九年级数学下册 26 反比例函数章末复习学案 (新版)新人教版
初中九年级数学下册第26章反比例函数26.1.2反比例函数的图象和性质(1)教案(新版)新人教版
26.1.2反比例函数的图像和性质(1)一、【教材分析】二、【教学流程】5.当0>k 时,函数kx y =与x ky -=在同一6.在平面直角坐标系中,反比例函数三、【板书设计】四、【教后反思】反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用. 课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。
主要表现在:1、思维往往是从动手开始的,在教学中,引导学生用多种感官参与到知识的生成过程中.2、重视合作交流,使学生在合作交流的过程中真握作图的技能.3、相互评价可以培养学生之间团结合作的精神在数学课堂教学中,评价的形式有很多,但较多的是由教师对学生的学习作出的评价,教师扮演着“裁判员”的角色.而在这节课中,除了教师对学生的评价外,更重视了学生之间的相互评价,让学生在相互评价中既培养了能力,又寻找到了问题解决的方法,最终达到自我矫正的目标。
4、让学生养成在众多意见中进行甄别、选择的习惯,使学生在实践的过程中形成了自己独特的数学学习方法反思今后在教学中我需要解决的问题,主要是要注重提高学生分析问题、解决实际问题的能力.数形结合是数学学习的一个重要思想,也是我们学习数学的一个目的。
近几年中考都有这方面的考题,所占分值也不少,我在教学中加强了这方面的指导,但基础差的同学仍然不会做,今后在这教学中要在这方面下功夫,使学生牢固掌握基本知识,提高基本技能,发展数学能力.通过这节课给我带来了更深的启示:在素质教育不断发展的今天,作为教师,我们应该不断更新自己的教学观念,要有崭新的科学指导思想,以创造性的教学劳动唤起学生的学习数学的创新意识,提高学生学习数学的积极性,让学生充分从事数学探究活动,发挥学生学习的自主性、主动性,让学生在探索中不断地发展.。
人教版九年级数学下册第二十六章:反比例函数复习 学案设计
反比例函数复习学案1.回归课本,教师用书(第二十六章反比例函数,只有两节,26.1反比例函数,26.2实际问题与反比例函数)其中第一节内容:反比例函数的概念,图像和性质,类比一次函数,二次函数的研究方法学习反比例函数,由特殊到一般,由具体到抽象的方式展开,研究方法一脉相承。
(2017年四调22题出题方式类似)2.考试说明:反比例函数知识内容:根据条件确定反比例函数表达式,以及反比例函数图像的性质,知识目标都是掌握。
3.教会学生做题的基本思想方法:例如,函数图像是函数性质的直观载体,反应函数的变化规律,但是难以深入局部和细节,而解析式就可以对函数进行无限解读,代数解析,但遗憾的是抽象不直观(数缺形时少直观,形少数时难入微),我们可以把图像性质和解析式结合起来,这就是数形结合的思想:若函数图像经过点,那么点的坐标满足函数解析式,反过来由点的坐标也可用待定系数法求函数解析式;还有利用函数图像和性质解方程,解不等式等等,代数问题几何化,几何问题代数化,数形结合的优势更是体现于此。
解题过程中化难为易,化繁为简,提高解题效率。
4.突破学生做题的难点:例如,怎么分类?怎么画图? 怎么计算?5.关注学生做题的易错点:例如,反比例函数自变量的取值范围不能取0,则图像在0这个点“断开”,其图像在两个象限,图像性质的增减性需对每个象限的图像进行描述,不能在整个自变量取值范围内描述其增减性,增减性是基本要求,必须掌握。
6.拓展学生做题的知识面:[教材第10面的探索] [九下教师用书44面平移]例如,初高中的衔接,可以适当引入渐近线(双曲线在其所在象限与坐标轴越来越近,但永远不与它们相交),对称性(关于原点对称,关于直线Y=x,Y=-x对称),相对与原点的位置(当k取不同值时,双曲线相对于原点位置的远近),平移(性状大小完全相同,左加右减,上加下减)等丰富的性质,教学中可根据学情借助电脑几何画板适当探索,控制难度。
7.经典题型例1:如图,点A、B分别是x轴、y轴上的动点,A(p,0)、B(0,q).以AB为边,画正方形ABCD(1) 在图1中的第一象限内,画出正方形ABCD.若p=4,q=3,直接写出点C、D的坐标(2) 如图2,若点C、D在双曲线xky(x>0)上,且点D的横坐标是3,求k的值 (3) 如图3,若点C、D在直线y=2x+4上,直接写出正方形ABCD的边长例2:如图,直线y=2x+4与反比例函数y=kx的图象相交于A(-3,a)和B两点.(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数y=kx的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式65x->x的解集.习题巩固[数缺形时少直观,形少数时难入微]例1.在平面直角坐标系中,直线AB:y=ax+3(a<0)与双曲线y=kx(k≠0)的图象相交于点A,B两点,点A,B的横坐标分别是1和2.(1)求直线及双曲线的解析式,并画出图像(2)直接写出不等式kx>ax+3的解集(3)将△OAB绕O点逆时针旋转90°得△OA’B’,求A’B’的解析式;(4)以A,B,O,E为顶点的四边形是平行四边形,直接写出E点坐标(5)点P是x轴上一动点,设t=PA+PB,求t的最小值,并求此时点P的坐标。
九年级数学下册 26 反比例函数 课题 反比例函数学案 (
课题:反比例函数【学习目标】1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2.能根据实际问题中的条件确定反比例函数的关系式.【学习重点】反比例函数的概念.【学习难点】确定实际问题中二次函数的关系式.情景导入 生成问题旧知回顾:1.一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是函数.2.一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数,叫做一次函数.当b =0时,y =kx +b 即y =kx.这时叫做正比例函数,所以说正比例函数是一种特殊的一次函数.自学互研 生成能力知识模块一 反比例函数的概念【自主探究】阅读教材P 2,思考:(1)京沪线铁路全程为1463km ,某次列车的平均速度v(单位:km /h )随此次列车的全程运行时间t(单位:h )的变化而变化,其关系可用函数式表示为v =1463/t .(2)某住宅小区要种植一块面积为1000m 2的矩形草坪,草坪的长y(单位:m )随宽x(单位:m )的变化而变化,其关系可用函数式表示为y =1000/x .(3)已知北京市的总面积为1.68×104km 2,人均占有面积S (单位:km 2/人)随全市总人口n(单位:人)的变化而变化,其关系可用函数式表示为S =1.68×104/n . 【合作探究】 分析:上述问题中的函数关系式都是y =k x的形式,其中k 为非零常数. 归纳:一般地,形如y =k x(k 为常数,且k≠0)的函数称为反比例函数. 注:在y =k x 中,自变量x 是分式k x 的分母,当x =0时,分式k x无意义,所以x 的取值范围是不等于0的一切实数.知识模块二 反比例函数成立的条件【自主探究】1.下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1)y =4x ;(2)y =-12x ;(3)y =1-x ;(4)xy =1;(5)y =x 2. 解:(1)是,k =4;(2)是,k =-12;(3)不是;(4)是,k =1;(5)不是.2.下列函数哪些是反比例函数?哪些是一次函数?y =3x -1;y =2x ;y =32x ;y =3x ;y =1x ;y =13x ;y =5x ;y =2x; xy =2;3xy =-7;y =15x ;y =-6x +3;y =0.4x. 解:反比例函数有:y =32x ,y =1x ,y =13x ,y =5x ,y =2x ,xy =2,3xy =-7,y =0.4x;一次函数有:y =3x -1,y =2x ,y =3x ,y =15x ,y =-6x +3.【合作探究】当m 为何值时,函数y =(m -1)x |m|-2是反比例函数,并求出其函数解析式.解:由题意可得⎩⎪⎨⎪⎧|m|-2=-1,m -1≠0,∴m =-1,即y =-2x . 知识模块三 反比例函数的实际运用 【自主探究】已知函数y =x m -7是正比例函数,则m =8;函数y =3x m -7是反比例函数,则m =6.【合作探究】已知y 是x 的反比例函数,并且当x =2时,y =6.(1)求y 与x 的函数关系式;(2)求当x =4,时y 的值.解:(1)设y =k x ,因为当x =2时,y =6.所以k =xy =12,所以y 与x 的函数关系式为y =12x; (2)当x =4时,y =124=3.交流展示 生成新知 【交流预展】1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 反比例函数的概念知识模块二 反比例函数成立的条件知识模块三 反比例函数的实际运用检测反馈 达成目标【当堂检测】1.函数y =-1x +2中,自变量x 的取值范围是( C ) A .x ≠2 B .x ≤-2 C .x ≠-2 D .x ≥-22.在下列函数中,y 是x 的反比例函数的是( C )A .y =8x +5B .y =3x +7C .xy =5D .y =2x 2 3.要使函数y =(2m -1)xm 2-2是一个反比例函数,则m 的值为( A )A .±1B .小于12的实数 C .-1 D .1 4.若反比例函数y =k x与一次函数y =2x -4的图象都过点A(m ,2). (1)点A 坐标为(3,2);(2)反比例函数解析式为y =6x,.) 【课后检测】见学生用书课后反思 查漏补缺1.这节课的学习,你的收获是:__________________________________________________________________2.存在困惑:________________________________________________________________________。
九年级数学下册第二十六章反比例函数反比例函数导学案新人教
反比例函数一、【自主学习】1.回忆:函数、正比例函数、一次函数、二次函数的意义。
函数:一般地,在一个变化过程中,如果有___个变量_______,并且对于x的每个确定的值,y 都有________的值与其对应,那么我们就说是_________,y是x的____________.一次函数:一般地,形如__________ (k、b是常数, k≠0)的函数,叫做一次函数.例如(1)y=-2x-3 (2)__________正比例函数:一般地,形如_________ (k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
例如(1)y=-2x (2)__________二次函数:一般地,形如_____________()的函数,叫做二次函数.例如(1)y=2x2-3x+2 (2)_____________2. 下列y不是x的函数图象的是()3.思考下列问题:①京沪铁路全程为1460km,某次列车的平均速度为v(单位:km/h )随此次列车的全程运行时间t(单位:h)的变化而变化,则变量间的函数解析式是___________________.②某住宅小区要种植一个面积为1500m2的矩形草坪,草坪的长y (单位:m) 随宽x (单位:m)的变化而变化,则变量间的函数解析式是__________________.③已知北京市的总面积为1.7×104平方千米,人均占有的土地面积s (单位:平方千米/人)随全市总人口n (单位:人)的变化而变化,则变量间的函数解析式是_________ .总结:概念:如果两个变量x、y之间的关系可以表示成形如____________的形式(其中k_______ 且_________),那么y是x的_______________,反比例函数的自变量x的取值范围是 .注意:因为a-1=____ ,所以还可将)0(≠=kkxky为常数,即y=k·x1变形为:_____=y;另外)0(≠=kkxky为常数,通过变形还可得_________=k。
人教版九年级数学下册26《反比例函数》学案
第二十六章反比例函数
26.1.1反比例函数
一、教学目标
1. 经历在实际问题中提炼出具有反比例变化规律的数字表达式;
2. 能识别反比例函数的常见形式;
3. 利用待定系数法求解反比例函数的解析式;
4. 理解反比例函数的描述现实世界中的重要意义.
二、教学重难点
重点:反比例函数概念的理解;
难点:待定系数法求解反比例函数的解析式.
三、教学用具
多媒体等.
四、教学过程设计
【情景导入】
【探究新知】
以思维导图的形式呈现本节课所讲解的内容. 巩固例题练习。
九年级数学下册 第二十六章 反比例函数章末复习导学案 (新版)新人教版
反比例函数章末复习一、知识回顾1.反比例函数的解析式为.2.反比例函数的性质:①当k >0时,函数图象的两个分支分别在第 象限,在每个象限内,y 随x 的增大而减小;②当k <0时,函数图象的两个分支分别在第象限,在每个象限内,y 随x 的增大而增大.3.反比例系数k 的几何意义,即在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 ,且保持不变.4.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴分别是,对称中心是.随堂检测.1.若反比例函数y =k x 的图象经过点(1,-2),则k 的值为() A .1 B .2 C .-2 D .-12.若双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是() A .k >12 B .k <12 C .k =12 D .不存在3.关于反比例函数y =4x的图象,下列说法正确的是() A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称4.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系是()A .t =20vB .t =20vC .t =v 20D .t =10v5.点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)都在反比例函数y =-3x的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是()A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 36.反比例函数y 1=m x(x>0)的图象与一次函数y 2=-x +b 的图象交于A ,B 两点,其中A(1,2),当y 2>y 1时,x 的取值范围是()A .x<1B .1<x<2C .x>2D .x<1或x>27.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2).若反比例函数y =k x(x>0)的图象经过点A ,则k 的值为()A .-6B .-3C .3D .68.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =k x的图象经过点B ,则k 的值是.9.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点P(4,3)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是.10.已知反比例函数y =m -8x(m 为常数). (1)若函数图象经过点A(-1,6),求m 的值;(2)若函数图象在第二、四象限,求m 的取值范围;(3)若x >0时,y 随x 的增大而减小,求m 的取值范围.11.如图,四边形ABCD 为正方形,点A 的坐标为(0,1),点B 的坐标为(0,-2),反比例函数y =k x的图象经过点C ,一次函数y =ax +b 的图象经过A ,C 两点.(1)求反比例函数与一次函数的解析式;(2)求反比例函数与一次函数的另一个交点M 的坐标;(3)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.在检测过程中的存在哪些困惑与建议填写在下面,并与同学交流。
九年级数学下册 26 反比例函数教案 (新版)新人教版
第二十六章反比例函数1.结合具体情景体会反比例函数的意义,理解并掌握反比例函数的概念.2.能用待定系数法求反比例函数的解析式.3.会用描点法画反比例函数图象.4.掌握反比例函数的图象和性质,并能运用相关性质解决有关问题.5.理解反比例函数中比例系数k的几何意义.6.能根据实际问题确定变量之间是反比例关系,并确定反比例函数解析式,能灵活运用反比例函数的意义和性质解决相关的实际问题.1.从实际问题情景中经历探索两个变量之间关系的过程,使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察能力、探究能力及归纳总结能力.2.通过函数图象探究函数性质,进一步体会数形结合思想在数学中的应用,经历知识的形成过程,体会由特殊到一般的数学方法.3.通过探究反比例函数解决实际问题,体会数学知识的现实意义,提高分析问题、解决问题的能力,培养数学应用意识.4.经历探索具体问题中数量关系和变化规律的过程,体会建立函数模型的思想.1.通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生应用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯.3.通过分析和表示不同背景下实际问题中变量之间的反比例函数关系,获得用数学方法解决实际问题的经验,感受数学模型思想在实际问题中的应用价值.函数知识是初中代数的核心内容,反比例函数也是新课标明确要求的初中学生必需体会和掌握的三种函数基本形式之一.本节课的内容,是在学生已经学习了函数及其图象的初步知识,以及系统地研究了一次函数的概念、图象、性质、简单应用,是在学生已经初步掌握研究函数的基本方法的基础上进行研究的.反比例函数是一种简单而又重要的函数,作为重要的数学模型,在解决日常生活、物理化学学科学习等实际问题中发挥了重要作用.通过学习可以培养和提高学生用函数模型解决实际问题,逐步提高分析问题、解决问题的能力.本章内容从实际问题情景入手引出基本概念,引导学生进一步体会函数的模型思想,重点内容是对反比例函数的图象和性质的理解与掌握,通过画特殊的反比例函数的图象,归纳出一般反比例函数的图象特征和性质,体会由特殊到一般的数学学习方法,提高学生观察、分析、归纳总结的能力.对于某些解决实际问题的安排,力图加强反比例函数与实际问题的联系,让学生体会数学与生活息息相关,提高学生应用数学的意识.数形结合思想贯穿本章内容,函数图象是研究函数性质的直观载体,从图象上直观观察函数的变化规律,整体把握函数的性质,而解析式是对函数性质的无限“解读”,但抽象不直观,所以将两者结合起来,共同研究函数的性质.本章重点是反比例函数的概念、图象、性质及应用,难点是反比例函数图象的生成过程,以及函数图象的间断及渐近性特点.根据学生特点,以前面学过的函数为基础,用类比的方法探究本章内容,重视反比例函数与一次函数、二次函数的联系、差异和综合运用.【重点】1.通过对实际问题情景的分析,确定反比例函数的解析式.2.会用描点法画反比例函数图象,并能从图象中认识反比例函数的性质.3.能用反比例函数性质解决简单的实际问题.【难点】1.能根据反比例函数图象特征及其性质解决有关问题.2.应用反比例函数解决实际问题,能解决与其他函数结合的问题.初中阶段从量变的角度研究函数,把函数定义为当一个量变化时,另一个量随这个量的变化而变化.根据学生的知识基础,一方面要以前面所学的函数概念及相关知识为基础,另一方面要进一步深化对函数内涵的理解和掌握.反比例函数是初中阶段学习的最后一类函数,因此,教学中要处理好新旧知识的联系,通过复习相关内容,类比前边所学函数的内容结构和思路,为全章的学习做好铺垫,尽量减少学生接受新知识的困难.在教学中,要重视反比例函数与已学函数,特别是与正比例函数的对比,教学时应引导从以下方面对比思考:函数解析式与函数图象的异同、常数k对函数图象的分布、增减性、变化趋势等性质的影响、自变量x的取值范围的异同.同时要重视反比例函数与一次函数、二次函数的联系、差异和综合运用.渗透数学重要思想与方法成为本章的主要线索,类比思想、从特殊到一般、数形结合思想、方程思想及待定系数法等数学思想和方法,贯穿整章的教学,教学过程中每课时都要注重数学思想的培养.26.1 反比例函数26.1.1 反比例函数(1课时)3课时26.1.2反比例函数的图象和性质(2课时)26.2 实际问题与反比例函数2课时单元概括整合 1课时26.1反比例函数1.了解反比例函数概念,能从实际问题中抽象出反比例关系的函数解析式.2.会画反比例函数图象,并结合图象分析总结出反比例函数的性质.3.初步运用待定系数法确定反比例函数的解析式.4.能灵活运用反比例函数的意义和性质解决相关的问题.1.从实际问题情景中经历探索两个变量之间关系的过程,使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察能力、探究能力及交流总结能力.2.通过函数图象探究函数性质,进一步体会数形结合思想在数学中的应用.3.经历观察、分析实际问题中变量之间的关系,建立反比例函数模型,进一步体会数学建模思想.1.通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生应用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯.3.体会数学与现实生活的紧密联系,增强学生应用数学解决实际问题的意识.【重点】1.理解反比例函数的概念.2.画反比例函数图象,理解反比例函数的性质.3.利用反比例函数的性质解决有关问题.【难点】1.理解反比例函数的意义.2.通过图象分析、总结反比例函数图象的特征和性质.3.灵活运用反比例函数的图象和性质解决综合问题.26.1.1反比例函数1.理解并掌握反比例函数定义.2.能判断一个给定的函数是否为反比例函数.3.能根据实际问题中的条件确定反比例函数的解析式及自变量的取值范围.1.让学生从实际问题情景中经历探索、分析和建立两个变量之间的反比例函数关系的过程.2.用类比的思想方法,从实际问题中抽象出反比例函数概念,发展学生的观察能力、探究能力及交流总结能力.3.经历探索具体问题中数量关系和变化规律的过程,体会建立函数模型的思想.1.通过对一些实际问题的探究,发展学生合理的猜想、推理能力,增强他们学习数学的兴趣.2.通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生应用数学的意识.【重点】1.理解并掌握反比例函数的定义,掌握反比例函数的一般形式.2.能根据已知条件确定反比例函数的解析式.【难点】经历探索和表示反比例函数关系的过程,体验用反比例函数表示变量之间的关系.【教师准备】多媒体课件1~7.【学生准备】预习教材P1~3.导入一:【课件1】同一条铁路线上,由于不同车次列车运行时间有长有短,所以它们的平均速度有快有慢.(1)如果速度v一定,那么路程s与时间t是什么关系?(s=vt,是正比例函数)(2)如果时间t一定,那么路程s与速度v又是什么关系呢?(s=vt,是正比例函数)(3)如果路程s一定,那么速度v和时间t又是什么关系呢?【思考】以上关系是函数吗?这个函数是不是我们前边学过的函数?【导入语】问题(1)(2)中的函数是一次函数(正比例函数),(3)中的函数不是前边学过的函数,这类函数就是本章要研究的反比例函数.[设计意图]通过生活中的情景问题,引导学生发现不同于以往学过的新的函数关系,唤起学生对本课时的学习欲望,使学生带着问题进入新课的学习.导入二:【课件2】我们知道,导体中的电流I与导体的电阻R、导体两端的电压U之间满足关系式U=IR,当U=220 V时:(1)你能用含有R的代数式表示I吗?(2)R/20 40 60 80 100ΩI/A当R越来越大时,I R(3)变量I是R的函数吗?为什么?[设计意图]从学生身边的生活和已有知识出发,创设情景,目的是让学生感受到生活当中处处有数学,激发学生学习数学的兴趣和愿望,同时也为抽象出反比例函数概念做铺垫.同时,这个事例的引入也有助于学生从学科综合的角度进行学习.导入三:【复习提问】(1)什么是函数?什么是一次函数、二次函数?(2)一次函数、二次函数的学习过程是怎样的?【课件3】出示以往研究函数的基本思路:【师生活动】学生思考回答,教师点拨.[设计意图]通过复习一次函数、二次函数的概念,让学生从已有的知识体系中自然地构建出新知识.回忆学习一次函数、二次函数的研究思路,引导学生用类比的方法学习本章的反比例函数,初步了解本章的基本内容和研究思路,为后续学习做好铺垫.[过渡语]函数是初中数学中重要的数学模型,我们学习一次函数、二次函数时,在理解定义的基础上,研究它们的图象和性质,并用之解决实际问题,本章将用类似的方法研究一种新的函数——反比例函数.1.感知反比例函数【出示课件4】(1)京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化;(3)已知北京市的总面积为1.68×104 km2,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化.教师引导学生针对上面三个事例思考:(1)每个事例中的两个变量是什么?(2)当一个量变化时,另一个量随着怎样变化?(3)有几个值与变化的量相对应?这种变化说明变量之间是什么关系?(4)题目中的等量关系是什么?如果是函数关系,其解析式是什么?(5)所列出的函数关系式有什么特点?[设计意图]通过问题组的形式,引导学生发现这些变量之间的关系是一种函数关系,并且这种函数的解析式不同于以往的一次函数和二次函数,为进一步研究反比例函数做知识准备,同时激发学生学习的欲望,实现了让学生感知反比例函数的目的.【学生活动】独立思考后,小组合作交流,确定三个问题中的变量关系都是函数关系,并列出具体的函数解析式.【参考答案】(1)v=(2)y=(3)S=.(1)这三个函数是一次函数或二次函数吗?(2)这三个函数与前边学过的函数有什么不同?你能说出它们的共同特征吗?(3)通过观察,你能归纳出这种函数的一般形式吗?(4)你能给这类函数下一个定义吗?【师生活动】学生思考后,逐一回答所提问题,教师适时启发,共同归纳结论.教师引导学生从两个方面思考:与一次函数和二次函数的解析式对比;给出的三个函数关系式等号右面是整式还是分式;三个函数关系式中的k值有什么特点.【总结(出示课件5)】一般地,形如y=(k为常数,k≠0)的函数,叫做反比例函数,其中x是自变量,y是函数.自变量x的取值范围是不等于0的一切实数.思考:(1)你身边哪些量之间存在着反比例函数关系?(2)在反比例函数y=中,k,x,y可以取任意实数吗?(3)反比例函数y=中,自变量x的指数是1吗?为什么?(4)反比例函数除了这种分式的形式外,还有其他表示方法吗?【师生活动】学生独立思考后,小组交流,学生回答时教师及时点评和引导,师生共同归纳反比例函数概念的有关特点:反比例函数y=等号右边是分式形式.反比例函数中,比例系数k≠0,自变量x≠0,函数值y≠0.反比例函数的三种表示形式:y=,xy=k,y=kx-1.[设计意图]通过学生观察讨论,依据老师设计的问题串,类比已学函数,抽象出函数的本质特征,归纳出反比例函数的特征,学生经历概念的形成过程,从而达到真正理解定义的目的,同时培养学生归纳总结能力.思路二1.认识新的函数——反比例函数【出示课件6】下列五个事例:(1)某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)与宽x(单位:m)有何关系?(2)物理学中电流I、电阻R、电压U之间满足关系式U=IR.当U=220 V时,R与I有何关系?当R=10 Ω时,I与U有何关系?(3)京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)与此次列车的全程运行时间t(单位:h)有何关系?(4)用10 m长的篱笆围成矩形的小花园.①如果花园的长为y m,宽为x m,那么y与x有何关系?②如果花园的长为x m,面积为y m2,那么y与x又有何关系?(5)已知北京市的总面积为1.68×104 km2,人均占有面积S(单位:km2/人)与全市总人口n(单位:人)有何关系?教师引导学生针对上面五个事例思考:(1)每个事例中的两个变量是什么?(2)当一个量变化时,另一个量随着怎样变化?这种变化说明变量之间是什么关系?(3)题目中的等量关系是什么?如果是函数关系,其解析式是什么?(4)所列出的函数关系式有什么特点?[设计意图]问题情景既有教材“思考”栏目的问题,又有新增设的跨学科的物理问题,这些事例都要求学生从实际问题中找到两个变量,确定函数解析式.使已学函数和要研究的新函数都呈现在学生面前,引发学生的认识冲突,为形成反比例函数概念、辨析反比例函数做好准备.【总结】经过学生交流研讨,确认五个问题中的变量关系都是函数关系,并列出具体的函数解析式.(1)y=. (2)R=;I=. (3)v=. (4)①y=5-x. ②y=5x-x2. (5)S=.2.反比例函数的概念[过渡语]刚才同学们列出了相关的7个函数关系式,接下来我们开始研究这些函数解析式的特征吧.(1)反比例函数的一般形式【出示课件7】思考下列问题:【问题1】哪些是正比例函数、一次函数、二次函数?【问题2】哪些函数与问题1中的函数不同?能给这类函数下定义吗?【问题3】你能尝试写出类似问题1中这种函数的一般形式吗?【问题4】上述函数中的常数k分别是多少?【问题提示】上述情景中给出七个函数,其中第一、二、三、四个及第七个函数不是以往学习过的函数.通常情况下,我们用y表示函数,用k表示常量,用x表示自变量.这几个特殊的函数学生可以初步总结为y=.(2)理解反比例函数概念【问题1】反比例函数的一般式y=的等号右边是什么式子?(提示:分式,其他的函数都是单项式或多项式)【问题2】反比例函数y=的比例系数k、自变量x取值有什么要求?(提示:都是不能为0的实数)【问题3】反比例函数解析式还可以写成其他形式吗?(提示:两个变量的乘积为定值;自变量x的指数为-1)[设计意图]通过前面的三个问题,观察学生是否能理解反比例函数的意义,是否能用数学语言表达反比例函数的解析式,是否理解自变量的取值范围(实际问题中自变量取值有所不同),是否掌握判断反比例函数的标准和方法.通过学生的观察、思考、合作、交流,反比例函数概念及模型的建立也就会水到渠成.3.例题讲解[过渡语]我们通过实例归纳总结了反比例函数的概念,试试能不能解决下列问题.下列函数:(1)y=;(2)y=;(3)y=;(4)y=;(5)xy=2;(6)y=.其中是反比例函数的是(填序号),它们的比例系数分别是.〔解析〕根据反比例函数概念进行判断,易得(1),(2),(4),(5)是反比例函数,其中k 分别为5,0.4,,2.〔答案〕(1)(2)(4)(5)5,0.4,,2若y=(a-2)x|a|-3是反比例函数,则a的值为.【师生活动】学生独立思考后,小组交流答案,教师对学生的答案进行点评,并强调易错点.〔解析〕根据反比例函数概念可得,反比例函数满足两个条件:(1)常数k≠0;(2)自变量x的指数为-1.由题意可得|a|-3=-1,且a-2≠0,解得a=-2.故填-2.[设计意图]通过练习让学生进一步理解和掌握反比例函数的一般形式及特点,特别是忽略考虑k≠0这一易错点.(教材例1)已知y是x的反比例函数,并且当x=2时,y=6.(1)写出y关于x的函数解析式;(2)当x=4时,求y的值.【师生活动】师生共同复习待定系数法求函数解析式,然后学生独立完成,并板书过程,学生之间互相纠正错误答案,教师点评,并归纳待定系数法求函数解析式的一般步骤.〔解析〕类比一次函数、二次函数求解析式的方法——待定系数法,设出函数解析式,将一对x,y的值代入,求出待定系数k.解:(1)设所求函数解析式为y=.因为当x=2时,y=6,所以有6=.解得k=12.因此所求函数解析式为y=.(2)把x=4代入y=,得:y==3.[设计意图]通过复习待定系数法,再次用这一方法求反比例函数解析式,并让学生体会反比例函数解析式中只有一个待定系数,所以代入一组值即可求出函数解析式.同时让学生体会建模思想在数学中的应用,提高学生的归纳能力.[知识拓展](1)反比例函数y=(k≠0)等号右边分式的分母不能是多项式,只能是x的一次单项式,如y=,y=等都是反比例函数,但y=中,y就不是x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成xy=k(k≠0),y=kx-1(k≠0)的形式.1.反比例函数定义:形如y=(k为常数,且k≠0)的函数叫做反比例函数.2.反比例函数满足的条件:(1)函数右边是分式形式;(2)自变量的指数是-1;(3)比例系数不为0.3.反比例函数的三种表示形式:y=(k≠0);xy=k(k≠0);y=kx-1(k≠0).4.反比例函数自变量的取值范围:x≠0.1.下列函数中,是反比例函数的是()A.y=2x+1B.y=0.75xC.y=D.xy=1解析:A中函数是一次函数;B中函数是正比例函数;C中函数右边分母不是x的单项式,所以A,B,C都不是反比例函数,只有D符合反比例函数定义.故选D.2.反比例函数y=(m+1)x-1中m的取值范围是()A.m≠1B.m≠-1C.m≠±1D.全体实数解析:在反比例函数y=kx-1中,比例系数k≠0,所以m+1≠0,所以m≠-1.故选B.3.若函数y=x2m-1为反比例函数,则m的值是.解析:根据反比例函数定义可得2m-1=-1,解得m=0.故填0.4.某蓄水池的排水管每小时排水8 m3,6 h可将满池水全部排空.(1)蓄水池的容积为;(2)若每小时排水用Q(m3)表示,则排水时间t(h)与Q(m3)的函数解析式为.解析:由题意可得等量关系为:单位时间内的排水量×排水时间=总排水量,所以蓄水池的容积为8×6=48(m3),故Qt=48,即t=.答案:(1)48 m3(2)t=5.已知y与3x成反比例,且当x=1时,y=.(1)写出y与x的函数解析式;(2)当x=时,求y的值;(3)当y=时,求x的值.解:(1)设y与x的函数解析式为y=,把x=1,y=代入,得=,所以k=2,所以y与x的函数解析式为y=.(2)当x=时,y=2.(3) 当y=时,=,解得x=.26.1.1反比例函数思路一1.感知反比例函数2思路二1.认识新的函数——反比例函数2.反比例函数的概念3.例题讲解例1例2例3一、教材作业【必做题】教材第3页练习第1,2题.【选做题】教材第3页练习第3题.二、课后作业【基础巩固】1.下列函数中,不是反比例函数的是()A.y=-B.y=C.y=D.3xy=22.下列反比例函数中,当x=2时,y的值为-3的是()A.y=B.y=-C.y=-D.y=-3.若y=(a+1)是反比例函数,则a的值为()A.1B.-1C.±1D.任意实数4.若一个矩形的面积为10,则这个矩形的长与宽之间的函数关系是()A.正比例函数关系B.反比例函数关系C.一次函数关系D.不能确定5.下列函数:①y=2x-1;②y=-;③y=x2+8x-2;④y=;⑤y=;⑥y=.其中y是x的反比例函数的有(填序号).6.若反比例函数y=,当x=-1时,y=2,则k的值是.7.已知y是x的反比例函数,且当x=3时,y=8,那么当x=4时,y=.8.若梯形的下底长为x,上底长为下底长的,高为y,面积为60,则y与x的函数解析式是(不考虑x的取值范围).9.分别写出下列函数的解析式,指出是哪种函数,并确定其自变量的取值范围.(1)在路程为60 km的运动中,速度v(单位:km/h)关于运动时间t(单位:h)的函数关系式;(2)某校要在校园中开辟出一块面积为84 m2的矩形土地做花圃,这个花圃的长y(单位:m)关于宽x(单位:m)的函数关系式;(3)市政府计划建设一项水利工程,工程需要运送的土石总量为106米3,某运输公司承办了该项工程运送土石的任务,运输公司的平均工作量V(单位:米3/天)与完成运送任务所需要的时间t(单位:天)之间的函数关系式.10.已知y与x的反比例函数解析式为y=.(1)请完成下表:x-3 -1 1 3y(2)求当x=-10时函数y的值;(3)求当y=6时自变量x的值.【能力提升】11.将x=代入反比例函数y=-中,所得函数值记为y1,又将x=y1+1代入原反比例函数中,所得函数值记为y2,再将x=y2+1代入原反比例函数中,所得函数值记为y3,…,如此继续下去,则y2014=.12.已知一个长方体的体积是100 cm3,它的长是y cm,宽是5 cm,高是x cm.(1)写出用高表示长的解析式;(不用写出自变量取值范围)(2)当x=3时,求y的值.【拓展探究】13.已知y=y1+y2,y1与x2成正比例,y2与x成反比例,且当x=1时,y=3;当x=-1时,y=1.求当x=时y的值.【答案与解析】1.C(解析:A,B,D符合反比例函数定义,C函数中的分母不是关于x的单项式,所以不是反比例函数.故选C.)2.B(解析:把x=2分别代入各选项求出y的值,只有B中y的值为-3.故选B.)3.A(解析:根据反比例函数的定义,得a2-2=-1,且a+1≠0,解得a2=1,a≠-1,∴a=1.故选A.)4.B(解析:题目中的等量关系为:长×宽=矩形面积,所以长×宽=10,即长等于10除以宽,所以长与宽是反比例函数关系.故选B.)5.②⑤(解析:①是一次函数,不是反比例函数;③y=x2+8x-2是二次函数,不是反比例函数;④的分母中x的指数是3,不是反比例函数;⑥y=中,a≠0时,是反比例函数,没有此条件则不一定是反比例函数.只有②⑤符合反比例函数定义.故填②⑤.)6.-2(解析:把x=-1,y=2代入可得k=(-1)×2=-2.故填-2.)7.6(解析:设y=,把x=3,y=8代入,得k=24,所以y与x之间的函数解析式为y=,把x=4代入得y=6.故填6.)8.y=(解析:根据梯形的面积公式可得y=60,化简得y=.故填y=.)9.解:(1)v=,是反比例函数,t>0. (2)y=,是反比例函数,x>0. (3)V=,是反比例函数,t>0.10.解:(1)-1-33 1 (2)当x=-10时,y=-. (3)当y=6时,6=,解得x=.11.-(解析:把x=代入得y1=-,则x2=-+1=-,所以y2=2,则x3=2+1=3,所以y3=-,则x4=-+1=,所以y4=-.….观察y1=y4 ,所以三组一循环出现,2014除3余1,所以y2014=y1= -.)12.解:(1)y=. (2)当x=3时,y=.13.解:设y1=k1x2,y2=,则y=y1+y2=k1x2+.把x=1,y=3;x=-1,y=1代入得解得所以y=2x2+.当x=时,y=2×+2=.本课时精心设计了课程导入环节,顺利地把学生带入课时学习的情景之中,为学好本课时的内容做了很好的铺垫.在教学设计思路上,不是把概念直接交给学生,而是让学生通过比较反比例函数与其他函数区别的基础上得出结论,这样既巩固了先前的知识,又很好地做到了知识的迁移和延伸.依托教材的素材对教材进行了开发,依据教材的情景,设计了对学生具有启发性和引导性的问题,精心设置了教材例题之外的例题,更好地为实现本节课的教学目标服务.在复习一次函数和二次函数等函数知识的时候,给学生的时间较少,部分同学还没有很好地回忆和总结先前的知识,这在一定程度上造成了学生理解知识存在衔接的困难.在讨论问题组的时候,让学生自我学习和交流做得不够深入,老师过早地把问题结论提示给学生,对学生的思维活动没有做到很好的引导.在习题处理环节上,第一个例题可以让学生通过交流合作去完成.因为本课时的学习内容需要联系以往的函数知识,教师应该在课前让学生进行有针对性的复习.降低补充的两个例题的综合程度,把处理的重点放在巩固基础知识上,而不是强调对知识的综合练习.在明确了反比例函数的定义之后,建议学生利用函数解析式把不同的函数特点进行对比,这样更有利于学生对知识的掌握.练习(教材第3页)1.(1)t=(2)h=(3)p=。
九年级数学下册26反比例函数小结导学案新人教版
反比例函数小结学习目标:1.理解反比例函数的定义,掌握其图象和性质;2.会根据题目中的条件确定反比例函数解析式;3.会利用反比例函数的图象和性质解决有关问题重点、难点:反比例函数图象和性质的运用学习过程一.【复习提纲】初步感知、激发兴趣1. 什么叫反比例函数?其自变量的取值范围是什么?2. 反比例函数有哪几种表达形式?3. 反比例函数有哪些性质?(对称性,图象分布象限,增减性)4. 反比例函数解析式中k 的几何意义是什么?5. 如何确定反比例函数的解析式?二.【复习练习】初步运用、生成问题1. 反比例函数xk y =的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为 . 2. 如图是反比例函数y =k x 在第二象限内的图象,若图 中的矩形OABC 的面积为2,则k = .3.函数1k y x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-4.已知:21y y y +=,1y 与2x 成正比例,2y 与x 成反比例,且1=x 时,3=y ;1-=x 时,1=y . 求21-=x 时y 的值.三.【例题探究】师生互动、揭示通法 问题1.已知反比例函数1k y x-=(k 为常数,1k ≠). (1)若点2A (1 ),在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一支上,y 随x 的增大而减小,求k 的取值范围;问题2. 如图,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0=-+xm b kx 的解(直接写出答案); (4)求不等式0<-+x m b kx 的解集(直接写出答案).。
【最新】人教版九年级数学下册第二十六章《反比例函数复习》学案1
新人教版九年级数学下册第二十六章《反比例函数复习》学案三、合作探究11.已知反比例函数 的图象在第一、三象限,则a 的取值范围是A,点A 纵坐标为3,则m=___,反比例函数的解析式是__________.112.已知反比例函数的图象经过点A (-5,6),(1)这个函数的图象分布在哪些象限?y 随x 的增大如何变化?(2)点B (-30,1)、C (-2,15)和D (-2,-15)是否在这个函数的图象上?四、拓展提升13.已知:反比例函数xk y = 和一次函数y=2x-3,其中一次函数的图像经过点(k ,5). (1)试求反比例函数的解析式;(2)若点A 在第一象限,且同时在上述两函数的图像上,求A 点的坐标.14.已知反比例函数y=- 和一次函数y=kx-1的图象都经过点P(m,-3m).(1)求点P 的坐标和这个一次函数的解析式;(2)若点M(a ,y 1)和点N (a+1,y 2),都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明y 1大于y 2.五、当堂反馈15.已知反比例函数 的图象经过点A(-3,-6),则这个反比例函数的解析式是 . 16.若反比例函数y= 的图象上有两点A(1,y 1),B(2,y 2),则y 1 ______ y 2. 17.某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单位)(1) 写出这个函数的解析式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3) 当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米.自我评价专栏(分优良中差四个等级)x a y 2-=x m 3x 1-xky =。
新人教版初中数学9年级下册26章精品导学案(23页)
第26章 反比例函数26.1.1反比例函数的意义【学习目标】1、 经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、 理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用 【学习重点】理解反比例函数的意义,确定反比例函数的解析式 【学习难点】反比例函数的解析式的确定 【学法指导】自主、合作、探究【自主学习,基础过关】 一、自主学习: (一)复习巩固1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式. 以上这种求函数解析式的方法叫: . (二)自主探究提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? (1) (2) (3)2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? (三)归纳总结:1、三个函数表达式:v t 1262=、xy 1000=、S =n 41068.1⨯有什么共同特征?你能用一个一般形式来表示吗?2、对于函数关系式xy 1000=,完成下表:x10 20 30 40 50 80 100xy 1000=当x 越来越大时y 怎样变化?这说明x 与y 具备怎样的关系?3、类比一次函数的概念给上述新的函数下一个恰当的定义 讨论:1、反比例函数xky =中自变量x 在分式的什么位置?自变量的取值范围是什么?2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。
九年级数学下册 第26章 反比例函数 26.2 实际问题与反比例函数(1)学案 (新版)新人教版-(
26.2实际问题与反比例函数(1)【学习目标】1.经历在具体问题中探索反比例函数应用的过程,体会反比例函数作为一种数学模型的意义.2.能利用反比例函数求具体问题中的值.3.渗透数形结合思想,提高学生用函数观点解决问题的能力.【重点难点】重点:运用反比例函数解决实际问题.难点:把实际问题转化为反比例函数.【新知准备】你吃过拉面吗?你知道在做拉面的过程中渗透着数学知识吗?(1)体积为20cm3的面团做成拉面,面条的总长度y与面条粗细(横截面积)s有怎样的函数关系?(2)某家面馆的师傅手艺精湛,他拉的面条粗1mm2,面条总长是多少?【课堂探究】一、自主探究探究1:市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?探究2:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?二、尝试应用1.我们学习过反比例函数,例如,当矩形面积一定时,长a 是宽b 的反比例函数,其函数关系式可以写为sb a =(s 为常数,s ≠0). 请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例,函数关系式.2.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v (千米/时)与时间t (小时)的函数关系为( )A .tv 480= B .v+t=480 C .t v 80=D .t t v 6-= 3. 完成某项任务可获得500元报酬,考虑由x 人完成这项任务,试写出人均报酬y (元)与人数x (人)之间的函数关系式.4.A 、B 两城市相距720千米,一列火车从A 城去B 城.⑴火车的速度v (千米/时)和行驶的时间t (时)之间的函数关系是______.⑵若到达目的地后,按原路匀速返回,并要求在3小时内回到A 城,则返回的速度不能低于___________. x 吨,那么这批煤能维持y 天.(1)则y 与x 之间有怎样的函数关系?(2)画函数图象(3)若每天节约0.1吨,则这批煤能维持多少天?三、补偿提高1. 在□ABCD 中,AB =4cm ,BC =1cm ,E 是CD 边上一动点,AE 、BC 的延长线交于点F ,设DE =x (cm ),BF =y (cm ).则y 与x 之间的函数关系式为 ____________,并写出自变量x 的取值X 围为____________.2.设∆ABC 中BC 边的长为x (cm ),BC 上的高AD 为y (cm ).已知y 关于x 的函数图象过点(3,4).⑴求y 关于x 的函数解析式和∆ABC 的面积.⑵画出函数的图象,并利用图象,求当2<x <8时y 的取值X 围.【学后反思】通过本节课的学习你有那些收获?26.2实际问题与反比例函数(1)学案答案【新知准备】sy 20= 【课堂探究】一、自主探究1.(1)ds 104=,(2)如果把储存室的底面积定为500m ²,施工时应向地下掘进20m 深. (3)当储存室的深为15m 时,储存室的底面积应改为666.67 m ²才能满足需要.2.(1)tv 240=,(2)如果全部货物恰好用5天卸完,则平均每天卸载48吨.若货物在不超过5天内卸完,则平均每天至少要卸货48吨.二、尝试应用1.实例,三角形的面积S 一定时,三角形底边长y 是高x 的反比例函数,其函数关系式可以写为x s y 2=(s 为常数,s≠0).2. A ,3.x y 500=,4.(1)t v 120=,(2)240千米/小时,5.(1)xy 90=,(2)图略,(3)180天. 三、补偿提高 1.xy 4=,40<<x2.(1)y 关于x 的函数解析式是y=x12,△ABC 的面积是6平方厘米 (2)当2<x <8时,y 的取值X 围是1.5<y <6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章章末复习
【学习目标】
1.系统地回顾本章主要知识,能熟练运用本章知识解决一些实际应用问题.
2.进一步增强对反比例函数的图象及其性质的理解,能运用它们解决具体问题.
【学习重点】
反比例函数的图象及其性质的理解和运用.
【学习难点】
反比例函数图象中的面积不变性质.
情景导入 生成问题
知识结构我能建:
自学互研 生成能力
知识模块一 反比例函数的基础知识
【自主探究】 1.(2016·哈尔滨中考)点(2,-4)在反比例函数y =k x 的图象上,则下列各点在此函数图象上的是( D ) A .(2,4) B .(-1,-8) C .(-2,-4) D .(4,-2)
2.(2016·连云港中考)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的函数表达式可能是( B )
A .y =3x
B .y =3x
C .y =-1x
D .y =x 2 3.(衢州中考)下列四个函数图象中,当x>0时,y 随x 的增大而减小的是( B )
【合作探究】
1.反比例函数y =-2x
的图象是双曲线,分布在第二、四象限,在每个象限内,y 都随x 的增大而增大;若P(x 1,y 1),P 2(x 2,y 2)都在第二象限且x 1<x 2,则y 1<y 2.
2.函数y =-ax +a 与y =-a x (a≠0)在同一坐标系中的图象可能是( A )
知识模块二 根据反比例函数求面积
【自主探究】
1.如图,双曲线y =k x
(k >0,x>0)经过Rt △ABO 的直角边AB 的中点D ,已知直角边 OB 在x 轴上,且△ABO 的面积为3,则k 等于( A )
A .3
B .6
C .8
D .9
(第1题图)(第2题图)
2.反比例函数y =6x 与y =3x
在第一象限的图象如图所示,作一条平行于x 轴的直线分别交第一象限的双曲线于A ,B 两点,连接OA ,OB ,则△AOB 的面积为( A )
A .32
B .2
C .3
D .1 【合作探究】
1.(桂林中考)如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A ,C 的
坐标分别是(2,4),(3,0),过点A 的反比例函数y =k x
的图象交BC 于点D ,连接AD ,则四边形AOCD 的面积是9.
(第1题图) (第2题图)
2.(嘉兴中考)如图,直线y =2x 与反比例函数y =k x
(k≠0,x>0)的图象交于点A(1,a),点B 是此反比例函数的图象上的任意一点(不与点A 重合),BC ⊥x 轴于点C.
(1)求k 的值;
(2)求△OBC 的面积.
解:(1)k =2;(2)S △OBC =1.
知识模块三 反比例函数的综合应用
【自主探究】
已知反比例函数y =k x
(k≠0)的图象与一次函数y =3x +m 的图象相交于点(1,5). (1)求这两个函数的解析式;
(2)求这两个函数图象的另一个交点的坐标.
解:(1)∵点(1,5)在反比例函数y =k x (k≠0)的图象上,∴5=k x ,即k =5,∴反比例函数的解析式为y =5x
.又∵点A(1,5)在一次函数y =3x +m 的图象上,有5=3+m ,∴m =2.∴一次函数的解析式为y =3x +2; (2)由题意可得:⎩⎪⎨⎪⎧y =5x ,y =3x +2,解得⎩⎪⎨⎪⎧x =1,y =5,或⎩⎪⎨⎪⎧x =-53,y =-3.
∴这两个函数的图象的另一个交点的坐标为⎝ ⎛⎭
⎪⎫-53,-3. 【合作探究】
(安徽中考)如图,已知反比例函数y =k 1x
与一次函数y =k 2x +b 的图象交于点A(1,8),B(-4,m). (1)求k 1,k 2,b 的值;
(2)求△AOB 的面积;
(3)若M(x 1,y 1),N(x 2,y 2)是反比例函数y =k 1x
图象上的两点,且x 1<x 2,y 1<y 2,指出点M ,N 各位于哪个象限,并简要说明理由.
解:(1)把A(1,8),B(-4,m)分别代入y =k 1x
得k 1=8,m =-2.∵A(1,8),B(-4,-2)在y =k 2x +b 图象上,∴⎩
⎪⎨⎪⎧k 2+b =8,-4k 2+b =-2, 解得⎩
⎪⎨⎪⎧k 2=2,b =6; (2)设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3.∴OC=3,∴S AOB =S △AOC +S △BOC =12×3×8+12
×3×2=15;
(3)点M 在第三象限,点N 在第一象限.①若x 1<x 2<0,点M ,N 在第三象限分支上,则y 1>y 2,不合题意;②若0<x 1<x 2,点M ,N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意.
交流展示 生成新知
【交流预展】
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问
题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
【展示提升】
知识模块一 反比例函数的基础知识
知识模块二 根据反比例函数求面积
知识模块三 反比例函数的综合应用
检测反馈 达成目标
【当堂检测】
1.直角坐标系中有四个点P(2,6),Q (3,4),R(4,3)和S(5,1),其中三点在同一反比例函数的图象上,
则不在这个图象上的点是( D )
A .P 点
B .Q 点
C .R 点
D .S 点
2.点P(2,1)是反比例函数y =k x
的图象上的一点,则当y<1时,自变量x 的取值范围是( D ) A .x<2 B .x>2
C .x<2且x≠0
D .x>2或x<0
3.
如图,点A 在反比例函数y =k x
的图象上,AB ⊥x 轴于点B ,点C 在x 轴上,且CO =OB ,S △ABC =2,确定此反比例函数的解析式.
解:设点A(x ,y),反比例函数y =k x
(k>0,由图得),连接OA ,则OB =x ,BA =y.∵CO=OB ,∴S △AOB =S △ACO ,∴S △AOB =12S △ABC =1.又∵S △AOB =12k ,∴k =2.∴此反比例函数的解析式为y =2x
. 【课后检测】见学生用书
课后反思 查漏补缺
1.这节课的学习,你的收获是:
________________________________________________________________________
2.存在困惑:________________________________________________________________________。