声波测井ppt教学课件

合集下载

《第六章声波测井》PPT课件

《第六章声波测井》PPT课件
第六章 声波测井 (Acoustic log)
声波测井 ➢研究的对象:井孔周围地层或其它介质的 声学性质(速度、能量、频率变化等)
➢物理及地质基础:不同岩石的弹性力学性质 不同,使其声波传播速度、衰减规律不同
➢研究方法:在井内发射声波,使声波在地层
或井内其它介质中传播,测量声波在传播时的 速度或幅度变化
DT T L P3TP4(TP 3TP 1)
2l
T1
T2
2、横波时差 DTs
横波时差的计算方法与纵波相同,关键 是确定横波首波。
(1)确定横波首波初始点出现的时间范围
VP /Vs
2(1) 12
vp vs 1.5~1.8
纵波初始点到达时间为tp,则横波初始点
出现时间的范围是1.5tp ~ 1.8t。p
提取,对横波而言是噪声,波速与横波 相近 (2)幅度不大
(3)有频散,相速度 > 群速度
(4)有截止频率
3、斯通利波(管波) 是沿井轴方向传播的流体纵波与井壁地层 滑行横波相互作用产生的。质点运动的轨 迹也是椭圆,长轴在井轴方向。
1
Vt Vf[1( f b)V (f VS)]2
Vt Vf[12(1)K ( E) ]1 2
令 T'(x)0 则v2clo2sxv1lcsion2xsx
sin x v1 v2
xarcsivn1 *
v2
(2)使滑行波先于直达波到达R —— 加大源距L(第一条件)
A T
B
*
滑行波:
AB BC CD
t1
v1
v2
v1
L
C
*
v2 v1 D R
v1c2ols*
L2ltg*
v2

声波测井-声波成像测井幻灯片PPT

声波测井-声波成像测井幻灯片PPT

输出图像资料的特点 各种井下声波成像测井仪都可以同时输出一
张反射回波幅度成像图和一张反射回波到达时间 图,反射回波幅度成像图比反射回波到达时间图 具有更高的精度。
反射回波幅度成像图一般通过颜色的明暗变化 来反映测量介质的表面特征:井壁声阻抗大,反 射波强,颜色亮;井壁声阻抗小,反射波弱,颜 色暗。
井壁地层及套管技术状况评价测井
目前用于井壁介质(井壁地层或套管)状况评价的测井方法主要有 Schlumberger的BHTV(Borehole Televiewer)和UBI(UltraSonic Borehole Imager)以及Baker Altlas的CBIL(Circumferential Borehole Imaging Log)等井壁成像测井仪。这些测井仪器既可应用于裸眼井中研究井 壁表面特征,也可应用于套管井观察套管内壁,仪器都包含声系、信号采 集、信号传输与地面处理及显示4个组成部分。声系部分 由一个能旋转的声波探头构成,该声波探头兼作发射探 头和接收探头。测井时,声波探头以固定速率旋转,对 井眼的整个井壁进行360°扫描测量。由于声波探头旋转 测量的过程中,仪器也以一定的速率在井中上提,因此, 仪器的记录点都为螺旋上升。
仪器有两种工作状态,即流体性质测量和标准测量,如图 2-22(b)、(c)所示。探头逆时针旋转用于测量套管和井 壁的声波性质,为标准测量模式;探头顺时针旋转测量井 内流体的声学特性,为流体性质测量模式。
(b) 标准测量模式
(c)流体性质测量模式
UBI可以在250kHz和500kHz两种声波频率 下工作;USI可以在195kHz、650kHz两种声波 频率下工作。根据钻井液类型、密度不同,可选 取不同的工作频率。在高分散相钻井液体系中, 采用较低频率的超声波能够得到更好的图像效果。 UBI has two operation frequencies, 250kHz and 500kHz. And USI, 195kHz, 650kHz. Based on mud type, density to select available frequency.

《声波测井》PPT课件

《声波测井》PPT课件

1.76
易吸收,穿透能力小
γ:光子 ,不带电,
质量小,穿透能力强。
放射性测井
3. 射线与物质的相互作用 能在衰变时发射光子的元素称为伽马辐射体。
地层中能发射伽马光子的核素主要是U、Th及其衰变 产物和钾的放射性同位素K-40。伽马光子与物质发
生相互作用的过程中,能量逐渐降低。如果射线的能 量<30Mev, 伽马光子与接触物质间将可能逐级产生
lectron effect occurs, which is first explicitl y explained by Albert Einstein

放射性测井
3.3 光电效应 : photoelectric effect if energy of γ ray less than 0.51Mev,photoe
Mev
e+
放射性测井
3.1 Electron Pair Effect
e-
Eγ≥1.022Mev
e+
放射性测井
3.2 康普顿效应:Compton effect
With the attenuation of γ energy, the impac tion capability of γ is decayed, when its energy is between 0.51Mev to 1.022Mev, the Computon effec t occurs.
1. 波的传播
入射波
声波测井新技术






反射波
折射角
介质1
介质2 折射波
声波测井新技术
2. 产生滑行波的条件
折射定律: Sin VP1 Sin1 VP2

《声速测井》PPT课件

《声速测井》PPT课件

2
VP
F1 A B
E
C
J1 F’
O’ D’
F
D
J2 E’
O’’ C’
A’
B’
F2
3、双发双收声系
〔2〕可消除深度误差 F1—J1、J2,实际深度点O’
h=-a tg c,实际深度H- a tg c F2—J2、J1,实际深度点O’’
h=a tg c,实际深度H+a tg c 实际O’O’’的中点就是仪器 记录点O,两者一致。即时差 平均值的中点〔岩层CC’的中
《声速测井》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
声波速度测井原理
1、单发单收声系
声波速度测井简称声速测井,测 量地层滑行波的时差△t〔地层纵波速 度的倒数,单位是μs/m或μs/ft〕。 这种下井仪器包括三个局部:声系、 电子线路和隔声体。声系由一个发射 换能器T和一个接收换能器R组成,其 中,发射器和接收器之间的距离称为 源距,声波测井声系的最小源距为1 米。电子线路提供脉冲电信号,触发 发射器T发射声波,接收器R接收声波 信号,并转换为电信号。
E R1
F'
F R2
E'
A' T2
C O'
D' D O'' C'
B'
双发双收声系构造示意图
声波速度测井原理
3、双发双收声系
测井时,上、下发射器交替发射声脉
冲,两个接收器接收T1、T2交替发射产生

声波速度测井PPT课件

声波速度测井PPT课件

井眼因素
井眼大小与形状
井眼的大小和形状对声波速度测井结果有直接影响。井眼过大会使声波在传播 过程中散射,导致速度降低。此外,井眼的形状也会影响声波的传播路径和速 度。
井眼内流体性质
井眼中的流体,如泥浆、水和油气等,对声波速度也有影响。流体的密度和声 波速度有关,密度越大,声波速度越高。
仪器因素
仪器分辨率
应用领域的拓展
随着技术的不断进步和应用需求的增加,声波速度测井技术的应用领域将进一步拓 展。
除了传统的石油和天然气勘探领域,声波速度测井技术还将应用于环境监测、矿产 资源勘探、地质灾害预警等领域。
随着技术的成熟,声波速度测井技术将逐渐成为地质勘查和工程勘察的重要手段之 一。
行业标准的制定与完善
为了规范声波速度测井技术的使用和 推广,相关行业标准和规范将不断完 善。
声波速度测井数据处理
数据预处理
对采集的原始数据进行滤波、 去噪和校准等处理,以提高数
据质量。
声波速度计算
根据测量得到的传播时间和距 离计算声波速度。
地层岩性识别
根据声波速度与地层岩性的关 系,对地层岩性进行识别和分 类。
结果解释与报告编写
将数据处理结果进行解释,编 写测井报告,为地质勘探和油
气开发提供依据。
复杂地质问题中的重要作用和应用前景。
05
声波速度测井的未来发展
技术创新与改进
声波速度测井技术将不断进行技 术创新和改进,以提高测量精度
和可靠性。
新型声波速度测井仪器将采用更 先进的信号处理技术和算法,以
增强对复杂地层的适应性。
未来声波速度测井技术将更加注 重智能化和自动化,减少人为干
预和操作难度。
子和双极子探头等。

7-声波测井PPT课件

7-声波测井PPT课件
由于泥浆声速v1与地层声速v2不同,所 以在泥浆和地层界面(井壁)上将发生声波反 射和折射,由于发射器可以视为点源,可在 较大角度范围内向外发射声波,故必有以临 界角i方向入射到井壁面上的声波,折射产生 沿井壁在地层中传播的滑行波。该滑行波的 传播必然引起泥浆中质点振动,并先后传到 两个接收器Rl、R2上,从而测量出地层的声 波速度。
.
21
2. 声波速度测井 Acoustic velocity logging
1)单发射双接收声速测井仪的测量原理
(1)单发射双接收声速测井仪简介
实际测井时,电子线路每隔一定的时间给发射 换能器一次强的脉冲电流,使换能器晶体受到激发 而产生振动,其振动频率由晶体的体积和形状所决 定。
目前,声速测井所用的晶体的固有振动频率为 20kHz。
.
R1 R2
23
2. 声波速度测井 Acoustic velocity logging
(2)单发射双接收声速测井仪的测量原理 需要指出的是,接收器接收到的声波,除了滑行波外,还有从声源经仪
器外壳和井内泥浆直接到达的直达波,以及由井壁反射而进入接收器的反射 波等,这些波共同构成一个延续的声波波列。为了保证接收器首先接收到滑 行波,就必须消除后面几种波的干扰,即不让这些波在滑行波之前到达。
对于完全线弹性体,正应力只与线应变有关,切应力只与切应变有关。
.
8
1.岩石的声学特性
1)岩石的弹性
(3)弹性力学常用参数
A、杨氏模量E
弹性体发生单位线应变时弹性体产生应力大小,亦即应力与应变之比。
杨氏模量的单位是 N/m2。
B、泊松比
E F A L L
弹性体在单轴外力作用下,当受力方向产生伸长时,自由方向缩小。

声波测井PPT课件

声波测井PPT课件

裸眼井声波测井
第三节 声波测井仪 一、SLT-N系列声波测井仪的组成
声系(SLS) 电子线路短节(SLC) 一、常见的声系结构 二、SLT-N系列声波测井仪的探头结构 三、SLT-N工作原理及过程
SLT-N系列声波测井仪的探头结构
二元阵探头的特点:???
SLT-N工作原 理及过程:
T1
R4
测量原理
声系结构
T
套管波幅度 与水泥胶结 质量的关系
R
影响因素
测井时间的影响 水泥环厚度的影响 井的影响
CBL资料的应用
检查固井质量 确定水泥面位置 判断气层 确定套管断裂位置
声波变密度测井(VDL) (Variable Density Log)
绪论 可能到达接收探头的波 记录方式
Z1 越接近1,声耦合越好,声波易从介质1到
介质2中Z2 去。
§2 声波速度测井
测量及记录的参数 时差的定义 换能器(探头) 声系的设计 单发双收声系测量 原理
问题解答
影响时差曲线的主 要因素
井眼补偿声波测井
声波测井资料的应 用
时差即速度的倒数:t 1 v
时差亦称慢度(Slowness), 其单位是:微秒/米或微秒/英尺.
增益脉冲鉴别和计数电路 作用:对从地面输送下来的增益脉冲进行整
形、鉴别和计数。 电路组成:见P194和P195,主要由滤波、
可变增益放大器、峰值保持器 和电压比较器等组成。
接收放大器电路 作用: 组成:
接收放大器电路
SLT-N地面接口电路
作用 组成: 声波测井模块(SLM) 通用电子线路单元(GEU)
选通门电路 作用:1.7ms(第2相)
4.4ms(第3相)信号门 4.5ms(第3相)GR禁止 构成:见P192,由单稳态、门电路等组成

《声波全波列测井》PPT课件

《声波全波列测井》PPT课件

从上图可以看出: 1. 孔隙度一定时,α降低,Cp,Cs,Cp/Cs都降低;
这说明,在裂缝状孔隙的地层,声波的传播速度要小于同 孔隙度的孔隙型地层。
2. 孔隙度较小时, α对Cp,Cs,Cp/Cs的影响更加明显; 3. 孔隙度的变化对Cp/Cs影响不明显;而α对Cp/Cs影响
明显
除了根据速度计算孔隙度的大小,还可以根 据纵横波的幅度信息判断储集层的孔隙类型。 统计资料表明: 裂缝性储集层中纵波和横波的幅度都有减小, 而横波幅度的减小尤其显著。
三 判断岩性
对不同岩性的地层,其泊松比具有不同数
值,而可由岩石的纵波与横波速度Cp和Cs
计算得出。
2
1 C p 1


2 Cs C p 2 1
Cs
岩石或矿物 石英 方解石 白云石 粘土 石英岩 砂岩 石灰岩 白云岩
常见岩石及矿物的Cp/Cs值
Cp/Cs 1.487
长源距声波全波列测井记录中的关键问题是 在全波列中区分纵波、横波及其它类型的波, 而最主要的是区分纵波和横波。现有的记录 方式是从纵波和横波的到达时间、相位和幅 度上加以区分和识别的。
纵波与横波的区分: ①到达时间:Cp>Cs→Δtp<Δts; ②声波幅度:横波大于纵波; ③声波相位:纵波与横波首波相位相反,即
e B e e A
sr0 Pr0
r
s
p0
A:纵波幅度比;B:横波幅度比;r1:T1与R1之间间距;r2:T1与R2之间间 距;r0:r1-r2;G:声波在发射和接收探头间几何扩展的衰减因子,P:纵波 衰减系数; s:横波衰减系数;
这些资料如何应用? 长源距声波全波列测井资料提供了井壁附近岩层

声波测井原理allPPT课件

声波测井原理allPPT课件
曲线最高点C的应力值称为抗压 强 度 P( 或 压 缩 强 度 ) , 其 值 大 约 为弹性限度的1.5~2倍。
IV段:在C点以后外力逐渐下降,则应力-应变关系沿着CD方向下 滑,即岩石呈明显的塑性变形。外力完全卸除后将有较大剩余变形 R。 过C点以后岩石发生稳态破裂,即岩石固相骨架发生微破裂;破裂 进一步发展时将发生非稳态破裂,即岩石破碎成为若干块,此时应 力约为最大应力(抗压强度)的85%左右。
III表示应力较大时,由于发生塑性形变或孔隙、裂缝的扩大或延 伸,或骨架部分的稳态破损,应力与应变之间不再保持线性关系;
IV段表示当应力逐渐减小时,由于已发生塑性变形,应力与 应变不再保持单值关系;在应力减小到零时仍有剩余应变。
2. 岩石受力变形的几种模式 地下岩石特点: ①靠近地表的岩石近于弹性体,即应力与应变之间的关系近似于虎 克定律; ②地表以下10~20公里深处的岩石,由于温度和压力增加,岩石具 有较明显的塑性和粘滞性,应力与应变之间时间滞后明显,且剩余 变形明显; ③岩石的变形和应力状态都与时间有关。
一 物体分类
弹性体:当物体受力发生形变,一旦外力取消又能恢复原状的物体,称 为弹性体。
塑性体:反之,当物体受力发生形变,一旦外力取消而不能恢复原状的 物体,称为塑性体。
弹性体
可变成
塑性体
在声波测井中,声源的能量很小,声波作用在岩石上的时间 很短,因而岩石可以当成弹性体,在岩石中传播的声波可以 被认为是弹性波。
➢1927年9月5日,Schlumberger 兄弟及Doll在法国的皮切尔布郎测 得第一条电阻率曲线,开创了测井技术。
➢测 井 仪 器 : 进 行 测 井 所 用 的 专 门 设 备 , 即 用 以 测 量 地 下 岩层地球物理参数的仪器。 ➢测井曲线:测井作业所得到的反映地下岩层某种物理量 随深度变化的曲线。

《固井声波测井》PPT课件

《固井声波测井》PPT课件
应该指出的是声幅测井测量的是套管波的幅度对仪器源距的选择应尽量保证套管波是接收波形中的首波也就是说声幅测井仪器的源距不宜太长通常选择的距为1m或3ft513声幅测井地面仪器框图为了对声幅测量的电路原理有更详细的了1212这里具体介绍一种国产声幅测井地面仪器的电路结构及主要电路的工作原理
第五章 固井声波测井
(4)校准信号发生器
在声幅测井地面仪中,校准信号用于模拟井 下声波信号。校准信号发生器由延迟单稳、开关 级和可控振荡器构成,见下页图。
地面同步经延迟单稳延迟200μs后触发开关级 形成宽800μs负方波,可控振荡器在负方波期间 工作产生20KHz正弦波信号,即声波模
24
拟信号。可控振荡器的输出端设置了由波段开关 控制的多级衰减器,通过选择波段开关档位可获 得幅度分别为50、100、150、……900mV的声波 模拟信号,即校准信号。
25
第二节 声波密度测井仪
声波变密度测井又称全波变密度。在工程测 井中声波变密度测井用于检查水泥固结后的套管 井中第一胶结面和第二胶结面的胶结质量。同声 幅测井一样,声波变密度测井仪也是采用位于井 轴上的一个声发射器和一个声接收器测量套管井 中沿井轴方向传播的声波信号。为了对水泥环的 两个胶结面进行评价,套管波和地层波都是测量 中的有用信息。在作声波变密度测井时,仪器的 源距通常比声幅测井时的源距取得大,一般选为 5英尺或1.5米,目的是使地层波变的易于识别。
在声幅测井中,把无水泥固结的套管端称为 自由套管,自由套管中的套管波声幅最大,在有
6
水泥固结的套管端,套管波的声幅明显下降。因 此,对套管波的幅度或衰减测量可以显示水泥与 套管的胶结情况,以及指示水泥的返高。
研究结果表明,套管波幅度除了受水泥环胶 结状况的影响外,它还会受泥浆性能、仪器源距、 套管直径、套管厚度、水泥配比、水泥环厚度以 及水泥固结时间等因素的影响。因此,在声幅测 井资料的应用中,都是采用相对幅度或相对衰减 的方法来评价水泥胶结质量。

最新声波测井1ppt课件

最新声波测井1ppt课件


在全球,超声波广泛运用于诊断学、治疗学、工程学、生
物学等领域。赛福瑞家用超声治疗机属于超声波治疗学的运用范
畴。
• (一)工程学方面的应用:水下定位与通讯、地下资源勘查等
• (二)生物学方面的应用:剪切大分子、生物工程及处理种子等
• (三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超 等
• (四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科 等
声波
➢1992年11月24日,桂林上空发生了一起空难, 141人死亡,成为中国民航史上最惨烈的飞机失 事事件。当事件的原因经多方解释而未肯定之时, 中国声学研究所的专家,提出了存在着因“次声 波”的作用而致使飞机坠毁的可能性。
声波
➢ 科学研究表明:人体的内脏,有其固有的振动频率,而这种频率 也在0.01—20赫兹之间,也就是说,它和次声波的频率相似。这 样一来,当外来的次声波不管是自然形成的,还是人为制造的, 一旦它的振动频率与人体内脏的振动频率相同或接近时,就会引 起各种脏器的共振,这一共振便会使人烦躁、耳鸣、头痛、失眠、 恶心、视觉模糊、吞咽困难、肝胃功能失调紊乱;严重时,还会 使人四肢麻木、胸部有压迫感。特别是与人的腹腔、胸腔和颅腔 的固有振动频率一致时,就会与内脏、大脑等产生共振,甚至危 及性命。
声波
超声波的特点: • 1、超声波在传播时,方向性强,能量易于集中 • 2、超声波能在各种不同媒质中传播,且可传播足够远
的距离。 • 3、超声与传声媒质的相互作用适中,易于携带有关传
声媒质状态的信息(诊断或对传声媒质产生效应。(治 疗)
声波
超声波:
• 超声治疗学是超声医学的重要组成部分。超声治疗时将超声波能 量作用于人体病变部位,以达到治疗疾患和促进机体康复的目的

声波测井-声速测井ppt课件

声波测井-声速测井ppt课件

在高孔隙和侵入不深的条件下能识别气层,其特征:
➢周波跳跃
➢高声波时差(大30微秒/米
气 层
以上)
2 划分地层 (确定地层的岩性)
由于不同岩性地层具有不同的声波速度,因此可以用 时差划分地层。
致密岩石的时差 < 孔隙性岩石的时差
岩层的孔隙增加-声速下降-时差增加
砂岩的时差 < 泥岩的时差
➢砂岩的理论骨架时差:△tma=182 ➢灰 岩: △tma=156 s/m ➢白云岩: △tma=143 s/m ➢无水硬石膏: △tma=164 s/m ➢岩盐时差: △tma=220 s/m ➢淡水: △tmf=620 s/m ➢盐水: △tmf=608 s/m
VS
E
2(1)
当 =0.25,VP/VS=1.73, E
VP(S)
(2) 传播速度与岩性的关系
岩性不同
弹性模量不同
不同
VP、VS不同
VP、VS的影响
(3) 孔隙度的影响 流体的弹性模量和密度都不同于岩石骨架,相对讲, 即使岩性相同,其中的流体也不同。孔隙度增大, 传播速度就降低。
(4)岩层的地质时代影响
纯岩石
孔隙(流体) 骨架
➢ b = f× + ma(1- ) ➢ t = tf× + tma(1- ) ➢ N = Nf× + Nma(1- )
(2) 用时差求孔隙度的公式
① 固结压实的纯地层 t= tf× + tma(1- )
s
t tma t f tma
例题:一淡水泥浆井中,某固结压实的砂岩层的时差 为 313.4 s/m , 电 阻 率 为 10 m , tma=182 s/m , tf=620 s/m , 并 已 知 RW=0.1 m,求:
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.平行于体积元各面法向方向的应力称为正应力; B.垂直于体积元各面法向方向的应力称为切应力。 在外力作用下,若弹性体内的任意体积元发生体积变化,而边角关系 不变,则称此形变为体形变。体积元的各边边长的变化率称为线应变。在 外力作用下,若仅体积元形状发生变化,而体积不变,则称为剪切形变。 体积元的边角关系的变化称为角应变(或切应变)。 对于完全线弹性体,正应力只与线应变有关,切应力只与切应变有关。
积相对变化之比。量纲为N/m2。
K F A V V
除上述四个描述物体弹性性质的弹性参数外,还有另外一个参数,即拉
梅常数 。
1.岩石的声学特性
1)岩石的弹性
(4)常见岩石的弹性参数
1.岩石的声学特性
2)声波在岩石中的传播特性
弹性波在介质中的传播实质上是质点振动的依次传递。当波的传 播方向和质点振动方向一致时叫纵波,纵波传播过程中,介质发生压 缩和扩张的体积形变,因而纵波也叫压缩波。
是空间的连续函数; ②物体是均匀的,即物体由同一类型的均匀材料组成,在物体中任选一
个体积元,其物理、化学性质与整个物体的物理、化学性质相同; ③物体是各向同性的,即物体的性质与方向无关; ④物体是完全线弹性的,在弹性限度内,物体在外力作用下发生弹性形
变,取消外力后物体恢复到初始状态。应力与应变存在线性关系,并服从广 义胡克定律。
E 1
vp 1 1 2
vs
E1
21
vp 2(1 ) vs 1 2
对于大多数沉积岩而言,岩石的泊松比σ多为0.25左右,纵波速度是横
波速度的1.73倍,说明纵波和横波同时在岩石中传播时,纵波的速度大于横
波速度。
1.岩石的声学特性
2)声波在岩石中的传播特性
实际研究表明,声波在不同岩石中的传播速度是不同的,决定这一传播 速度的主要因素是岩石速度。对于沉积岩石而言,岩石的声波速度主要取决 于岩性、孔隙度、岩层的地质时代以及岩层的埋藏深度。
表示物体几何形变的系数,无量纲。对于一切物质,泊松比介于0到0.5之
间。
D D
L L
1.岩石的声学特性
1)岩石的弹性
(3)弹性力学常用参数
C、切变模量
弹性体所受的切应力与该方向上的切应变之比称为弹性体的切变模量。
切变模量的单位是N/m2。
D、体积形变弹性模量 K
Ft A
体积形变弹性模量K定义为在外力作用下,物体所受的体应力与物体体
满足以上基本假设条件的物体称为理想的完全线弹性体,描述介质弹 性性质的参数为常数。当外力取消后不能恢复到其原来状态的物体称为塑 性体。物体是否是这类介质,取决于作用力的大小及作用时间。
1.岩石的声学特性
1)岩石的弹性
(2)应力与应变 物体在外力作用下发生弹性形变的同时,在物体内部产生的抵抗其形
变的力称为内力。作用在单位面积上的弹性内力称为应力。根据应力方向 与作用面法向的关系,应力分为:
1.岩石的声学特性
1)岩石的弹性
(3)弹性力学常用参数
A、杨氏模量E
弹性体发生单位线应变时弹性体产生应力大小,亦即应力与应变之比。
杨氏模量的单位是 N/m2。
B、泊松比
E F A L L
弹性体在单轴外力作用下,当受力方向产生伸长时,自由方向缩小。
泊松比定义为物体自由方向的线应变与受力方向的线应变之比的负值。它
声波测井(Acoustic logging)
声波测井主要分两大类:声速测井和声幅测井。
声波速度测井简称声速测井,是研究声波在岩石中传播速度的一种测井 方法。岩石的传播声速度与岩石的致密程度有关,更确切地说与岩石的岩性、 孔隙度以及孔隙中所充填的流体性质等有关。因此,研究声波在岩层中传播 速度或单位时间,在已知岩性和所含孔隙流体情况下,可以确定岩石孔隙度。
声波测井(Acoustic logging)
本节学习内容
1.岩石的声学特性 2.声波速度测井 3.声波幅度测井 4.声波变密度测井 5.声波电视测井 6.长源距声波全波列测井 7.噪声测井
1.岩石的声学特性
声波是物质运动的一种形式,它是由物质质点的震动而产生并传播的。 声波是一种机械波。根据声波频率(声波在介质中传播时,介质质点每 秒振动的次数)可将声波分为:
次声波(频率低于20Hz) 可闻声波(20Hz至20kHz) 超声波(频率大于20kHz) 根据声波测井的目的不同,采用的频率也不同。 各类声波测井用的机械波均为可闻声波或超声波。
1.岩石的声学特性
1)岩石的弹性
(1)弹性力学的基本假设 ①物体是连续的,即描述物体弹性性质的力学参数及形变状态的物理量
当波的传播方向和质点振动方向相互垂直时叫横波,横波传播中 介质产生剪切形变,所以横波也叫切变波。通常这两种波是同时在介 质中传播的,但横波不能在液体和气体中传播。
1.岩石的声学特性
2)声波在岩石中的传播特性
声波在弹性介质中的传播速度主要取决于介质的弹性模量和密度。在均 匀各向同性介质中,纵波速度vp、横波速度vs与杨氏弹性模量E、泊松比σ、 密度ρ之间的关系式为
声波幅度测井是研究岩层对声波幅度的衰减特性的测井方法。可分在裸 眼井中使用的“裸眼井声幅测井”和检查套管固井质量的“固井声幅测井”, 用来检查固井质量。
声波测井(Acoustic logging)
本节学习内容
1.岩石的声学特ห้องสมุดไป่ตู้ 2.声波速度测井 3.声波幅度测井 4.声波变密度测井 5.声波电视测井 6.长源距声波全波列测井 7.噪声测井
声波测井(Acoustic logging)
声波在不同介质中传播,速度有很大差别,而且声波幅度的衰减、频率的 变化等声学特性也是不同的。
声波测井就是利用岩石等介质的这些声学特性来研究钻井地质剖面、判断 固井质量等问题的一种测井方法。
声波测井是五十年代发展起来的一种重要测井方法,近年来发展较快。由 最早的声速测井、声幅测井发展到后来的长源距声波测井,变密度测井、井下 声波电视 BHTV、噪声测井到现在的多极子阵列声波测井(包括偶极子横波成 像仪DSI),如井周声波成像测井CBIL,超声波井眼成像仪等。特别是声波测 井与地震勘探观测资料结合起来,在解决地顶构造,判断岩性,识别压力异常 层位,探测和评价裂缝、判断储集层中流体性质方面,使声波测井成为结合测 井和物探的纽带,有着良好的发展前景。
相关文档
最新文档