几种常见的二次曲面
高等数学常用二次曲面图形.ppt
围成的图形如下:
y 0,
y2
12024/9/27
图30:由 z x2 y2 , z x2 y2 围成的图形如下:
z x2 y2 , z x2 y2
22024/9/27
图31:由 z x2 y2 , x2 y2 1, z 0
围成的图形:
图32: 32024/9/27
图14:函数 函
z
1 ey
cos x yey
有无穷多个
极大值,但无极小值。
z 1 ey cos x yey
图15: 62024/9/27
抛物面 z x2 y2 被平面 x y z 1
截成一椭圆。
图16: 72024/9/27
椭球面
x2 a2
y2 b2
z2 c2
1 在
点
3 a, 3
x2 y2 2x
02024/9/27
图39:由曲面 z x2 y2 和平面
z 0, x 1, y 1 围成图形如下:
z 0, x 1, y 1
12024/9/27
图40:双曲抛物面 z xy 被柱面 x2 y2 1
所截得的图形如下:
x2 y2 1
图41: 22024/9/27
62024/9/27
图1(2):x2 y2 z2 4, x2 y2 2x
的图形在第一卦限部分如下:
x2 y2 z2 4, x2 y2 2x
图2: 72024/9/27
(2)、曲线
xyz 1
y
21
处的切线
图3: 82024/9/27
(3) 曲线
2x2 y2 z2 16
图46:曲线 x2 y2 z2 1 y z 0
的图形如下:
常见的二次曲面
(1)
所确定的曲面称为椭球面.
用Oxy坐标平面(即z=0)截所给曲面,截痕为椭圆
x2 y2 2 2 1, a b z 0.
用平行于Oxy坐标平面的平面z=h截所给曲面,截
痕为椭圆
x2 y2 h2 2 2 1 2 , a b c z h.
x y 当h=±c时,截痕为 2 2 0,即截痕缩为一 a b 点.当|h|>c时,截痕为虚椭圆,说明椭球面与平面
用Oyz坐标面截所给曲面,截痕方程为
y2 z2 2 2 1, b c x 0.
无图形.
用平面x=h截所给曲面,其截痕方程为
y 2 z 2 h2 2 2 2 1, b c a x h.
b 2 当|h|>a时,其图形为椭圆,半轴分别为 h a2 a c 2 2 和 h a ; a
方程
x2 y2 z ( p, q同号) 2 p 2q
(5)
所确定的曲面为椭圆抛物面. 若p>0,q>0.利用截痕法可作出其图形.
六、双曲抛物面
x2 y2 z ( p, q同号) 方程 2 p 2q
确定的曲面为双曲抛物面.
(6)
设p>0,q>0.
用Oxy坐标面截所给曲面,截痕为两条直线
由方程
x2 y2 z 2 2 2 1 2 a b c
(3)
所确定的曲面称为双叶双曲面.
用Oxy坐标面截所给曲面,得截痕为双曲线
x2 y2 2 2 1, a b z 0.
用平面z=h截所给曲面,得截痕为双曲线
x2 y2 Βιβλιοθήκη 2 2 2 1 2 , a b c z h.
河海大学理学院《高等数学》常用二次曲面图形
椭球面是一种中心在某一点的平面距 离都相等的点集,其形状类似于椭圆, 但具有三个不同轴。在几何学中,椭 球面常用于描述某些天体的形状。
在物理学中的应用
旋转抛物面
旋转抛物面是抛物线绕其对称轴旋转形成的曲面,在物理学中常用于描述光学透镜的形状和光学系统的成像原理。
双曲面
双曲面是中心在某一点的平面距离不相等的点集,分为椭圆双曲面和双曲线双曲面两种。在物理学中,双曲面常 用于描述电磁波的传播和波动现象。
性分析。
05
总结与展望
总结
二次曲面图形分类
二次曲面图形是高等数学中一个重要的知识点,根据其方程形式的不同可以分为椭球面、 抛物面和双曲面等类型。这些不同类型的曲面在几何形状、性质和应用方面都有所不同。
二次曲面图形的性质
每种类型的二次曲面图形都有其独特的性质,如对称性、曲率、渐近线等。了解这些性质 有助于更好地理解二次曲面图形的几何特征,为后续的学习和应用打下基础。
二次曲面图形在科技领域的应用前景
随着科技的发展,二次曲面图形在科技领域的应用前景将更加广阔。例如,在计算机图形学中,二次曲面图形可以用 于制作更加逼真的三维模型;在航天工程中,可以利用二次曲面图形来设计更加优化的飞行器外形。
二次曲面图形的教育价值
在高等数学教育中,二次曲面图形是一个重要的知识点,对于培养学生的空间想象能力和几何直觉具有 重要意义。未来,随着教育理念和教学方法的改进,二次曲面图形的教育价值将得到更加充分的体现。
04
几何特性
双曲面的几何特性包括对称性和 旋转对称性,它在三维空间中呈 现出规则的形状。
01 03
总结词
双曲面是一种常见的二次曲面图 形,它由两个主轴和两个副轴组 成,形状类似于马鞍形。
高等数学-几种常见的二次曲面
母线 平行于 z 轴;
准线 xoy 面上的曲线 l1.
方程 G( y, z) 0 表示柱面,
母线 平行于 x 轴;
准线 yoz 面上的曲线 l2.
方程 H (z, x) 0 表示柱面,
y x l1
x z l3
z l2 y
母线 平行于 y 轴;
x
准线 xoz 面上的曲线 l3.
y
9
注:柱面方程与坐标面上的曲线方程容易混淆,应该
例如 :
11
下面我们重点讨论母线在坐标面,旋转轴是坐标轴 的旋转曲面.
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
z
若点 M1(0, y1, z1) C, 则有 f ( y1, z1) 0
当绕 z 轴旋转时, 该点转到
求旋转曲面方程C时,平面
z oy
27
z
4. 椭圆锥面
z
x2 a2
y2 b2
z2
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2 (bt)2
1,
zt
①
xx
o yy
在平面 x=0 或 y=0 上的截痕为过原点的两直线 .
可以证明, 椭圆①上任一点与原点的连线均在曲面上. (椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换
绕 y 轴旋转时得旋转曲面方程:
o
f ( y, x2 z2 ) 0
y
例3. 旋转抛物面
x
特点:母线C为抛物线,旋转轴L为抛物线的对称轴。
例如:将yoz平面上的抛物线C: z2 2 py
绕 y 轴旋转一周所产生的抛物面为:
二次曲面一般式
二次曲面的一般式可以表示为:
其中,( A, B, C, D, E, F, G, H, I, J ) 是常数。
这个方程描述了一个三维空间中的二次曲面,包括椭球、双曲面和抛物面等。
对于不同的二次曲面,我们可以根据一般式的系数来判断其类型:
1. 椭球:
- 如果( A > 0, B > 0, C > 0 ),且( (AD)^2 < ABC ),则方程表示一个椭球。
- 其中( A, B, C ) 分别代表椭球在三个坐标轴上的主半径的平方。
2. 双曲面:
- 如果( A > 0, B > 0, C > 0 ),但不满足椭球的条件,则方程表示一个双曲面。
- 双曲面可以进一步分为两个分支:单叶双曲面和双叶双曲面。
3. 抛物面:
- 如果( A, B, C ) 中有且仅有一个等于零,则方程表示一个抛物面。
- 抛物面有两种类型:平面抛物面和平行抛物面。
4. 圆锥曲线:
- 如果将二次曲面方程投影到某个平面上,可能会得到一个圆、椭圆、双曲线或抛物线,这些都是圆锥曲线。
5. 退化情况:
- 如果( A = B = C = 0 ),那么方程表示一个平面。
注意,二次曲面的类型取决于( A, B, C, D, E, F, G, H, I, J ) 的值以及它们之间的关系。
几种常见的二次曲面
2020年5月13日星期三
21
(0,0,0) y
2、 双曲抛物面(马鞍面)
x2 y2 a2 b2 z
z
o
x
y
z xy 也是双曲抛物面。
2020年5月13日星期三
22
八、一般的二次曲面
在研究一般的二次曲面时,要利用坐标变换将其方程变为标准方程。 1、坐标系的平移
k0 k0 k0
z
xo
y
2020年5月13日星期三
19
2、双叶双曲面
x2 y2 z2 a2 b2 c2 1
z y
0
或者
x2 y2 z2 a2 b2 c2 1
xzΒιβλιοθήκη o xy当 a=c 时为旋转双叶双曲面。
2020年5月13日星期三
20
七、抛物面
1、 椭圆抛物面
x2 a2
y2 b2
z
z
x
x y z a b
旋转单叶双曲面
x2 y2 z2 a2 b2 1
旋转双叶双曲面
14
例5
x2 y2 z2 1 是怎样形成的?
4 94
解:是由
x y xoy :
绕 y 轴转成
或 yoz : z2 y2 1 绕 y 轴转成 49
z
思考:方程 表示怎样的曲面?
x2
y2
R2
z
1、怎样形成? 2、什么曲面?
解: 母线平行于 y 轴,准线为 xoz 面上的曲线(抛物线) 的抛物柱面。
x z
2020年5月13日星期三
5
G(x, z)
z
x z
xo
y
3)一般地,只含 y, z 而缺 x 的方程 H(y, z)=0在空间直角坐标系中表 示母线平行于 x 轴的柱面,其准线为 yoz 面上的曲线
几种常见的二次曲面 曲面方程的概念
柱面举例
z
z
y2 2x
o
y
o
x
x
抛物柱面
(2)椭圆
a
2
z2 c2
1绕
y 轴和
z 轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
旋 转
椭
绕z 轴旋转
x2 a2
y2
z2 c2
1
球 面
(3)抛物线
y
2
2 pz绕
z 轴;
x 0
x2 y2 2 pz 旋转抛物面
15
三、柱面
在平面坐标系 x2 y2 1表示中心在原点的单位圆
如图 设 M( x, y, z),
z
d M1(0, y1, z1)
M F( y, z) 0
(1) z z1
(2)点 M 到 z 轴的距离
o
y
x
d x2 y2 | y1 |
将 z z1, y1 x2 y2 代入
F( y1, z1) 0
10
将 z z1, y1 x2 y2 代入 F( y1, z1) 0
F x, y2 z2 0.
12
例5.试建立顶点在原点,旋转轴为z轴,半顶角为
的圆锥面方程.
解:在yoz面上,直线 L的方程为
z y cot
z
L
M (0, y, z)
绕 z 轴旋转时, 圆锥面的方程为
z x2 y 2 cot
y
令a cot ,两边平方 x
得方程 F x2 y2 , z 0,
常见的九种二次曲面方程
常见的九种二次曲面方程九种二次曲面方程是指在三维空间中,常见的九种二次曲面的方程。
这些曲面在数学、物理、工程等领域中都有广泛的应用。
下面我们来逐一介绍这九种二次曲面方程。
1. 球面方程:$x^2+y^2+z^2=r^2$球面是一种最简单的二次曲面,它的方程表示了所有到原点距离为$r$的点的集合。
球面在几何学中有着广泛的应用,例如在计算球体的体积、表面积等方面。
2. 椭球面方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$椭球面是一种形状类似于椭圆的二次曲面,它的方程表示了所有满足上述条件的点的集合。
椭球面在物理学中有着广泛的应用,例如在描述行星、卫星、分子等的运动轨迹时。
3. 椭柱面方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$椭柱面是一种形状类似于椭圆的二次曲面,但它在$z$轴方向上是无限延伸的。
椭柱面在工程学中有着广泛的应用,例如在设计汽车、飞机等的外形时。
4. 双曲面方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$双曲面是一种形状类似于双曲线的二次曲面,它的方程表示了所有满足上述条件的点的集合。
双曲面在物理学中有着广泛的应用,例如在描述电磁场、引力场等的分布时。
5. 抛物面方程:$z=ax^2+by^2+c$抛物面是一种形状类似于抛物线的二次曲面,它的方程表示了所有满足上述条件的点的集合。
抛物面在物理学中有着广泛的应用,例如在描述自由落体、抛体等的运动轨迹时。
6. 锥面方程:$z=\sqrt{x^2+y^2}$锥面是一种形状类似于圆锥的二次曲面,它的方程表示了所有满足上述条件的点的集合。
锥面在物理学中有着广泛的应用,例如在描述光线、声波等的传播时。
7. 圆锥面方程:$x^2+y^2=z^2$圆锥面是一种形状类似于圆锥的二次曲面,它的方程表示了所有满足上述条件的点的集合。
3.3常见二次曲面
解 设动点为P(x,y,z),所求的轨迹为S,由题意可得
x 12 y2 z2 1 x 4 ,
2
化简得
x2 y2 z2 1
433
,
故动点的轨迹S为一椭球面.
例2 已知椭球面的轴与坐标轴重合,且通过椭圆 x2 y2 1 ,与 9 16
点P0(1, 2, 23),求这个椭球面的方程.
和短轴,而 a,b, c 依次称为椭球的长半轴、中半轴和短半轴.
(3) 范围及有界性
由曲面的方程出发,讨论x,y,z的取值范围,若均有界,则曲面
为有界曲面,否则为无界曲面.
从椭球面的方程可以看出,对于椭球面上任何一点,均有
x a, y b, z c
,
因此椭球面被完全封闭在一个长方体的内部,此长方体由6 个平面:
椭球面的参数方程
ìïïïïíïïïïî
x= y= z=
a sin j b sin j cosj ,
cos q, sin q,
( 0 #j p , 0 #q 2p ).
(3.3-6)
由(3.3-6)消去参数 θ 和 即得椭球面的标准方程(3.3-1).
例1 设动点与点(1,0,0)的距离等于从这点到平面x=4的距离的一 半,试求此动点的轨迹.
x a , y b , z c
围成,这6个平面都与椭球面相切,切点就是椭球面的6个 顶点.由此可知,椭球面是一个有界曲面.
3) 椭球面的图形(形状)
(1) 平行截割法 为了解曲面的大致形状,考虑曲面与一族平行平面的交线,
这些交线都是平面曲线.如果知道了这些平面曲线的形状和变 化趋势,那么曲面的大致形状也就知道了.这种方法称为平行截 割法或等值线法.
常见的九种二次曲面方程
常见的九种二次曲面方程二次曲面方程是解析几何的重点内容,它被广泛涉及于数学、物理、工程、计算机等多个学科中。
本文将介绍九种常见的二次曲面方程,以帮助读者更好的理解和应用。
一、圆锥面方程圆锥面方程可以表示为 F(x,y,z)=0,其中 F(x,y,z)是二次型方程,或表示为 (x/a)^2+(y/b)^2-(z/c)^2=1,其中a、b、c分别为锥面三个坐标轴上椭圆截面的半轴长度,这种圆锥面称为椭圆锥面。
当a=b时,圆锥面变成圆锥面;当a=b=c时,称为圆锥体。
二、双曲面方程双曲面方程可以表示为 F(x,y,z)=0,其中 F(x,y,z)是二次型方程,或表示为 (x/a)^2+(y/b)^2-(z/c)^2=1,其中a、b、c分别为双曲面三个坐标轴上双曲截面的半轴长度,这种双曲面称为双曲抛物面或椭圆双曲面。
当a=b时,双曲面变成双曲抛物面;当a=b=c时,称为双曲球面。
三、抛物面方程抛物面方程可以表示为 F(x,y,z)=0,其中 F(x,y,z)是二次型方程,或表示为 z=ax^2+by^2+c,这种抛物面被称为旋转抛物面。
四、球面方程球面方程可以表示为 (x-a)^2+(y-b)^2+(z-c)^2=r^2,其中(a,b,c)是球中心坐标,r是球半径。
球面是最常见的几何形体,可以在多个方面得到应用。
五、椭球面方程椭球面方程可以表示为 (x/a)^2+(y/b)^2+(z/c)^2=1,其中a、b、c分别为椭圆三个坐标轴上椭圆截面的半轴长度。
与圆锥体类似,当a=b=c时,椭球面变成球面。
六、单叶双曲面方程单叶双曲面方程可以表示为 (x/a)^2+(y/b)^2-(z/c)^2=1,其中a、b、c分别为双曲面三个坐标轴上双曲截面的半轴长度。
单叶双曲面只有一个部分,并非所有双曲面都是单叶的。
七、双叶双曲面方程双叶双曲面方程可以表示为 (x/a)^2+(y/b)^2-(z/c)^2=-1,其中a、b、c分别为双曲面三个坐标轴上双曲截面的半轴长度。
二次曲面
x2 a2
y2 a2
z2
x2 y2 a2 z2 圆锥面
二、小结 椭球面、抛物面、双曲面、截痕法.
(熟知这几个常见曲面的特性)
思考题
方程
x2 4y2 z2
25
表示怎样的曲线?
x 3
思考题解答
x2 4y2 z2 x 3
25
4 y2 z2 x 3
16 .
表示平面 x = -3上的一条双曲线.
(2)
a b c,
x2 a2
y2 a2
z2 a2
1
球面
方程可写为 x2 y2 z2 a2.
(二)抛物面
1. 椭圆抛物面
x2 y2 z ( p 与 q 同号) 2 p 2q
椭圆抛物面
用截痕法讨论:设 p 0, q 0 (1)用坐标面 xoy (z 0) 与曲面相截
截得一点,即坐标原点 O(0,0,0)
截得抛物线
x2
2
pz
y 0
x2 y2 z ( p 与 q 同号)
2 p 2q
与平面 y y1 的交线为抛物线.
x
2
2
p
z
y12 2q
y y1
它的轴平行于z 轴
顶点
0,
y1 ,
y12 2q
(3)用坐标面 yoz ( x 0),x x1与曲面相截
均可得抛物线.
同理当 p 0, q 0 时可类似讨论.
z 0
z
x2 a2
z2 c2
1 ,
y
ቤተ መጻሕፍቲ ባይዱ
0
y2 b2
z2 c2
1.
x 0
x
o
y
x2 a2
高等数学几种常见的曲面及其方程
⾼等数学⼏种常见的曲⾯及其⽅程⼀、⼆次曲⾯
1-1球⾯
(X-X0)2+(Y-Y0)2+(Z-Z0)2=R2
球⼼为M0(X0,Y0,Z0)
1-2椭圆锥⾯
1-3椭球⾯
其中,表⽰xOz平⾯上的椭圆绕z轴旋转⽽成的椭球⾯。
1-4单叶双曲⾯
其中,表⽰xOz平⾯上的双曲线绕z轴旋转⽽成的单叶双曲⾯。
1-5双叶双曲⾯
其中,表⽰xOz平⾯上的双曲线绕x轴旋转⽽成的双叶双曲⾯。
1-6椭圆抛物⾯
1-7双曲抛物⾯(马鞍⾯)
⼆、柱⾯
2-1圆柱⾯
X2+Y2=R2
2-2椭圆柱⾯
2-3双曲柱⾯
2-4抛物柱⾯
y2=2px
注:形如⼆、柱⾯只含x,y⽽缺少z的⽅程F(x,y)=0在空间直⾓坐标系中表⽰母线平⾏于z 轴的柱⾯,其准线为xOy平⾯上的曲线C:F(x,y)=0
特别地,
1.球x2+y2+z2=R2
2.圆柱⾯x2+y2=R2
3.旋转抛物⾯X2+Y2=z(以原点为顶点,上下两个开⼝分别向上向下的抛物线旋转⽽成的图形)
4.X2+Y2=z2(以原点为顶点,上下两个开⼝分别向上向下的圆锥,锥顶⾓为90。
)。
二次曲面
2. 几种常见二次曲面.
x z2 (1) 椭球面 2 + 2 + 2 = 1 a b C
y
3° 类似地, 依次用平面x = 0,平面y = 0截割, 得椭圆:
y2 z2 2 + 2 =1 , b c x =0
x 2 z 2 + a c y = 0
2 2
=1
.
特别: 当a=b=c时, 方程x2 + y2 + z2 = a2 , 表示 球心在原点o, 半径为a的球面.
2
z
y2
O 1° 用平面z = 0去截割, 得椭圆 o 2 x2 y 2 + 2 =1 x a b z =0 2° 用平面z = k去截割(要求 |k | ≤ c), 得椭圆 x2 y2 k2 2 + 2 = 1− 2 a b c z = k 当 |k | ≤ c 时, |k |越大, 椭圆越小; 当 |k | = c 时, 椭圆退缩成点.
3° 类似地,用平面 x = k 去截割, 截线是抛物线.
k 2 y2 2 + 2 =z a b x = k
当k = 0 时 , 为 z =
y b
2 2
.
x (2) 椭圆抛物面: 2 + 2 = z a b
2
y2
z
高等数学-几种常见的二次曲面
研究二次曲面特性的基本方法: 截痕法
相应地平面被称为一次曲面.
如 2x y 3z 0
20
1. 椭球面
x2 a2
y2 b2
z2 c2
1
( a,b, c为正数)
(1)范围:
x a, y b, z c
化简得 2x 6 y 2z 7 0
说明: 动点轨迹为线段 AB 的垂直平分面. 显然在此平面上的点的坐标都满足此方程, 不在此平面上的点的坐标不满足此方程.F( x, y, z ) = 0 有下述关系: (1) 曲面 S 上的任意点的坐标都满足此方程; (2) 满足此方程的点都在曲面 S 上,
x2 a2
z c
2 2
1
y12 b2
(实轴平行于x 轴;
y y1
虚轴平行于z 轴)
z y
25
2) y1 b 时, 截痕为相交直线: x z 0 ac y b (或 b)
3) y1 b时, 截痕为双曲线:
x2 a2
z2 c2
1
y12 b2
0
y y1
(实轴平行于z 轴;
虚轴平行于x 轴)
z
得到)
28
作业
习题册 第七章第五节
2
z12
)
1
z z1
同样 y y1 ( y1 b ) 及
也为椭圆.
的截痕
(4) 当 a=b 时为旋转椭球面; 当a=b=c 时为球面.
22
2. 抛物面 (1) 椭圆抛物面
x2 y2 z ( p , q 同号) 2p 2q
特别,当 p = q 时为绕 z 轴的旋转抛物面.
第五节常见的二次曲面及其方程
(2) y12 b2 , 实轴与 z 轴平行, 虚轴与 x 轴平行.
(3) y1 b, 截痕为一对相交于点 (0,b,0) 的直线.
x a
z c
0
,
y b
x a
z c
0
.
y b
(4) y1 b,
截痕为一对相交于点 (0,b,0) 的直线.
x a
z c
0
,
x a
z c
0
.
y b
y b
(3)用坐标面 yoz ( x 0), x x1与曲面相截
均可得双曲线.
平面 x a 的截痕是两对相交直线.
单叶双曲面图形 z
o
y
x
x2 a2
y2 b2
z2 c2
1
双叶双曲面
o
y
x
二、小结
c
2
x2 (c2
z12
)
b2 c2
y2 (c2
z12
)
1
z z1
| z1 | c
同理与平面 x x1 和 y y1 的交线也是椭圆.
椭圆截面的大小随平面位置的变化而变化.
椭球面的几种特殊情况:
(1) a b,
x2 a2
y2 a2
z2 c2
1
旋转椭球面
由椭圆
x2 a2
z2 c2
1绕
z 轴旋转而成.
方程可写为
x2 y2 a2
常用的二次曲面方程及其图形
双叶双曲面
x2 y2 z2 2 2 1 a2 b c
具体步骤:
1) 列出平面曲线(母线)方程,比如
f (x0 , y0 ) 0
2) 旋转,根据旋转曲面与平面方程(母线)的关系,列 出空间旋转曲面等式 3) 当 z 0 =z,带入平面曲线方程。
M0 (x0 ,0, z0 )
M (x, y,z)
x0 z0 1 a2 c2
2 2
x 2 y 2 x0
图形
标准方程
x2 y 2 1a 0,b 0 a2 b2
y2 x2 1a 0,b 0 a2 b2
F1 c, 0
焦点坐标
a, b, c
F2 c, 0
F1 0, c
F2 0,c
c 2 a 2 b 2 c a 0,c b 0
4)
如果 a=b,那么方程变为:
x2 y2 z2 2 2 1 a2 a c x2 y2 z2 2 1 a2 c
根据旋转曲面的知识:
----------------------(2)
(2)式表示在 xoz 平面上的椭圆
x2 z2 2 1 围绕 z 轴的而行程的 a2 c
旋转曲面,它与一般椭圆球不同之处在于,其用 z= z1 平面截得的平面为一个 圆点在 z 轴上的圆。
1) 当 z=0 时,为过原点的圆,圆点在原点上。
x2 y2 2 1 a2 b
2)
当用平行与 z=0 的平面 z= z1 截双曲面时,
x2 y2 z2 2 2 1 a2 b c
Z= z1
z1 2 x2 y2 1 a2 b2 c2
-------------椭圆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。