3x+2$,则$f(-3)=$A. 4B. 5C. 6D. 7解答:将$x=-3$代入函数$f(x)$,得到:$$f(-3)=\frac{1}{2}(-3)^2+3(-3)+2=7$$因此,答案为D. 7。

2. 设数列$\{a_n\}$的通项公式为$a_n=n^2-3n+5$,则$a_5=$A. 11B. 14D. 25解答:将$n=5$代入数列通项公式,得到:$$a_5=5^2-3\times5+5=11$$因此,答案为A. 11。

二、多选题1. 函数$f(x)$在区间$(a,b)$上连续,则必定在该区间上必存在一点$c$,使得$f(c)$等于下列哪些值?A. $f(a)$B. $f(b)$C. $\frac{f(a)+f(b)}{2}$D. $f(\frac{a+b}{2})$解答:根据连续函数的性质,若函数$f(x)$在区间$(a,b)$上连续,则必定在该区间上存在介于最大值和最小值之间的所有值。

因此,答案为A、B、C、D。

2. 以下哪些数对应的立方根是有理数?A. 2C. 8D. 27解答:立方根是有理数的条件是原数是一个整数的立方。

根据选项,只有8是另一个整数的立方,因此答案为C. 8。

三、填空题1. 若正方形的面积为16平方米,则它的边长是\_\_\_米。

解答:设该正方形的边长为$x$,根据题意可得:$$x^2=16$$解得$x=4$,因此答案为4米。

2. 已知函数$f(x)$的定义域为$[-1, 1]$,则$f(-1)=$\_\_\_。

解答:将$x=-1$代入函数$f(x)$,得到:$$f(-1)=-1$$因此,答案为-1。

四、解答题1. 某校有男生和女生各500人,其中30%的男生和20%的女生是学习数学建模的,那么同时学习数学建模的学生有多少人?解答:男生学习数学建模的人数为$0.3\times500=150$人,女生学习数学建模的人数为$0.2\times500=100$人,因此,同时学习数学建模的学生共有150+100=250人。

建模数学试题及答案

建模数学试题及答案

建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。

数学建模答案

数学建模答案

数学建模1:[填空题]名词解释: 1.原型2.模型3.数学模型4.机理分析5.测试分析6.理想方法7.计算机模拟8.蛛网模型9.群体决策10.直觉11.灵感12.想象力13.洞察力14.类比法15.思维模型16.符号模型17.直观模型18.物理模型参考答案:1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。

2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。

3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。

4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。

5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。

6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。

7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。

8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。

9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。

10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。

11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。

12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。

13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。

14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。

数学建模 复习资料

数学建模 复习资料

数学建模模拟复习资料一、单项选择题1、建模预测天气。

在影响天气的诸多因素及相互关系中,既有已知的又有许多未知的非确定的信息。

这类模型属于( B )。

A 、白箱模型B 、灰箱模型C 、黑箱模型 2、在城镇供水系统模型中,水箱的尺寸是( C )。

A 、常量B 、变量C 、参数 3、对黑箱系统一般采用的建模方法是 ( C ) 。

A 、机理分析法 B 、几何法 C 、系统辩识法D 、代数法4、在整理数据时,需处理和分析观测和实验数据中的误差,异常点来源于( C )。

A 、随机误差B 、系统误差C 、过失误差5、需对一类动物建立身长与体重关系的模型。

在对模型的参数进行估计时,如已有30组数据,且参数估计精度要求较高,应采用( B )估计参数。

A 、图解法B 、统计法C 、机理分析法6、在求解模型时,为了简化方程有时会舍弃高价小量(如一阶近似、二阶近似等),由此带来一定的误差,此误差是( A )。

A 、截断误差B 、假设误差C 、舍入误差 二、填空题 1、若,,x z z y ∝∝则y 与x 的函数关系是 k kx y ,=是比例常数 .2、在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 )()(2211t n p m t n p m +<+ .3、马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 增长率是常数还是人口的递减函数 。

4、在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 类比 的方法建立了模型.5、力学中把质量、长度、时间的量纲作为 基本量纲 。

6、一个理想的数学模型需满足模型的适用性和模型的可靠性。

三、简答题1、一般情况下,建立数学模型要经过哪些步骤?答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2023初中数学数学建模复习 题集附答案

2023初中数学数学建模复习 题集附答案

2023初中数学数学建模复习题集附答案2023初中数学数学建模复习题集附答案现如今,数学建模已成为初中学生备战数学竞赛的重要环节。

为了帮助同学们有效复习数学建模知识,本文准备了一套综合性的数学建模题集,附有详细答案供参考。

通过对不同类型问题的解答,同学们可以提高对数学建模的理解与掌握,以应对未来的数学建模挑战。

题1:某机场每分钟可起降飞机16架。

假设该机场连续运营8小时,共有60%的起降航班采用大型飞机,40%的起降航班采用小型飞机。

求这8小时内,起降的大型和小型飞机各有多少架?解答1:首先,我们需要先确定这8小时的分钟数,即8小时=8 * 60 = 480分钟。

根据题目要求,每分钟可起降飞机16架,因此总的起降飞机数量为16 * 480 = 7680架。

接下来,我们计算大型飞机的数量。

由题意可知,60%的航班采用大型飞机,所以大型飞机的数量为0.6 * 7680 = 4608架。

最后,我们计算小型飞机的数量。

40%的航班采用小型飞机,所以小型飞机的数量为0.4 * 7680 = 3072架。

综上所述,8小时内起降的大型飞机数量为4608架,小型飞机数量为3072架。

题2:某城市的公交车票价为每张2元。

假设某天该城市发行了30000张公交车票,此时票价突然降价为每张1.5元。

请计算这一天的总票款增加了多少?解答2:首先,我们需要计算改变票价之前一天的票款总额。

根据题意可知,票价为每张2元,发行了30000张公交车票,所以原票款总额为2元/张 * 30000张 = 60000元。

接下来,我们计算改变票价之后一天的票款总额。

票价降价为每张1.5元,发行了30000张公交车票,所以新的票款总额为1.5元/张 * 30000张 = 45000元。

最后,我们计算票款总额的增加量。

增加量为新的票款总额减去原票款总额,即45000元 - 60000元 = -15000元。

综上所述,这一天的总票款减少了15000元。

数学建模答案(完整版)

数学建模答案(完整版)

数学建模答案(完整版)1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。

在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3 然后保存即可2 编写函数M 文件SQRT.M;函数()f x = x=567.889与0.0368处的近似值(保留有效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2x1=567.889;x2=0.368; s1=sqrt(x1);s2=sqrt(x2); zhi1=vpa(s1,4) zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算()f x =的值,其中a=2.3,b=4.89.>> syms a b>> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans =2.08644用matlab 计算函数()f x =在x=3π处的值. >> syms x>> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans =12.09625用matlab 计算函数()arctan f x x =在x=1.23处的值. >> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans =1.78376 用matlab 计算函数()()f x f x ==在x=-2.1处的值. >> syms x>> x=-2.1;>> 2-3^x*log(abs(x)) ans =1.92617 用蓝色.点连线.叉号绘制函数[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x); >> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数ln 10y x =+在[20,15]--上步长为0.2的图像. >> syms x y>> x=-20:0.2:-15;y=log(abs(x+10)); >> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线虚线绘制函数sin()22x y π=-在[-10,10]上步长为0.2的图像. >> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2); >> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数sin(2)3y x π=+在[0,4]π上步长为0.2的图像.sin(2)sin()[0,4]322x y x y πππ=+=- >> syms x y>> x=0:0.2:4*pi;y=sin(2*x+pi/3); >> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与y =.>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x)); >> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数234,,y x y x y x ===这三条曲线的图标,并要求用两种方法加各种标注.234,,y x y x y x === >> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线2sin x t y t z t ?=?=??=?的3维图像>> syms x y t z >> t=0:1/50:2*pi; >> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面(1cos )cos (1cos )sin sin x u v y u v z u =+??=+??=?在(0,2)(0,2)ππ?上的3维图像>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u); >> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y>> y=sin(2^0.5*x)/sqrt(1-cos(x)); >> limit(y,x,0,'right') ans = 216 求极限1201lim()3x x +→ >> syms y x>> y=(1/3)^(1/(2*x)); >> limit(y,x,0,'right') ans = 0 17求极限limx>> syms x y>> y=(x*cos(x))/sqrt(1+x^3); >> limit(y,x,+inf) ans = 0 18 求极限21lim ()1xx x x →+∞+- >> syms x y>> y=((x+1)/(x-1))^(2*x); >> limit(y,x,+inf) ans =exp(4)19 求极限01cos 2limsin x xx x→->> syms x y>> y=(1-cos(2*x))/(x*sin(x)); >> limit(y,x,0) ans = 220 求极限 0x →>> syms x y>> y=(sqrt(1+x)-sqrt(1-x))/x; >> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y>> y=(x^2+2*x+1)/(x^2-x+2); >> limit(y,x,+inf) ans = 1 22 求函数y=5(21)arctan x x -+的导数 >> syms x y>> y=(2*x-1)^5+atan(x); >> diff(y) ans =10*(2*x - 1)^4 + 1/(x^2 + 1) 23 求函数y=2tan 1x xy x=+的导数 >> syms y x>> y=(x*tan(x))/(1+x^2); >> diff(y) ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数3tan x y e x -=的导数>> syms y x>> y=exp^(-3*x)*tan(x) >> y=exp(-3*x)*tan(x) y =exp(-3*x)*tan(x)>> diff(y) ans =exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x) 25 求函数y=2 2ln sin2xx π+在x=1的导数>> syms x y>> y=(1-x)/(1+x); >> diff(y,x,2) ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3>> syms x y>> y=2*log(x)+sin(pi*x/2)^2; >> dxdy=diff(y)dxdy =2/x + pi*cos((pi*x)/2)*sin((pi*x)/2) zhi=subs(dxdy,1)zhi =226 求函数y=01cos 2lim sin x x x x →-11xx-+的二阶导数>> syms x y>> y=(1-x)/(1+x); >> diff(y,x,2) ans =2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y>> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2; >> diff(y) ans =(((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间(,-∞+∞)内求函数43()341f x x x =-+的最值. >> f='-3*x^4+4*x^3-1'; >> [x,y]=fminbnd(f,-inf,inf) x =NaN y =NaN>> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf) x =NaN y =NaN29在区间(-1,5)内求函数发()(f x x =-.>> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5) x =0.3750 y =-0.3470 >>>> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5) x =4.9999 y =-10.505930 求不定积分(ln 32sin )x x dx -?(ln 32sin )x x dx -? >> syms x y>> y=log(3*x)-2*sin(x); >> int(y) ans =2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ?>> syms x y>> y=exp(x)*sin(x)^2; >> int(y) ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分>> syms x y>> y=x*atan(x)/(1+x)^0.5; >> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x edx --?>> syms x y>> y=1/exp(x^2)*(2*x-cos(x)); >> int(y) Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x) 34.计算定积分1(32)xex dx -+?>> syms x y>> y=exp(-x)*(3*x+2); >> int(y,0,1) ans =5 - 8*exp(-1)1(32)x e x dx -+?35.计算定积分0limx x→120(1)cos x arc xdx +?>> syms y x>> y=(x^2+1)*acos(x); >> int(y,0,1) ans =11/936.计算定积分1cos ln(1)x x dx+?>> syms x y>> y=(cos(x)*log(x+1)); >> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1) 37计算广义积分2122x x dx +∞++-∞?;>> syms y x>> y=(1/(x^2+2*x+2)); >> int(y,-inf,inf) ans = pi 38.计算广义积分20xdx x e+∞-?;>> syms x y>> y=x^2*exp(-x); >> int(y,0,+inf) ans = 2。

2014-2015-1数学建模复习题答案

2014-2015-1数学建模复习题答案

2014-2015-1《数学建模》期末复习一、判断题:(对的打√,错的打×)(1) MATLAB 中变量的第一个字母必须是英文字母.-------- --( ) (2) ones( 3 )命令可以生成一个3阶全零矩阵. ----------------( ) (3) 命令[1,2,3]^2的执行结果是[1,4,9]. ----------------( ) (4) 一元线性回归既可以使用regress 也可以使用polyfit. --( ) (5)插值函数必定过已知的所有数据点. ---------------------------( ) (6) MATLAB 中变量名不区分大小写.----------------------------( ) (7) 命令[1,2,3].^2的执行结果是[1,4,9]. ----------------------( )(8) 命令linspace(0,1,100)共产生100个等间隔的点. -------------------( ) (9) LINGO 程序中@Gin(x)表示x 取整数. -----------( )(10) LINGO 集合语言数据段以“data:”开始“enddata”结尾------( ) 二、用MATLAB 命令完成如下矩阵操作:(1)创建矩阵A=⎥⎥⎦⎤⎢⎢⎣⎡--252013132;(2)求A 的所有元素的最大值, 赋给x(3)取出A 的第2行所有元素和第3列所有元素,分别赋给B 和C; (4)求A 的逆矩阵, 赋给D.(5)创建一个矩阵B 为3阶全1矩阵; (6)修改B 的第2行第3列元素为2; (7)删除B 的第1列所有元素; (8)求B 的行列式,赋值给x.三、(1)使用for 循环结构,编写MATLAB 程序,求∑=10032n n .(2)使用for 、while 循环或prod 语句,编写MATLAB 程序,求10011n n n=+∏(2)写出求解该模型的LINGO 程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学建模》复习资料参考答案一、不定项选择1、建模能力包括 A、B、C、D 。

A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力2、按照模型的应用领域分的模型有 A、E 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型3、对黑箱系统一般采用的建模方法是 C 。

A、机理分析法B、几何法C、系统辩识法D、代数法4、一个理想的数学模型需满足 A、B 。

A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性5、按照建立模型的数学方法分的模型有 B、C、D 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型6、下列说法正确的有 A、C 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解不清楚。

7、力学中把 A 的量纲作为基本量纲。

A、质量、长度、时间B、密度、时间、长度C、质量、密度D、时间、长度8、下列说法错误的有 B 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解清楚。

9、建立数学模型的方法和步骤有ABCDE。

A、模型假设。

B、模型求解。

C、模型构成。

D、模型建立。

E、模型分析。

10、模型按照替代原型的方式可以简单分为AB。

A、形象模型B、抽象模型C、生态模型D、白箱模型11、形象模型可以具体分为ABC。

A.直观模型B、物理模型C、分子结构模型等;12、抽象模可以具体分为ABC。

A 思维模型B符号模型C数学模型D分子结构模型13建模的一般原则为ABCD。

A目的性原则B简明性原则C真实性原则D全面性原则;14 模型的结构大致分为ABC。

A、灰箱模型B、白箱模型C、黑箱模型15A、建立递阶层次结构模型;B、构造出各层次中的所有判断矩阵;C、层次单排序及一致性检验;D、层次总排序及一致性检验。

16、运用层次分析法建模,递阶层次的建立分为:ABC。

A、最高层目标层B、中间层准则层C、最底层措施层D、最底层方案层17. 若,,x z z y ∝∝则y 与x 的函数关系是.18. 18. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是. 19. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了.20. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作的方法建立了模型. 21. 设S 表示挣的钱数,x 表示花的钱数,则“钱越多花的也就越多”的数学模型可以简单表示为. 22. 假设,,21x C Y Y C S ∝∝则S 与x 的数学关系式为,其中21,C C 是常数.23. 在建立人口增长问题的罗捷斯蒂克模型时,假设人口增长率r 是人口数量)(t x 的递减函数,若最大人口数量记作,m x 为简化模型,采用的递减函数是.24. 一次晚会花掉100元用于食品和饮料,其中食品至少要花掉40%,饮料起码要花30元,用f 和d 列出花在食品和饮料上的费用的数学模型是.17. k kx y ,=是比例常数; 18. )()(2211t n p m t n p m +<+; 19. 增长率是常数还是人口的递减函数; 20. 类比. 21. 0,>=k kx S ;22. kx x C C k k S ==2121,其中2121C C k k k =; 23. )1()(mx xr x r -=; 24. 30,4.0)/(,100≥≥+≤+d d f f f d .(为了方便,此处17-24为选择题和简单建模的变式练习,考试题型回归选择题)二、用框图说明数学建模的过程。

三、建模题1、四条腿长度相等的椅子放在起伏不平的地面上,4条腿能否同时着地?答案:4条腿能同时着地。

具体分析见视频PPT。

2、建立模型说明同样多的面粉,多包几个饺子能多包馅,还是少包几个饺子能多包馅?答案:少包几个饺子能多包馅。

具体分析见视频PPT。

3、投资生产A产品时,每生产一百吨需资金200万元,需场地200平方米,可获利润300万元;投资生产B产品时,每生产一百吨需资金300万元,需场地100平方米,可获利润200万元,现某单位可使用资金1400万元、场地900平方米,问应做怎么样的组合投资,可使所获利润最多。

答案:生产A产品3.25百吨,生产B产品2.5百吨时利润最大。

4、在某5000个人中有10个人患有一种病,现要通过验血把这10个病人查出来,若采用逐个人化验的方法许化验9999次,(这里所需化验次数是指在最坏情况下化验次数,如果碰巧,可能首先化验的10个人全是病人,10次化验就够了,下面讨论的化验次数均指在最坏情况下的化验次数)。

为了减少化验次数,人们采用分组化验的办法,即把几个人的血样混在一起,先化验一次,若化验合格,则这几个人全部正常,若混合血样不合格,说明这几个人中有病人,再对它们重新化验(逐个化验或再分组化验)。

试给出一种分组化验的方法使其化验次数尽可能地小,不超过1000次。

答案:利用概率群试法,最多不超过109次。

5、货物托运问题。

某厂拟用集装箱托运A、B两种货物,每箱的体积、重量、可获利润以及托运所受限制如表所示。

问两种货物各运多少箱可获得最大利润?答案:A货物托运4箱,B货物托运1箱可获得最大利润90百元,具体分析见视频PPT。

6、洗衣服时衣服用肥皂或洗衣粉搓洗过后,衣服上总带着污物,需要用清水来漂洗,如果现在有一定量的清水,问如何安排清洗的程序(漂洗多少次,每次用多少水)使得用这些水漂洗的衣服最干净?答: 问题描述:洗衣服时,衣服用肥皂或洗衣粉搓洗过后,衣服上总带着污物需要用清水来漂洗,如果现在有一定量的清水,要建立数学模型分析如何安排清洗的程序(漂洗多少次,每次用多少水)使得用这些水漂洗的衣服最干净。

模型假设:该问题是实际生活中的优化问题,为使问题简化,给出下面的假设; (1)污物均匀分布在衣服上。

(2)衣服在第一次漂洗前有一定含水量,其含水量与以后每次漂洗后衣服的含 水量相同。

(3)忽视水温、水质等对漂洗结果的影响。

模型的组建:(1)与问题有关的因素及符号说明0:m 初始的污物质量(单位:克),是一常数。

Xn :漂洗n 次后衣服上残留的污物质量(单位:克) n :漂洗的次数,n N ∈.M :总用水量,在本问题中是一常数(单位:公斤)λ:每破漂洗后,衣服上仍留下水的质量,由假设,λ是一常数(单位:公斤)。

i m :第i 次漂洗的用水量,i =l ,2.…,n 。

显然1ni i m M ==∑(单位:公斤)(2)模型的建立由假设可知,第一次放水后,m 。

克污物均匀分布于1()m λ+公斤水中,衣服上残留的污物量i x 与残留的水量成正比:011,m x m λλ=+故00111,1m m x m m λλλ==++同理012122,,(1)(1)m x x m m m λλλλ==+++依次类推,1(,2),n n nx x n N n m λλ-=∈≥+用数学归纳法可以证明012(*)(1)(1)(1)n nm x m m m λλλ=+++这即为漂洗问题的数学模型(0,m λ为常数)。

(3)模型的求解与分析当漂洗的次数n 为一定时,如何选取每次的用水量(1,2,,),i m i n =才能漂洗得最干净(即残留的污物量n x 最小)。

由于10(1,2,,),im i n λ+>=且1(1)nii m Mn λλ=+=+∑是一常数。

于是由“均值不等式”得1211(1)(1)(1)[(1)](1),n n n ni i m m m m Mn n λλλλλ=+++≤+=+∑所以0012(1)(1)(1)(1)n n nm m x m M m m n λλλλ=≥++++其中“=”当且仅当“12111nm m m λλλ+=+==+”,即“12n m m m ===”时取到,从而有如下结论:当漂洗次数一定时,每次用水量相等时洗得最干净。

此时残存的污物量为0(1)n n m x M n λ=+。

模型的结论:漂洗的优化程序是:a 、根据需洗衣服的质量确定漂洗一次衣服的最小用水量(以能浸透衣服为标准)M 0;b 、确定漂洗的次数:[]([]Mn n x M =为x 的整数部分); c 、将清水均分为n 份,每份Mn公斤,然后分n 次漂洗。

7、 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.答:问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件;(每个因素3分)8、 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)ml /mg (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为t t kC t C t t C ∆-=-∆+)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.)答:设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为,/kC C -=其通解是,e)0()(ktC t C -=而)0(C 就是所求量.由题设可知,40)5(,56)3(==C C 故有56e )0(3=-k C 和 ,40e )0(5=-k C由此解得.94e 56)0(17.040/56e 32≈=⇒≈⇒=k k C k可见在事故发生时,司机血液中酒精的浓度已经超出了规定. 9. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况. 答:设21,x x 表示甲、乙两种产品的产量,则有原材料限制条件: ,902321≤+x x,303221≤+x x ,805821≤+x x目标函数满足 ,680580m ax 21x x z += 合在一起便是所求线性规划模型:,680580m ax 21x x z +=⎪⎪⎩⎪⎪⎨⎧=≥≤+≤+≤+.2,1,0,8058,3032,9023212121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:最优解为 ,)740,745(T*=X 目标值为 753300max =z (万元).(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7259单位的剩余量.10. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?答:本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解,首先确定初始方案:其次对方案进行最优性检验:λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0, λ33 = 9-3+5-6=5 > 0,故上述方案已是最优方案,即总运费最低的调运方案为:21503310223021*********,,,,B A B A B A B A B A −→−−→−−→−−→−−→−总费用为 2460150310630516071704=⨯+⨯+⨯+⨯+⨯(百元)11. 作为经济模型的一部分,若产量的变化率与生产量和需求量之差成正比,且需求量中一部分是常数,另一部分与产量成正比,那么相应的微分方程模型是什么?.答:令x 表示产量,y 表示需求量,则有)(d d x y k tx-=以及,bx a y +=其中k b a ,,均为常数.将后一式代入前一式即可得到d cx tx x b a k t x +=⇒-+=d d ))1((d d 12. 考虑在一片面积为定数的草地上进行牛的养殖问题.为了获得最大经济效益,指出建立该问题数学模型应该考虑的相关因素至少5个.答 :2. 饲料来源、公羊与母羊的比例、饲料冬储、繁殖问题、羊的养殖年限、出售时机、羊制品及其深加工等.13. 设某小型工厂使用A ,B 两种原料生产甲、乙两种产品,按工艺,生产每件产品甲需要原料A ,B 依次为6、5个单位,生产每件产品乙需要原料A ,B 依次为2、10个单位,两种原料的供给量依次为18和40个单位,两种产品创造的产值分别为1万元和2万元,试建立其生产规划模型,并回答以下问题:(1)产值最大的生产方案是什么?最大产值是多少?方案是否有可选择余地?若有请至少再给出一个. (2)依你所给最优方案,说明原料的利用情况. 答: 设生产甲、乙两种产品的数量依次为,,21x x z 表示总产值,则有模型如下:212m ax x x z +=⎪⎩⎪⎨⎧=≥≤+≤+.2,1,0401051826..2121j x x x x x t s j使用图解法易得其产值最大的生产方案将有无穷多组(这是因为第二个约束条件所在直线的斜率与目标函数直线的斜率相等),其中的两个方案可以选为该直线段上的两个端点:,)4,0(,)3,2(T 2T 1==X X最大产值均为 8=z (万元).(2)按照上面的第一个解,原材料全部充分利用;而按照第二个解,原材料A 将有10个单位的剩余量,原材料B 将被充分利用(但产品甲不生产).14. 如图一是某村镇9个自然屯(用91,,v v 表示)间可架设有线电视线路的最短距离示意图,边旁数字为距离(单位:km ).若每km 的架设费用是定数20元/m ,试协助有线电视网络公司设计一个既使得各村屯都能看到有线电视又使架设费用最低的路线,并求出最小架设费用.答: 由题意可知,只需求出该网络图的最小树即可.利用破圈法容易得树形图(图二):故得架设路线为:总架线长度为27km ,故总架设费用为 5420100027=⨯⨯(万元)16、浙江声自1993年10月开始实行职工住房公积金制度,主要用于职工的住房建设及政策性住房贷款的发放。

相关文档
最新文档